WO2011093606A2 - Pna 기반의 실시간 pcr 클램핑을 이용한 braf 돌연변이 검출 방법 및 키트 - Google Patents

Pna 기반의 실시간 pcr 클램핑을 이용한 braf 돌연변이 검출 방법 및 키트 Download PDF

Info

Publication number
WO2011093606A2
WO2011093606A2 PCT/KR2011/000251 KR2011000251W WO2011093606A2 WO 2011093606 A2 WO2011093606 A2 WO 2011093606A2 KR 2011000251 W KR2011000251 W KR 2011000251W WO 2011093606 A2 WO2011093606 A2 WO 2011093606A2
Authority
WO
WIPO (PCT)
Prior art keywords
braf gene
braf
pna
clamping
gene
Prior art date
Application number
PCT/KR2011/000251
Other languages
English (en)
French (fr)
Other versions
WO2011093606A3 (ko
Inventor
박희경
최재진
조민혜
Original Assignee
주식회사 파나진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파나진 filed Critical 주식회사 파나진
Publication of WO2011093606A2 publication Critical patent/WO2011093606A2/ko
Publication of WO2011093606A3 publication Critical patent/WO2011093606A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention is a real-time PCR based on PNA (Peptide Nucleic Acid, hereinafter 'PNA')
  • the present invention relates to a method and kit for detecting a BRAF mutation using clamping, and more particularly, to a method for selectively detecting a mutation by inhibiting amplification of a wild type by a PNA probe that specifically binds to a wild type, and a kit for use in the method. It is about.
  • Thyroid cancer has recently been reported to have the highest incidence in Koreans and is reported to occur most frequently in Korean women [National Cancer Center, 2003; National Health Insurance Corporation, 2007]. Most of the early symptoms of thyroid cancer include thyroid nodule, and about 5-20% of the thyroid nodules have been promoted [Ezzat et al., Arch Intern Med. 154: 1838-1840, 1994; Meier et al., Baillieres Best Pract Res Clin Endocrinol Metab. 14: 559-575, 2000; Kang et al., Thyroid. 14: 29-33, 2004.
  • Thyroid cancer is a histologically originated thyroid epithelial cell with papillary, follicular and undifferentiated cancers of various histological phenotypes and secreting calcitonin
  • thyroid nodules When thyroid nodules are examined by high-resolution ultrasonography, about 35% are reported to be diagnosed as thyroid continence, and about 10% of these thyroid continences are reported to be malignant [Lee et al., Yonsei Med J. 44: 1040-1044, 2003].
  • Thyroid congenital findings identified by high resolution ultrasonography have been classified as thyroid cancer and benign nodules by fine needle aspiration cytology [National Cancer Center, 2003]. The most important purpose of a thyroid nodule test is to determine whether the cells are malignant. Among the various methods for testing the malignancy of cells, the fine needle aspiration cytology can be detected with higher prediction than clinical and imaging findings.
  • BRAF mutations V600E mutant genes are limited to papillary carcinoma, especially papillary carcinoma of the thyroid gland, and are known to be useful in diagnosing thyroid papillary carcinoma because they are not observed in benign nodules or vesicles [Jarry et al., Mol Cell Probes. 18: 349-352, 2004; Kim et al., Diagn Mol Pathol. 17: 118-125,2008.
  • B-typeRaf Kinase (BRAF) is involved in cell growth, differentiation and death.
  • BRAF activation point mutations in the kinase domain of BRAF are concentrated in axons 11 and 15 of the gene, and over 80% of all mutations are known as T1799A mutations in axon 15 [Peyssonnaux et al., So / ce //. 93: 53-62, 2001.
  • the BRAF V600E mutation will continue to activate the BRAF kinase and play an important role in the onset of tumorigenesis of papillary carcinoma [Marais et al., Cancer Surv 27: 101-125, 1996; Wan et al., Cell 116: 855-867, 2004.
  • BRAF gene mutations have been found in thyroid papillary cancer, thyroid-undifferentiated cancer, melanoma, colon cancer, glioma, and lung cancer. Detection of BRAFV600E mutations can be used as diagnostic markers of thyroid papillary cancer, and it is reported that a combination of traditional fine needle aspiration cytology and molecular diagnosis of BRAFV600E mutations are required [Chung et al., C n £ focn ' noZ. 65: 660-666, 2006.
  • Detection of such BRAF mutations includes detection of mutations through polymerase chain reaction (PCR) post-sequence analysis, and wild-type cleavage using a restriction enzyme «/ recognized by a wild type. Restriction enzyme digestion of wild-type DNA (Chung et al., Clin Endocrinol. 65: 660-666, 2006), three-dimensional structure of wild-type and mutant genes ( polymerase chain reaction-single-chain conformation, which is a method of detection by the variation of electrophoretic image travel distance according to the difference
  • Polymorphism Polymerase chain reaction-single strand conformational polymorphism
  • This technique can be easily and quickly applied to various diagnoses, and is a good technique for diagnosing and analyzing mutations of cancer-related genes (Bernard et al., Clinical Chemistry 48 (8): 1178-1185, 2002).
  • one of the above methods requires the use of both probes and primers at the site of mutation in order to detect mutations, and thus requires a lot of reactions to detect a mutation [Rhodes et al., Diagn mol pathol. 6 (1): 49-57, 1997, Zuo et al., Modern Pathol. 22: 1023-1031, 2009.
  • the assay has the advantage of identifying the amount of mutants inherent [Agaton et al., Gene. 289: 3-39, 2002; Kim et al., Diagn Mol Pathol 17: 118-125, 2008].
  • the pyro sequencing method requires expensive equipment and thus requires expensive analysis costs.
