WO2011094232A1 - Adaptive noise reduction using level cues - Google Patents

Adaptive noise reduction using level cues Download PDF

Info

Publication number
WO2011094232A1
WO2011094232A1 PCT/US2011/022462 US2011022462W WO2011094232A1 WO 2011094232 A1 WO2011094232 A1 WO 2011094232A1 US 2011022462 W US2011022462 W US 2011022462W WO 2011094232 A1 WO2011094232 A1 WO 2011094232A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
noise cancellation
output
module
acoustic signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2011/022462
Other languages
English (en)
French (fr)
Inventor
Carlo Murgia
Carlos Avendano
Karim Younes
Mark Every
Ye Jiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audience LLC
Original Assignee
Audience LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audience LLC filed Critical Audience LLC
Priority to FI20125814A priority Critical patent/FI20125814A7/fi
Priority to JP2012550214A priority patent/JP5675848B2/ja
Publication of WO2011094232A1 publication Critical patent/WO2011094232A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the stationary noise suppression system will always provide an output noise that is a fixed amount lower than the input noise.
  • the stationary noise suppression is in the range of 12-13 decibels (dB).
  • the noise suppression is fixed to this conservative level in order to avoid producing speech distortion, which will be apparent with higher noise suppression.
  • the generalized side-lobe canceller is used to identify desired signals and interfering signals comprised by a received signal.
  • the desired signals propagate from a desired location and the interfering signals propagate from other locations.
  • the interfering signals are subtracted from the received signal with the intention of cancelling interference.
  • a two microphone system can be used to achieve noise cancellation or source localization, but is not suitable for obtaining both.
  • With two widely spaced microphones it is possible to derive level difference cues for source localization and multiplicative noise suppression.
  • noise cancelation is limited to dry point sources given the lower coherence of the microphone signals.
  • the two microphones can be closely spaced for improved noise cancellation due to higher coherence between the microphone signals.
  • decreasing the spacing results in level cues which are too weak to be reliable for localization.
  • the present technology involves the combination of two independent but complementary two-microphone signal processing methodologies, an inter-microphone level difference method and a null processing noise subtraction method, which help and complement each other to maximize noise reduction performance.
  • Each two- microphone methodology or strategy may be configured to work in optimal configuration and may share one or more microphones of an audio device.
  • An exemplary microphone placement may use two sets of two microphones for noise suppression, wherein the set of microphones include two or more
  • a primary microphone and secondary microphone may be positioned closely spaced to each other to provide acoustic signals used to achieve noise
  • a tertiary microphone may be spaced with respect to either the primary microphone or the secondary microphone (or, may be implemented as either the primary microphone or the secondary microphone rather than a third microphone) in a spread-microphone configuration for deriving level cues from audio signals provided by tertiary and primary or secondary microphone.
  • the level cues are expressed via an inter-microphone level difference (ILD) which is used to determine one or more cluster tracking control signals.
  • ILD inter-microphone level difference
  • a noise cancelled primary acoustic signal and the ILD based cluster tracking control signals are used during post filtering to adaptively generate a mask to be applied against a speech estimate signal.
  • An embodiment for noise suppression may receive two or more signals.
  • the two or more signals may include a primary acoustic signal.
  • a level difference may be determined from any pair of the two or more acoustic signals.
  • Noise cancellation may be performed on the primary acoustic signal by subtracting a noise component from the primary acoustic signal.
  • the noise component may be derived from an acoustic signal other than the primary acoustic signal.
  • An embodiment of a system for noise suppression may include a frequency analysis module, an ILD module, and at least one a noise subtraction module, all of which may be stored in memory and executed by a processor.
  • the frequency analysis module may be executed to receive two or more acoustic signals, wherein the two or more acoustic signals include a primary acoustic signal.
  • the ILD module may be executed to determine a level difference cue from any pair of the two or more acoustic signals.
  • the noise subtraction module may be executed to perform noise cancellation on the primary acoustic signal by subtracting a noise component from the primary acoustic signal.
  • the noise component may be derived from an acoustic signal other than the primary acoustic signal.
  • An embodiment may include a machine readable medium having embodied thereon a program.
  • the program may provide instructions for a method for suppressing noise as described above.
  • FIGURES 1 and 2 are illustrations of environments in which embodiments of the present technology may be used.
  • FIGURE 3 is a block diagram of an exemplary audio device.
  • FIGURE 4A is a block diagram of an exemplary audio processing system.
  • FIGURE 4B is a block diagram of an exemplary null processing noise subtraction module.
  • FIGURE 5 is a block diagram of another exemplary audio processing system.
  • FIGURE 6 is a flowchart of an exemplary method for providing an audio signal with noise reduction.
  • Two independent but complementary two-microphone signal processing methodologies an inter-microphone level difference method and a null processing noise subtraction method, can be combined to maximize noise reduction performance.
  • Each two-microphone methodology or strategy may be configured to work in optimal configuration and may share one or more microphones of an audio device.
  • An audio device may utilize two pairs of microphones for noise suppression.
  • a primary and secondary microphone may be positioned closely spaced to each other and may provide audio signals utilized for achieving noise cancellation.
  • a tertiary microphone may be spaced in spread-microphone configuration with either the primary or secondary microphone and may provide audio signals for deriving level cues.
  • the level cues are encoded in the inter-microphone level difference (ILD) and normalized by a cluster tracker to account for distortions due to the acoustic structures and transducers involved. Cluster tracking and level difference determination are discussed in more detail below.
  • ILD inter-microphone level difference
  • the ILD cue from a spread-microphone pair may be normalized and used to control the adaptation of noise cancellation implemented with the primary microphone and secondary microphone.
  • a postprocessing multiplicative mask may be implemented with a post-filter.
  • the post-filter can be derived in several ways, one of which may involve the derivation of a noise reference by null-processing a signal received from the tertiary microphone to remove a speech component.
  • Embodiments of the present technology may be practiced on any audio device that is configured to receive sound such as, but not limited to, cellular phones, phone handsets, headsets, and conferencing systems.
  • exemplary embodiments are configured to provide improved noise suppression while minimizing speech distortion. While some embodiments of the present technology will be described in reference to operation on a cellular phone, the present technology may be practiced on any audio device.
  • a user may act as a speech source 102 to an audio device 104.
  • the exemplary audio device 104 may include a microphone array having microphones 106, 108, and 110.
  • the microphone array may include a close microphone array with microphones 106 and 108 and a spread microphone array with microphones 110 and either microphone 106 or 108.
  • One or more of microphones 106, 108, and 110 may be implemented as omni-directional microphones.
  • Microphones Ml, M2, and M3 can be place at any distance with respect to each other, such as for example between 2 and 20cm from each other.
  • Microphones 106, 108, and 110 may receive sound (i.e., acoustic signals) from the audio source 102 and noise 110.
  • sound i.e., acoustic signals
  • the noise 110 may comprise any sounds from one or more locations different than the audio source 102, and may include reverberations and echoes.
  • the noise 110 may be stationary, non-stationary, or a combination of both stationary and non-stationary noise.
  • microphones 106, 108, and 110 on audio device 104 may vary.
  • microphone 110 is located on the upper backside of audio device 104 and microphones 106 and 108 are located in line on the lower front and lower back of audio device 104.
  • microphone 110 is positioned on an upper side of audio device 104 and microphones 106 and 108 are located on lower sides of the audio device.
  • Microphones 106, 108, and 110 are labeled as Ml, M2, and M3, respectively. Though microphones Ml and M2 may be illustrated as spaced closer to each other and microphone M3 may be spaced further apart from microphones Ml and M2, any microphone signal combination can be processed to achieve noise cancellation and determine level cues between two audio signals.
  • the designations of Ml, M2, and M3 are arbitrary with microphones 106, 108 and 110 in that any of microphones 106, 108 and 110 may be Ml, M2, and M3. Processing of the microphone signals is discussed in more detail below with respect to FIGURES 4A-5.
  • the three microphones illustrated in FIGURES 1 and 2 represent an exemplary embodiment.
  • the present technology may be implemented using any number of microphones, such as for example two, three, four, five, six, seven, eight, nine, ten or even more microphones.
  • signals can be processed as discussed in more detail below, wherein the signals can be associated with pairs of microphones, wherein each pair may have different microphones or may share one or more microphones.
  • FIGURE 3 is a block diagram of an exemplary audio device.
  • the audio device 104 is an audio receiving device that includes microphone 106, microphone 108, microphone 110, processor 302, audio processing system 304, and output device 306.
