WO2011095033A1 - 一种分子识别传感器的电沉积制备方法 - Google Patents

一种分子识别传感器的电沉积制备方法 Download PDF

Info

Publication number
WO2011095033A1
WO2011095033A1 PCT/CN2010/079331 CN2010079331W WO2011095033A1 WO 2011095033 A1 WO2011095033 A1 WO 2011095033A1 CN 2010079331 W CN2010079331 W CN 2010079331W WO 2011095033 A1 WO2011095033 A1 WO 2011095033A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodeposition
electrode
solution
ionic
acid
Prior art date
Application number
PCT/CN2010/079331
Other languages
English (en)
French (fr)
Inventor
刘晓亚
杨逸群
易成林
罗静
吴海强
姜思思
王宝清
江金强
刘仁
张胜文
徐晶
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2011095033A1 publication Critical patent/WO2011095033A1/zh
Priority to US13/562,410 priority Critical patent/US8840768B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction

Definitions

  • the invention relates to a method for preparing a molecular recognition sensor by electrodeposition, synthesizing an imprinted micelle coated with a template molecule by molecular design, self-assembly to obtain a coated micelle coated with a template molecule, and eluting with a template molecule by potentiostatic electrodeposition
  • a micelle-modified electrode that can be used as a molecular recognition sensor and belongs to the technical field of combining a polymer material and a biomimetic sensor.
  • Molecular recognition refers to the process by which a receptor (host) selectively binds to a substrate (guest) to produce a specific function.
  • the concept of molecular recognition originally originated from the study of the interaction between enzymes and substrates, proteins and nucleic acids, hormones and receptors, antigens and antibodies in the process of life. With the rise of life sciences and technology, many enzymes and antibodies extracted from organisms have been used for biosensing, and the corresponding biosensors have also been applied in clinical testing, drug analysis, genetic diagnosis, cancer treatment, and environmental monitoring. However, factors such as harsh environmental requirements, short shelf life, and high production costs have become 'hard injuries' that biosensors cannot ignore.
  • molecular imprinting techniques have been developed that combine the advantages of many materials such as polymer materials science, analytical chemistry, life sciences, and bioengineering.
  • Molecularly Imprinted Technology MIT From the perspective of bionics, artificially synthesized methods are used to obtain a polymer material that specifically matches a specific molecule (imprinted molecule, template molecule) at a space and a binding site, and can specifically bind the specific molecule, thereby Molecular recognition is achieved and ultimately applied to molecular recognition sensors.
  • Molecularly imprinted polymer obtained Molecularly Imprinted Polymers , MIPs Also known as 'plastic antibody', it has the same recognition performance and selectivity as natural antibodies, and has the same high stability and weather resistance as polymers, and thus has practical application value.
  • Immobilization of imprinted polymers is a critical step from molecularly imprinted polymers to molecular recognition sensors.
  • the traditional coating method can also achieve the effect of polymer film formation on the surface of the sensor device, the manual coating film is difficult to achieve uniform flatness, the film thickness is uncontrollable and it is easy to fall off during the detection process, and these unfavorable factors make the coating film method
  • the prepared molecular recognition sensor has less reproducibility and stability, and the sensor has a shorter shelf life.
  • in-situ graft polymerization technology is applied to the immobilization of imprinted polymers on the sensor surface.
  • the method forms a stable covalent bond between the imprinted polymer and the sensor device, and the imprinted film is mostly a nano-ultra-film, which has uniform film thickness and good molecular recognition sensing effect.
  • controlled radical polymerization using in situ grafting ATRP and RAFT Limiting the choice of synthetic raw materials, complex catalytic initiation systems, and harsh reaction conditions will inevitably lead to the intractability of molecular recognition sensors prepared by in-situ grafting.
  • the film thickness of the film formed by electrodeposition is uniform, the adhesion of the substrate is excellent, and the weather resistance is good.
  • Electrodeposition technology also known as 'electrophoresis' in the industry, has been widely used in the coating of automobiles and various metal devices.
  • the present invention is directed to a method of preparing a molecular recognition sensor.
  • the present invention provides a simple and controllable method for ionic photosensitive copolymers by electrodeposition.
  • the imprinted assembled micelles form a film on the surface of the sensor electrode, thereby constructing a molecular recognition sensor.
  • Another object of the present invention is to select different template molecules to make the self-assembled ionic photosensitive copolymer solution rich in identifiable molecular species, and to achieve an effect that an ionic photosensitive copolymer can recognize a plurality of molecules through ionic light-sensitive
  • the final concentration of the copolymer and its micelle solution or the electrodeposition process conditions specifically regulate the properties of the imprinted membrane, and finally establish a 'bridge' relationship between the structural properties of the polymer and its component recognition sensors.
  • a technical solution for achieving the object of the present invention a method for preparing an electrodeposition sensor by electrodeposition, which is obtained by self-assembly of an ion-type photosensitive copolymer to obtain a coated micelle coated with a template molecule, and then using a potentiostatic electrodeposition to make the micelle at the electrode Surface film formation, UV irradiation cross-linking, elution of template molecules, and finally a molecularly imprinted membrane modified electrode, which has molecular recognition ability and is connected with a computer to become a molecular recognition sensor; the steps are:
  • 1.1 is obtained by copolymerization of photosensitive monomer, ionic monomer and hydrophobic monomer;
  • the photosensitive monomer used is selected from:
  • the ionic monomer used is selected from the group consisting of:
  • P-vinylbenzenesulfonic acid (meth)acryloyloxytrimethylammonium chloride, 2-acrylamido-2 -methylpropanesulfonic acid, (meth)acrylic acid, p-vinylbenzoic acid, 4-vinylpyridine, 2-vinylpyridine, maleic anhydride, 2-(dimethylamino)ethyl (meth)acrylate , (meth)acrylic acid - 2 -(diethylamino)ethyl ester or 2,4-diamino-6-vinyl-S-triazine;
  • the hydrophobic monomer used is selected from:
  • An ion-type photosensitive copolymer is prepared from the above different types of monomers by a common free radical solution polymerization, a radical dispersion polymerization, a radical emulsion polymerization, or a radical precipitation polymerization copolymerization method.
  • the ionic copolymer is selected from the group consisting of ionized polyurethane, epoxy resin, and acrylic resin;
  • the photosensitive monomer is selected from the group consisting of: hydroxyethyl acrylate, hydroxyethyl methacrylate, acrylamide, methacrylamide.
  • the reactive polymer with a photosensitive monomer is used as a dispersing agent in the synthesis of polyaniline to form a polyaniline block copolymer, and the photosensitive ion copolymer is obtained by positively charged characteristics after doping with polyaniline.
  • a reactive polymer as a dispersing agent is obtained by copolymerization of a photosensitive monomer and a hydrophilic monomer;
  • the hydrophilic monomer used is selected from the group consisting of: acrylamide, aminostyrene;
  • the photosensitive monomer is selected from:
  • ionic photosensitive copolymer solution Dissolve the ionic photosensitive copolymer in a good solvent to prepare a solid content of 0.5% ⁇ 60% Ionic photopolymer solution, good solvent selection: dimethylformamide (DMF), dimethyl sulfoxide, dioxane, tetrahydrofuran, acetone, isopropanol, butanol, methanol, ethylene glycol butyl ether a solvent in which one or two of acetonitrile are mixed; an acid or base is added to adjust the ionic photosensitive copolymer solution pH 2 ⁇ 5 or 8 ⁇ 12
  • the acid used is: hydrochloric acid, acetic acid, formic acid, lactic acid, propionic acid, butyric acid, sulfuric acid, methanesulfonic acid, ethanesulfonic acid, hydroxyethanesulfonic acid or hydroxypropanesulfonic acid; the base used is selected from: sodium hydroxide, hydrogen Pot
  • step (1) The template solution is added to the prepared solution, and the template molecule is added in an amount of 2% to 30% of the mass of the ionic photosensitive copolymer.
  • the template molecule is fully dissolved and complexed with the ionic photosensitive copolymer; the poor solvent ultrapure water of the ionic photosensitive copolymer is slowly added dropwise to the solution volume to the initial volume of 1.5 ⁇ 4 Double-phase separation of the ionic photosensitive copolymer, self-assembly and coating of template molecules to form an ionic photosensitive imprinted micelle solution, and continue to stir at a constant speed 5 ⁇ 12 In an hour, the ionic photopolymer is assembled completely; the ionic photosensitive imprinted micelle solution is added dropwise to its 5 volumes of ultrapure water to stabilize the micelles, stirring 3 ⁇ 5 After a few hours, the good solvent is replaced by dialysis, or the good solvent is distilled off by the evaporation method, and the ion-concentrated micelle solution having a mass concentration of 0.1%-30% is obtained by constant volume with ultrapure water;
  • the polar solvent is selected from one or two kinds of mixed solvents: water, acetic acid, ethanol, methanol, Acetonitrile, dimethylformamide, dimethyl sulfoxide, ethyl acetate, the volume ratio of the two solvents in the mixed solvent is 1 : 1 ⁇ 1 : 9 ;
  • the ion-type photosensitive imprinted micelle electrodeposited film modification electrode is connected with the sensing device to be a molecular recognition sensor.
