WO2011096448A1 - アニオン性含フッ素乳化剤の回収方法 - Google Patents
アニオン性含フッ素乳化剤の回収方法 Download PDFInfo
- Publication number
- WO2011096448A1 WO2011096448A1 PCT/JP2011/052175 JP2011052175W WO2011096448A1 WO 2011096448 A1 WO2011096448 A1 WO 2011096448A1 JP 2011052175 W JP2011052175 W JP 2011052175W WO 2011096448 A1 WO2011096448 A1 WO 2011096448A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- anionic
- water
- emulsifier
- ion exchange
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
- B01J41/05—Processes using organic exchangers in the strongly basic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/50—Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
- B01J49/57—Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/301—Detergents, surfactants
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
- C02F2101/325—Emulsions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the present invention relates to a method for recovering an anionic fluorinated emulsifier, wherein the anionic fluorinated emulsifier is eluted from a basic ion exchange resin adsorbed with the anionic fluorinated emulsifier and recovered as an acid of the anionic fluorinated emulsifier.
- fluoropolymers such as polytetrafluoroethylene (hereinafter referred to as PTFE), melt-moldable fluororesins, and fluoroelastomers by emulsion polymerization
- PTFE polytetrafluoroethylene
- melt-moldable fluororesins melt-moldable fluororesins
- fluoroelastomers by emulsion polymerization
- a fluorine-containing emulsifier is generally used.
- a fluoropolymer powder is obtained by agglomerating and drying an aqueous emulsion of a fluoropolymer obtained by emulsion polymerization (hereinafter referred to as an aqueous fluoropolymer emulsion).
- the fluorine-containing polymer powder is used for various purposes after being molded by a method such as paste extrusion molding.
- a non-ionic surfactant or the like is added to the fluoropolymer aqueous emulsion as necessary, followed by a stabilization treatment, and then a concentration treatment to obtain a fluoropolymer aqueous dispersion containing a high concentration of the fluoropolymer. can get.
- This fluoropolymer aqueous dispersion is used for various coating applications, impregnation applications and the like by adding various compounding agents as required.
- the anionic fluorine-containing emulsifier used for emulsion polymerization of a fluorine-containing polymer is a substance that is not easily decomposed in nature. For this reason, in recent years, it has been desired to reduce the anionic fluorine-containing emulsifier contained in products such as a fluorine-containing polymer aqueous emulsion and a fluorine-containing polymer aqueous dispersion as well as industrial wastewater.
- the treatment liquid containing the anionic fluorinated emulsifier is brought into contact with the basic ion exchange resin, and the anionic fluorinated emulsifier in the treated liquid is adsorbed on the basic ion exchange resin.
- the anionic fluorinated emulsifier in the treated liquid is adsorbed on the basic ion exchange resin.
- anionic fluorine-containing emulsifiers are expensive, attempts have been made to recover and reuse the anionic fluorine-containing emulsifiers adsorbed by the base ion exchange resin.
- Patent Document 1 discloses that a base ion exchange resin adsorbing an anionic fluorinated emulsifier is treated with a mixture of a dilute mineral acid and an organic solvent and recovered as an acid of an anionic fluorinated emulsifier. ing. It is described that the organic solvent is preferably a solvent that can be mixed in the same amount as water and mixed at least 40% or infinitely.
- Patent Document 2 discloses a basic ion exchange resin adsorbing an anionic fluorine-containing emulsifier, water, a solvent such as methanol and / or dimethyl monoglycol ether or dimethyl diglycol ether, and alkali metal hydroxide ammonia. It is disclosed that an anionic fluorine-containing emulsifier bound to a basic ion exchange resin is eluted by contacting with a mixture with a solution.
- Patent Document 3 discloses that a basic ion exchange resin adsorbing an anionic fluorine-containing emulsifier is treated with an aqueous alkali solution containing water and an organic solvent. It is described that the organic solvent dissolves water or dissolves in water, and is preferably capable of dissolving at least 10 vol% of water.
- Patent Document 4 discloses that a basic ion exchange resin adsorbing an anionic fluorine-containing emulsifier is treated with a water-miscible organic solvent containing at least one ammonia and having a boiling point of less than 150 ° C. Yes. Specifically, a mixture of ammonia and methanol is used.
- alcohol is a flammable and water-soluble organic solvent
- COD chemical oxygen demand
- an object of the present invention is to provide a method for recovering an anionic fluorinated emulsifier that can easily and efficiently recover an anionic fluorinated emulsifier adsorbed by a base ion exchange resin.
- the present invention has the following gist.
- a method for recovering an anionic fluorinated emulsifier by eluting the anionic fluorinated emulsifier from the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier, and recovering it as an acid of the anionic fluorinated emulsifier, After bringing the mixed solution of the inorganic acid aqueous solution and the water-insoluble fluorine-containing medium into contact with the basic ion exchange resin, the phase of the water-insoluble fluorine-containing medium is recovered, and the anionic property is recovered from the phase of the water-insoluble fluorine-containing medium.
- a method for recovering an anionic fluorinated emulsifier comprising recovering an acid of the fluorinated emulsifier.
- a method for recovering an anionic fluorinated emulsifier by eluting the anionic fluorinated emulsifier from the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier and recovering it as an acid of the anionic fluorinated emulsifier, An inorganic acid aqueous solution is contacted with the basic ion exchange resin, and then a water-insoluble fluorine-containing medium is contacted, and then the phase of the water-insoluble fluorine-containing medium is recovered, and an anion is recovered from the phase of the water-insoluble fluorine-containing medium.
- a method for recovering an anionic fluorinated emulsifier comprising recovering an acid of a fluorinated emulsifier.
- Emulsifier recovery method comprising recovering an acid of a fluorinated emulsifier.
- a base type ion exchange resin adsorbed with an anionic fluorine-containing emulsifier is contacted with a mixed solution of an inorganic acid aqueous solution and a non-water-soluble fluorine-containing medium, or an inorganic acid aqueous solution is contacted,
- the anionic fluorine-containing emulsifier adsorbed on the basic ion exchange resin is acidified by the aqueous inorganic acid solution and eluted into the water-insoluble fluorine-containing medium.
- the water-insoluble fluorine-containing medium contains a large amount of an anionic fluorine-containing emulsifier eluted from the basic ion exchange resin as an acid of the anionic fluorine-containing emulsifier.
- the acid of the anionic fluorine-containing emulsifier can be efficiently recovered by a known method such as a distillation method.
- the acid of the anionic fluorinated emulsifier can be efficiently recovered without using a flammable and water-soluble organic solvent.
- the water-insoluble fluorine-containing medium after recovering the acid of the anionic fluorine-containing emulsifier can be reused, and the labor for wastewater treatment can be reduced.
- the recovered acid of the anionic fluorine-containing emulsifier can be used as it is or after neutralization as an ammonium salt or an alkali metal salt for emulsion polymerization of the fluorine-containing polymer.
- the acid of the anionic fluorinated emulsifier refers to an acid type anionic fluorinated emulsifier.