  • PNAs hybridize with natural nucleic acids of complementary base sequences to form double strands.
  • PNA / DNA strands are more stable than DNA / DNA strands and PNA / RNA strands are more stable than DNA / RNA strands when the number of nucleic acid bases is the same.
  • the basic skeleton of PNA is
  • N- (2-aminoethyl) glycine is repeatedly linked by amide bonds, in which case the backbone of the peptide nucleic acid is electrically neutral, unlike the base skeleton of a negatively charged natural nucleic acid.
  • the four nucleic acid bases present in the PNA occupy a similar space as the nucleic acid bases of DNA and the distances between the nucleic acid bases are almost the same as those of natural nucleic acids.
  • PNA is not only chemically more stable than natural nucleic acids but also biologically stable because it is not degraded by nucleases or proteases. Since PNA is also electrically thick, the stability of PNA / DNA, PNA / RNA double strands is not affected by salt concentration.
  • PNA can recognize complementary nucleic acid sequences better than natural nucleic acids and can be used for diagnostic or other biological or medical purposes.
  • the PNA clamping technique utilizes the advantages of the above-described PNA, so that when the PNA probe is completely bound, the amplification reaction does not occur because the enzyme is not recognized, and in the case of the point mutation, the PNA probe does not fully bind. As a method using the principle that occurs, it is widely used because it can quickly and accurately detect a very small amount of mutations compared to wild type.
  • Representative techniques for PNA clamping include the detection of BRAF mutants using an 18mer PNA probe (SEQ ID NO: 41: ATCGAGATTTCACTGTAG) and an LNA probe that specifically binds to a wild type [US 2008/0268449] Al, Oct. 30, 2008].
  • the technique is to distinguish the mutant type by the difference in the melting curve, not the cycle number of the amplification reaction, and in addition to the PNA clamping probe for detecting the wild type, the LNA probe for detecting the mutation is needed. Therefore, the same reaction for the morphological analysis, including the PNA probe and the LNA probe in the reaction, it is somewhat cumbersome and complicated experimentally, and there is a problem that the analysis cost increases.
  • the present inventors used a PNA clamping probe longer than the conventional 18mer.
  • the present invention has been completed by developing a BRAF mutation detection technique using PNA-based real-time PCR clamping, which can detect a very small amount of mixed mutations quickly and accurately with high sensitivity.
  • An object of the present invention is to provide a BRAF mutation detection method using PNA-based real-time PCR clamping.
  • Another object of the present invention is a BRAF using PNA-based real-time PCR clamping.
  • the present invention relates to a method for detecting V600E mutation of a BRAF gene.
  • a kit for use in a method for detecting a V600E mutation of a BRAF gene according to the present invention comprising the PNA clamping probe of any one of SEQ ID NOs: 1-14.
  • the PNA probe according to the present invention is very useful for biological enzymes and physical elements.
  • the method of detecting mutations in the BRAF gene according to the present invention can confirm the results in real time, so that tumors such as thyroid cancer, malignant melanoma, ovarian cancer, and colorectal cancer can be examined quickly and accurately early. It will enable efficient treatment due to cancer diagnosis.
  • Figure 1 is a real-time PCR curve image showing the detection sensitivity according to the mutation concentration of BRAF axon 15 codon 600;
  • FIG. 2 is a graph comparing detection sensitivity (number of amplification cycles) according to concentrations of wild-type and mutant cell lines through real-time PCR clamping using PNA probes of SEQ ID NOs: 1 and 2 according to the present invention
  • Detection sensitivity ( ⁇ 3 ⁇ 4) according to mutation inclusion concentration through PCR clamping; 4 is a detection sensitivity (amplification cycle number and ⁇ 3 ⁇ 4) according to BRAF mutation concentration using a PNA of SEQ ID NO: 1 or 2 or 7 according to the present invention and a PNA probe of the prior art in a cell line having a BRAF mutation Is a graph comparing;
  • FIG. 5 is a graph comparing detection sensitivity (AC t ) according to BRAF mutation concentration using a PNA of SEQ ID NO: 2 according to the present invention and a PNA probe of the prior art in a cell line having a BRAF mutation.
  • the present invention is to detect mutations in the thyroid BRAF gene using PNA-based real-time PCR clamping.
  • the PNA probes of the present invention are perfectly matched to the sequence of the codon 600 wild-type gene of BRAF axon 15, and are preferably 19 or more, preferably 19 to 30, more preferably 20 to 25. It is characterized by consisting of two base sequences.
  • the PNA probe of the present invention is preferably designed such that the codon 600 wild-type gene region of BRAF axon] 5 is located in the center of the probe.
  • the PNA probe of the present invention may be composed of the base sequence of any one of SEQ ID NOs: 1 to 14 as described in Table 1 below. All PNA probe sequences within the range that can be considered to be within the scope of the present invention, a PNA probe having a length of 19mer or more, BRAF axon 15 only by amplification cycle difference using PNA real-time PCR clamping according to the present invention 15 As long as the mutation of codon 600 can be detected effectively, it is included in the scope of the present invention.
  • SEQ ID NOs] and 2 perfectly bind to the wild type comprising the codon 600 nucleotide of BRAF axon 15 to inhibit the amplification of the wild type and the codon 600 of BRAF exon 15 as a probe for detecting mutation. It was designed to specifically hybridize to the 17S6 to 1810th base including.
  • N-terminal or C-terminal hydrophilic functional group for example one to several hydrophilic linkers or hydrophilic amino acids, or amine groups at the N-terminal or C-terminal Dogs (J Chem Technol Biotechnol 81: 892-899, 2006; Tetrahedron Lett 39: 7255-7258, 1998; Proc Natl Acad Sci USA 99: 5953-5958, 2002; Anal Chem 69: 5200-5202, 1997 ).