  • the audio device 104 may include further components (not shown) necessary for audio device 104 operations, for example components such as an antenna, interfacing components, non-audio input, memory, and other components.
  • Processor 302 may execute instructions and modules stored in a memory (not illustrated in FIGURE 3) of communication device 104 to perform functionality described herein, including noise suppression for an audio signal.
  • Audio processing system 304 may process acoustic signals received by microphones 106, 108 and 110 (Ml, M2 and M3) to suppress noise and in the received signals and provide an audio signal to output device 306. Audio processing system 304 is discussed in more detail below with respect to FIGURE 3.
  • the output device 306 is any device which provides an audio output to the user.
  • the output device 306 may comprise an earpiece of a headset or handset, or a speaker on a conferencing device.
  • FIGURE 4A is a block diagram of an exemplary audio processing system 304.
  • the audio processing system 304 is embodied within a memory device within audio device 104.
  • Audio processing system 304 may include frequency analysis modules 402 and 404, ILD module 406, NPNS module 408, cluster tracker 410, noise estimate module 412, post filter module 414, multiplier component 416 and frequency synthesis module 418.
  • Audio processing system 304 may include more or fewer components than illustrated in FIGURE 4A, and the functionality of modules may be combined or expanded into fewer or additional modules. Exemplary lines of communication are illustrated between various modules of FIGURE 4A and other figures, such as FIGURES 4B and 5.
  • the lines of communication of are not intended to limit which modules are communicatively coupled with others.
  • the visual indication of a line e.g., dashed, doted, alternate dash and dot
  • a line is not intended to indicate a particular communication, but rather to aid in visual presentation of the system.
  • acoustic signals are received by microphones Ml, M2 and M3, converted to electric signals, and the electric signals are processed through frequency analysis module 402 and 404.
  • the frequency analysis module 402 takes the acoustic signals and mimics the frequency analysis of the cochlea (i.e., cochlear domain) simulated by a filter bank.
  • Frequency analysis module 402 may separate the acoustic signals into frequency sub-bands.
  • a sub-band is the result of a filtering operation on an input signal where the bandwidth of the filter is narrower than the bandwidth of the signal received by the frequency analysis module 402.
  • a sub-band analysis on the acoustic signal determines what individual frequencies are present in the complex acoustic signal during a frame (e.g., a predetermined period of time). For example, the length of a frame may be 4 ms, 8 ms, or some other length of time. In some embodiments there may be no frame at all.
  • the results may comprise sub-band signals in a fast cochlea transform (FCT) domain.
  • FCT fast cochlea transform
  • the sub-band frame signals are provided from frequency analysis modules 402 and 404 to ILD 406 and null processing noise subtraction (NPNS) module 408.
  • Null processing noise subtraction (NPNS) module 408 may adaptively subtract out a noise component from a primary acoustic signal for each sub-band.
  • output of the NPNS 408 includes sub-band estimates of the noise in the primary signal and sub-band estimates of the speech (in the form of a noise-subtracted sub-band signals) or other desired audio in the in the primary signal.
  • FIGURE 4B illustrates an exemplary implementation of NPNS module 408.
  • NPNS module 408 may be implemented as a cascade of null processing subtraction blocks 420 and 422.
  • Sub-band signals associated with two microphones are received as inputs to the first block NPNS 420.
  • Sub-band signals associated with a third microphone are received as input to the second block, along with an output of the first block.
  • the sub-band signals are represented in FIGURE 4B as Mp, and M Y/ such that:
  • Each of Mp, and ⁇ ⁇ can be associated with any of microphones 106, 108 and 110 of FIGURES 1 and 2.
  • NPNS 420 receives the sub-band signals with any two microphones, represented as M a and ⁇ .
  • NPNS 420 may also receive a cluster tracker realization signal CTi from cluster tracking module 410.
  • NPNS 420 performs noise cancellation and generates outputs of a speech reference output Si and noise reference output Ni at points A and B, respectively.
  • NPNS 422 may receive inputs of sub-band signals of ⁇ ⁇ and the output of NPNS 420.
  • NPNS 422 receives the noise reference output from NPNS 420 (point C is coupled to point A)
  • NPNS 422 performs null processing noise subtraction and generates outputs of a second speech reference output S2 and second noise reference output N2.
  • S2 is provided to post filter module 414 and multiplier module 416 while N2 is provided to noise estimate module 412 (or directly to post filter module 414).
  • NPNS 408 may be implemented with a single NPNS module 420.
  • a second implementation of NPNS 408 can be provided within audio processing system 304 wherein point C is connected to point B, such as for example the embodiment illustrated in FIGURE 5 and discussed in more detail below.
  • null processing noise subtraction as performed by an NPNS module is disclosed in U.S. patent application no. 12/215,980, entitled “System and Method for Providing Noise Suppression Utilizing Null Processing Noise Subtraction", filed on June 30, 2008, the disclosure of which is incorporated herein by reference.
  • FIGURE 4B a cascade of two noise subtraction modules is illustrated in FIGURE 4B, additional noise subtraction modules may be utilized to implement NPNS 408, for example in a cascaded fashion as illustrated in FIGURE 4B.
  • the cascade of noise subtraction modules may include three, four, five, or some other number of noise subtraction modules. In some embodiments, the number of cascaded noise subtraction modules may be one less than the number of microphones (e.g., for eight microphones, their may be seven cascaded noise subtraction modules).
  • sub-band signals from frequency analysis module 402 and 404 may be processed to determine energy level estimates during an interval of time. The energy estimate may be based on bandwidth of the cochlea channel and the acoustic signal. The energy level estimates may be determined by frequency analysis module 402 or 404, an energy estimation module (not illustrated), or another module such as ILD module 406.
  • an inter-microphone level difference may be determined by an ILD module 406.
  • ILD module 406 may receive calculated energy information for any of microphones Mi, M2 or M3.
  • the ILD module 406 may be approximated mathematicall in one embodiment, as
  • Ei is the energy level difference of two of microphones Mi
  • M2 and M3 and E2 is the energy level difference of the microphone not used for Ei and one of the two microphones used for Ei. Both Ei and E2 are obtained from energy level estimates.
  • This equation provides a bounded result between -1 and 1. For example, ILD goes to 1 when the £2 goes to 0, and ILD goes to -1 when Ei goes to 0.
  • the ILD may be approximated by
  • ILD may vary in time and frequency and may be bounded between -1 and 1.
  • ILDi may be used to determine the cluster tracker realization for signals received by NPNS 420 in FIGURE 4B. ILDi may be determined as follows: Mi), where i 6 [2,3] ⁇ ,
  • Mi represents a primary microphone that is closest to a desired source, such as for example a mouth reference point, and Mi represents a microphone other than the primary microphone.
  • ILDi can be determined from energy estimates of the framed sub-band signals of the two microphones associated with the input to NPNS 420. In some embodiments, ILDi is determined as the higher valued ILD between the primary microphone and the other two microphones.
  • ILD2 may be used to determine the cluster tracker realization for signals received by NPNS 422 in FIGIRE 4B. ILD2 may be determined from energy estimates of the framed sub-band signals of all three microphones as follows:
  • ILD 2 ⁇ ILDi; ILD (Mi, Si), i € [ ⁇ , ⁇ ]; ILD (Mi, Ni), i € [ ⁇ , ⁇ ]; ILD( Si, Ni) ⁇ .
  • Cluster tracking module 410 may receive level differences between energy estimates of sub-band framed signals from ILD module 406.
  • ILD module 406 may generate ILD signals from energy estimates of microphone signals, speech or noise reference signals.
  • the ILD signals may be used by cluster tracker 410 to control adaptation of noise cancellation as well as to create a mask by post filter 414.
  • Examples of ILD signals that may be generated by ILD module 406 to control adaptation of noise suppression include ILD 1 and ILD2.
  • tracking module 410 differentiates (i.e., classifies) noise and distracters from speech and provides the results to NPNS module 408 and post filter module 414.
  • ILD distortion in many embodiments, may be created by either fixed (e.g., from irregular or mismatched microphone response) or slowly changing (e.g., changes in handset talker, or room geometry and position) causes. In these embodiments, the ILD distortion may be compensated for based on estimates for either build-time clarification or runtime tracking. Exemplary embodiments of the present invention enables cluster tracker 410 to dynamically calculate these estimates at runtime providing a per-frequency dynamically changing estimate for a source (e.g., speech) and a noise (e.g., background) ILDs.
  • a source e.g., speech
  • noise e.g., background
  • Cluster tracker 410 may determine a global summary of acoustic features based, at least in part, on acoustic features derived from an acoustic signal, as well as an instantaneous global classification based on a global running estimate and the global summary of acoustic features.
  • the global running estimates may be updated and an instantaneous local classification is derived based on at least the one or more acoustic features.
  • Spectral energy classifications may then be determined based, at least in part, on the instantaneous local classification and the one or more acoustic features.
  • cluster tracker 410 classifies points in the energy spectrum as being speech or noise based on these local clusters and observations. As such, a local binary mask for each point in the energy spectrum is identified as either speech or noise.