- the water-insoluble fluorine-containing medium refers to a fluorine-containing medium having a solubility in water at 25 ° C. of less than 0.1%.
- examples of the base ion exchange resin used for adsorbing the anionic fluorine-containing emulsifier include strong base ion exchange resins and weak base ion exchange resins. Strong base type ion exchange resins are preferred. The strong base type ion exchange resin is hardly affected by the pH of the liquid to be treated containing the anionic fluorine-containing emulsifier, and can maintain high adsorption efficiency.
- the base type ion exchange resin examples include granular resins made of styrene-divinylbenzene crosslinked resin, acrylic-divinylbenzene crosslinked resin, cellulose resin, etc. having amino groups and / or quaternary ammonium bases as ion exchange groups. Can be mentioned. Of these, a granular resin made of a styrene-divinylbenzene crosslinked resin having a quaternary ammonium base as an ion exchange group is preferable.
- the average particle size of the basic ion exchange resin is preferably 0.1 to 2 mm, more preferably 0.2 to 1.3 mm, and particularly preferably 0.3 to 0.8 mm. If the average particle size of the basic ion exchange resin is within the above range, for example, an anionic fluorinated emulsifier is obtained by passing a liquid to be treated containing an anionic fluorinated emulsifier through a column packed with the basic ion exchange resin. When the operation of adsorbing the liquid is performed, it becomes difficult to block the flow path of the liquid to be processed.
- the ion exchange capacity of the basic ion exchange resin is preferably 0.5 to 2.5 (eq / L (liter)), more preferably 0.8 to 1.7 (eq / L).
- the anionic fluorinated emulsifier in the liquid to be treated can be adsorbed efficiently.
- Examples of commercially available base type ion exchange resins include Lewatit (registered trademark) MP800OH, Lewatit (registered trademark) M800KR, Lewatit (registered trademark) MP600, and Purolite (registered trademark) A200MBOH manufactured by LANXESS.
- the anionic fluorinated emulsifier to be adsorbed on the basic ion exchange resin is not particularly limited.
- examples thereof include a fluorinated carboxylic acid and a salt thereof which may have an etheric oxygen atom, a fluorinated sulfonic acid and a salt thereof, and the like.
- the salt include ammonium salts and alkali metal salts (Li, Na, K, etc.), and ammonium salts are preferable.
- a fluorine-containing carboxylic acid which may have an etheric oxygen atom and a salt thereof are preferable, and a fluorine-containing carboxylic acid having 5 to 7 carbon atoms which may contain 1 to 3 etheric oxygen atoms and the salt thereof.
- a salt is more preferred.
- fluorine-containing carboxylic acid examples include perfluorocarboxylic acid, perfluorocarboxylic acid having an etheric oxygen atom, and fluorine-containing carboxylic acid having a hydrogen atom.
- perfluorocarboxylic acid examples include perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, and perfluorononanoic acid.
- fluorine-containing carboxylic acid having a hydrogen atom examples include ⁇ -hydroperfluorooctanoic acid, C 3 F 7 OCF (CF 3 ) CF 2 OCHFCOOH, CF 3 CFHO (CF 2 ) 5 COOH, CF 3 O (CF 2 ) 3 OCFCCF 2 COOH, CF 3 O (CF 2 ) 3 OCHFCOOH, C 3 F 7 OCHFCF 2 COOH, CF 3 CFHO (CF 2 ) 3 COOH, and the like can be given.
- fluorine-containing sulfonic acid examples include perfluorooctane sulfonic acid and C 6 F 13 CH 2 CH 2 SO 3 H.
- the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier can be obtained by bringing a liquid to be treated containing the anionic fluorinated emulsifier into contact with the basic ion exchange resin. That is, by bringing the liquid to be treated into contact with the base type ion exchange resin, the anionic fluorinated emulsifier in the liquid to be treated is adsorbed on the base type ion exchange resin.
- Examples of the liquid to be treated containing an anionic fluorinated emulsifier include (1) emulsion polymerization of a fluorinated monomer in the presence of an anionic fluorinated emulsifier, and the resulting fluorinated polymer aqueous emulsion contains nonionic surface activity. (2) wastewater containing an anionic fluorinated emulsifier discharged after agglomerating the fluorinated polymer aqueous emulsion, 3) An aqueous solution in which an anionic fluorinated emulsifier contained in the air discharged in the process of drying the fluorinated polymer aggregate obtained by agglomerating the fluoropolymer aqueous emulsion is absorbed.
- the aqueous fluoropolymer dispersion is preferably an aqueous fluoropolymer dispersion obtained by stabilizing an aqueous fluoropolymer emulsion with a nonionic surfactant.
- a nonionic surfactant include a surfactant represented by the general formula (A) and / or the general formula (B).
- R 1 -OAH (In the formula (A), R 1 is an alkyl group having 8 to 18 carbon atoms, and A is a polyoxyalkylene chain composed of 5 to 20 oxyethylene groups and 0 to 2 oxypropylene groups.) R 2 —C 6 H 4 —O—B—H (B) (In the formula (B), R 2 is an alkyl group having 4 to 12 carbon atoms, and B is a polyoxyethylene chain composed of 5 to 20 oxyethylene groups.) In the general formula (A), the alkyl group of R 1 has 8 to 18 carbon atoms, preferably 10 to 16 and more preferably 12 to 16.
- R 1 may be linear or branched, but is preferably linear.
- the alkyl group of R 2 has 4 to 12 carbon atoms, preferably 6 to 10, more preferably 8 to 9.
- R 2 may be linear or branched, but is preferably linear.
- nonionic surfactant of the general formula (A) include, for example, C 13 H 27 — (OC 2 H 4 ) 10 —OH, C 12 H 25 — (OC 2 H 4 ) 10 —OH, C 10 H 21 CH (CH 3 ) CH 2 — (OC 2 H 4 ) 9 —OH, C 13 H 27 — (OC 2 H 4 ) 8 —OCH (CH 3 ) CH 2 —OH, C 16 H 33 —
- Nonionic surfactants having a molecular structure such as (OC 2 H 4 ) 10 —OH, CH (C 5 H 11 ) (C 7 H 15 ) — (OC 2 H 4 ) 9 —OH, and the like can be mentioned.
- nonionic surfactant represented by the general formula (B) examples include C 8 H 17 —C 6 H 4 — (OC 2 H 4 ) 10 —OH, C 9 H 19 —C 6 H 4 —.
- Nonionic surfactants having a molecular structure such as (OC 2 H 4 ) 10 —OH can be mentioned.
- Examples of commercially available products include Dow Triton (registered trademark) X series, Nikko Chemical Nikkor (registered trademark) OP series, and NP series.
- the content of the nonionic surfactant represented by the general formula (A) and / or the general formula (B) in the fluoropolymer aqueous dispersion is preferably 1 to 20% by mass with respect to the mass of the fluoropolymer. 1 to 10% by mass is more preferable, and 2 to 8% by mass is particularly preferable.