  • the template molecules are selected from common molecules in the fields of food safety testing, biopharmaceutical or environmental monitoring.
  • Food safety testing uses: antibiotics, hormones, Sudan red, melamine, formaldehyde, paraoxon, parathion, nicotine, morphine or caffeine.
  • Biopharmaceutical selection glucose, adrenaline, dopamine, ascorbic acid, purine base, pyrimidine base, DNA, protein or amino acid; environmental monitoring options: formaldehyde, paraquat or vomiting toxins.
  • the electrode is an electrode of a sensing device, and the surface of the electrode is made of a conductive material: gold, platinum, glassy carbon, stainless steel, tinplate or ITO. Glass.
  • the sensor collects molecular signals and converts these signals into electrical signals, quality signals, substrate vibration frequency signals, spectral signals, etc., which are recognized by the computer.
  • the ionic photosensitive imprinted micelle solution has one or more of hydrogen bonding, electrostatic interaction and coordination between the template molecule and the ionic photosensitive copolymer.
  • the micelle electrodeposition, the applied constant potential is opposite to that of the ionic photosensitive imprinted micelle, and the electrodeposition process condition is: constant potential value -30 V ⁇ 30 V, electrodeposition time 5 s ⁇ 10 min.
  • the final concentration of the ion-imprinted micelles or the electrodeposition process conditions are changed, and the thickness and density of the electrodeposited micelle electrodeposited film are adjusted to control the detection range and sensitivity of the molecular recognition sensor.
  • the molecule recognizable by the sensor is the template molecule (imprinted molecule) selected in the preparation process, and has specific selectivity.
  • the molecular recognition sensor is linked to a computer whose electrodes are in contact with a test solution containing template molecules.
  • An ion-type photosensitive copolymer is prepared from the above different types of monomers by a common free radical solution polymerization, a radical dispersion polymerization, a radical emulsion polymerization, or a radical precipitation polymerization copolymerization method.
  • the various types of ionic photosensitive copolymers prepared by the present invention can be provided by the College of Chemistry and Materials Engineering of Jiangnan University.
  • the invention has the advantages that the invention overcomes the shortcomings of the existing molecular recognition sensor in the preparation method, stability, detection sensitivity and reproducibility, and adopts an ordinary radical polymerization synthesis of an ionic photosensitive copolymer (the copolymer is simple and easy Having obtained, can be industrially produced), self-assembly of the ionic photosensitive copolymer can obtain coated template molecules, surface charged, photocrosslinkable imprinted assembled micelles; imprinted assembled micelles formed by electrodeposition
  • the method of modifying the sensor electrode not only makes the sensor have the property of molecular recognition, but also the prepared molecular recognition sensor has better sensitivity and reproducibility, and is more stable and practical than the traditional molecular recognition sensor.
  • the invention can be widely applied to chemical, biomedical, food, environmental protection and other related fields by selecting different template molecules and performing corresponding molecular structure design on the raw material monomers to finally determine the molecules that the sensor can recognize. .
  • Dimethyl sulfoxide is an ionic photosensitive copolymer synthesized in the solvent dissolution step (1), and is formulated into a solid content of 20
  • the % solution was neutralized with acidification of acetic acid, and 50% by weight of the copolymer was added as a template molecule.
  • the electrode is connected with the electrochemical workstation as a molecular recognition sensor, which has specific selectivity to glucose, the detection limit is 5 ⁇ 10 -7 mol/L, and the linear range is 2 ⁇ 10 -5 to 6.8 ⁇ 10 -3 mol/ L, the response to maltose, xylose and isomer galactose with different molecular volume is small, and the peak current ratio with glucose is 0.13, 0.15, 0.22, respectively.
  • the product was dissolved in tetrahydrofuran, precipitated, filtered and dried. The above procedure was repeated three times to obtain a pure amphiphilic copolymer having a tendency to alternate structures.
  • the amphiphilic copolymer was dissolved in dimethylformamide, alkali water was slowly added dropwise, and the maleic anhydride was hydrolyzed by heating to 90 ° C. After dialysis, it was freeze-dried to obtain an ionic photosensitive copolymer.
  • Dimethyl sulfoxide is an ionic photosensitive copolymer synthesized in the solvent dissolution step (1), and is formulated into a solid content of 10
  • the % solution was adjusted to a pH of 11 to 12 with NaOH, and 30% of the copolymer mass of glucose was added as a template molecule.
  • the ionic photosensitive copolymer synthesized in the step (1) is dissolved in DMF, and the molar ratio is 3 times the amount of the triazine monomer in the copolymer, and uracil is added as a imprinting molecule, and the mixture is fully dissolved by stirring.
  • the electrodes used in the electrochemical quartz crystal microbalance were ultrasonically washed with ethanol and ultrapure water, respectively, and dried by nitrogen.
  • 40 mL of 10 mg/mL imprinted micelle solution was used as the electrolyte, and the electrode of EQCM was immersed therein, and a constant potential of -0.8 V was applied, and after 10 minutes of deposition, it was irradiated with ultraviolet light.
  • the electrode was immersed in water to elute uracil, and finally the electrode modified by the assembled micelle membrane was obtained, and the uracil was detected in the solution with EQCM, and the detection limit was 7.2 ⁇ 10 -8 mol/L.
  • the lower limit of detection of uracil by the sensor can still reach 6.4 ⁇ 10 -7 mol/L, and the detection linear range is 8 ⁇ 10 -7 ⁇ 2 ⁇ 10 -5 mol/L.
  • the ionic photosensitive copolymer synthesized in the step (1) is dissolved in ultrapure water, and the molar content is acrylate 10 in the copolymer.
  • the amount of % was added to the bovine serum albumin as the imprinting molecule, and the two were mixed well and stirred, and the pH of the solution was adjusted to 4-5 with hydrochloric acid to obtain a imprinted micelle solution coated with bovine serum albumin.
  • the electrodes used in the electrochemical quartz crystal microbalance were ultrasonically washed with ethanol and ultrapure water, respectively, and dried by nitrogen. Take 40 mL at a concentration of 30
  • the imprinted micelle solution of mg/mL was used as the electrolyte, and the electrode of EQCM was immersed therein, and a constant potential of -1 V was applied to cause the micelle to migrate toward the electrode surface and deposit, deposit for 30 seconds, and irradiate under ultraviolet light. Minutes.
  • the electrode is immersed in the acetate buffer, and the bovine serum albumin is eluted, and finally the electrode modified by the imprinted micelle membrane is obtained, and the EQCM is connected to detect the bovine serum albumin in the solution, and the detection limit is 3.7.
  • Gg/L the linear range is 5.2 ⁇ 120 ⁇ g / L, and the presence of physiological concentrations of ascorbic acid, glucose, adrenaline and dopamine in the test solution does not affect the detection of the sensor.
  • the isocyanate-terminated ionic polyurethane is dissolved in dry methyl ethyl ketone, and hydroxyethyl acrylate (molar ratio of polyurethane to hydroxyethyl acrylate is 1:2) is added thereto, and the temperature is raised to 60 ° C to react, and the isocyanate is detected. The content of the acid radical is judged at the end of the reaction. Precipitate in 8 times the volume of methyl ethyl ketone in petroleum ether, filtered and dried under vacuum at 30 °C. The product was dissolved in dimethylformamide, precipitated, filtered and dried. The above procedure was repeated three times to obtain a pure cationic photosensitive copolymer.
  • Dimethyl sulfoxide is an ionic photosensitive copolymer synthesized in the solvent dissolution step (1), and is formulated into a solid content of 20
  • the % solution was neutralized with acetic acid and added with paraoxon as a template molecule.
  • Ultrapure water to the above solution at a constant rate under stirring to a solid content of 4 %, after dialysis, it is a photosensitive imprinted micelle solution, and the pH of the solution is adjusted to 6 with acetic acid.
  • the electrode was further immersed in an ethyl acetate solution, stirred for 6 hours, and paraoxon was eluted to obtain a printed micelle electrodeposited film-modified electrode.
  • the electrode is connected with the electrochemical workstation as a molecular recognition sensor, which has specific selectivity for paraoxon, the detection limit is 5 ⁇ 10 -7 mol/L, and the linear range is 1.0 ⁇ 10 -4 to 8.0 ⁇ 10 -7 .
  • Mol/L has a small response to parathion, phoxim and nitrobenzene with similar molecular structure.
  • Dimethyl sulfoxide is a solvent-soluble ionic photosensitive copolymer synthesized in step (1), and is formulated into a solid content of 20 % solution, acidified with lactic acid, using TNT as a template molecule. Under stirring, ultrapure water is added dropwise to the mixed solution of the above photosensitive copolymer and template molecule to a solid content of 4 %, after dialysis, it is a photosensitive imprinted micelle solution, and the pH of the solution is adjusted to 6 with acetic acid.
  • DMSO Dimethyl sulfoxide
  • the electrode is connected with the electrochemical workstation as a molecular recognition sensor, which has a specific selectivity for TNT, and the detection limit is 2.0 ⁇ 10.
  • -8 Mol/L linear range is 5.0 ⁇ 10 -6 ⁇ 5.0 ⁇ 10 -8
  • the mol/L has a small response to 1,3,5-dinitrobenzene and 1,3-dinitrotoluene with similar molecular structures.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