  • Cluster tracker 410 may generate a noise/speech classification signal per subband and provide the classification to NPNS 408 to control its canceller parameters (sigma and alpha) adaptation.
  • the classification is a control signal indicating the differentiation between noise and speech.
  • NPNS 408 may utilize the classification signals to estimate noise in received microphone energy estimate signals, such as Ma, Mp, and My.
  • the results of cluster tracker 410 may be forwarded to the noise estimate module 412.
  • a current noise estimate along with locations in the energy spectrum where the noise may be located are provided for processing a noise signal within audio processing system 304.
  • the cluster tracker 410 uses the normalized ILD cue from microphone M3 and either microphone Ml or M2 to control the adaptation of the NPNS implemented by microphones Ml and M2 (or Ml, M2 and M3).
  • the tracked ILD is utilized to derive a sub-band decision mask in post filter module 414 (applied at mask 416) that controls the adaption of the NPNS sub-band source estimate.
  • Noise estimate module 412 may receive a noise/speech classification control signal and the NPNS output to estimate the noise N(t,w).
  • Cluster tracker 410 may receive a noise/speech classification control signal and the NPNS output to estimate the noise N(t,w).
  • noise estimate module 412 differentiates (i.e., classifies) noise and distracters from speech and provides the results for noise processing.
  • the results may be provided to noise estimate module 412 in order to derive the noise estimate.
  • the noise estimate determined by noise estimate module 412 is provided to post filter module 414.
  • post filter 414 receives the noise estimate output of NPNS 408 (output of the blocking matrix) and an output of cluster tracker 410, in which case a noise estimate module 412 is not utilized.
  • Post filter module 414 receives a noise estimate from cluster tracking module 410 (or noise estimate module 412, if implemented) and the speech estimate output (e.g., Si or S2) from NPNS 408. Post filter module 414 derives a filter estimate based on the noise estimate and speech estimate. In one embodiment, post filter 414 implements a filter such as a Weiner filter. Alternative embodiments may contemplate other filters. Accordingly, the Weiner filter approximation may be approximated, according to one embodiment, as [0052] , where Ps is a power spectral density of speech and P legislative is a power spectral density of noise. According to one embodiment, P « is the noise estimate, N(t,co), which may be calculated by noise estimate module 412.
  • Ps ⁇ -( ⁇ , ⁇ ) - 3 ⁇ 4V(t,co) , where Ei(t,a is the energy at the output of NPNS 408 and ⁇ ( ⁇ , ⁇ ) is the noise estimate provided by the noise estimate module 412. Because the noise estimate changes with each frame, the filter estimate will also change with each frame.
  • is an over-subtraction term which is a function of the ILD. ⁇ compensates bias of minimum statistics of the noise estimate module 412 and forms a perceptual weighting. Because time constants are different, the bias will be different between portions of pure noise and portions of noise and speech. Therefore, in some
  • compensation for this bias may be necessary.
  • is determined empirically (e.g., 2-3 dB at a large ILD, and is 6-9 dB at a low ILD).
  • a is a factor which further suppresses the estimated noise components.
  • a can be any positive value.
  • Nonlinear expansion may be obtained by setting a to 2.
  • the Weiner filter estimation may change quickly (e.g., from one frame to the next frame) and noise and speech estimates can vary greatly between each frame, application of the Weiner filter estimate, as is, may result in artifacts (e.g., discontinuities, blips, transients, etc.). Therefore, optional filter smoothing may be performed to smooth the Wiener filter estimate applied to the acoustic signals as a function of time.
  • a second instance of the cluster tracker could be used to track the NP-ILD, such as for example the ILD between the NP-NS output (and signal from the
  • the ILD may provided as follows:
  • ILD 3 ⁇ ILDi; ILD 2 ; ILD (S 2 . N 2 ); ILD (Mi, S 2 ), i £ [ ⁇ , ⁇ ]; ILD(Mj, N 2 ), i € [ ⁇ , ⁇ ]; ILD( S 2 Ni); ; ILD (Si , N 2 ); ILD (S 2 N 2 ) ⁇ ,
  • N 2 is derived as the output of module 520 in FIGURE 5, discussed in more detail below.
  • the frequency sub- bands output of NPNS module 408 are multiplied at mask 416 by the Weiner filter estimate (from post filter 414) to estimate the speech.
  • the speech estimate is converted back into time domain from the cochlea domain by frequency synthesis module 418.
  • the conversion may comprise taking the masked frequency sub-bands and adding together phase shifted signals of the cochlea channels in a frequency synthesis module 410.
  • the conversion may comprise taking the masked frequency sub-bands and multiplying these with an inverse frequency of the cochlea channels in the frequency synthesis module 410.
  • FIGURE 5 is a block diagram of another exemplary audio processing system 304.
  • the system of FIGURE 5 includes frequency analysis modules 402 and 404, ILD module 406, cluster tracking module 410, NPNS modules 408 and 520, post filter modules 414, multiplier module 416 and frequency synthesis module 418.
  • the audio processing system 304 of FIGURE 5 is similar to the system of FIGURE 4A except that the frequency sub-bands of the microphones Ml, M2 and M3 are each provided both NPNS 408 as well as NPNS 520, in addition to ILD 406.
  • ILD output signals based on received microphone frequency sub-band energy estimates are provided to cluster tracker 410, which then provides a control signal with a
  • NPNS 408 in FIGURE 5 may operate similar to NPNS 408 in FIGURE 4A.
  • NPNS 520 may be implemented as NPNS 408 as illustrated in FIGURE 4B when point C is connected to point B, thereby providing a noise estimate as an input NPNS 422.
  • the output of NPNS 520 is a noise estimate and provided to post filter module 414.
  • Post filter module 414 receives a speech estimate from NPNS 408, a noise estimate from NPNS 520, and a speech/noise control signal from cluster tracker 410 to adaptively generate a mask to apply to the speech estimate at multiplier 416.
  • the output of the multiplier is then processed by frequency synthesis module 418 and output by audio processing system 304.
  • FIGURE 6 is a flowchart 600 of an exemplary method for suppressing noise in an audio device.
  • audio signals are received by the audio device 104.
  • a plurality of microphones e.g., microphones Ml, M2 and M3 receive the audio signals.
  • the plurality of microphones may include two microphones which form a close microphone array and two microphones (one or more of which may be shared with the close microphone array microphones) which form a spread microphone array.
  • step 604 the frequency analysis on the primary, secondary and tertiary acoustic signals may be performed.
  • frequency analysis modules 402 and 404 utilize a filter bank to determine frequency sub-bands for the acoustic signals received by the device microphones.
  • Noise subtraction and noise suppression may be performed on the sub-band signals at step 606.
  • NPNS modules 408 and 520 may perform the noise subtraction and suppression processing on the frequency sub-band signals received from frequency analysis modules 402 and 404.
  • NPNS modules 408 and 520 then provide frequency sub- band noise estimate and speech estimate to post filter module 414.
  • Inter-microphone level differences are computed at step 608.
  • Computing the ILD may involve generating energy estimates for the sub-band signals from both frequency analysis module 402 and frequency analysis module 404.
  • the output of the ILD is provided to cluster tracking module 410.
  • Cluster tracking is performed at step 610 by cluster tracking module 410.
  • Cluster tracking module 410 receives the ILD information and outputs information indicating whether the sub-band is noise or speech.
  • Cluster tracking 410 may normalize the speech signal and output decision threshold information from which a
  • NPNS 408 and 520 determine whether a frequency sub-band is noise or speech. This information is passed to NPNS 408 and 520 to decide when to adapt noise cancelling parameters.
  • Noise may be estimated at step 612.
  • the noise estimation may performed by noise estimation module 412, and the output of cluster tracking module 410 is used to provide a noise estimate to post filter module 414.
  • the noise estimate NPNS 408 and/or 520 may determine and provide the noise estimate to post filter module 414.
  • a filter estimate is generated at step 614 by post filter module 414.
  • post filter module 414 receives an estimated source signal comprised of masked frequency sub-band signals from NPNS module 408 and an estimation of the noise signal from either null processing module 520 or cluster tracking module 410 (or noise estimate module 412).
  • the filter may be a Weiner filter or some other filter.
  • a gain mask may be applied in step 616.
  • the gain mask generated by post filter 414 may be applied to the speech estimate output of NPNS 408 by the multiplicative module 416 on a per sub-band signal basis.
  • the cochlear domain sub-bands signals may then be synthesized in step 618 to generate an output in time domain.
  • the sub-band signals may be converted back to the time domain from the frequency domain.
  • the audio signal may be output to the user in step 620.
  • the output may be via a speaker, earpiece, or other similar devices.
  • the above-described modules may be comprised of instructions that are stored in storage media such as a machine readable medium (e.g., a computer readable medium).
  • the instructions may be retrieved and executed by the processor 302.
  • Some examples of instructions include software, program code, and firmware.
  • Some examples of storage media comprise memory devices and integrated circuits.
  • the instructions are operational when executed by the processor 302 to direct the processor 302 to operate in accordance with embodiments of the present technology. Those skilled in the art are familiar with instructions, processors, and storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
PCT/US2011/022462 2010-01-26 2011-01-25 Adaptive noise reduction using level cues Ceased WO2011094232A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20125814A FI20125814A7 (fi) 2010-01-26 2011-01-25 Adaptiivinen kohinanpoisto tasomerkkien avulla
JP2012550214A JP5675848B2 (ja) 2010-01-26 2011-01-25 レベルキューによる適応ノイズ抑制