- the method for contacting the liquid to be treated containing the anionic fluorine-containing emulsifier and the base type ion exchange resin is not particularly limited, and conventionally known methods can be mentioned.
- a method in which a base type ion exchange resin is put into the liquid to be treated and stirred or shaken a method in which the liquid to be treated is passed through a column packed with the base type ion exchange resin, and the like can be mentioned.
- the liquid to be treated is preferably filtered using a single-stage or multi-stage filter group having a pore size of 100 to 300 ⁇ m.
- the contact temperature when the liquid to be treated containing the anionic fluorine-containing emulsifier is brought into contact with the basic ion exchange resin is not particularly limited and may be appropriately selected.
- the contact time is not particularly limited and may be appropriately selected.
- the range of 10 minutes to 200 hours is preferable.
- the atmospheric pressure is preferable, the pressure at the time of contact may be a reduced pressure state or a pressurized state.
- the basic ion exchange resin is separated.
- an inorganic acid aqueous solution and a water-insoluble fluorine-containing medium are applied to the basic ion exchange resin adsorbing the anionic fluorine-containing emulsifier separated above.
- an eluent a mixed solution of an inorganic acid aqueous solution and a non-water-soluble fluorine-containing medium is referred to as an eluent.
- the anionic fluorine-containing emulsifier adsorbed on the base type ion exchange resin is acidified by the aqueous inorganic acid solution and becomes easy to elute.
- the anionic fluorinated emulsifier has good compatibility with the non-water-soluble fluorinated medium, the anionic fluorinated emulsifier adsorbed on the basic ion exchange resin elutes as an acid of the anionic fluorinated emulsifier, Elutes in a non-water-soluble fluorine-containing medium.
- the method for contacting the basic ion exchange resin and the eluent is not particularly limited.
- mechanical stirring with a stirrer or the like, shaking or the like can be mentioned.
- the stirring intensity is higher as long as the particles of the base ion exchange resin are not destroyed.
- the particles of the basic ion exchange resin are not destroyed, it is preferable because they can be easily reused for adsorption of the anionic fluorinated emulsifier.
- the basic ion exchange resin adsorbed with the anionic fluorine-containing emulsifier is brought into contact with the base type ion exchange resin and the liquid to be treated containing the anionic fluorine-containing emulsifier, so that the anionic After adsorbing the fluorine emulsifier, it may be used in a wet state without performing a drying treatment or the like, or may be used in a dry state after being subjected to a drying treatment. Industrially, it is preferable to use it in a wet state because the process can be simplified.
- the inorganic acid aqueous solution at least one selected from the group consisting of a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution and a phosphoric acid aqueous solution is preferably used.
- a hydrochloric acid aqueous solution a nitric acid aqueous solution, a sulfuric acid aqueous solution and a phosphoric acid aqueous solution
- Two or more kinds of the inorganic acid aqueous solutions may be mixed and used.
- an aqueous hydrochloric acid solution is particularly preferred because it is industrially easy to use.
- the water-insoluble fluorine-containing medium is preferably at least one selected from the group consisting of hydrofluorocarbons and hydrofluoroethers.
- hydrofluoroethers are particularly preferred because of their low global warming potential and ozone depletion potential.
- hydrofluoroether examples include CF 3 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCF 2 CFHCF 3 , (CF 3 ) 2 CHOCF 2 CF 2 H, CF 3 CH 2 OCHFCHF 2 , and CF 3 (CF 2 ) 3.
- Hydrofluorocarbons include CHF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CH 2 CH 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 , CF 3 CF 2 CHFCHFCF 3, CF 3 CH 2 CF 2 CH 3, CF 3 CF 2 CF 2 CFHCH 3 , and the like.
- hydrofluorocarbons and hydrofluoroethers both have a solubility in water of less than 0.1%. Moreover, it is a nonflammable medium and has excellent handling properties.
- the ratio of the base type ion exchange resin adsorbing the anionic fluorinated emulsifier, the inorganic acid aqueous solution, and the water-insoluble fluorine-containing medium is, as a mass ratio, the base type ion exchange resin / (the inorganic acid aqueous solution and the water-insoluble
- the total amount with the fluorine medium) 60/40 to 1/99 is preferable, 55/45 to 10/90 is more preferable, and 50/50 to 30/70 is particularly preferable.
- the contact efficiency is lowered and the acid recovery rate of the anionic fluorine-containing emulsifier is lowered.
- the amount is too small, the miscibility is lowered and the acid recovery rate of the anionic fluorinated emulsifier is lowered. Within the above range, the miscibility is good and the acid recovery rate of the anionic fluorine-containing emulsifier is high.
- the phase of the water-insoluble fluorine-containing medium is separated and recovered from the mixture of the base type ion exchange resin adsorbing the anionic fluorine-containing emulsifier and the eluent.
- the mixture Since the compatibility between the inorganic acid aqueous solution and the water-insoluble fluorine-containing medium is extremely low, the mixture is separated into an inorganic acid aqueous solution phase and a water-insoluble fluorine-containing medium phase simply by, for example, standing. Therefore, according to the present invention, a large amount of anionic fluorinated emulsifier acid is contained in a very simple operation such as collecting the phase-separated supernatant without using a particularly complicated collecting device. The phase of the water-insoluble fluorine-containing medium can be separated and recovered.
- the acid of the anionic fluorine-containing emulsifier can be recovered by performing a distillation operation on the phase of the water-insoluble fluorine-containing medium thus separated and recovered.
- the recovered acid of the anionic fluorine-containing emulsifier may be used as it is as an anionic fluorine-containing emulsifier, or may be neutralized to be used as an ammonium salt, an alkali metal salt or the like.
- a water-insoluble fluorine-containing medium is newly added to the remainder of the separation of the phase of the water-insoluble fluorine-containing medium from the mixture of the basic ion exchange resin and the eluent, mixed, allowed to stand,
- the operation of separating and recovering the phase of the water-insoluble fluorine-containing medium and recovering the acid of the anionic fluorine-containing emulsifier from the phase of the water-insoluble fluorine-containing medium may be repeated one or more times.
- the acid recovery rate of the anionic fluorine-containing emulsifier by repeating the above operation, that is, by increasing the number of times of contact between the basic ion exchange resin and the eluent.
- the acid of 45 mass% or more of an anionic fluorine-containing emulsifier can be eluted by bringing the eluent into contact with a basic ion exchange resin (first contact). Then, by adding a water-insoluble fluorine-containing medium to the remaining part from which the phase of the water-insoluble fluorine-containing medium has been separated, and mixing them (for example, the second contact), a total of 70 masses.
- an anionic fluorine-containing emulsifier acid can be eluted. Further, by performing the same operation and increasing the number of times of contact between the base type ion exchange resin and the eluent, the anionic fluorine-containing emulsifier can be finally eluted by almost 100%. Since the process becomes complicated as the number of contacts is increased, the number of contacts is preferably 5 or less.
- the water-insoluble fluorine-containing medium obtained by removing the eluted anionic fluorine-containing emulsifier from the water-insoluble fluorine-containing medium once contacted with the basic ion exchange resin is reused. However, it is preferable to use a new water-insoluble fluorine-containing medium.