一种分子识别传感器的电沉积制备方法 技术领域
本发明涉及一种电沉积制备分子识别传感器的方法,通过分子设计合成具有离子型光敏共聚物,自组装得到包覆模板分子的印迹胶束,通过恒电位电沉积,模板分子洗脱,得到印迹胶束膜修饰的电极,该电极可以用作分子识别传感器,属于高分子材料和仿生传感器相结合的技术领域。
背景技术
分子识别是指受体(主体)对底物(客体)的选择性键合并产生某种特定功能的过程。分子识别的概念最初起源于人们对生命过程中的酶与底物、蛋白质与核酸、激素与受体、抗原与抗体间相互作用的研究。随着生命科学技术的崛起,许多从生物体提取的酶和抗体被用于生物传感,相应的生物传感器也已经在临床检验、药物分析、基因诊断、癌症治疗以及环境监测等领域得到应用。然而,环境要求苛刻、保质期短、制作成本高等因素均成为生物传感器不可忽视的'硬伤'。近年来,集高分子材料科学、分析化学、生命科学、生物工程等众多学科优势发展起来的分子印迹技术( Molecularly Imprinted Technology , MIT )则是从仿生学角度出发,采用人工合成的方法获得在空间和结合位点上与某一特定分子(印迹分子、模板分子)完全匹配,能够特异性结合该特定分子的高分子材料,从而实现分子识别,最终应用于分子识别传感器。所得到的分子印迹聚合物( Molecularly Imprinted Polymers , MIPs )又被称为'塑料抗体',即具有与天然抗体同样的识别性能与选择性,又具有和高分子同样的高稳定性及耐候性,因而更具有实际应用价值。
从分子印迹聚合物到分子识别传感器,印迹聚合物的固定化是关键步骤。传统的涂膜法虽然也能达到聚合物在传感器件表面成膜的效果,但手工涂膜难以达到均匀平整,膜厚不可控且极易在检测过程中脱落,这些不利因素均使涂膜法制备的分子识别传感器检测重现性、稳定性较不理想,传感器保质期较短。随着高分子合成技术的发展,原位接枝聚合技术被应用于印迹聚合物在传感器表面的固定。该法使印迹聚合物和传感器件之间形成稳定的共价结合,所成印迹膜多为纳米超薄膜,膜厚均一,有良好的分子识别传感效果。但原位接枝法所采用的可控自由基聚合反应 ATRP 和RAFT 限制了合成原料的选择,复杂的催化引发体系、苛刻的反应条件也必然导致原位接枝法所制备的分子识别传感器难以广泛应用。较之前两种涂膜法和原位接枝法技术,电沉积法所成膜膜厚均一可控、基材附着力优、耐候性好。电沉积技术工业上又称为'电泳',目前已经广泛应用于汽车和各类金属器件的涂装。
技术问题
本发明旨在提供一种分子识别传感器的制备方法。针对现有分子识别传感器制备技术上的缺陷,以及多数传感器成本昂贵且难以长效重复使用的现状,本发明提供了一种简便可控的方法,即通过电沉积法,使离子型光敏共聚物的印迹组装胶束在传感器电极表面成膜,从而构筑分子识别传感器。
本发明的另一目的还在于选用不同的模板分子可使自组装离子型光敏共聚物溶液丰富可识别分子的种类,达到一种离子型光敏共聚物可识别多种分子的效果,通过离子型光敏共聚物及其胶束溶液终浓度或电沉积工艺条件具体调控印迹膜的性质,最终建立聚合物结构性质与其所成分子识别传感器之间的'桥梁'关系。
技术解决方案
实现本发明目的的技术方案:一种分子识别传感器的电沉积制备方法,通过离子型光敏共聚物的溶液自组装得到包覆模板分子的印迹胶束,再采用恒电位电沉积使胶束在电极表面成膜,紫外辐照交联,洗脱模板分子,最终得到分子印迹膜修饰电极,该电极具有分子识别能力,与计算机连接后成为分子识别传感器;步骤为:
  1. 离子型光敏共聚物的制备:
1.1 由光敏单体、离子型单体、疏水单体共聚得到;
所用光敏单体选自:
7 -( 4 -乙烯基苄氧基)- 4 -甲基香豆素、 2 -肉桂酸酰氧乙基-(甲基)丙烯酸酯、或 2 -羟甲基-( 4 -甲基香豆素)氧乙基-甲基丙烯酸酯;
所用离子型单体选自:
对乙烯基苯磺酸、(甲基)丙烯酰乙氧基三甲基氯化铵、 2 -丙烯酰胺基- 2 -甲基丙磺酸、(甲基)丙烯酸、对乙烯基苯甲酸、 4 -乙烯基吡啶、 2 -乙烯基吡啶、马来酸酐、(甲基)丙烯酸- 2 -(二甲氨基)乙酯、(甲基)丙烯酸- 2 -(二乙氨基)乙酯、或 2,4 -二氨基- 6 -乙烯基- S -三嗪;
所用疏水单体选自:
(甲基)丙烯酸羟乙(丙)酯、(甲基)丙烯酸聚乙二醇酯、苯乙烯、(甲基)丙烯酸酯。
由以上不同类型的单体通过普通自由基溶液聚合、自由基分散聚合、自由基乳液聚合、或自由基沉淀聚合的共聚方法,制备成离子型光敏共聚物。
1.2 对已有的普通离子共聚物进行接枝改性,将光敏单体接到离子共聚物上来形成离子型光敏共聚物。
离子共聚物选自离子化的聚氨酯、环氧树脂、丙烯酸树脂;
光敏单体选自:丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酰胺、甲基丙烯酰胺。
1.3 将带有光敏单体的反应性聚合物作为合成聚苯胺时的分散剂,形成聚苯胺嵌段共聚物,利用聚苯胺酸掺杂后带正电的特性得到光敏离子共聚物。
作为分散剂的反应性聚合物由光敏单体和亲水性单体共聚得到;
所用亲水性单体选自: 丙烯酰胺,氨基苯乙烯;
光敏单体选自:
7 -( 4 -乙烯基苄氧基)- 4 -甲基香豆素、 2 -肉桂酸酰氧乙基-(甲基)丙烯酸酯、或 2 -羟甲基-( 4 -甲基香豆素)氧乙基-甲基丙烯酸酯;
本发明所用各类离子型光敏共聚物均可由江南大学化学与材料工程学院提供。
2. 离子型光敏共聚物溶液的配制:将离子型光敏共聚物溶解于良溶剂中,配制固含量为 0.5% ~ 60% 的离子型光敏共聚物溶液,良溶剂选择:二甲基甲酰胺(DMF)、二甲基亚砜、二氧六环、四氢呋喃、丙酮、异丙醇、丁醇、甲醇、乙二醇丁醚、乙腈中的一种或两种混合的溶剂;加入酸或碱调节离子型光敏共聚物溶液 pH 值为 2~5 或 8~12 ,所用酸选用:盐酸、乙酸、甲酸、乳酸、丙酸、丁酸、硫酸、甲烷磺酸、乙烷磺酸、羟基乙烷磺酸或羟基丙烷磺酸;所用碱选用:氢氧化钠、氢氧化钾、三乙胺、乙醇胺、二乙醇胺、三乙醇胺或氨水;
3.自组装制备包覆模板分子的离子型光敏印迹胶束:在步骤( 1 )配制的溶液中加入模板分子,模板分子加入量为离子型光敏共聚物质量的 2% ~ 30% ,搅拌使模板分子充分溶解并和离子型光敏共聚物络合;搅拌下缓慢滴加离子型光敏共聚物的不良溶剂超纯水至溶液体积为初始体积的 1.5 ~ 4 倍,使离子型光敏共聚物发生微相分离,自组装并包覆模板分子形成离子型光敏印迹胶束溶液,继续匀速搅拌 5 ~ 12 小时,使离子型光敏共聚物组装完全;将该离子型光敏印迹胶束溶液逐滴加入其 5 倍体积的超纯水中使胶束稳定,搅拌 3 ~ 5 小时后通过透析法置换出良溶剂,或者采用挥发法蒸出良溶剂,用超纯水定容得到质量浓度 0.1%-30% 离子型光敏印迹胶束溶液;