  • a ⁇ probe with one lysine attached to the N-terminus was used.
  • the ⁇ oligomer used in the present invention is a PNA monomer protected by Bts (BenzothiazoIesulfonyl) group according to the method of Korean Patent No. 464,261, or known
  • BRAF gene clamping primer refers to the PNA probe. Amplification of bound wild-type genes refers to PCR primers that inhibit and amplify mutant genes that are not fully bound to the PNA probe (ie, mismatches are present).
  • the clamping primer of the present invention is not particularly limited, but in order to detect mutations with higher sensitivity and specificity, a portion of the clamping primer overlaps the PNA probe in one direction based on the PNA clamping probe, and in the other direction. Including the site to be detected, it is preferable to devise in consideration of the size of the PCR amplification product. In addition, considering the PNA probe, the length is 17mer to 30mer, it is preferable to design lower than the T m of the PNA probe. In order to maximize the diagnostic sensitivity and specificity, it is desirable to design the PNA clamping probe sequence that binds complementarily to the wild type to include the front of the base where the mutation occurs.
  • the clamping primer was designed to include 9 to 12 base sequences of the 3 'region of the PNA probe of SEQ ID NOs: 1 to 9.
  • the forward primer of SEQ ID NO: 20 exemplified in the present invention may specifically recognize the base 1776 to] 798 base of the codon 600 of BRAF gene axon 15 of SEQ ID NO: 1.
  • the reverse primer of SEQ ID NO: 17 in combination with the forward primer of SEQ ID NO: 20 exemplified herein is designed to specifically recognize the 35th to 55th bases of the 15 region of the BRAF gene intron, and also SEQ ID NO: 20 Reverse primer of SEQ ID NO: 19 in combination with the forward primer of was designed to specifically recognize the 422 to 443 base of the BRAF gene intron 15 site.
  • the lengths of the primers are lOObp to 600bp in size, respectively, of the amplification products of the primer combinations.
  • the forward primer of SEQ ID NO: 16 provided in the present invention for the sequencing of the BRAF gene is designed to specifically recognize the -58 to -35th base of the BRAF gene intron 15 site,
  • the forward primer of SEQ ID NO: 18 specifically targets the 542th to 562th bases of the 14 region of the BRAF gene intron.
  • the BRAF gene of the present invention is prepared by extracting from a subject sample.
  • nucleic acid extraction there is no particular limitation on nucleic acid extraction, and any nucleic acid extraction method generally used may be used, and DNA may be extracted from a patient's blood or tumor sample using a commercially available nucleic acid extraction kit.
  • the amount of initial sample in which exponential amplification occurs is represented by the number of cycles (hereinafter, referred to as the cycle threshold) at which an exponential increase in fluorescence is detected. This is possible and the reaction can be analyzed in real time.
  • the method omits the step of measuring the intensity with an image analyzer after the electrophoresis, and can quickly and easily diagnose by automating and quantifying the amplification degree of the amplified product.
  • PNA Protein Nucleic Acid
  • the PNA clamping probe in the reaction product of real-time PCR clamping is 1 to 1.
  • the fluorescence is detected by using an intercalator method.
  • a fluorescent label binds to the amplified double-stranded DNA and emits fluorescence. The amount of production is measured.
  • a DNA-binding fluorophore used in a real-time gene detection method is used as a fluorescent material for identifying gene amplification products.
  • a DNA-binding fluorophore used in a real-time gene detection method is used as a fluorescent material for identifying gene amplification products.
  • SYBR Green I Evergreen, Ethidium Bromide (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC Green, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX Orange, etc.
  • SYBR Green I Evergreen, Ethidium Bromide (EtBr)
  • BEBO YO-PRO-1, TO-PRO-3
  • LC Green SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, S
  • the gene amplification by real-time PCR clamping is analyzed and BRAF
  • PNA probes designed to be popularized are localized to BRAF wild-type genes to inhibit amplification, amplification is inhibited, resulting in high C t values.
  • AC t positive control sample obtained from a c t value - c t value obtained from the sample of unknown
  • the value represents a large value.
  • the present invention utilizes real-time PCR and PNA-based real-time PCR clamping.
  • Mutations in the BRAF gene which is a diagnostic marker for thyroid papillary cancer, can be detected. More specifically, the present invention can be used to examine tumors such as thyroid cancer, malignant melanoma, ovarian cancer and colorectal cancer, and can be very useful for studying the mechanisms involved in the BRAF signal transduction system as well as tumor research. Can be. It can also be used for studies that require large amounts of sample analysis, such as population-based studies.
  • PNA probes that perfectly bind to the wild type of exon 15 codon 600 of the BRAF gene were constructed as shown in Table 1 above. Probes that fully bind the wild type of each codon are designed so that the sequence of mutations is located in the middle of the probe for effective isolation from the mutation. PNA probes were synthesized according to the method described in Korean Patent No. 46426 [Lee, Org Lett, 9: 3291-3293, 2007].
  • Example 2 Nucleic Acid Extraction from Mutant Cell Line of BRAF Axon 15 Codon 600 Wild-type
  • Hela (genomic DNA) human uterine cancer cell lines [KCLB 10002, Korea Cell Line Bank (KCLB), Seoul, Korea] and two mutant cell lines were distributed from Korea Cell Line Bank.
  • the cell line received was 10% heat-inactivated fetal bovine serum (FBS, Hyclone, Thermo scientific, USA) and IX in RPMI1640 (Hyclone, Thermo scientific, USA).
  • Penicillin-straptomycin (Welgene, Korea) was added to the culture medium using a culture medium maintained at 37 0 C, 5% carbon dioxide (C0 2 ).