- an inorganic acid aqueous solution is brought into contact with a basic ion exchange resin adsorbed with an anionic fluorine-containing emulsifier, and then a water-insoluble fluorine-containing medium is brought into contact therewith.
- the anionic fluorinated emulsifier adsorbed on the base ion exchange resin is converted into an acid form by contacting the base ion exchange resin with an inorganic acid aqueous solution, and the base ion exchange resin is easily eluted. To be adsorbed. Since an anionic fluorine-containing emulsifier has low compatibility with an inorganic acid aqueous solution, it hardly dissolves into the inorganic acid aqueous solution even if it is acidified.
- the water-insoluble fluorine-containing medium has good compatibility with the anionic fluorine-containing emulsifier
- by bringing the water-insoluble fluorine-containing medium into contact with the basic ion exchange resin in contact with the inorganic acid aqueous solution The anionic fluorine-containing emulsifier adsorbed on the base type ion exchange resin elutes as an acid of the anionic fluorine-containing emulsifier and elutes in the water-insoluble fluorine-containing medium.
- phase of the water-insoluble fluorine-containing medium containing a large amount of the acid of the anionic fluorine-containing emulsifier can be recovered and recovered.
- the acid of the anionic fluorine-containing emulsifier can be recovered by subjecting the phase of the water-insoluble fluorine-containing medium to a distillation operation or the like.
- the basic ion exchange resin is separated and recovered from the mixture, and the water-insoluble fluorine-containing resin is separated into the separated basic ion exchange resin. It is preferable to contact the medium.
- the base-type ion exchange resin is filtered off from the mixture of the base-type ion exchange resin and the water-insoluble fluorine-containing medium.
- the phase of the water-insoluble fluorine-containing medium can be recovered by a simple operation.
- the ratio of the basic ion exchange resin adsorbed with the anionic fluorine-containing emulsifier and the aqueous inorganic acid solution is preferably 80/20 to 2/98, and preferably 75/25 to 20 / 80 is more preferable.
- the ratio of the base type ion exchange resin to the water-insoluble fluorine-containing medium is preferably 80/20 to 2/98, more preferably 75/25 to 20/80 in terms of mass ratio. If it is in the said range, the recovery rate of the acid of an anionic fluorine-containing emulsifier will be high.
- an anionic fluorinated emulsifier using an inorganic acid aqueous solution and a water-insoluble fluorinated medium with respect to the remainder obtained by separating the phase of the water-insoluble fluorinated medium. This recovery operation may be repeated one or more times.
- the “remaining part from which the phase of the fluorine medium is separated” is mainly composed of a basic ion exchange resin.
- (A) inorganic acid A mixed liquid of an aqueous solution and a water-insoluble fluorine-containing medium is contacted, or (B) an inorganic acid aqueous solution is contacted, and then a water-insoluble fluorine-containing medium is contacted. It is preferable to recover the phase and recover the anionic fluorine-containing emulsifier from the phase of the water-insoluble fluorine-containing medium.
- A Average primary particle diameter (unit: ⁇ m) of PTFE (polytetrafluoroethylene): measured using a laser scattering particle size distribution analyzer (trade name “LA-920” manufactured by Horiba, Ltd.).
- Standard specific gravity (hereinafter also referred to as SSG): Measured according to ASTM D1457-91a and D4895-91a. 12.0 g of PTFE was weighed and held at 34.5 MPa for 2 minutes in a cylindrical mold having an inner diameter of 28.6 mm. This was put into a 290 ° C. oven and heated at 120 ° C./hr. Next, after maintaining at 380 ° C. for 30 minutes, the temperature was decreased at 60 ° C./hr and maintained at 294 ° C. for 24 minutes. Then, after hold
- (C) Acid concentration of anionic fluorine-containing emulsifier and anionic fluorine-containing emulsifier Methylene blue solution (12 g of sulfuric acid is gradually added to about 500 mL of water in a glass bottle, and after cooling, 0.03 g of methylene blue and sulfuric anhydride are added thereto. 50 mL of sodium was dissolved and water was added to make 1 L (liter) 4 mL, and chloroform 5 mL was added, and 0.1 g of a 1000 to 3000-fold diluted solution of the sample to be measured was added and shaken vigorously. After placement, the lower chloroform phase was collected.
- the collected chloroform phase was filtered with a filter having a pore size of 0.2 ⁇ m, and the absorbance at 630 nm was measured with a spectrophotometer.
- the chloroform phase is blue depending on the amount of the anionic fluorine-containing emulsifier.
- the absorbance is measured in the same manner to prepare a calibration curve, and using the calibration curve, the concentration of the anionic fluorine-containing emulsifier in the measurement sample Asked.
- the acid concentration of the anionic fluorine-containing emulsifier in the measurement sample was determined.
- Example 1 A non-ionic system using a tube pump is applied to a column (internal volume 51 cc) with a length of 80 cm and an inner diameter of 0.9 cm packed with a strong base type ion exchange resin (trade name: “PUROLITE (registered trademark) A200MBOH”, manufactured by Purolite).
- a strong base type ion exchange resin trade name: “PUROLITE (registered trademark) A200MBOH”, manufactured by Purolite.
- a surfactant trade name: “Newcol (registered trademark) 1308FA”, manufactured by Nippon Emulsifier Co., Ltd.
- an anionic fluorine-containing emulsifier (CF 3 CF 2 OCF 2 23.0 kg of PTFE aqueous dispersion containing 0.471% by mass of CF 2 OCF 2 COO ⁇ (NH 4 ) + ) with respect to the mass of PTFE (PTFE concentration 29.4%, average primary particle diameter of PTFE is 300 nm, The standard specific gravity of PTFE was 2.20) at 120 cc / h for about 195 hours.
- the anionic fluorine-containing emulsifier in the PTFE aqueous dispersion after passing through was reduced to 0.0471% by mass relative to the PTFE mass.
- the PTFE aqueous dispersion before passing through it contained 31.9 g of an anionic fluorinated emulsifier by calculation. Further, 3.18 g of an anionic fluorine-containing emulsifier was contained in the PTFE aqueous dispersion after passing through. From this, 28.7 g of an anionic fluorine-containing emulsifier was adsorbed to the strongly basic ion exchange resin after passing through. This strong base type ion exchange resin was dried in an oven at 50 to 60 ° C. for about 12 hours until the mass became constant.
- the strong base ion exchange resin thus obtained is 44.6 g, and 0.643 g of an anionic fluorinated emulsifier per 1 g is adsorbed.
- a 30 cc glass bottle containing a stirrer 1.01 g of the strongly basic ion exchange resin subjected to the above drying treatment, 0.300 g of 11N hydrochloric acid aqueous solution, and CF 3 CH 2 OCFCHF 2 as a water-insoluble fluorine-containing medium.
- AE-3000 trade name: “Asahi Klin (registered trademark) AE-3000”, manufactured by Asahi Glass Co., Ltd.