4.胶束电沉积成膜:用 Piranha 溶液( 98 % H2SO4 : 30 % H2O2 = 3 : 1 )浸泡电极,然后依次用超纯水、无水乙醇超声;将该预处理的电极浸入离子型光敏印迹胶束溶液中,通过施加一个恒电位,使荷电的印迹胶束向电极表面泳动并电沉积成膜;紫外光辐照,固定胶束膜结构;
5. 模板分子的洗脱:将电沉积后的电极浸泡于极性溶剂中,搅拌 1 ~ 36 小时,取出电极用超纯水反复冲洗,得到不含模板分子的离子型光敏印迹胶束电沉积膜修饰电极;极性溶剂选择以下一种或两种混合溶剂:水、乙酸、乙醇、甲醇、乙腈、二甲基甲酰胺、二甲基亚砜、乙酸乙酯,混合溶剂中两种溶剂的体积比为 1 : 1~1 : 9 ;
6.组装分子识别传感器:该离子型光敏印迹胶束电沉积膜修饰电极与传感设备连接后即为分子识别传感器。
所述的模板分子选用食品安全检测、生物制药或环境监测领域的常见分子,食品安全检测选用:抗生素、激素、苏丹红、三聚氰胺、甲醛、对氧磷、对硫磷、尼古丁、吗啡或咖啡因;生物制药选用:葡萄糖、肾上腺素、多巴胺、抗坏血酸、嘌呤碱基、嘧啶碱基、 DNA 、蛋白质或氨基酸;环境监测选用:甲醛、百草枯或呕吐毒素。
所述的电极是传感设备的电极,电极表面材质是具有导电性的材料:金、铂、玻碳、不锈钢、马口铁或 ITO 玻璃。
该传感器采集分子信号并将这些信号转变为电信号、质量信号、基材震动频率信号、光谱信号等为计算机所识别。
所述的离子型光敏印迹胶束溶液,其模板分子与离子型光敏共聚物之间具有氢键作用、静电作用、配位作用中的一种或几种。
所述的胶束电沉积,所施加的恒电位与离子型光敏印迹胶束荷电相反,电沉积工艺条件为:恒电位值 -30 V ~ 30 V ,电沉积时间 5 s ~ 10 min 。
改变离子型光敏印迹胶束终浓度或电沉积工艺条件,调节电极表面印迹胶束电沉积膜的厚度和致密度,从而控制分子识别传感器的检测范围和灵敏度。
分子识别传感器的应用:该传感器可识别的分子即为制备过程中选用的模板分子(印迹分子),具有专一选择性。使用时,将此分子识别传感器与计算机链接,其电极接触含有模板分子的测试液。
由以上不同类型的单体通过普通自由基溶液聚合、自由基分散聚合、自由基乳液聚合、或自由基沉淀聚合的共聚方法,制备成离子型光敏共聚物。所制备的、本发明所用的各类离子型光敏共聚物均可由江南大学化学与材料工程学院提供。
有益效果
本发明的有益效果:本发明克服了现有分子识别传感器在制备方法、稳定性、检测灵敏度和重现性上的不足,采用普通自由基聚合合成的离子型光敏共聚物(该共聚物简单易得、已能工业化生产),对该离子型光敏共聚物进行溶液自组装可以获得包覆模板分子、表面荷电、可光交联的印迹组装胶束;印迹组装胶束通过电沉积成膜的方法修饰传感器电极不仅使传感器具有分子识别的性能,且制备的分子识别传感器有较好的灵敏度和重现性,较之传统的分子识别传感器更具稳定性和实用性。同时,还可以通过选取不同的模板分子,并对原料单体进行相应的分子结构设计,最终决定传感器所能识别的分子,因此本发明可广泛应用于化工、生物医药、食品、环保等相关领域。
本发明的实施方式
以下结合实施例对本发明作进一步说明,但本发明并不局限于此。
实施例1
(1)离子型光敏共聚物的制备
合成离子型光敏共聚物聚(4-乙烯基吡啶-co-丙烯酸-co-(2-羟甲基-(4-甲基香豆素)氧乙基-甲基丙烯酸酯)),简称P(4VP-co-AA-co-CGMA)。称量0.525g(0.005mol)4-乙烯基吡啶,0.36g(0.005mol)丙烯酸,3.18g(0.01mol)2-羟甲基-(4-甲基香豆素)氧乙基-甲基丙烯酸酯,0.049g引发剂偶氮二异丁腈(0.0003mol,按单体总摩尔量的1.5%)于25mL二氧六环中,充氮气20分钟,70℃下反应12h,在8倍于二氧六环体积的甲醇/水(体积比为8:2)的混合溶剂中沉淀,过滤,30℃真空干燥。产物溶解在四氢呋喃中,沉淀,过滤,干燥。重复上述步骤三次,得到纯净的离子型光敏共聚物。
(2)印迹组装胶束的制备:
二甲基亚砜(DMSO)为溶剂溶解步骤(1)合成的离子型光敏共聚物,配成固含量20 %的溶液,用乙酸酸化中和,加入共聚物质量50 %的葡萄糖作为模板分子。搅拌条件下匀速滴加超纯水至上述溶液,至固含量为4 %,透析后即为光敏印迹胶束溶液,用乙酸调节溶液pH值至6。
(3)电化学分子识别传感器的制备:用Piranha溶液处理电极,然后依次用超纯水、无水乙醇超声,晾干;将该预处理的金电极插入光敏性印迹胶束溶液,施加一个-10 V电位,使荷正电的印迹胶束向电极表面泳动并沉积,电极表面用大量超纯水冲洗后,置于300 nm波长的紫外灯下辐照,使电极表面胶束发生光交联。再将电极浸泡于乙酸乙酯溶液中,搅拌6小时,洗脱葡萄糖,得到印迹胶束电沉积膜修饰电极。该电极与电化学工作站连接即为分子识别传感器,其对葡萄糖具有专一选择性,检测下限为5×10-7 mol/L,线性范围为2×10-5~6.8×10-3 mol/L,对分子体积不同的麦芽糖、木糖以及同分异构体半乳糖均响应较小,与葡萄糖的峰电流比值分别为0.13、0.15、0.22。
实施例2
(1)离子型光敏共聚物的制备
合成聚(马来酸酐-co-苯乙烯-co-(7-(4-乙烯基苄氧基)-4-甲基香豆素)),简称P(Man-co-St-co-VM)。称量马来酸酐2.352g(0.024mol),苯乙烯1.56g(0.015mol),7-(4-乙烯基苄氧基)-4-甲基香豆素1.46g(0.005mol),引发剂偶氮二异丁腈0.072g(0.00044 mol,按单体总摩尔量的1.0%)于25mL二氧六环中,充氮气50分钟,65℃下反应8h,在8倍于二氧六环体积的甲醇/水(体积比为1:1)的混合溶剂中沉淀,过滤,30℃真空干燥。产物溶解在四氢呋喃中,沉淀,过滤,干燥。重复上述步骤三次,得到纯净的具有交替结构倾向的双亲性共聚物。将该双亲性共聚物溶于二甲基甲酰胺中,缓慢滴加碱水,加热至90℃使马来酸酐水解,透析后冷冻干燥得到离子型光敏共聚物。
(2)印迹组装胶束的制备:
二甲基亚砜(DMSO)为溶剂溶解步骤(1)合成的离子型光敏共聚物,配成固含量10 %的溶液,用NaOH调节pH值为11~12,加入共聚物质量30 %的葡萄糖作为模板分子。搅拌条件下匀速滴向上述溶液滴加超纯水至固含量为2 %,透析后即为光敏印迹胶束溶液,控制溶液的pH值为8~10,。
(3)电化学分子识别传感器的制备:施加一个+ 1V的恒电位,其余与例1相同。该分子识别传感器,其对葡萄糖具有专一选择性,检测下限为5×10-8 mol/L,线性范围为4×10-7 ~ 9×10-5 mol/L。该葡萄糖印迹传感器检测分子体积不同的糖以及葡萄糖同分异构体的峰值位置有较大的偏移,由与葡萄糖重叠的-0.51 V 偏移至-0.38 V,从而不干扰葡萄糖的检测。
实施例3
(1) 离子型光敏共聚物的制备:
合成双亲性聚(2,4-二氨基-6-乙烯基-S-三嗪-co-甲基丙烯酸聚乙二醇酯-co-(2-肉桂酸酰氧乙基-甲基丙烯酸酯)),简称P(VDAT-co-MPEG-co-CEMA)。称量2,4-二氨基-6-乙烯基-S-三嗪2.74g(0.02mol),甲基丙烯酸聚乙二醇4.75g(0.01mol),2-肉桂酸酰氧乙基-甲基丙烯酸酯2.46g(0.01mol),引发剂偶氮二异丁腈0.099g(0.0006 mol,按单体总摩尔量的1.5%)于25mL二氧六环中,充氮气20min,70℃下反应12h,在8倍于二氧六环体积的甲醇/水(体积比为1:1)的混合溶剂中沉淀,过滤,30℃真空干燥。产物溶解在DMF中,沉淀,过滤,干燥。重复上述步骤三次,得到纯净的离子型光敏共聚物。
(2) 印迹组装胶束的制备:
将步骤(1)合成的离子型光敏共聚物溶解于DMF中,按摩尔比为共聚物中三嗪单体3倍的量加入尿嘧啶作为印迹分子,二者混合搅拌充分溶解。在室温下,边搅拌边向上述溶液以7 μL/min的速度加入超纯水至水含量约为50 %,溶液搅拌过夜后,将此溶液逐滴加入到大量水中锁定,搅拌5小时后移至透析袋中透析3天除去溶剂DMF,得到印迹组装胶束水溶液,用盐酸调节溶液pH值为4。
(3) 电化学石英晶体微天平(EQCM)分子识别传感器的制备:
电化学石英晶体微天平所用的电极分别用乙醇、超纯水超声清洗后,氮气吹干备用。取40 mL 浓度为10 mg/mL的印迹组装胶束溶液作为电解液,EQCM的电极浸没其中,施加-0.8 V的恒电位,沉积10 分钟后用紫外灯光照。电极浸泡于水中洗脱尿嘧啶,最终得到印迹组装胶束膜修饰的电极,其与EQCM连接检测溶液中尿嘧啶,检测下限为7.2×10-8 mol/L。当溶液中存在等摩尔浓度或3倍摩尔浓度的胸腺嘧啶、鸟嘌呤、腺嘌呤、胞嘧啶,该传感器对尿嘧啶的检测下限仍可达到6.4×10-7 mol/L,检测线性范围在8×10-7 ~ 2×10-5mol/L。
实施例4
(1)离子型光敏共聚物的制备:
通过普通自由基溶液聚合,合成聚((丙烯酸-2-(二甲氨基)乙酯)-co-丙烯酸-co-(2-肉桂酸酰氧乙基-(甲基)丙烯酸酯)),简称P(DM-co-AA-co-CEMA)。称量4.29g(0.03mol)丙烯酸-2-(二甲氨基)乙酯,5.04g(0.07mol)丙烯酸,2-肉桂酸酰氧乙基-(甲基)丙烯酸酯2.46g(0.01mol),0.164g引发剂偶氮二异丁腈(0.001 mol,按单体总摩尔量的1.0%)于25mL超纯水中,充氮气30分钟,70℃下反应12h,在8倍于超纯水的丙酮中沉淀,过滤,30℃真空干燥。产物溶解在超纯水中,沉淀,过滤,干燥。重复上述步骤三次,得到纯净的双亲性共聚物。
(2)印迹组装胶束的制备:
将步骤(1)合成的离子型光敏共聚物溶解于超纯水中,按摩尔含量为共聚物中丙烯酸酯10 %的量加入牛血清蛋白作为印迹分子,二者混合搅拌充分络合,用盐酸调节溶液pH值为4~5,得到包覆牛血清蛋白的印迹胶束溶液。
(3)电化学石英晶体微天平(EQCM)分子识别传感器的制备:
电化学石英晶体微天平所用的电极分别用乙醇、超纯水超声清洗后,氮气吹干备用。取40 mL 浓度为30 mg/mL的印迹组装胶束溶液作为电解液,EQCM的电极浸没其中,施加-1V的恒电位,使胶束向电极表面泳动并沉积,沉积30 秒,于紫外灯下光照10 分钟。电极浸泡在醋酸缓冲液中,洗脱牛血清蛋白,最终得到印迹组装胶束膜修饰的电极,其与EQCM连接可检测溶液中牛血清蛋白,检测下限为3.7 μg/L,线性范围在5.2 ~ 120 μg/L,且待测液中存在生理浓度的抗坏血酸、葡萄糖、肾上腺素及多巴胺不影响传感器的检测。
实施例5
(1)离子型光敏共聚物的制备:
将异氰酸根封端的离子型聚氨酯溶解在干燥的丁酮中,向其中加入丙烯酸羟乙酯(聚氨酯与丙烯酸羟乙酯的摩尔比为1:2),升温至60℃反应,通过检测异氰酸根的含量判断反应终点。在8倍于丁酮体积的石油醚中沉淀,过滤,30℃真空干燥。产物溶解在二甲基甲酰胺中,沉淀,过滤,干燥。重复上述步骤三次,得到纯净的阳离子型光敏共聚物。
(2)印迹组装胶束的制备:
二甲基亚砜(DMSO)为溶剂溶解步骤(1)合成的离子型光敏共聚物,配成固含量20 %的溶液,用乙酸酸化中和,加入对氧磷作为模板分子。搅拌条件下匀速滴加超纯水至上述溶液,至固含量为4 %,透析后即为光敏印迹胶束溶液,用乙酸调节溶液pH值至6。
(3)电化学分子识别传感器的制备:用Piranha溶液处理电极,然后依次用超纯水、无水乙醇超声,晾干;将该预处理的金电极插入光敏性印迹胶束溶液,施加一个-10 V电位,使荷正电的印迹胶束向电极表面泳动并沉积,电极表面用大量超纯水冲洗后,置于300 nm波长的紫外灯下辐照,使电极表面胶束发生光交联。再将电极浸泡于乙酸乙酯溶液中,搅拌6小时,洗脱对氧磷,得到印迹胶束电沉积膜修饰电极。该电极与电化学工作站连接即为分子识别传感器,其对对氧磷具有专一选择性,检测下限为5×10-7 mol/L,线性范围为1.0×10-4~8.0×10-7 mol/L,对分子结构相近的对硫磷、辛硫磷以及硝基苯均响应较小。
实施例6
(1)离子型光敏共聚物的制备
称量丙烯酰胺2.45g, 7-(4-乙烯基苄氧基)-4-甲基香豆素0.62g,引发剂偶氮二异丁腈0.072g于25mL二氧六环中,充氮气50分钟,65℃下反应24h,冷却到室温,蒸去多余的溶剂,在二氯乙烷中沉淀得到纯的共聚物。将此共聚物溶解在热的盐酸溶液中,冷却到0℃,加入苯胺(0.5g)的盐酸溶液,再一次性加入含1.3g过硫酸铵水溶液,搅拌8小时。将得到的墨绿色聚苯胺分散液进行离心(10000rpm)分离提纯得到离子型光敏共聚物。
(2)印迹组装胶束的制备:
二甲亚砜(DMSO)为溶剂溶解步骤(1)合成的离子型光敏共聚物,配成固含量20 %的溶液,用乳酸酸化,以TNT作为模板分子。搅拌条件下匀速滴加超纯水至上述光敏共聚物与模板分子的混合溶液,至固含量为4 %,透析后即为光敏印迹胶束溶液,用乙酸调节溶液pH值至6。
(3)电化学分子识别传感器的制备:用Piranha溶液处理电极,然后依次用超纯水、无水乙醇超声,晾干;将该预处理的金电极插入光敏性印迹胶束溶液,施加一个-25 V电位,使荷正电的印迹胶束向电极表面泳动并沉积,电极表面用大量超纯水冲洗后,置于300 nm波长的紫外灯下辐照,使电极表面胶束发生光交联。再将电极浸泡于乙酸乙酯溶液中,搅拌6小时,洗脱TNT,得到印迹胶束电沉积膜修饰电极。该电极与电化学工作站连接即为分子识别传感器,其对TNT具有专一选择性,检测下限为2.0×10-8 mol/L,线性范围为5.0×10-6~5.0×10-8 mol/L,对分子结构相近的1,3,5-二硝基苯、1,3-二硝基甲苯均响应较小。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (7)