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/693,998 US8718290B2 (en) 2010-01-26 2010-01-26 Adaptive noise reduction using level cues
US12/693,998 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011094232A1 true WO2011094232A1 (en) 2011-08-04

Family

ID=44308941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/022462 Ceased WO2011094232A1 (en) 2010-01-26 2011-01-25 Adaptive noise reduction using level cues

Country Status (5)

Country Link
US (2) US8718290B2 (enExample)
JP (1) JP5675848B2 (enExample)
KR (1) KR20120114327A (enExample)
TW (1) TW201142829A (enExample)
WO (1) WO2011094232A1 (enExample)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
CN103219012A (zh) * 2013-04-23 2013-07-24 中国人民解放军总后勤部军需装备研究所 一种基于声源距离的双麦克风噪声消除方法及装置
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US9378754B1 (en) 2010-04-28 2016-06-28 Knowles Electronics, Llc Adaptive spatial classifier for multi-microphone systems
US9437180B2 (en) 2010-01-26 2016-09-06 Knowles Electronics, Llc Adaptive noise reduction using level cues
US9502048B2 (en) 2010-04-19 2016-11-22 Knowles Electronics, Llc Adaptively reducing noise to limit speech distortion
US9830899B1 (en) 2006-05-25 2017-11-28 Knowles Electronics, Llc Adaptive noise cancellation
US10257611B2 (en) 2016-05-02 2019-04-09 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
US9247346B2 (en) 2007-12-07 2016-01-26 Northern Illinois Research Foundation Apparatus, system and method for noise cancellation and communication for incubators and related devices
US9838784B2 (en) 2009-12-02 2017-12-05 Knowles Electronics, Llc Directional audio capture
US8798290B1 (en) * 2010-04-21 2014-08-05 Audience, Inc. Systems and methods for adaptive signal equalization
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
US8682006B1 (en) 2010-10-20 2014-03-25 Audience, Inc. Noise suppression based on null coherence
US8989402B2 (en) * 2011-01-19 2015-03-24 Broadcom Corporation Use of sensors for noise suppression in a mobile communication device
US9066169B2 (en) * 2011-05-06 2015-06-23 Etymotic Research, Inc. System and method for enhancing speech intelligibility using companion microphones with position sensors
JP5903631B2 (ja) * 2011-09-21 2016-04-13 パナソニックIpマネジメント株式会社 ノイズキャンセル装置
CN102543097A (zh) * 2012-01-16 2012-07-04 华为终端有限公司 降噪方法及设备
JP5845954B2 (ja) * 2012-02-16 2016-01-20 株式会社Jvcケンウッド ノイズ低減装置、音声入力装置、無線通信装置、ノイズ低減方法、およびノイズ低減プログラム
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
US20150365762A1 (en) 2012-11-24 2015-12-17 Polycom, Inc. Acoustic perimeter for reducing noise transmitted by a communication device in an open-plan environment
WO2014175076A1 (ja) 2013-04-26 2014-10-30 ソニー株式会社 音声処理装置および音声処理システム
KR102160519B1 (ko) 2013-04-26 2020-09-28 소니 주식회사 음성 처리 장치 및 방법, 및 기록 매체
GB2519379B (en) 2013-10-21 2020-08-26 Nokia Technologies Oy Noise reduction in multi-microphone systems
DE112015003945T5 (de) 2014-08-28 2017-05-11 Knowles Electronics, Llc Mehrquellen-Rauschunterdrückung
KR102262853B1 (ko) 2014-09-01 2021-06-10 삼성전자주식회사 복수의 마이크를 포함하는 전자 장치 및 이의 운용 방법
DE112015004185T5 (de) 2014-09-12 2017-06-01 Knowles Electronics, Llc Systeme und Verfahren zur Wiederherstellung von Sprachkomponenten
US10056092B2 (en) 2014-09-12 2018-08-21 Nuance Communications, Inc. Residual interference suppression
US9712915B2 (en) 2014-11-25 2017-07-18 Knowles Electronics, Llc Reference microphone for non-linear and time variant echo cancellation
US9485599B2 (en) * 2015-01-06 2016-11-01 Robert Bosch Gmbh Low-cost method for testing the signal-to-noise ratio of MEMS microphones
US9668048B2 (en) 2015-01-30 2017-05-30 Knowles Electronics, Llc Contextual switching of microphones
CN107110963B (zh) * 2015-02-03 2021-03-19 深圳市大疆创新科技有限公司 用于利用声音检测飞行器位置和速度的系统及方法
US10186276B2 (en) * 2015-09-25 2019-01-22 Qualcomm Incorporated Adaptive noise suppression for super wideband music
WO2017096174A1 (en) 2015-12-04 2017-06-08 Knowles Electronics, Llc Multi-microphone feedforward active noise cancellation
US10123112B2 (en) 2015-12-04 2018-11-06 Invensense, Inc. Microphone package with an integrated digital signal processor
US9947316B2 (en) 2016-02-22 2018-04-17 Sonos, Inc. Voice control of a media playback system
US10095470B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Audio response playback
US9965247B2 (en) 2016-02-22 2018-05-08 Sonos, Inc. Voice controlled media playback system based on user profile
US10264030B2 (en) 2016-02-22 2019-04-16 Sonos, Inc. Networked microphone device control
US9772817B2 (en) 2016-02-22 2017-09-26 Sonos, Inc. Room-corrected voice detection
US9811314B2 (en) 2016-02-22 2017-11-07 Sonos, Inc. Metadata exchange involving a networked playback system and a networked microphone system
US9978390B2 (en) 2016-06-09 2018-05-22 Sonos, Inc. Dynamic player selection for audio signal processing
US10152969B2 (en) 2016-07-15 2018-12-11 Sonos, Inc. Voice detection by multiple devices
US10134399B2 (en) 2016-07-15 2018-11-20 Sonos, Inc. Contextualization of voice inputs
US10115400B2 (en) 2016-08-05 2018-10-30 Sonos, Inc. Multiple voice services
US9942678B1 (en) 2016-09-27 2018-04-10 Sonos, Inc. Audio playback settings for voice interaction
US9743204B1 (en) 2016-09-30 2017-08-22 Sonos, Inc. Multi-orientation playback device microphones
US10181323B2 (en) 2016-10-19 2019-01-15 Sonos, Inc. Arbitration-based voice recognition
WO2018148095A1 (en) 2017-02-13 2018-08-16 Knowles Electronics, Llc Soft-talk audio capture for mobile devices
US11183181B2 (en) 2017-03-27 2021-11-23 Sonos, Inc. Systems and methods of multiple voice services
US10475449B2 (en) 2017-08-07 2019-11-12 Sonos, Inc. Wake-word detection suppression
US10048930B1 (en) 2017-09-08 2018-08-14 Sonos, Inc. Dynamic computation of system response volume
US10446165B2 (en) 2017-09-27 2019-10-15 Sonos, Inc. Robust short-time fourier transform acoustic echo cancellation during audio playback
US10621981B2 (en) 2017-09-28 2020-04-14 Sonos, Inc. Tone interference cancellation
US10051366B1 (en) 2017-09-28 2018-08-14 Sonos, Inc. Three-dimensional beam forming with a microphone array
US10482868B2 (en) 2017-09-28 2019-11-19 Sonos, Inc. Multi-channel acoustic echo cancellation
US10466962B2 (en) 2017-09-29 2019-11-05 Sonos, Inc. Media playback system with voice assistance
US10880650B2 (en) 2017-12-10 2020-12-29 Sonos, Inc. Network microphone devices with automatic do not disturb actuation capabilities
US10818290B2 (en) 2017-12-11 2020-10-27 Sonos, Inc. Home graph
WO2019152722A1 (en) 2018-01-31 2019-08-08 Sonos, Inc. Device designation of playback and network microphone device arrangements
US10210856B1 (en) 2018-03-23 2019-02-19 Bell Helicopter Textron Inc. Noise control system for a ducted rotor assembly
US11175880B2 (en) 2018-05-10 2021-11-16 Sonos, Inc. Systems and methods for voice-assisted media content selection
US10847178B2 (en) 2018-05-18 2020-11-24 Sonos, Inc. Linear filtering for noise-suppressed speech detection
US10959029B2 (en) 2018-05-25 2021-03-23 Sonos, Inc. Determining and adapting to changes in microphone performance of playback devices
US10681460B2 (en) 2018-06-28 2020-06-09 Sonos, Inc. Systems and methods for associating playback devices with voice assistant services
US10461710B1 (en) 2018-08-28 2019-10-29 Sonos, Inc. Media playback system with maximum volume setting
US11076035B2 (en) 2018-08-28 2021-07-27 Sonos, Inc. Do not disturb feature for audio notifications
US10587430B1 (en) 2018-09-14 2020-03-10 Sonos, Inc. Networked devices, systems, and methods for associating playback devices based on sound codes
US10878811B2 (en) 2018-09-14 2020-12-29 Sonos, Inc. Networked devices, systems, and methods for intelligently deactivating wake-word engines
US11024331B2 (en) 2018-09-21 2021-06-01 Sonos, Inc. Voice detection optimization using sound metadata
US10811015B2 (en) 2018-09-25 2020-10-20 Sonos, Inc. Voice detection optimization based on selected voice assistant service
US11100923B2 (en) 2018-09-28 2021-08-24 Sonos, Inc. Systems and methods for selective wake word detection using neural network models
US10692518B2 (en) 2018-09-29 2020-06-23 Sonos, Inc. Linear filtering for noise-suppressed speech detection via multiple network microphone devices
US11899519B2 (en) 2018-10-23 2024-02-13 Sonos, Inc. Multiple stage network microphone device with reduced power consumption and processing load
EP3654249A1 (en) 2018-11-15 2020-05-20 Snips Dilated convolutions and gating for efficient keyword spotting
US11183183B2 (en) 2018-12-07 2021-11-23 Sonos, Inc. Systems and methods of operating media playback systems having multiple voice assistant services
US11132989B2 (en) 2018-12-13 2021-09-28 Sonos, Inc. Networked microphone devices, systems, and methods of localized arbitration
US10602268B1 (en) 2018-12-20 2020-03-24 Sonos, Inc. Optimization of network microphone devices using noise classification
KR102569365B1 (ko) * 2018-12-27 2023-08-22 삼성전자주식회사 가전기기 및 이의 음성 인식 방법
US11315556B2 (en) 2019-02-08 2022-04-26 Sonos, Inc. Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification
US10867604B2 (en) 2019-02-08 2020-12-15 Sonos, Inc. Devices, systems, and methods for distributed voice processing
KR20250044808A (ko) * 2019-03-10 2025-04-01 카르돔 테크놀로지 엘티디. 큐의 클러스터링을 사용한 음성 증강
US11120794B2 (en) 2019-05-03 2021-09-14 Sonos, Inc. Voice assistant persistence across multiple network microphone devices
US10586540B1 (en) 2019-06-12 2020-03-10 Sonos, Inc. Network microphone device with command keyword conditioning
US11200894B2 (en) 2019-06-12 2021-12-14 Sonos, Inc. Network microphone device with command keyword eventing
US11361756B2 (en) 2019-06-12 2022-06-14 Sonos, Inc. Conditional wake word eventing based on environment
US11138975B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US11138969B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US10871943B1 (en) 2019-07-31 2020-12-22 Sonos, Inc. Noise classification for event detection
US11189286B2 (en) 2019-10-22 2021-11-30 Sonos, Inc. VAS toggle based on device orientation
US11200900B2 (en) 2019-12-20 2021-12-14 Sonos, Inc. Offline voice control
US11562740B2 (en) 2020-01-07 2023-01-24 Sonos, Inc. Voice verification for media playback
US11556307B2 (en) 2020-01-31 2023-01-17 Sonos, Inc. Local voice data processing
US11308958B2 (en) 2020-02-07 2022-04-19 Sonos, Inc. Localized wakeword verification
US10937410B1 (en) * 2020-04-24 2021-03-02 Bose Corporation Managing characteristics of active noise reduction
US11727919B2 (en) 2020-05-20 2023-08-15 Sonos, Inc. Memory allocation for keyword spotting engines
US11308962B2 (en) 2020-05-20 2022-04-19 Sonos, Inc. Input detection windowing
US11482224B2 (en) 2020-05-20 2022-10-25 Sonos, Inc. Command keywords with input detection windowing
US12387716B2 (en) 2020-06-08 2025-08-12 Sonos, Inc. Wakewordless voice quickstarts
US11053017B1 (en) * 2020-08-20 2021-07-06 Kitty Hawk Corporation Rotor noise reduction using signal processing
US11698771B2 (en) 2020-08-25 2023-07-11 Sonos, Inc. Vocal guidance engines for playback devices
US12283269B2 (en) 2020-10-16 2025-04-22 Sonos, Inc. Intent inference in audiovisual communication sessions
US11984123B2 (en) 2020-11-12 2024-05-14 Sonos, Inc. Network device interaction by range
US11551700B2 (en) 2021-01-25 2023-01-10 Sonos, Inc. Systems and methods for power-efficient keyword detection
CN117280710A (zh) * 2021-05-20 2023-12-22 三菱电机株式会社 集音装置、集音方法和集音程序
EP4409933A1 (en) 2021-09-30 2024-08-07 Sonos, Inc. Enabling and disabling microphones and voice assistants
US12327549B2 (en) 2022-02-09 2025-06-10 Sonos, Inc. Gatekeeping for voice intent processing
US12444399B2 (en) 2022-09-02 2025-10-14 Bose Corporation Active damping of resonant canal modes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383179B2 (en) * 2004-09-28 2008-06-03 Clarity Technologies, Inc. Method of cascading noise reduction algorithms to avoid speech distortion
US7555075B2 (en) * 2006-04-07 2009-06-30 Freescale Semiconductor, Inc. Adjustable noise suppression system
US20090296958A1 (en) * 2006-07-03 2009-12-03 Nec Corporation Noise suppression method, device, and program
US20090323982A1 (en) * 2006-01-30 2009-12-31 Ludger Solbach System and method for providing noise suppression utilizing null processing noise subtraction