- the mixture was allowed to stand, and the separated phase of AE-3000 was recovered, and the concentration of the acid (CF 3 CF 2 OCF 2 CF 2 OCF 2 COOH) of the anionic fluorinated emulsifier in the phase was measured.
- the recovered AE-3000 phase contained 0.310 g of an anionic fluorinated emulsifier acid.
- the acid recovery rate of the anionic fluorinated emulsifier was 47.8%.
- Example 2 (Examples 2 to 6) In Example 1, except that the amount of 11N hydrochloric acid aqueous solution and AE-3000 used was changed to the amount shown in Table 1, the phase of AE-3000 was recovered and the anionic property in the phase was recovered in the same manner as in Example 1. The acid concentration of the fluorine-containing emulsifier was measured. The results are shown in Table 1.
- Example 7 Strong base type ion exchange resin (trade name: “PUROLITE (registered trademark) A200MBOH”, manufactured by Purolite), anionic fluorine-containing emulsifier (CF 3 CF 2 OCF 2 CF 2 OCF 2 COO ⁇ (NH 4 ) + )
- PUROLITE registered trademark
- A200MBOH anionic fluorine-containing emulsifier
- the solution was placed in 8.96 kg of an aqueous solution containing 29.9% by mass and stirred for 110 hours, and then an aqueous solution of a strongly basic ion exchange resin and an anionic fluorinated emulsifier was separated.
- the concentration of the anionic fluorinated emulsifier was reduced to 13.0% by mass.
- the mixture was shaken with a shaker (trade name: “SHAKER S-31”, manufactured by Yamato) for 60 minutes. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured.
- the recovered AE-3000 phase contained 2.67 g of an anionic fluorinated emulsifier acid. The acid recovery rate of the anionic fluorinated emulsifier was 57.2%.
- Example 8 In Example 7, after separating the AE-3000 phase, 25.1 g of AE-3000 was newly added to the remaining mixture of strong base ion exchange resin and aqueous hydrochloric acid, and shaken for 60 minutes with a shaker. did. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured.
- the recovered AE-3000 phase contained 1.16 g of an anionic fluorinated emulsifier acid.
- the acid recovery rate of the anionic fluorine-containing emulsifier was 24.9%.
- the acid recovery rate of the anionic fluorine-containing emulsifier was 82.1% in total.
- Example 9 In a 600 cc beaker, 20.0 g of strong base type ion exchange resin obtained by adsorbing the anionic fluorine-containing emulsifier obtained in Example 7, 50.0 g of 11N hydrochloric acid aqueous solution, and 50.0 g of AE-3000 were obtained. And stirred for 60 minutes. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured. The recovered AE-3000 phase contained 4.99 g of an anionic fluorinated emulsifier acid. The acid recovery rate of the anionic fluorine-containing emulsifier was 54.0%.
- Example 10 In a 600 cc beaker, 20.0 g of strong base type ion exchange resin in which the anionic fluorine-containing emulsifier obtained in Example 7 was adsorbed, 50.0 g of 3N hydrochloric acid aqueous solution, and 50.0 g of AE-3000 were added. And stirred for 60 minutes. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured. The recovered AE-3000 phase contained 3.23 g of an anionic fluorinated emulsifier acid. The acid recovery rate of the anionic fluorine-containing emulsifier was 34.9%.
- Example 11 In a 500 ml three-necked flask, 20.4 g of strong base type ion exchange resin adsorbed with the anionic fluorine-containing emulsifier obtained in Example 7 and 24.0 g of 11N hydrochloric acid aqueous solution were added and stirred for 60 minutes. Next, the hydrochloric acid aqueous solution was removed, and strong base type ion exchange resin and 24.0 g of AE-3000 were stirred for 60 minutes.
- the concentration of the acid of the anionic fluorinated emulsifier in the AE-3000 phase was measured, it contained 3.92 g of the acid of the anionic fluorinated emulsifier, and the acid recovery rate of the anionic fluorinated emulsifier was 42. 4%.
- the anionic fluorinated emulsifier can be recovered from the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier in a high yield. Further, the water-insoluble fluorine-containing medium used for the recovery of the anionic fluorine-containing emulsifier can be reused, and the labor required for waste liquid treatment can be reduced.
- the recovered anionic fluorine-containing emulsifier can be used as it is or neutralized as an alkali metal salt or ammonium salt for emulsion polymerization of a fluorine-containing polymer aqueous emulsion.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
[1]アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、前記塩基型イオン交換樹脂に無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。
[2]アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、前記塩基型イオン交換樹脂に無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。
[3]前記塩基型イオン交換樹脂に無機酸水溶液を接触させた後、塩基型イオン交換樹脂を分離回収して非水溶性含フッ素媒体を接触させる、上記[2]に記載のアニオン性含フッ素乳化剤の回収方法。