  1. 一种分子识别传感器的电沉积制备方法,其特征是通过离子型光敏共聚物的溶液自组装得到包覆模板分子的印迹胶束,再采用恒电位电沉积使胶束在电极表面成膜,紫外辐照交联,洗脱模板分子,最终得到分子印迹膜修饰电极,该电极具有分子识别能力,与计算机连接后成为分子识别传感器;步骤为:
    ( 1 )离子型光敏共聚物溶液的配制:将离子型光敏共聚物溶解于良溶剂中,配制固含量为 0.5% ~ 60% 的离子型光敏共聚物溶液,良溶剂选择:二甲基甲酰胺、二甲基亚砜、二氧六环、四氢呋喃、丙酮、异丙醇、丁醇、甲醇、乙二醇丁醚、乙腈中的一种或两种混合的溶剂;加入酸或碱调节离子型光敏共聚物溶液 pH 值为 2~5 或 8~12 ,所用酸选用:盐酸、乙酸、甲酸、乳酸、丙酸、丁酸、硫酸、甲烷磺酸、乙烷磺酸、羟基乙烷磺酸或羟基丙烷磺酸;所用碱选用:氢氧化钠、氢氧化钾、三乙胺、乙醇胺、二乙醇胺、三乙醇胺或氨水;
    ( 2 )自组装制备包覆模板分子的离子型光敏印迹胶束:在步骤( 1 )配制的溶液中加入模板分子,模板分子加入量为离子型光敏共聚物质量的 2% ~ 30% ,搅拌使模板分子充分溶解并和离子型光敏共聚物络合;搅拌下缓慢滴加离子型光敏共聚物的不良溶剂超纯水至溶液体积为初始体积的 1.5 ~ 4 倍,使离子型光敏共聚物发生微相分离,自组装并包覆模板分子形成离子型光敏印迹胶束溶液,继续匀速搅拌 5 ~ 12 小时,使离子型光敏共聚物组装完全;将该离子型光敏印迹胶束溶液逐滴加入其 5 倍体积的超纯水中使胶束稳定,搅拌 3 ~ 5 小时后通过透析法置换出良溶剂,或者采用挥发法蒸出良溶剂,用超纯水定容得到质量浓度 0.1%-30% 离子型光敏印迹胶束溶液;
    ( 3 )胶束电沉积成膜:用 Piranha 溶液( 98 % H2SO4 : 30 % H2O2 = 3 : 1 )浸泡电极,然后依次用超纯水、无水乙醇超声;将该预处理的电极浸入离子型光敏印迹胶束溶液中,通过施加一个恒电位,使荷电的印迹胶束向电极表面泳动并电沉积成膜;紫外光辐照,固定胶束膜结构;
    ( 4 )模板分子的洗脱:将电沉积后的电极浸泡于极性溶剂中,搅拌 1 ~ 36 小时,取出电极用超纯水反复冲洗,得到不含模板分子的离子型光敏印迹胶束电沉积膜修饰电极;极性溶剂选择以下一种或两种混合溶剂:水、乙酸、乙醇、甲醇、乙腈、二甲基甲酰胺、二甲基亚砜、乙酸乙酯,混合溶剂中两种溶剂的体积比为 1 : 1~1 : 9 ;
    ( 5 )组装分子识别传感器:该离子型光敏印迹胶束电沉积膜修饰电极与传感设备连接后即为分子识别传感器。
  2. 根据权利要求 1 所述的 分子识别传感器的电沉积制备方法 ,其特征在于所述的模板分子选用食品安全检测、生物制药或环境监测领域的常见分子,食品安全检测选用:抗生素、激素、苏丹红、三聚氰胺、甲醛、对氧磷、对硫磷、尼古丁、吗啡或咖啡因;生物制药选用:葡萄糖、肾上腺素、多巴胺、抗坏血酸、嘌呤碱基、嘧啶碱基、 DNA 、蛋白质或氨基酸;环境监测选用:三硝基甲苯( TNT ) 、甲醛、百草枯或呕吐毒素。
  3. 根据权利要求 1 所述的分子识别传感器的电沉积制备方法,其特征在于所述的电极是传感设备的电极,电极表面材质是具有导电性的材料:金、铂、玻碳、不锈钢、马口铁或 ITO 玻璃。
  4. 根据权利要求1 所述的分子识别传感器的电沉积制备方法,其特征在于该传感器采集分子信号并将这些信号转变为电信号、质量信号、基材震动频率信号、光谱信号等为计算机所识别。
  5. 根据权利要求 1 所述的 分子识别传感器的电沉积制备方法 ,其特征在于所述的离子型光敏印迹胶束溶液,其模板分子与离子型光敏共聚物之间具有氢键作用、静电作用、配位作用中的一种或几种。
  6. 根据权利要求 1 所述的 分子识别传感器的电沉积制备方法 ,其特征在于所述的胶束电沉积,所施加的恒电位与离子型光敏印迹胶束荷电相反,电沉积工艺条件为:恒电位值 -30 V ~ 30 V ,电沉积时间 5 s ~ 10 min 。
  7. 根据权利要求 1 所述的 分子识别传感器的电沉积制备方法 ,其特征在于改变离子型光敏印迹胶束终浓度或电沉积工艺条件,调节电极表面印迹胶束电沉积膜的厚度和致密度,从而控制分子识别传感器的检测范围和灵敏度。
PCT/CN2010/079331 2010-02-02 2010-12-01 一种分子识别传感器的电沉积制备方法 WO2011095033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/562,410 US8840768B2 (en) 2010-02-02 2012-07-31 Preparation method for molecular recognition sensor by electrodeposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010109960,3 2010-02-02
CN 201010109960 CN101776635B (zh) 2010-02-02 2010-02-02 一种分子识别传感器的电沉积制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/562,410 Continuation-In-Part US8840768B2 (en) 2010-02-02 2012-07-31 Preparation method for molecular recognition sensor by electrodeposition