Family Cites Families (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2240557A1 (de) 1971-08-18 1973-02-22 Jean Albert Dreyfus Spracherkennungsvorrichtung zum steuern von maschinen
NL180369C (nl) 1977-04-04 1987-02-02 Philips Nv Inrichting voor het omzetten van discrete signalen in een discreet enkelzijband frequentie-multiplex-signaal en omgekeerd.
DE3471218D1 (en) 1983-11-25 1988-06-16 British Telecomm Sub-band coders, decoders and filters
JPS61194913A (ja) * 1985-02-22 1986-08-29 Fujitsu Ltd ノイズキヤンセラ
DE3510573A1 (de) 1985-03-23 1986-09-25 Philips Patentverwaltung Digitale analyse-synthese-filterbank mit maximaler taktreduktion
US4630304A (en) 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
JPS63501603A (ja) 1985-10-30 1988-06-16 セントラル インステイチユ−ト フオ ザ デフ スピ−チ処理装置および方法
DE3627676A1 (de) 1986-08-14 1988-02-25 Blaupunkt Werke Gmbh Filteranordnung
US4815023A (en) 1987-05-04 1989-03-21 General Electric Company Quadrature mirror filters with staggered-phase subsampling
US5285165A (en) 1988-05-26 1994-02-08 Renfors Markku K Noise elimination method
FI80173C (fi) 1988-05-26 1990-04-10 Nokia Mobile Phones Ltd Foerfarande foer daempning av stoerningar.
US4991166A (en) 1988-10-28 1991-02-05 Shure Brothers Incorporated Echo reduction circuit
US5027306A (en) 1989-05-12 1991-06-25 Dattorro Jon C Decimation filter as for a sigma-delta analog-to-digital converter
DE3922469A1 (de) 1989-07-07 1991-01-17 Nixdorf Computer Ag Verfahren zum filtern digitalisierter signale
US5103229A (en) 1990-04-23 1992-04-07 General Electric Company Plural-order sigma-delta analog-to-digital converters using both single-bit and multiple-bit quantization
WO1992005538A1 (en) 1990-09-14 1992-04-02 Chris Todter Noise cancelling systems
GB9211756D0 (en) 1992-06-03 1992-07-15 Gerzon Michael A Stereophonic directional dispersion method
JP2508574B2 (ja) 1992-11-10 1996-06-19 日本電気株式会社 多チャンネルエコ―除去装置
DE4316297C1 (de) 1993-05-14 1994-04-07 Fraunhofer Ges Forschung Frequenzanalyseverfahren
US5787414A (en) 1993-06-03 1998-07-28 Kabushiki Kaisha Toshiba Data retrieval system using secondary information of primary data to be retrieved as retrieval key
US5408235A (en) 1994-03-07 1995-04-18 Intel Corporation Second order Sigma-Delta based analog to digital converter having superior analog components and having a programmable comb filter coupled to the digital signal processor
US5544250A (en) 1994-07-18 1996-08-06 Motorola Noise suppression system and method therefor
US5640490A (en) 1994-11-14 1997-06-17 Fonix Corporation User independent, real-time speech recognition system and method
US5682463A (en) 1995-02-06 1997-10-28 Lucent Technologies Inc. Perceptual audio compression based on loudness uncertainty
US5504455A (en) 1995-05-16 1996-04-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Efficient digital quadrature demodulator
US5809463A (en) 1995-09-15 1998-09-15 Hughes Electronics Method of detecting double talk in an echo canceller
EP0855129A1 (en) 1995-10-10 1998-07-29 AudioLogic, Incorporated Digital signal processing hearing aid with processing strategy selection
US5956674A (en) 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
FI100840B (fi) 1995-12-12 1998-02-27 Nokia Mobile Phones Ltd Kohinanvaimennin ja menetelmä taustakohinan vaimentamiseksi kohinaises ta puheesta sekä matkaviestin
US5819217A (en) 1995-12-21 1998-10-06 Nynex Science & Technology, Inc. Method and system for differentiating between speech and noise
US6067517A (en) 1996-02-02 2000-05-23 International Business Machines Corporation Transcription of speech data with segments from acoustically dissimilar environments
US5937060A (en) 1996-02-09 1999-08-10 Texas Instruments Incorporated Residual echo suppression
US5701350A (en) 1996-06-03 1997-12-23 Digisonix, Inc. Active acoustic control in remote regions
US5796819A (en) 1996-07-24 1998-08-18 Ericsson Inc. Echo canceller for non-linear circuits
US5887032A (en) 1996-09-03 1999-03-23 Amati Communications Corp. Method and apparatus for crosstalk cancellation
US5963651A (en) 1997-01-16 1999-10-05 Digisonix, Inc. Adaptive acoustic attenuation system having distributed processing and shared state nodal architecture
US5933495A (en) 1997-02-07 1999-08-03 Texas Instruments Incorporated Subband acoustic noise suppression
US6041127A (en) 1997-04-03 2000-03-21 Lucent Technologies Inc. Steerable and variable first-order differential microphone array
US6151397A (en) 1997-05-16 2000-11-21 Motorola, Inc. Method and system for reducing undesired signals in a communication environment
TW392416B (en) 1997-08-18 2000-06-01 Noise Cancellation Tech Noise cancellation system for active headsets
US6018708A (en) 1997-08-26 2000-01-25 Nortel Networks Corporation Method and apparatus for performing speech recognition utilizing a supplementary lexicon of frequently used orthographies
US6757652B1 (en) 1998-03-03 2004-06-29 Koninklijke Philips Electronics N.V. Multiple stage speech recognizer
US6549586B2 (en) 1999-04-12 2003-04-15 Telefonaktiebolaget L M Ericsson System and method for dual microphone signal noise reduction using spectral subtraction
US6160265A (en) 1998-07-13 2000-12-12 Kensington Laboratories, Inc. SMIF box cover hold down latch and box door latch actuating mechanism
US6011501A (en) 1998-12-31 2000-01-04 Cirrus Logic, Inc. Circuits, systems and methods for processing data in a one-bit format
US6381570B2 (en) 1999-02-12 2002-04-30 Telogy Networks, Inc. Adaptive two-threshold method for discriminating noise from speech in a communication signal
SE514948C2 (sv) 1999-03-29 2001-05-21 Ericsson Telefon Ab L M Förfarande och anordning för att reducera överhörning
US6226616B1 (en) 1999-06-21 2001-05-01 Digital Theater Systems, Inc. Sound quality of established low bit-rate audio coding systems without loss of decoder compatibility
US6198668B1 (en) 1999-07-19 2001-03-06 Interval Research Corporation Memory cell array for performing a comparison
US6326912B1 (en) 1999-09-24 2001-12-04 Akm Semiconductor, Inc. Analog-to-digital conversion using a multi-bit analog delta-sigma modulator combined with a one-bit digital delta-sigma modulator
US6947509B1 (en) 1999-11-30 2005-09-20 Verance Corporation Oversampled filter bank for subband processing
US6473733B1 (en) 1999-12-01 2002-10-29 Research In Motion Limited Signal enhancement for voice coding
TW510143B (en) 1999-12-03 2002-11-11 Dolby Lab Licensing Corp Method for deriving at least three audio signals from two input audio signals
US6934387B1 (en) 1999-12-17 2005-08-23 Marvell International Ltd. Method and apparatus for digital near-end echo/near-end crosstalk cancellation with adaptive correlation
GB2357683A (en) 1999-12-24 2001-06-27 Nokia Mobile Phones Ltd Voiced/unvoiced determination for speech coding
GB2361123A (en) 2000-04-04 2001-10-10 Nokia Mobile Phones Ltd Polyphase filters in silicon integrated circuit technology
US6978027B1 (en) 2000-04-11 2005-12-20 Creative Technology Ltd. Reverberation processor for interactive audio applications
US20010046304A1 (en) 2000-04-24 2001-11-29 Rast Rodger H. System and method for selective control of acoustic isolation in headsets
US6954745B2 (en) 2000-06-02 2005-10-11 Canon Kabushiki Kaisha Signal processing system
US8254617B2 (en) * 2003-03-27 2012-08-28 Aliphcom, Inc. Microphone array with rear venting
US20070233479A1 (en) 2002-05-30 2007-10-04 Burnett Gregory C Detecting voiced and unvoiced speech using both acoustic and nonacoustic sensors
EP1407553B1 (en) 2000-08-11 2006-02-22 Koninklijke Philips Electronics N.V. Method and arrangement for synchronizing a sigma-delta-modulator
US6804203B1 (en) 2000-09-15 2004-10-12 Mindspeed Technologies, Inc. Double talk detector for echo cancellation in a speech communication system
US6859508B1 (en) 2000-09-28 2005-02-22 Nec Electronics America, Inc. Four dimensional equalizer and far-end cross talk canceler in Gigabit Ethernet signals
US20020067836A1 (en) 2000-10-24 2002-06-06 Paranjpe Shreyas Anand Method and device for artificial reverberation