  • the cultured cell line was extracted with DNA using Labopass TM tissue mini kit (Cosmogenetech, Korea) according to the manual provided in the kit to obtain a target nucleic acid.
  • the obtained nucleic acid was quantified using a nanodrop spectrophotometer (ND 2000C, Thermo Scientific, USA) and stored at -20 ° C to use.
  • the PC product was purified using Labopass TM PCR purification kit (Cosmogenetech, Korea), Base sequence was analyzed to confirm genotype. Genotype-identified wild-type and variant cell lines were used as samples for real-time PCR clamping method using the PNA probe of the present invention.
  • Example 3 Synthesis of Primer for Amplifying Target Nucleic Acid of BRAF Axon 15 Codon 600
  • the primer was analyzed by analyzing the axon 15 region of the BRAF gene for amplification and clamping PCR of the target nucleic acid of BRAF axon 15 codon 600. Produced.
  • the primers synthesize a set of primers consisting of SEQ ID NOs 16 and 17, a set of primers consisting of SEQ ID NOs 18 and 19, and a clamping primer of BRAF codon 600 of SEQ ID NO: 20 to identify wild type and mutant genes.
  • Reverse primers of SEQ ID NO: 17 designed to identify the BRAF gene were used as the reverse primers used for clamping the axon 15 codon 600.
  • the reaction process was repeated 40 times at 30 seconds, 72 ° C. and 30 seconds. Fluorescence was measured in the 72 ° C. polymerization stage.
  • Mutant genes were prepared to contain 50 ng, 10 ng, 5 ng, and 1 ng of the gene, respectively, and the correlation between C t values according to the concentration of the mutant gene was analyzed to determine the detection limit of the mutant.
  • the C t value which indicates the number of reactions for which the fluorescence reached the threshold value, decreased uniformly, indicating that there was a correlation between the concentration and the value of the mutant gene in the solution.
  • Sequence Listing 1 shows the PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 2 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO 3 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 4 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 5 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 6 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 7 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 8 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 9 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 10 shows a PNA clamping probe for mutation detection of the present invention.
  • SEQ ID NO: 12 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 13 shows a PNA clamping probe for mutant detection of the present invention.
  • SEQ ID NO: 14 shows a PNA clamping probe for detecting mutations of the present invention.
  • SEQ ID NO: 15 is a nucleotide sequence of a probe PNA18 of the prior art used in Comparative Example 1 of the present invention.
  • SEQ ID NO: 16 shows the BRAF gene forward clamping primer BRAF-230F of the present invention.
  • the base sequence The base sequence.
  • SEQ ID NO: 17 is the nucleotide sequence of the BRAF gene reverse clamping primer BRAF-230R of the present invention.
  • SEQ ID NO: 18 is the nucleotide sequence of the BRAF gene forward clamping primer BRAF-180F of the present invention.
  • SEQ ID NO: 19 is the nucleotide sequence of the BRAF gene reverse clamping primer BRAF-180F of the present invention.
  • Sequence Listing 20 shows the BRAF gene forward clamping primer of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 BRAF유전자의 코돈 600의 야생형과 특이적으로 결합하는 PNA(Peptide Nucleic Acid) 프로브를 이용하여 돌연변이만을 선택적으로 검출하는 방법 및 상기 방법을 사용하기 위한 키트에 관한 것으로, 갑상선암을 비롯하여 악성 흑색종, 난소암, 대장암 등의 종양을 조기에 신속하고 정확하게 검사할 수 있어, 조기 암 진단으로 인한 효율적인 치료를 가능하게 할 것이다.

Description

명세서
발명의 명칭 : P N A 기반의 실시간 P C R 클램핑을 이용한
B R A F 돌연변이 검출 방법 및 키트 기술분야
[1] 본 발명은 PNA(Peptide Nucleic Acid, 이하 'PNA'라 함) 기반의 실시간 PCR
클램핑을 이용한 BRAF 돌연변이 검출 방법 및 키트에 관한 것으로서,보다 상세하게는 야생형에 특이적으로 결합하는 PNA 프로브에 의해 야생형의 증폭을 억제함으로써 돌연변이만을 선택적으로 검출하는 방법 및 상기 방법에 사용하기 위한 키트에 관한 것이다.
배경기술
[2] 갑상선 암 (Thyroid cancer)은 최근 한국인에서 발병률이 급증하고 있으며, 한국여성에 게 가장 높은 빈도로 발생되는 것으로 보고되고 있다 [National Cancer Center, 2003; National Health Insurance Corporation, 2007]. 대부분 갑상선 암의 초기 증상으로 갑상선 결절 (Thyroid 'nodule)의 증상이 나타나며 , 약 5-20% 가 촉진 가능한 갑상선 결절을 가지고 있다고 보고되었다 [Ezzat et al., Arch Intern Med. 154: 1838-1840, 1994; Meier et al., Baillieres Best Pract Res Clin Endocrinol Metab. 14:559-575, 2000; Kang et al., Thyroid. 14:29-33, 2004]. 갑상선암은 조직학적으로 갑상선 상피세포에서 기원하여 다양한 조직학적 표현형을 지닌 유두암, 여포암 그리고 미분화암이 있고 칼시토닌을 분비하는 갑상선
부여세포에서 유래한 갑상선 수질암이 있다 [Rapp et al., Prac Nirf Aca^Sd USA 80:4218-4222, 1983; Jansen et al., EMBO J 2: 1969-1975, 1983]. 한국에서 보고되는 갑상선 암은 약 90~95%가 갑상선 유두암으로 분류 된다 [National Cancer Center, 2003; Rapp et al., Proc Natl Acad Sci USA 80:4218-4222, 1983].