Publications (1)

Publication Number Publication Date
WO2011095033A1 true WO2011095033A1 (zh) 2011-08-11

Family

ID=42513147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079331 WO2011095033A1 (zh) 2010-02-02 2010-12-01 一种分子识别传感器的电沉积制备方法

Country Status (3)

Country Link
US (1) US8840768B2 (zh)
CN (1) CN101776635B (zh)
WO (1) WO2011095033A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108802132A (zh) * 2018-05-25 2018-11-13 江南大学 一种百草枯分子印迹电极、制备及应用
CN111175360A (zh) * 2020-02-24 2020-05-19 扬州工业职业技术学院 一种基于二次聚合的苏丹红-i分子印迹传感器的制备方法
CN111175361A (zh) * 2020-02-24 2020-05-19 扬州工业职业技术学院 基于壳寡糖衍生物为功能单体的电化学分子印迹传感器的制备方法
CN112881483A (zh) * 2021-01-13 2021-06-01 江西农业大学 一种测定呕吐毒素的分子印迹电化学传感器的制备方法及应用
CN114577879A (zh) * 2022-03-08 2022-06-03 重庆医科大学 基于电泳和分子印迹原理的蛋白质检测系统及其应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776635B (zh) * 2010-02-02 2013-09-18 江南大学 一种分子识别传感器的电沉积制备方法
US11366077B2 (en) 2010-09-10 2022-06-21 The Trustees Of Dartmouth College Systems, sensing devices and methods for detection of airborne contaminants
US10451598B2 (en) 2010-09-10 2019-10-22 The Trustees Of Dartmouth College Devices for detecting airborne contaminants, and associated methods
CN102735717B (zh) * 2011-03-31 2015-09-30 香港纺织及成衣研发中心有限公司 测量织物甲醛含量的方法和系统
US9228988B2 (en) 2011-08-31 2016-01-05 The Trustees Of Dartmouth College Molecularly imprinted polymers for detection of contaminants
CN102706929B (zh) * 2012-05-10 2017-09-01 江南大学 一种可光交联改性透明质酸分子印迹传感器的制备
CN103760208B (zh) * 2013-01-23 2015-09-30 南京医科大学 一种用于检测多巴胺的金纳米粒掺杂的分子印记电化学传感器的制备方法
CN103613758B (zh) * 2013-12-03 2016-05-11 江南大学 自组装法制备分子印迹聚苯胺纳米复合物
CN103757683B (zh) * 2014-01-07 2016-05-25 江南大学 一种光交联型生物基涂层的电沉积制备方法
CN104098740B (zh) * 2014-02-23 2016-01-20 江苏省农业科学院 一种单端孢霉烯族类毒素分子印迹聚合物
CN103954521B (zh) * 2014-04-28 2016-04-20 国家电网公司 检测绝缘油中腐蚀性硫含量的方法
CN104198322A (zh) * 2014-09-12 2014-12-10 乌鲁木齐华新分析测试高科技开发公司 6-羟基烟酸分子印迹聚合物压电传感器及其制备方法
CN105116033B (zh) * 2015-09-06 2018-04-27 江南大学 一种光敏共聚物复合碳纳米管分子印迹传感器的制备方法
CN105911123A (zh) * 2016-06-30 2016-08-31 重庆医科大学 呕吐毒素的电化学检测方法
WO2018160132A1 (en) * 2017-02-28 2018-09-07 National University Of Singapore A method of making a molecularly imprinted polymer sensor
US10752932B2 (en) 2017-08-08 2020-08-25 International Business Machines Corporation Biosensor for multi-analyte characterization
CN107764887B (zh) * 2017-10-26 2024-05-10 天津科技大学 一种24位点微阵列丝网印刷电化学传感装置及其应用
CN109839466A (zh) * 2019-01-24 2019-06-04 唐玉乐 一种基于三维磁性分子印迹聚合物检测奶粉中三聚氰胺含量的方法
CN112834589B (zh) * 2020-12-31 2023-12-22 陕西师范大学 AuQD@CNFs复合材料及其制备方法和应用
CN114137049B (zh) * 2021-08-11 2024-07-02 辽宁中科力勒检测技术服务有限公司 一种镉离子表面印迹复合材料的制备方法和应用
CN114280118A (zh) * 2021-12-30 2022-04-05 吉林化工学院 一种碳纤维布基电化学复合物、分子印迹传感器及其制备方法和用途
CN114354731A (zh) * 2021-12-30 2022-04-15 吉林化工学院 一种碳纤维基电化学复合物、分子印迹传感器及其制备方法和用途
CN114674886B (zh) * 2022-04-01 2023-05-26 广州大学 一种检测摇头丸成分的分子印迹型电化学传感器制备方法
CN115078485B (zh) * 2022-04-15 2023-07-28 海南大学 一种基于分子印迹传感器的灭蝇胺残留快速检测方法
CN114965624B (zh) * 2022-04-21 2024-02-06 南华大学 西维因光响应分子印迹传感器及其制备方法
CN115141408A (zh) * 2022-05-23 2022-10-04 佛山市三水佛水供水有限公司 基于两亲性嵌段共聚物-金属有机框架的分子印迹荧光传感器及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126814A1 (en) * 2000-08-21 2004-07-01 Singh Waheguru Pal Sensor having molecularly imprinted polymers
CN1583804A (zh) * 2004-06-10 2005-02-23 中国农业大学 磺酰脲类除草剂分子印迹聚合物的制备方法及应用
WO2007095181A2 (en) * 2006-02-15 2007-08-23 Thiesen Jack H Method for forming molecular imprints
WO2008107651A1 (en) * 2007-03-03 2008-09-12 Cranfield University Sensor
CN101324541A (zh) * 2008-07-18 2008-12-17 大连理工大学 四环素分子印迹聚合物膜电极及其制备和应用
CN101776635A (zh) * 2010-02-02 2010-07-14 江南大学 一种分子识别传感器的电沉积制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101196486A (zh) * 2007-12-12 2008-06-11 国家海洋局第一海洋研究所 电化学传感器仿生分子识别纳米传感膜及其制备方法
CN100595218C (zh) * 2008-01-16 2010-03-24 江南大学 双亲两性离子聚合物及其pH响应型聚合物胶束缓冲液的制备方法
CN101302296B (zh) * 2008-06-03 2010-08-25 江南大学 一种双亲性共聚物自组装胶束乳化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126814A1 (en) * 2000-08-21 2004-07-01 Singh Waheguru Pal Sensor having molecularly imprinted polymers
CN1583804A (zh) * 2004-06-10 2005-02-23 中国农业大学 磺酰脲类除草剂分子印迹聚合物的制备方法及应用