[4]前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、無機酸水溶液/非水溶性含フッ素媒体=5/95~95/5である上記[1]~[3]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[5]前記塩基型イオン交換樹脂と、前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、塩基型イオン交換樹脂/(無機酸水溶液と非水溶性含フッ素媒体との合計量)=60/40~1/99である上記[1]~[4]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[6]前記アニオン性含フッ素乳化剤の酸が、含フッ素カルボン酸である上記[1]~[5]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[7]前記アニオン性含フッ素乳化剤の酸が、エーテル性酸素原子を1~3個含有してもよい、炭素数5~7の含フッ素カルボン酸である上記[6]に記載のアニオン性含フッ素乳化剤の回収方法。
[8]前記非水溶性含フッ素媒体が、ヒドロフルオロカーボン及びヒドロフルオロエーテルからなる群から選ばれる少なくとも1種である上記[1]~[7]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[9]前記非水溶性含フッ素媒体が、CF3CH2OCF2CF2H、CF3CH2OCF2CFHCF3、(CF3)2CHOCF2CF2H、CF3CH2OCHFCHF2、CF3(CF2)3OCH3、CF3(CF2)4OCH3、CF3(CF2)3OCH2CH3、CF3(CF2)4OCH2CH3、(CF3)2CFCF2OCH2CH3、CHF2CF2CF2CF2CF2CF3、CF3CF2CF2CF2CH2CH3、CF3CF2CF2CF2CF2CF2CH2CH3、CF3CF2CHFCHFCF3、CF3CH2CF2CH3及びCF3CF2CF2CFHCH3からなる群から選ばれる少なくとも1種である上記[8]に記載のアニオン性含フッ素乳化剤の回収方法。
[10]前記無機酸水溶液が、塩酸水溶液、硫酸水溶液、硝酸水溶液及びリン酸水溶液からなる群から選ばれる少なくとも1種である上記[1]~[9]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[11]前記前記無機酸水溶液の濃度が、0.1N~13Nである上記[1]~[10]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[12]前記塩基型イオン交換樹脂が、強塩基型イオン交換樹脂である上記[1]~[11]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
[13]非水溶性含フッ素媒体の相を分離した残部に非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、上記[1]又は[2]に記載のアニオン性含フッ素乳化剤の回収方法。
[14]非水溶性含フッ素媒体の相を分離した残部に、(A)無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、(B)無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、上記[3]に記載のアニオン性含フッ素乳化剤の回収方法。
(式(A)中、R1は炭素数8~18のアルキル基であり、Aはオキシエチレン基数5~20及びオキシプロピレン基数0~2より構成されるポリオキシアルキレン鎖である。)
R2-C6H4-O-B-H ・・・(B)
(式(B)中、R2は炭素数4~12のアルキル基であり、Bはオキシエチレン基数5~20より構成されるポリオキシエチレン鎖である。)
一般式(A)において、R1のアルキル基の炭素数は8~18であり、10~16が好ましく、12~16がより好ましい。アルキル基の炭素数がこの範囲より多いと、界面活性剤の流動温度が高いために取扱いにくい。また、PTFE水性分散液を長期間放置した場合、PTFE微粒子が沈降し易く、保存安定性が損なわれやすい。また、炭素数がこの範囲より少ないと、PTFE水性分散液の表面張力が高くなり、コーティング時のぬれ性が低下しやすい。
なお、R1は直鎖状でも、分岐状でもよいが、直鎖状が好ましい。
一般式(B)において、R2のアルキル基の炭素数は4~12であり、6~10が好ましく、8~9がより好ましい。アルキル基の炭素数が、この範囲よりも少ないと、PTFE水性分散液の表面張力が高くなり、コーティング時のぬれ性が低下する。また、炭素数がこの範囲より多いと、PTFE水性分散液を長時間放置した場合、PTFE微粒子が沈降しやすく、保存安定性が損なわれる。
なお、R2は直鎖状でも、分岐状でもよいが、直鎖状が好ましい。
一般式(A)の非イオン系界面活性剤の具体例としては、例えば、C13H27-(OC2H4)10-OH、C12H25-(OC2H4)10-OH、C10H21CH(CH3)CH2-(OC2H4)9-OH、C13H27-(OC2H4)8-OCH(CH3)CH2-OH、C16H33-(OC2H4)10-OH、CH(C5H11)(C7H15)-(OC2H4)9-OH、等の分子構造をもつ非イオン系界面活性剤が挙げられる。市販品では、ダウ社製タージトール(登録商標)15Sシリーズ、日本乳化剤社製ニューコール(登録商標)シリーズ、ライオン社製ライオノール(登録商標)TDシリーズ等が挙げられる。
強塩基型イオン交換樹脂(商品名:「PUROLITE(登録商標) A200MBOH」、ピュロライト社製)を充填した長さ80cm、内径0.9cmのカラム(内容積51cc)に、チューブ式ポンプにより非イオン系界面活性剤(商品名:「Newcol(登録商標) 1308FA」、日本乳化剤社製)の1.5質量%水溶液を毎時50ccで100mL通液した後、アニオン性含フッ素乳化剤(CF3CF2OCF2CF2OCF2COO-(NH4)+)を、PTFE質量に対し0.471質量%含んだ23.0KgのPTFE水性分散液(PTFE濃度29.4%、PTFEの平均一次粒子径は300nm、PTFEの標準比重は2.20)を毎時120ccで約195時間かけて通液した。通液後のPTFE水性分散液中のアニオン性含フッ素乳化剤は、PTFE質量に対して0.0471質量%に低減されていた。
通液前のPTFE水性分散液には、計算により31.9gのアニオン性含フッ素乳化剤が含有されていた。また、通液後のPTFE水性分散液には3.18gのアニオン性含フッ素乳化剤が含有されていた。このことから、通液後の強塩基型イオン交換樹脂には、28.7gのアニオン性含フッ素乳化剤が吸着されたことになる。この強塩基型イオン交換樹脂を、50~60℃のオーブン中で、質量が一定になるまで約12時間乾燥した。これにより得られた強塩基型イオン交換樹脂は44.6gであり、1gあたり0.643gのアニオン性含フッ素乳化剤が吸着していることになる。
攪拌子を入れた30ccガラス瓶に、上記の乾燥処理を行った強塩基型イオン交換樹脂の1.01gと、11N塩酸水溶液の0.300gと、非水溶性含フッ素媒体としてCF3CH2OCHFCHF2(商品名:「アサヒクリン(登録商標) AE-3000」、旭硝子社製)(以下、AE-3000ともいう)の0.939gと、を入れて室温で100分間攪拌した。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸(CF3CF2OCF2CF2OCF2COOH)の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を0.310g含有していた。アニオン性含フッ素乳化剤の酸の回収率は47.8%であった。
実施例1において、11N塩酸水溶液、AE-3000の使用量を、表1に示す量に変更する以外は、実施例1と同様にし、AE-3000の相を回収して該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。結果を表1に示す。
強塩基型イオン交換樹脂(商品名:「PUROLITE(登録商標) A200MBOH」、ピュロライト社製)を、アニオン性含フッ素乳化剤(CF3CF2OCF2CF2OCF2COO-(NH4)+)を29.9質量%含んだ水溶液の8.96kg中に入れ、110時間攪拌した後、強塩基型イオン交換樹脂とアニオン性含フッ素乳化剤の水溶液を分離した。攪拌後のアニオン性含フッ素乳化剤の水溶液は、アニオン性含フッ素乳化剤の濃度が13.0質量%に低減されていた。このことから、1.51kgのアニオン性含フッ素乳化剤が強塩基型イオン交換樹脂に吸着したことになる。使用した強塩基型イオン交換樹脂の質量は3.27kg(含水率14.4%)であり、これより得られた強塩基型イオン交換樹脂1gあたり、0.462gのアニオン性含フッ素乳化剤が吸着していることになる。
140ccガラス瓶に、上記の操作で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の10.1gと、11N塩酸水溶液の25.0gと、AE-3000の25.5gとを入れ、振とう器(商品名:「SHAKER S‐31」、yamato社製)で60分間振とうした。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を2.67g含有していた。アニオン性含フッ素乳化剤の酸の回収率は57.2%であった。
実施例7において、AE‐3000相を分離した後、残った強塩基型イオン交換樹脂と塩酸水溶液の混合物に、新たにAE‐3000の25.1gを添加し、振とう器で60分間振とうした。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を1.16g含有していた。該アニオン性含フッ素乳化剤の酸の回収率は24.9%であった。実施例7と8の操作により、アニオン性含フッ素乳化剤の酸の回収率は、合計で82.1%であった。
140ccガラス瓶に、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の10.3gと、11N塩酸水溶液の25.0gとを入れ、振とう器で60分間振とうした。次いで、イオン交換樹脂を濾別して残った塩酸水溶液相にAE-3000の25.3gを添加し、60分振とうした。ガラス瓶を静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を62.9mg含有していた。アニオン性含フッ素乳化剤の酸の回収率は1.32%であった。
600ccビーカーに、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の20.0gと、11N塩酸水溶液の50.0gと、AE-3000の50.0gとを入れ、60分間攪拌した。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を4.99g含有していた。該アニオン性含フッ素乳化剤の酸の回収率は54.0%であった。