[3] 갑상선 결절을 고해상도 초음파진단법으로 검사했을 때,약 35%가 갑상선 우연종으로 진단되고,이 러한 갑상선 우연종의 약 10%가 악성으로 밝혀질 확률이 높다고 보고되었다 [Lee et al., Yonsei Med J. 44: 1040-1044, 2003]. 고해상도 초음파진단법으로 밝혀진 갑상선 우연종은 세침흡인 세포검사에서 갑상선암과 양성결절로 분류되고 있다 [National Cancer Center, 2003]. 갑상선 결절 검사의 가장 중요한 목적은 세포의 악성 여부를 확인하는 것이다. 세포의 악성 여부를 검사하기 위 한 여 러 검사법들 중, 특히 세침흡인 세포검사는 임상소견이나 영상소견에 비하여 높은 예측도로 검출이 가능하며 , 간편하고 안전한
검사법으로 보고되어 있다 [Oertel et al., Diag Cytopatol. 27: 120-122, 2002]. 그러나 세침흡인 세포검사법은 악성종양을 진단하는데 매우 중요한 정보를
제공하지만, 10 내지 30%는 갑상선암과 양성 결절성 증식에 대한 정확한 감별이 어려워 임상 의사들이 치료방침을 결정하는 데 흔동을 일으킬 가능성 이 있다 [Kim et al., Clin Endocrinol. 65:364-368, 2006]. [4] 이러한문제해결을위하여갑상선암진단에대한다양한분자유전자학적인 연구가진행되고있다 [Jarry et al., Mol Cell Probes.18:349-352, 2004].갑상선암의 유전자변형 RET/PTC재배열을비롯하여, RAS돌연변이, BRAF돌연변이, PAX8/PPARY재배열 ,p53돌연변이, CTNNB1돌연변이및 RET돌연변이등이 주로연구되고있다 [Peyssonnaux et al., Biol cell.93:53-62, 2001].이들유전자중, BRAF V600E돌연변이유전자는갑상선에서발생하는종양중에서유두암,특히 유두암중에서도분화가나쁜암종에국한되어관찰되며,양성결절이나 소포형에서는관찰되지않으므로갑상선유두암진단에유용한유전자로 알려져있다 [Jarry et al., Mol Cell Probes.18:349-352, 2004; Kim et al., Diagn Mol Pathol.17:118-125,2008].
[5] BRAF(B-typeRaf Kinase)는세포의성장과분화,사멸에관여하는
RAS-RAF-MEK-ERK-MAP kinase신호경로에중요한역할을한다 [Davies H. et al., Nature.417:949-954, 2002]. BRAF의카이네이즈도메인에서 BRAF활성화점 돌연변이는유전자의액손 11및 15에밀집되어있으며,전체돌연변이의 80% 이상이액손 15의 T1799A돌연변이로알려져있다 [Peyssonnaux et al., So/ ce//. 93:53-62, 2001]. BRAF V600E돌연변이는 BRAF kinase를계속적으로활성화 시켜갑상성유두암종의발암화 (tumorigenesis)개시에중요한역할을할 것이다 [Marais et al., Cancer Surv 27:101-125, 1996; Wan et al., Cell 116:855-867, 2004].
[6] 모든 BRAF유전자변이증 80%가 V600E이며,갑상선유두암에서 29-69% 정도의빈도로발생된다고보고되어있
Figure imgf000004_0001
12:245-262, 2005]. BRAF유전자변이는갑상선유두암,갑상선미분화암외 흑색종 (melanoma),결장암 (colon cancer),신경교종 (gliomas),폐암등에서도 발견되고있다. BRAFV600E돌연변이의검출은갑상선유두암의진단표지자로 사용가능하며,전통적인세침흡인세포검사와 BRAFV600E돌연변이의 분자진단법의병행이필요하다고보고되어있다 [Chung etal.,C n£ focn'noZ. 65:660-666, 2006].
[7] 이러한 BRAF돌연변이의검출방법으로는중합효소연쇄반응 (polymerase chain reaction, PCR)후염기서열분석을통한변이검출방법,야생형을인식해 절단하는제한효소 «/을사용하여절단된야생형과절단되지않은돌연변이형 증폭산물의크기를통해검출하는방법 (Restriction enzyme digestion of wild-type DNA)[Chung et al., Clin Endocrinol.65:660-666, 2006],야생형과돌연변이 유전자의 3차원적인구조 (conformation)차이에따른전기영동상이동거리의 변화를통해검출하는방법인중합효소연쇄반웅 -단일쇄형태구조
다형성 (Polymerase chain reaction-single strand conformational polymorphism;
PCR-SSCP)방법 [Trovisco et al., J Pathol.202:247-251, 2004]등이사용되어왔다. 그러나상기방법들은 PCR이후제한효소로절단하는과정및전기영동의과정, 염기서열분석의단계를거쳐돌연변이를검출하는방법이므로반응시간이오래 소요되고 번거로우며 많은 비용이 소요된다. 또한 임상 시료는 돌연변이가 야생형에 비해 아주 극소량 존재하는 경우가 많기 때문에,소량의 돌연변이를 검출하는 것이 매우 중요함에도 불구하고, 상기의 방법은 낮은 검출 민감도를 가지므로 극소량의 돌연변이의 검출이 어 렵다 [Chung et al., C//n £ focn>w/. 65:660-666, 2006; Trovisco et al, J Pathol. 202:247-251, 2004].