US6990196B2 (en) 2001-02-06 2006-01-24 The Board Of Trustees Of The Leland Stanford Junior University Crosstalk identification in xDSL systems
US7617099B2 (en) 2001-02-12 2009-11-10 FortMedia Inc. Noise suppression by two-channel tandem spectrum modification for speech signal in an automobile
US7006636B2 (en) 2002-05-24 2006-02-28 Agere Systems Inc. Coherence-based audio coding and synthesis
US7277554B2 (en) 2001-08-08 2007-10-02 Gn Resound North America Corporation Dynamic range compression using digital frequency warping
JP2003061182A (ja) * 2001-08-22 2003-02-28 Tokai Rika Co Ltd マイクロフォン装置
US7042934B2 (en) 2002-01-23 2006-05-09 Actelis Networks Inc. Crosstalk mitigation in a modem pool environment
US7171008B2 (en) 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
WO2003096031A2 (en) * 2002-03-05 2003-11-20 Aliphcom Voice activity detection (vad) devices and methods for use with noise suppression systems
US7409068B2 (en) 2002-03-08 2008-08-05 Sound Design Technologies, Ltd. Low-noise directional microphone system
US20030169887A1 (en) 2002-03-11 2003-09-11 Yamaha Corporation Reverberation generating apparatus with bi-stage convolution of impulse response waveform
DE10213423A1 (de) 2002-03-26 2003-10-09 Philips Intellectual Property Schaltungsanordnung zum Schieben der Phase eines Eingangssignals und Schaltungsanordnung zur Spiegelfrequenzunterdrückung
TW200305854A (en) 2002-03-27 2003-11-01 Aliphcom Inc Microphone and voice activity detection (VAD) configurations for use with communication system
US7190665B2 (en) 2002-04-19 2007-03-13 Texas Instruments Incorporated Blind crosstalk cancellation for multicarrier modulation
CN1307612C (zh) 2002-04-22 2007-03-28 皇家飞利浦电子股份有限公司 声频信号的编码解码方法、编码器、解码器及相关设备
DE60306512T2 (de) 2002-04-22 2007-06-21 Koninklijke Philips Electronics N.V. Parametrische beschreibung von mehrkanal-audio
EP2866474A3 (en) 2002-04-25 2015-05-13 GN Resound A/S Fitting methodology and hearing prosthesis based on signal-to-noise ratio loss data
US7319959B1 (en) 2002-05-14 2008-01-15 Audience, Inc. Multi-source phoneme classification for noise-robust automatic speech recognition
US20030228019A1 (en) 2002-06-11 2003-12-11 Elbit Systems Ltd. Method and system for reducing noise
US7242762B2 (en) 2002-06-24 2007-07-10 Freescale Semiconductor, Inc. Monitoring and control of an adaptive filter in a communication system
CA2399159A1 (en) 2002-08-16 2004-02-16 Dspfactory Ltd. Convergence improvement for oversampled subband adaptive filters
JP4155774B2 (ja) 2002-08-28 2008-09-24 富士通株式会社 エコー抑制システム及び方法
US6917688B2 (en) 2002-09-11 2005-07-12 Nanyang Technological University Adaptive noise cancelling microphone system
CN1685626A (zh) 2002-09-27 2005-10-19 肯奈克斯特公司 用来减小由握手音调导致的干扰的系统和方法
US7003099B1 (en) 2002-11-15 2006-02-21 Fortmedia, Inc. Small array microphone for acoustic echo cancellation and noise suppression
US7359504B1 (en) 2002-12-03 2008-04-15 Plantronics, Inc. Method and apparatus for reducing echo and noise
US20040105550A1 (en) 2002-12-03 2004-06-03 Aylward J. Richard Directional electroacoustical transducing
US7162420B2 (en) 2002-12-10 2007-01-09 Liberato Technologies, Llc System and method for noise reduction having first and second adaptive filters
US20060160581A1 (en) 2002-12-20 2006-07-20 Christopher Beaugeant Echo suppression for compressed speech with only partial transcoding of the uplink user data stream
US20040252772A1 (en) 2002-12-31 2004-12-16 Markku Renfors Filter bank based signal processing
GB2397990A (en) 2003-01-31 2004-08-04 Mitel Networks Corp Echo cancellation/suppression and double-talk detection in communication paths
US7949522B2 (en) 2003-02-21 2011-05-24 Qnx Software Systems Co. System for suppressing rain noise
GB2398913B (en) 2003-02-27 2005-08-17 Motorola Inc Noise estimation in speech recognition
FR2851879A1 (fr) 2003-02-27 2004-09-03 France Telecom Procede de traitement de donnees sonores compressees, pour spatialisation.
SE0301273D0 (sv) 2003-04-30 2003-04-30 Coding Technologies Sweden Ab Advanced processing based on a complex-exponential-modulated filterbank and adaptive time signalling methods
EP1473964A3 (en) 2003-05-02 2006-08-09 Samsung Electronics Co., Ltd. Microphone array, method to process signals from this microphone array and speech recognition method and system using the same
US7577084B2 (en) 2003-05-03 2009-08-18 Ikanos Communications Inc. ISDN crosstalk cancellation in a DSL system
GB2401744B (en) 2003-05-14 2006-02-15 Ultra Electronics Ltd An adaptive control unit with feedback compensation
EP1652404B1 (en) 2003-07-11 2010-11-03 Cochlear Limited Method and device for noise reduction
US7289554B2 (en) 2003-07-15 2007-10-30 Brooktree Broadband Holding, Inc. Method and apparatus for channel equalization and cyclostationary interference rejection for ADSL-DMT modems
DE112004001455B4 (de) 2003-08-07 2020-04-23 Intersil Americas LLC Verfahren und System zum Löschen von Übersprechen
US7099821B2 (en) 2003-09-12 2006-08-29 Softmax, Inc. Separation of target acoustic signals in a multi-transducer arrangement
EP1667109A4 (en) 2003-09-17 2007-10-03 Beijing E World Technology Co METHOD AND DEVICE FOR QUANTIFYING MULTI-RESOLUTION VECTOR FOR AUDIO CODING AND DECODING
EP1691344B1 (en) 2003-11-12 2009-06-24 HONDA MOTOR CO., Ltd. Speech recognition system
DE602004018035D1 (de) 2004-02-20 2009-01-08 Nokia Corp Kanalentzerrung
JP4898673B2 (ja) 2004-07-14 2012-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 方法、装置、エンコーダ装置、デコーダ装置及びオーディオシステム
DE602004015987D1 (de) * 2004-09-23 2008-10-02 Harman Becker Automotive Sys Mehrkanalige adaptive Sprachsignalverarbeitung mit Rauschunterdrückung
US8170879B2 (en) 2004-10-26 2012-05-01 Qnx Software Systems Limited Periodic signal enhancement system
US20060106620A1 (en) 2004-10-28 2006-05-18 Thompson Jeffrey K Audio spatial environment down-mixer
US7853022B2 (en) 2004-10-28 2010-12-14 Thompson Jeffrey K Audio spatial environment engine
US20060093164A1 (en) 2004-10-28 2006-05-04 Neural Audio, Inc. Audio spatial environment engine
US7676362B2 (en) 2004-12-31 2010-03-09 Motorola, Inc. Method and apparatus for enhancing loudness of a speech signal
US7561627B2 (en) 2005-01-06 2009-07-14 Marvell World Trade Ltd. Method and system for channel equalization and crosstalk estimation in a multicarrier data transmission system
KR100933548B1 (ko) 2005-04-15 2009-12-23 돌비 스웨덴 에이비 비상관 신호의 시간적 엔벨로프 정형화
EP1722360B1 (en) 2005-05-13 2014-03-19 Harman Becker Automotive Systems GmbH Audio enhancement system and method
US7647077B2 (en) 2005-05-31 2010-01-12 Bitwave Pte Ltd Method for echo control of a wireless headset
US8311819B2 (en) 2005-06-15 2012-11-13 Qnx Software Systems Limited System for detecting speech with background voice estimates and noise estimates
JP2007019578A (ja) 2005-07-05 2007-01-25 Hitachi Ltd 電力増幅器およびそれを用いた送信機
US20070041589A1 (en) 2005-08-17 2007-02-22 Gennum Corporation System and method for providing environmental specific noise reduction algorithms
US7917561B2 (en) 2005-09-16 2011-03-29 Coding Technologies Ab Partially complex modulated filter bank
US7813923B2 (en) 2005-10-14 2010-10-12 Microsoft Corporation Calibration based beamforming, non-linear adaptive filtering, and multi-sensor headset
WO2007049644A1 (ja) 2005-10-26 2007-05-03 Nec Corporation エコー抑圧方法及び装置
JP4876574B2 (ja) 2005-12-26 2012-02-15 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
US7576606B2 (en) 2007-07-25 2009-08-18 D2Audio Corporation Digital PWM amplifier having a low delay corrector
US8345890B2 (en) * 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8744844B2 (en) 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
EP1827002A1 (en) 2006-02-22 2007-08-29 Alcatel Lucent Method of controlling an adaptation of a filter
US8116473B2 (en) 2006-03-13 2012-02-14 Starkey Laboratories, Inc. Output phase modulation entrainment containment for digital filters
WO2007106553A1 (en) 2006-03-15 2007-09-20 Dolby Laboratories Licensing Corporation Binaural rendering using subband filters