600ccビーカーに、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の20.0gと、3N塩酸水溶液の50.0gと、AE-3000の50.0gとを入れ、60分間攪拌した。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を3.23g含有していた。該アニオン性含フッ素乳化剤の酸の回収率は34.9%であった。
500ml三口フラスコに、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の20.4gと、11N塩酸水溶液の24.0gとを入れ、60分間攪拌した。次いで塩酸水溶液を除き、強塩基型イオン交換樹脂とAE-3000の24.0gとを60分間攪拌した。AE-3000相中のアニオン性含フッ素乳化剤の酸の濃度を測定したところ、アニオン性含フッ素乳化剤の酸を3.92g含有しており、該アニオン性含フッ素乳化剤の酸の回収率は42.4%であった。
なお、2010年2月3日に出願された日本特許出願2010-021754号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (14)
- アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、
前記塩基型イオン交換樹脂に無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。 - アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、
前記塩基型イオン交換樹脂に無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。 - 前記塩基型イオン交換樹脂に無機酸水溶液を接触させた後、塩基型イオン交換樹脂を分離回収して非水溶性含フッ素媒体を接触させる、請求項2に記載のアニオン性含フッ素乳化剤の回収方法。
- 前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、無機酸水溶液/非水溶性含フッ素媒体=5/95~95/5である請求項1~3のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 前記塩基型イオン交換樹脂と、前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、塩基型イオン交換樹脂/(無機酸水溶液と非水溶性含フッ素媒体との合計量)=60/40~1/99である請求項1~4のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 前記アニオン性含フッ素乳化剤の酸が、含フッ素カルボン酸である請求項1~5のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 前記アニオン性含フッ素乳化剤の酸が、エーテル性酸素原子を1~3個含有してもよい、炭素数5~7の含フッ素カルボン酸である請求項6に記載のアニオン性含フッ素乳化剤の回収方法。
- 前記非水溶性含フッ素媒体が、ヒドロフルオロカーボン及びヒドロフルオロエーテルからなる群から選ばれる少なくとも1種である請求項1~7のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 前記非水溶性含フッ素媒体が、CF3CH2OCF2CF2H、CF3CH2OCF2CFHCF3、(CF3)2CHOCF2CF2H、CF3CH2OCHFCHF2、CF3(CF2)3OCH3、CF3(CF2)4OCH3、CF3(CF2)3OCH2CH3、CF3(CF2)4OCH2CH3、(CF3)2CFCF2OCH2CH3、CHF2CF2CF2CF2CF2CF3、CF3CF2CF2CF2CH2CH3、CF3CF2CF2CF2CF2CF2CH2CH3、CF3CF2CHFCHFCF3、CF3CH2CF2CH3及びCF3CF2CF2CFHCH3からなる群から選ばれる少なくとも1種である請求項8に記載のアニオン性含フッ素乳化剤の回収方法。
- 前記無機酸水溶液が、塩酸水溶液、硫酸水溶液、硝酸水溶液及びリン酸水溶液からなる群から選ばれる少なくとも1種である請求項1~9のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 前記前記無機酸水溶液の濃度が、0.1N~13Nである請求項1~10のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 前記塩基型イオン交換樹脂が、強塩基型イオン交換樹脂である請求項1~11のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
- 非水溶性含フッ素媒体の相を分離した残部に非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、請求項1又は2に記載のアニオン性含フッ素乳化剤の回収方法。
- 非水溶性含フッ素媒体の相を分離した残部に、(A)無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、(B)無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、請求項3に記載のアニオン性含フッ素乳化剤の回収方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011552806A JP5720580B2 (ja) | 2010-02-03 | 2011-02-02 | アニオン性含フッ素乳化剤の回収方法 |
CN2011800074599A CN102740974A (zh) | 2010-02-03 | 2011-02-02 | 阴离子性含氟乳化剂的回收方法 |
RU2012137193/05A RU2012137193A (ru) | 2010-02-03 | 2011-02-02 | Способ извлечения анионного фторированного эмульгатора |
EP11739796.8A EP2532423B1 (en) | 2010-02-03 | 2011-02-02 | Method of recovering anionic fluorinated emulsifiers |
US13/539,664 US8492585B2 (en) | 2010-02-03 | 2012-07-02 | Method for recovering anionic fluorinated emulsifier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010021754 | 2010-02-03 | ||
JP2010-021754 | 2010-02-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/539,664 Continuation US8492585B2 (en) | 2010-02-03 | 2012-07-02 | Method for recovering anionic fluorinated emulsifier |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096448A1 true WO2011096448A1 (ja) | 2011-08-11 |
Family
ID=44355443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052175 WO2011096448A1 (ja) | 2010-02-03 | 2011-02-02 | アニオン性含フッ素乳化剤の回収方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8492585B2 (ja) |
EP (1) | EP2532423B1 (ja) |
JP (1) | JP5720580B2 (ja) |
CN (1) | CN102740974A (ja) |
RU (1) | RU2012137193A (ja) |
WO (1) | WO2011096448A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038990A1 (ja) | 2011-09-13 | 2013-03-21 | 旭硝子株式会社 | アニオン性含フッ素乳化剤の回収方法 |
WO2014136692A1 (ja) | 2013-03-06 | 2014-09-12 | 旭硝子株式会社 | アニオン性含フッ素乳化剤の回収方法 |
WO2015053235A1 (ja) * | 2013-10-10 | 2015-04-16 | 旭硝子株式会社 | 含フッ素乳化剤の回収方法 |
US9790163B2 (en) | 2014-03-31 | 2017-10-17 | Asahi Glass Company, Limited | Method for recovering anionic fluorinated emulsifier |
JP2019507163A (ja) * | 2016-03-04 | 2019-03-14 | スリーエム イノベイティブ プロパティズ カンパニー | 全フッ素化アルカン酸の除去方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015160926A1 (en) * | 2014-04-18 | 2015-10-22 | 3M Innovative Properties Company | Recovery of branched fluorinated emulsifiers |
JP6123864B2 (ja) * | 2015-10-19 | 2017-05-10 | ダイキン工業株式会社 | 炭素数2〜7の含フッ素有機酸および不純物を含む組成物の処理方法 |
WO2022109676A1 (en) * | 2020-11-27 | 2022-06-02 | EGL Water PTY LTD | Processes and apparatus for reducing concentration of pfas contamination in wastewater and/or soil |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632656B2 (ja) * | 1979-02-02 | 1988-01-20 | Hoechst Ag | |
JP2001062313A (ja) * | 1999-07-14 | 2001-03-13 | Dyneon Gmbh | フッ素化乳化剤の溶出法 |