[8] 민감도를 증가시키기 위해 돌연변이에 특이 적 인 프라이머로 돌연변이를
선택적으로 증폭하는 대 립형 질 특이적 (allele specific) PCR 방법 [Rhodes et al., 1997], 임 계적 변성온도 (critical denaturation temperature, Tc)를 이용하여 돌연변이만을 선택적으로 검출하는 콜드 -PCR(Cold-PCR) 방법 [Zuo et al., Modern Pathol. 22: 1023-1031, 2009] 등이 사용되고 있다. 또한,스코피 언 (scorpion) 프로브를 이용하여 돌연변이를 선택적으로 검출하는 스코피언 실시간 대 립형 질 특이적 PCR(scorpion Real-time allele specific PCR)(DxS' scorpions and ARMS) 방법 이 사용되고 있다 [Cross, Pharmaco genomics 9(4): 463-467, 2008]. 이 러한 기술은 쉽고 빠르게 다양한 진단에 적용이 가능하며 , 암 관련 유전자의 변이 진단 및 분석을 위해 좋은 기술이 되고 있다 [Bernard et al., Clinical Chemistry 48(8): 1178-1185, 2002]. 그러나 상기 한 방법은 돌연변이를 검출하기 위하여 돌연변이가 발생하는 부위에 각각 프로브나 프라이머를 모두 사용해야 하기 때문에 하나의 돌연변이를 검출하기 위하여 여 러 반응이 요구되는 번거로움이 있다 [Rhodes et al., Diagn mol pathol. 6(1 ):49-57, 1997, Zuo et al., Modern Pathol. 22: 1023-1031 , 2009].
[9] 파이로씨퀸싱 (Pyrosequencing) 분석 법은 프라이머-디 렉티드 피씨알
(primer-directed PCR)과정에서 한번에 하나씩 순차적 인 뉴클레오티드의 첨가와 병합에 의해 뉴클레오티드가 병합되면서 방출되는 파이로포스페이트, ATP 설파릴레이즈 (sulfurylase) 및 루시퍼 레이즈 (luciferase) 효소와 짝지어져 빛을 방출시키게 되며, 이 빛을 검출하는 방식으로 이루어진다. 방출된 빛은 순차적으로 들어간 각각의 뉴클레오티드의 반응 순서 대로 신호 피크를 나타내고, 이 신호 피크는 병합된 뉴클레오티드의 수와 비 례하여 상대적 높이를 나타내게 된다. 파이로씨퀸싱 분석 법은 96 시료를 분석하는데
중합효소연쇄반웅 단계를 포함하여 4시간 정도의 시간으로 분석 이 가능하며 직접 염기서열 분석법에서 필요한 형광결합 증폭단계 없이,정제와 소식자 결합 단계만으로 간단하게 분석 이 가능하며,정확한 염 기서열을 확인하는데 있어서 반 정량적으로 분석하므로 내재된 돌연변이체의 양을 확인할 수 있는 장점을 가진 분석법 이라고 보고되어 있다 [Agaton et al., Gene. 289:3-39, 2002; Kim et al., Diagn Mol Pathol 17: 118-125, 2008]. 그러나 파이로씨퀸싱 분석법은 고가의 장비가 필요하므로 고가의 분석비용이 소요되는 단점 이 있다.
[10] 최근에는 돌연변이형을 선택적으로 검출하는 기술로 상기 한 방법과는 달리 야생형에 특이 적으로 결합하는 PNA 프로브를 이용하여 다량 존재하는 야생형의 증폭을 억제하는 방법으로 돌연변이를 선택적으로 검출하는 PNA 클램핑 (clamping) 기술이 개발되었다. PNA는 핵산염기가 인산 결합이 아니라 펩티드 결합으로 연결된 유사 DNA로 1991년에 처음 보고되 었다 [Nielsen et al., Science, 254: 1497-1500, 1991 ]. PNA는 화학적 인 방법으로 합성되고
자연계에서는 발견되지 않는다 . PNA는 상보적 인 염기 서 열의 천연 핵산과 흔성화 (hybridization) 반웅을 일으켜서 겹가닥을 형성한다. 핵산 염기의 수가 같은 경우 PNA/DNA 겹가닥은 DNA/DNA 겹가닥보다, PNA/RNA 겹가닥은 DNA/RNA 겹가닥보다 안정하다. PNA의 기본 골격으로는
N-(2-아미노에틸)글리신이 아미드 결합에 의해 반복적으로 연결된 것이 가장 흔히 쓰이고, 이 경우 펩티드 핵산의 기본 골격 (backbone)은 음전하를 띠는 천연 핵산의 기본 골격과 달리 전기적으로 중성 이다 . PNA에 존재하는 4개의 핵산 염기 (nucleobase)는 DNA의 핵산 염기와 비슷한 공간을 차지하고 핵산 염기 사이의 거리도 천연 핵산의 경우와 거의 같다. PNA는 화학적으로 천연 핵산보다 안정할 뿐 아니라 핵산분해효소 (Nuclease)나 단백질분해효소 (protease)에 의해 분해되지 않아 생물학적으로도 안정하다. PNA는 또한 전기적으로 증성이기 때문에 PNA/DNA, PNA/RNA 겹가닥의 안정성은 염 농도에 영향을 받지 않는다. 이 러한 성질 때문에 PNA는 상보적 인 핵산 염기 서 열을 천연 핵산보다 더 잘 인식할 수 있어서 진단 또는 다른 생물학적,의학적 목적으로 웅용된다. PNA 클램핑 기술은 상기한 PNA의 장점을 이용하여 PNA 프로브가 완벽하게 결합되면 효소 등이 인지하지 못하여 증폭반웅이 일어나지 않고, 점 돌연변이가 있는 경우에는 PNA 프로브가 완벽하게 결합하지 못하기 때문에 증폭반웅이 일어나게 되는 원리를 이용하는 방법으로, 야생형에 비해 극소량 존재하는 돌연변이를 빠르고 정확하게 검출할 수 있어 많이 이용되고 있다.