WO2007095181A2 (en) * 2006-02-15 2007-08-23 Thiesen Jack H Method for forming molecular imprints
WO2008107651A1 (en) * 2007-03-03 2008-09-12 Cranfield University Sensor
CN101324541A (zh) * 2008-07-18 2008-12-17 大连理工大学 四环素分子印迹聚合物膜电极及其制备和应用
CN101776635A (zh) * 2010-02-02 2010-07-14 江南大学 一种分子识别传感器的电沉积制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG, JINQIANG ET AL.: "Synthesis and self-assembling of a new photo-sensitive terpolymer", ACTA POLYRNERICA SINICA, no. 1, January 2009 (2009-01-01), pages 53 - 60 *
YANG, YIQUN ET AL.: "Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: A novel strategy for MIP sensors", BIOSENSORS AND BIOELECTRONICS, vol. 26, 18 November 2010 (2010-11-18), pages 2607 - 2612, XP027580206 *
ZHANG, ZHAOHUI ET AL.: "Novel layer-by-layer assembly molecularly imprinted sol-gel sensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbon nanotube", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 344, 14 December 2009 (2009-12-14), pages 158 - 164 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108802132A (zh) * 2018-05-25 2018-11-13 江南大学 一种百草枯分子印迹电极、制备及应用
CN111175360A (zh) * 2020-02-24 2020-05-19 扬州工业职业技术学院 一种基于二次聚合的苏丹红-i分子印迹传感器的制备方法
CN111175361A (zh) * 2020-02-24 2020-05-19 扬州工业职业技术学院 基于壳寡糖衍生物为功能单体的电化学分子印迹传感器的制备方法
CN111175361B (zh) * 2020-02-24 2022-03-04 扬州工业职业技术学院 基于壳寡糖衍生物为功能单体的电化学分子印迹传感器的制备方法
CN111175360B (zh) * 2020-02-24 2022-03-04 扬州工业职业技术学院 一种基于二次聚合的苏丹红-i分子印迹传感器的制备方法
CN112881483A (zh) * 2021-01-13 2021-06-01 江西农业大学 一种测定呕吐毒素的分子印迹电化学传感器的制备方法及应用
CN112881483B (zh) * 2021-01-13 2023-05-12 江西农业大学 一种测定呕吐毒素的分子印迹电化学传感器的制备方法及应用
CN114577879A (zh) * 2022-03-08 2022-06-03 重庆医科大学 基于电泳和分子印迹原理的蛋白质检测系统及其应用
CN114577879B (zh) * 2022-03-08 2023-05-30 重庆医科大学 基于电泳和分子印迹原理的蛋白质检测系统及其应用

Also Published As

Publication number Publication date
US8840768B2 (en) 2014-09-23
CN101776635A (zh) 2010-07-14
CN101776635B (zh) 2013-09-18
US20120285833A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2011095033A1 (zh) 一种分子识别传感器的电沉积制备方法
Zhao et al. Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection
Wallace et al. Manipulating and monitoring biomolecular interactions with conducting electroactive polymers
Cosnier Affinity biosensors based on electropolymerized films
EP1144677B1 (en) Immobilization of molecules on surfaces via polymer brushes
Yang et al. Protein-imprinted materials: rational design, application and challenges
EP1955058B1 (en) Nucleic acid detection using a porous polymer electrode
Spivak et al. Binding of nucleotide bases by imprinted polymers
EP0239969B1 (en) Potential-causing membrane for immunosensor
Tiwari et al. An enzyme-free highly glucose-specific assay using self-assembled aminobenzene boronic acid upon polyelectrolytes electrospun nanofibers-mat
Brahim et al. Chemical and biological sensors based on electrochemical detection using conducting electroactive polymers
CN110261451B (zh) 一种针对农药蝇毒磷分子识别的二茂铁标记的半抗原-聚乙烯亚胺结合物的制备方法与应用
Wang et al. Preparation of molecularly imprinted polymers on hemin-graphene surface for recognition of high molecular weight protein
CN1772782A (zh) 荧光两亲性聚合物及制法和用途
JP3760158B2 (ja) 新規の伝導性高分子、これを利用したセンサー及び標的物質検出方法
Yang et al. Identification of imprinted sites by fluorescence detection method based on reversible dynamic bond modified template protein
WO1997020203A1 (de) Neuartige membranen und membran-dna/rna-sensoren
EP1035218A1 (en) Immobilization of molecules on surfaces via polymer brushes
CN113933362B (zh) 一种基于原子转移自由基聚合的磷脂酶c传感器制备方法
Moring et al. Target specific sample preparation from aqueous extracts with molecular imprinted polymers
KR100601999B1 (ko) 신규한 전도성 고분자를 이용한 표적 물질 검출 방법
TW201407159A (zh) 具nad聚合輔酶的基於酶電化學之感測器
RU2753850C1 (ru) Способ получения молекулярно-импринтированного полимера
US9891184B2 (en) Dithienylpyrrole-based biosensors and methods for their preparation and use
Weiss-Wichert et al. A new analytical device based on gated ion channels: a peptide-channel biosensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845116

Country of ref document: EP

Kind code of ref document: A1