JP2002059160A (ja) * | 2000-08-11 | 2002-02-26 | Daikin Ind Ltd | 含フッ素陰イオン系界面活性剤の分離方法 |
JP2003094052A (ja) * | 2001-09-21 | 2003-04-02 | Asahi Glass Co Ltd | 含フッ素乳化剤の吸着・回収方法 |
JP2003512931A (ja) * | 1999-11-05 | 2003-04-08 | ダイネオン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディート ゲゼルシャフト | フッ素化された乳化剤の回収方法 |
JP2003220393A (ja) * | 2001-11-22 | 2003-08-05 | Asahi Glass Co Ltd | 含フッ素乳化剤の吸着・回収方法 |
JP2003285076A (ja) * | 2002-01-25 | 2003-10-07 | Jiemuko:Kk | 含フッ素乳化剤の回収法 |
JP2010021754A (ja) | 2008-07-10 | 2010-01-28 | Kyocera Mita Corp | 画像処理装置及び画像処理プログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632656A (ja) | 1986-06-23 | 1988-01-07 | Furukawa Electric Co Ltd:The | ウエハ研磨方法及びそれに用いるウエハ研磨基板 |
DE60304469T2 (de) * | 2002-06-19 | 2006-11-23 | Sasakura Engineering Co., Ltd. | Verfahren zur gewinnung von fluor-enthaltenden emulgatoren |
-
2011
- 2011-02-02 WO PCT/JP2011/052175 patent/WO2011096448A1/ja active Application Filing
- 2011-02-02 EP EP11739796.8A patent/EP2532423B1/en active Active
- 2011-02-02 CN CN2011800074599A patent/CN102740974A/zh active Pending
- 2011-02-02 RU RU2012137193/05A patent/RU2012137193A/ru unknown
- 2011-02-02 JP JP2011552806A patent/JP5720580B2/ja active Active
-
2012
- 2012-07-02 US US13/539,664 patent/US8492585B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632656B2 (ja) * | 1979-02-02 | 1988-01-20 | Hoechst Ag | |
JP2001062313A (ja) * | 1999-07-14 | 2001-03-13 | Dyneon Gmbh | フッ素化乳化剤の溶出法 |
JP2003512931A (ja) * | 1999-11-05 | 2003-04-08 | ダイネオン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディート ゲゼルシャフト | フッ素化された乳化剤の回収方法 |
JP2002059160A (ja) * | 2000-08-11 | 2002-02-26 | Daikin Ind Ltd | 含フッ素陰イオン系界面活性剤の分離方法 |
JP2003094052A (ja) * | 2001-09-21 | 2003-04-02 | Asahi Glass Co Ltd | 含フッ素乳化剤の吸着・回収方法 |
JP2003220393A (ja) * | 2001-11-22 | 2003-08-05 | Asahi Glass Co Ltd | 含フッ素乳化剤の吸着・回収方法 |
JP2003285076A (ja) * | 2002-01-25 | 2003-10-07 | Jiemuko:Kk | 含フッ素乳化剤の回収法 |
JP2010021754A (ja) | 2008-07-10 | 2010-01-28 | Kyocera Mita Corp | 画像処理装置及び画像処理プログラム |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2756884A4 (en) * | 2011-09-13 | 2015-04-22 | Asahi Glass Co Ltd | METHOD FOR RECOVERING ANIONIC FLUORINATED EMULSIFIER |
CN103796759A (zh) * | 2011-09-13 | 2014-05-14 | 旭硝子株式会社 | 阴离子性含氟乳化剂的回收方法 |
EP2756884A1 (en) * | 2011-09-13 | 2014-07-23 | Asahi Glass Company, Limited | Method for recovering anionic fluorinated emulsifier |
WO2013038990A1 (ja) | 2011-09-13 | 2013-03-21 | 旭硝子株式会社 | アニオン性含フッ素乳化剤の回収方法 |
JPWO2013038990A1 (ja) * | 2011-09-13 | 2015-03-26 | 旭硝子株式会社 | アニオン性含フッ素乳化剤の回収方法 |
US9045411B2 (en) | 2011-09-13 | 2015-06-02 | Asahi Glass Company, Limited | Method for recovering anionic fluorinated emulsifier |
WO2014136692A1 (ja) | 2013-03-06 | 2014-09-12 | 旭硝子株式会社 | アニオン性含フッ素乳化剤の回収方法 |
US9550717B2 (en) | 2013-03-06 | 2017-01-24 | Asahi Glass Company, Limited | Method for recovering anionic fluorinated emulsifier |
JPWO2014136692A1 (ja) * | 2013-03-06 | 2017-02-09 | 旭硝子株式会社 | アニオン性含フッ素乳化剤の回収方法 |
WO2015053235A1 (ja) * | 2013-10-10 | 2015-04-16 | 旭硝子株式会社 | 含フッ素乳化剤の回収方法 |
US9708246B2 (en) | 2013-10-10 | 2017-07-18 | Asahi Glass Company, Limited | Method for recovering fluorinated emulsifier |
US9790163B2 (en) | 2014-03-31 | 2017-10-17 | Asahi Glass Company, Limited | Method for recovering anionic fluorinated emulsifier |
JP2019507163A (ja) * | 2016-03-04 | 2019-03-14 | スリーエム イノベイティブ プロパティズ カンパニー | 全フッ素化アルカン酸の除去方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102740974A (zh) | 2012-10-17 |
EP2532423A4 (en) | 2014-11-12 |
EP2532423A1 (en) | 2012-12-12 |
JP5720580B2 (ja) | 2015-05-20 |
RU2012137193A (ru) | 2014-03-10 |
US20120271065A1 (en) | 2012-10-25 |
JPWO2011096448A1 (ja) | 2013-06-10 |
EP2532423B1 (en) | 2015-04-22 |
US8492585B2 (en) | 2013-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5720580B2 (ja) | アニオン性含フッ素乳化剤の回収方法 | |
KR100499439B1 (ko) | 폐수로부터 불소화 알칸산을 회수하는 방법 | |
JP5983615B2 (ja) | アニオン性含フッ素乳化剤の回収方法 | |
CA2599761A1 (en) | Recovery of fluorinated surfactants from a basic anion exchange resin having quaternary ammonium groups | |
JP5392188B2 (ja) | 含フッ素ポリマー水性分散液の製造方法 | |
WO2011046186A1 (ja) | 凝析加工用ポリテトラフルオロエチレン水性分散液の製造方法及び凝析加工用ポリテトラフルオロエチレン水性分散液 | |
JP2007520552A (ja) | フッ酸界面活性剤が付着した吸着性粒子からフッ酸界面活性剤を回収する方法 | |
US9550717B2 (en) | Method for recovering anionic fluorinated emulsifier | |
JP5417847B2 (ja) | 含フッ素ポリマー水性分散液の製造方法及び含フッ素ポリマー水性分散液 | |
JP6447628B2 (ja) | アニオン性含フッ素乳化剤の回収方法 | |
JP6477481B2 (ja) | 含フッ素乳化剤の回収方法 | |
JP2023536099A (ja) | エマルジョンからフルオロ有機化合物を除去するためのプロセス | |
JP2011025102A (ja) | 含フッ素界面活性剤含有水の浄化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180007459.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739796 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011552806 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011739796 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012137193 Country of ref document: RU |