[11] PNA 클램핑의 대표적 인 기술로는 야생형에 특이적으로 결합하는 18mer의 PNA 프로브 (서 열번호 41 : ATCGAGATTTCACTGTAG)와 LNA 프로브를 이용하여 BRAF 돌연변이형을 검출하는 기술이 있다 [US 2008/0268449 Al , Oct. 30, 2008]. 그러나 상기 기술은 증폭반웅의 사이클 수가 아닌 용융곡선의 차이로 돌연변이형을 구별하는 것 이며 또한, 야생형을 검출하기 위 한 PNA 클램핑 프로브 이외에 돌연변이를 검출하기 위한 LNA 프로브가 더 필요하게 된다. 따라서 변이형 분석을 위해 동일 반웅기에 PNA 프로브와 LNA 프로브를 포함하여 반웅하므로 실험상 다소 번거롭고 복잡할 뿐 아니라 분석 비용이 높아지는 문제점 이 있다.
발명의 상세한 설명
기술적 과제
[12] 이에 본 발명자들은 종래의 18mer 보다 길이가 긴 PNA 클램핑 프로브를
이용하여 야생형과의 증폭 사이클 차이만으로 변이형을 검출함으로써, 용융곡선의 차이를 이용한 변이형 검출 기술보다 간편할 뿐만 아니라, 다량의 야생형 증폭을 완벽하게 저해하여 변이형의 검출 민감도를 향상시 킴으로써 극소량 섞 여 있는 돌연변이를 높은 민감도로 신속 정확하게 검출할 수 있는, PNA 기반의 실시간 PCR 클램핑을 이용한 BRAF 돌연변이 검출 기술을 개발하여, 본 발명을 완성하였다.
[13] 본 발명의 목적은 PNA 기반의 실시간 PCR 클램핑을 이용한 BRAF 돌연변이 검출 방법을 제공하기 위한 것이다.
[14] 본 발명의 다른 목적은 PNA 기반의 실시간 PCR 클램핑을 이용한 BRAF
돌연변이를 검출하는 방법에 사용하기 위한 검출 키트를 제공하기 위한 것이다. 과제 해결 수단
[15] (1 ) BRAF(B-type Raf Kinase) 유전자의 액손 15 코돈 600번 뉴클레오티드를
포함하는 염기서 열을 증폭시키는 BRAF 유전자 클램핑 프라이머 세트와, 야생형 BRAF 유전자의 액손 15 코돈 600번 뉴클레오티드를 포함하는 염기서 열과 완전하게 결합하는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에 , BRAF 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;
[16] (2) 상기 실시간 PCR에 의한 유전자 증폭을 분석하여 BRAF 유전자의 돌연변이 유무 또는 농도를 결정하는:
[17] 단계를 포함하는, BRAF 유전자의 V600E 돌연변이 검출 방법에 관한 것이다.
[18] 본 발명의 제 2면은
[19] 서 열번호 1 내지 14 중 어느 하나의 PNA 클램핑 프로브를 포함하는, 본 발명에 따른 BRAF유전자의 V600E 돌연변이 검출방법에 사용하기 위한 키트에 관한 것이다.
발명의 효과
[20] 본 발명에 따른 PNA 프로브는 생물학적 효소 및 물리적 인 요소에 매우
안정하고 검출하는 방법 이 매우 간단하며 단시간 내에 돌연변이 검출이 이루어지므로 대량 분석 및 임상에서 사용하기에 매우 용이하게 사용될 수 있다.
[21] 또한, 본 발명에 따른 BRAF 유전자의 돌연변이 검출 방법은 실시간으로 결과 확인이 가능하여 갑상선암을 비롯하여 악성 흑색종, 난소암,대장암 등의 종양을 조기에 신속하고 정확하게 검사할 수 있어 , 조기 암 진단으로 인한 효율적 인 치료를 가능하게 할 것이다.
도면의 간단한 설명
[22] 도 1은 BRAF 액손 15 코돈 600의 돌연변이 농도에 따른 검출 민감도 결과를 보여주는 실시간 PCR 곡선 이미지 이고;
[23] 도 2는 본 발명에 따른 서 열번호 1 및 2의 PNA 프로브를 이용하여 실시간 PCR 클램핑을 통한 야생형 및 돌연변이 세포주의 농도에 따른 검출 민감도 (증폭 사이클 수)를 비교한 그래프이며 ;
[24] 도 3은 본 발명에 따른 서 열번호 1 또는 2의 PNA 프로브를 이용하여 실시간
PCR 클램핑을 통한 돌연변이 포함 농도에 따른 검출 민감도 (Δ¾를 비교한 그래프이고; [25] 도 4는 BRAF 돌연변이를 가진 세포주를 대상으로 본 발명에서 따른 서 열번호 1 또는 2 또는 7의 PNA와 종래기술의 PNA 프로브를 이용하여 BRAF 돌연변이 농도에 따른 검출 민감도 (증폭 사이클 수 및 Δ¾를 비교한 그래프이며 ;
[26] 도 5는 BRAF 돌연변이를 가진 세포주를 대상으로 본 발명에 따른 서 열번호 2의 PNA와 종래기술의 PNA 프로브를 이용하여 BRAF 돌연변이 농도에 따른 검출 민감도 (ACt)를 비교한 그래프이다.
발명의 실시를 위한 형 태
[27] 이하, 본 발명을 상세히 설명한다.
[28] 본 발명은 PNA 기반의 실시간 PCR 클램핑을 이용하여 갑상선 BRAF 유전자의 돌연변이를 검출하는 것이다
[29]
[30] 1. P A 큼램핑 프로브의 섬 계 및 계작
[31] 본 발명의 PNA 프로브는 BRAF 액손 15의 코돈 600 야생형 유전자의 서 열에 완벽하게 결합할 수 있는 (perfectly matched) 것으로서 19개 이상, 바람직하게는 19 내지 30개, 보다 바람직하게는 20 내지 25개의 염기서 열로 구성 되는 것을 특징으로 한다.