US7676374B2 (en) 2006-03-28 2010-03-09 Nokia Corporation Low complexity subband-domain filtering in the case of cascaded filter banks
US7756281B2 (en) 2006-05-20 2010-07-13 Personics Holdings Inc. Method of modifying audio content
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
US8150065B2 (en) 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
US8934641B2 (en) 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
JP4836720B2 (ja) 2006-09-07 2011-12-14 株式会社東芝 ノイズサプレス装置
US7587056B2 (en) * 2006-09-14 2009-09-08 Fortemedia, Inc. Small array microphone apparatus and noise suppression methods thereof
DE102006051071B4 (de) 2006-10-30 2010-12-16 Siemens Audiologische Technik Gmbh Pegelabhängige Geräuschreduktion
CN101197592B (zh) 2006-12-07 2011-09-14 华为技术有限公司 远端串扰抵消方法、装置及信号发送装置和信号处理系统
CN101197798B (zh) 2006-12-07 2011-11-02 华为技术有限公司 信号处理系统、芯片、外接卡、滤波、收发装置及方法
US20080152157A1 (en) 2006-12-21 2008-06-26 Vimicro Corporation Method and system for eliminating noises in voice signals
US7783478B2 (en) 2007-01-03 2010-08-24 Alexander Goldin Two stage frequency subband decomposition
TWI465121B (zh) 2007-01-29 2014-12-11 Audience Inc 利用全方向麥克風改善通話的系統及方法
US8103011B2 (en) 2007-01-31 2012-01-24 Microsoft Corporation Signal detection using multiple detectors
JP4882773B2 (ja) 2007-02-05 2012-02-22 ソニー株式会社 信号処理装置、信号処理方法
JP5401760B2 (ja) 2007-02-05 2014-01-29 ソニー株式会社 ヘッドフォン装置、音声再生システム、音声再生方法
EP1962559A1 (en) 2007-02-21 2008-08-27 Harman Becker Automotive Systems GmbH Objective quantification of auditory source width of a loudspeakers-room system
US7912567B2 (en) 2007-03-07 2011-03-22 Audiocodes Ltd. Noise suppressor
JP5260561B2 (ja) 2007-03-19 2013-08-14 ドルビー ラボラトリーズ ライセンシング コーポレイション 知覚モデルを使用した音声の強調
US8180062B2 (en) 2007-05-30 2012-05-15 Nokia Corporation Spatial sound zooming
US8982744B2 (en) 2007-06-06 2015-03-17 Broadcom Corporation Method and system for a subband acoustic echo canceller with integrated voice activity detection
US8204240B2 (en) 2007-06-30 2012-06-19 Neunaber Brian C Apparatus and method for artificial reverberation
US20090012786A1 (en) 2007-07-06 2009-01-08 Texas Instruments Incorporated Adaptive Noise Cancellation
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
WO2009029076A1 (en) 2007-08-31 2009-03-05 Tellabs Operations, Inc. Controlling echo in the coded domain
WO2009035614A1 (en) 2007-09-12 2009-03-19 Dolby Laboratories Licensing Corporation Speech enhancement with voice clarity
US8073125B2 (en) * 2007-09-25 2011-12-06 Microsoft Corporation Spatial audio conferencing
US8954324B2 (en) 2007-09-28 2015-02-10 Qualcomm Incorporated Multiple microphone voice activity detector
US8046219B2 (en) 2007-10-18 2011-10-25 Motorola Mobility, Inc. Robust two microphone noise suppression system
KR101444100B1 (ko) 2007-11-15 2014-09-26 삼성전자주식회사 혼합 사운드로부터 잡음을 제거하는 방법 및 장치
US8175291B2 (en) * 2007-12-19 2012-05-08 Qualcomm Incorporated Systems, methods, and apparatus for multi-microphone based speech enhancement
GB0800891D0 (en) 2008-01-17 2008-02-27 Cambridge Silicon Radio Ltd Method and apparatus for cross-talk cancellation
DE102008039330A1 (de) 2008-01-31 2009-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Berechnen von Filterkoeffizienten zur Echounterdrückung
US20090220197A1 (en) * 2008-02-22 2009-09-03 Jeffrey Gniadek Apparatus and fiber optic cable retention system including same
US8194882B2 (en) * 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
US20090248411A1 (en) 2008-03-28 2009-10-01 Alon Konchitsky Front-End Noise Reduction for Speech Recognition Engine
US8611554B2 (en) 2008-04-22 2013-12-17 Bose Corporation Hearing assistance apparatus
US8275136B2 (en) 2008-04-25 2012-09-25 Nokia Corporation Electronic device speech enhancement
US8131541B2 (en) 2008-04-25 2012-03-06 Cambridge Silicon Radio Limited Two microphone noise reduction system
DE102008024490B4 (de) 2008-05-21 2011-09-22 Siemens Medical Instruments Pte. Ltd. Filterbanksystem für Hörgeräte
US20100027799A1 (en) 2008-07-31 2010-02-04 Sony Ericsson Mobile Communications Ab Asymmetrical delay audio crosstalk cancellation systems, methods and electronic devices including the same
DK2164066T3 (da) 2008-09-15 2016-06-13 Oticon As Støjspektrumsporing i støjende akustiske signaler
EP2200180B1 (en) 2008-12-08 2015-09-23 Harman Becker Automotive Systems GmbH Subband signal processing
US8243952B2 (en) 2008-12-22 2012-08-14 Conexant Systems, Inc. Microphone array calibration method and apparatus
JP5127754B2 (ja) 2009-03-24 2013-01-23 株式会社東芝 信号処理装置
US8359195B2 (en) 2009-03-26 2013-01-22 LI Creative Technologies, Inc. Method and apparatus for processing audio and speech signals
US8320852B2 (en) 2009-04-21 2012-11-27 Samsung Electronic Co., Ltd. Method and apparatus to transmit signals in a communication system
KR101022753B1 (ko) 2009-04-23 2011-03-17 광주과학기술원 Ofdm 시스템 및 이를 위한 데이터 전송 방법
US9202456B2 (en) 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
US8611553B2 (en) 2010-03-30 2013-12-17 Bose Corporation ANR instability detection
US8144890B2 (en) 2009-04-28 2012-03-27 Bose Corporation ANR settings boot loading
US8184822B2 (en) 2009-04-28 2012-05-22 Bose Corporation ANR signal processing topology
JP5169986B2 (ja) 2009-05-13 2013-03-27 沖電気工業株式会社 電話装置、エコーキャンセラ及びエコーキャンセルプログラム
US8160265B2 (en) 2009-05-18 2012-04-17 Sony Computer Entertainment Inc. Method and apparatus for enhancing the generation of three-dimensional sound in headphone devices
US8737636B2 (en) 2009-07-10 2014-05-27 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for adaptive active noise cancellation
US8340278B2 (en) 2009-11-20 2012-12-25 Texas Instruments Incorporated Method and apparatus for cross-talk resistant adaptive noise canceller
US8848935B1 (en) 2009-12-14 2014-09-30 Audience, Inc. Low latency active noise cancellation system
US8526628B1 (en) 2009-12-14 2013-09-03 Audience, Inc. Low latency active noise cancellation system
US8385559B2 (en) 2009-12-30 2013-02-26 Robert Bosch Gmbh Adaptive digital noise canceller
US8718290B2 (en) 2010-01-26 2014-05-06 Audience, Inc. Adaptive noise reduction using level cues
US8473287B2 (en) 2010-04-19 2013-06-25 Audience, Inc. Method for jointly optimizing noise reduction and voice quality in a mono or multi-microphone system
US8515089B2 (en) 2010-06-04 2013-08-20 Apple Inc. Active noise cancellation decisions in a portable audio device
US8611552B1 (en) 2010-08-25 2013-12-17 Audience, Inc. Direction-aware active noise cancellation system
US8447045B1 (en) 2010-09-07 2013-05-21 Audience, Inc. Multi-microphone active noise cancellation system
US9107023B2 (en) 2011-03-18 2015-08-11 Dolby Laboratories Licensing Corporation N surround
US9049281B2 (en) 2011-03-28 2015-06-02 Conexant Systems, Inc. Nonlinear echo suppression
US8737188B1 (en) 2012-01-11 2014-05-27 Audience, Inc. Crosstalk cancellation systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383179B2 (en) * 2004-09-28 2008-06-03 Clarity Technologies, Inc. Method of cascading noise reduction algorithms to avoid speech distortion
US20090323982A1 (en) * 2006-01-30 2009-12-31 Ludger Solbach System and method for providing noise suppression utilizing null processing noise subtraction
US7555075B2 (en) * 2006-04-07 2009-06-30 Freescale Semiconductor, Inc. Adjustable noise suppression system
US20090296958A1 (en) * 2006-07-03 2009-12-03 Nec Corporation Noise suppression method, device, and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9830899B1 (en) 2006-05-25 2017-11-28 Knowles Electronics, Llc Adaptive noise cancellation
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US9437180B2 (en) 2010-01-26 2016-09-06 Knowles Electronics, Llc Adaptive noise reduction using level cues
US9502048B2 (en) 2010-04-19 2016-11-22 Knowles Electronics, Llc Adaptively reducing noise to limit speech distortion
US9378754B1 (en) 2010-04-28 2016-06-28 Knowles Electronics, Llc Adaptive spatial classifier for multi-microphone systems
CN103219012A (zh) * 2013-04-23 2013-07-24 中国人民解放军总后勤部军需装备研究所 一种基于声源距离的双麦克风噪声消除方法及装置
US10257611B2 (en) 2016-05-02 2019-04-09 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones

Also Published As

Publication number Publication date
TW201142829A (en) 2011-12-01
JP2013518477A (ja) 2013-05-20
US9437180B2 (en) 2016-09-06
KR20120114327A (ko) 2012-10-16
US8718290B2 (en) 2014-05-06
US20110182436A1 (en) 2011-07-28
US20140205107A1 (en) 2014-07-24
JP5675848B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
US8718290B2 (en) Adaptive noise reduction using level cues
US9438992B2 (en) Multi-microphone robust noise suppression
US9185487B2 (en) System and method for providing noise suppression utilizing null processing noise subtraction
US9502048B2 (en) Adaptively reducing noise to limit speech distortion
TWI463817B (zh) 可適性智慧雜訊抑制系統及方法
US8606571B1 (en) Spatial selectivity noise reduction tradeoff for multi-microphone systems
US8189766B1 (en) System and method for blind subband acoustic echo cancellation postfiltering
US8682006B1 (en) Noise suppression based on null coherence
US8958572B1 (en) Adaptive noise cancellation for multi-microphone systems
US8761410B1 (en) Systems and methods for multi-channel dereverberation
US9343073B1 (en) Robust noise suppression system in adverse echo conditions
WO2007081916A2 (en) System and method for utilizing inter-microphone level differences for speech enhancement
US8259926B1 (en) System and method for 2-channel and 3-channel acoustic echo cancellation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20125814

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 2012550214

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127020105

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11737528

Country of ref document: EP

Kind code of ref document: A1