[32] 본 발명의 PNA 프로브는 BRAF 액손 ] 5의 코돈 600 야생형 유전자 부위가 프로브의 가운데에 위치하도록 고안된 것 이 바람직하다. 예를 들어,본 발명의 PNA 프로브는 하기 표 1에 기 재한 서 열번호 1 내지 14 중 어느 하나의 염기서 열로 구성될 수 있다ᅳ 상기 염 기서 열로부터 당업자가 통상의 지식을 이용하여 용이하게 변형할 수 있는 범위 내의 PNA 프로브 서 열은 모두 본 발명의 범위 내에 속하는 것으로 보아야 할 것인 바, 19mer 이상의 길이를 갖는 PNA 프로브로서 본 발명에 따른 PNA 실시간 PCR 클램핑을 이용하여 증폭 사이클 차이 만으로 BRAF 액손 15 코돈 600의 돌연변이를 효과적으로 검출해낼 수 있는 것인 한,본 발명의 범위 내에 포함되는 것이다.
[33] 구체적으로는, 서 열번호 ] 및 2는 BRAF 액손 15의 코돈 600번 뉴클레오티드를 포함하는 야생형과 완벽하게 결합하여 야생형의 증폭을 저해하고 돌연변이를 검출하기 위한 프로브로서 BRAF 엑손 15의 코돈 600을 포함하는 17S6 내지 1810번째 염기에 특이 적으로 흔성화되도록 고안되 었다.
[34] [표 1]
Figure imgf000009_0001
[35] 상기 프로브들 중 대표적으로 서 열번호 1 내지 2 및 7의 프로브를 적용하여 야생형의 증폭을 저해하고 돌연변이를 검출하는 효과를 확인한 결과, 서 열번호 1 내지 2 및 7의 프로브 모두 우수한 효과를 나타내는 것을 확인하였다 (도 4 참조).
[36] 본 발명의 PNA 프로브는 반웅효율 및 용해도를 증가시키기 위하여
N-말단 (N-terminal) 또는 C-말단 (C-terminal) 친수성 기능기를 포함할 수 있으며 , 예를 들어 N-말단 또는 C-말단에 친수성 링커나 친수성 아미노산,또는 아민기를 1개 내지 여 러 개 포함할 수 있다 (J Chem Technol Biotechnol 81 : 892-899, 2006; Tetrahedron Lett 39:7255-7258, 1998; Proc Natl Acad Sci USA 99:5953-5958, 2002; Anal Chem 69:5200-5202, 1997). 구체적 인 예로서 , N-말단에 라이신이 1개 부착된 ΡΝΑ 프로브를 사용하였다.
[37] 본 발명에서 사용되는 ΡΝΑ 올리고머는 한국등록특허 제 464,261호의 방법에 따라 Bts(BenzothiazoIesulfonyl)기로 보호된 PNA 단량체,또는 공지의
Fmoc(9-flourenylmethloxycarbonyl) 또는 t-Boc(t-butoxycarbonyl)으로 보호된 PNA 단량체를 이용하여 합성될 수 있다 (Dueholm et al., Org c/iem. 59(19): 5767-5773, 1994; Chnstemen J peptide Sci 1(3): 175-183, 1995; Thomson et al., Tetrahedron 51(22): 6179-6194, 1995).
[38] 2. BRAF유저자 큼램핑 프라이 머의 섬 계 및 체작
[39] 본 발명에서 "BRAF 유전자 클램핑 프라이머 ' '라 함은 PNA 프로브와 완벽하게 결합되어 있는 야생형 유전자의 증폭은 억제하고 PNA 프로브와 완벽하게 결합되어 있지 않는 (즉, 미스매치가 존재하는) 돌연변이 유전자를 증폭시키는 PCR 프라이머를 가리킨다.
[40] 본 발명의 클램핑 프라이머는 특별히 제한되는 것은 아니나, 보다 높은 민감도 및 특이도로 돌연변이를 검출하기 위해서는 PNA 클램핑 프로브를 기준으로 하여 한 방향으로는 PNA 프로브와 일부분이 겹쳐지도록 하며 다른 한 방향으로는 검출하고자 하는 부위를 포함하되 PCR 증폭산물의 크기를 고려하여 고안하는 것이 바람직하다. 또한 PNA 프로브와의 을 고려하고,길이는 17mer에서 30mer사이 이며 , PNA 프로브의 Tm 보다 낮게 설계하는 것이 바람직하다. 진단 민감도 및 특이도를 극대화할 수 있도록,야생형과 상보적으로 결합하는 PNA 클램핑 프로브 서 열 중 돌연변이가 일어나는 염기 바로 앞부분을 포함하도록 설계하는 것이 바람직하다.
[41] 구체적 인 예로써 , 서 열번호 1 내지 9의 PNA 프로브의 3' 부위의 9 내지 12개의 염기서열이 포함되도록 클램핑 프라이머를 설계하였다. 본 발명에서 예시된 서 열번호 20의 정방향 프라이머는 서 열번호 1의 BRAF 유전자 액손 15의 코돈 600의 상류 부분 1776 내지 ]798번째 염 기를 특이적으로 인식하도록
고안되었다.
[42] 본 발명에서 예시된 서 열번호 20의 정방향 프라이머와 조합되는 서 열번호 17의 역방향 프라이머는 BRAF 유전자 인트론 15 부위의 35 내지 55번째 염기를 특이적으로 인식하도록 고안되었으며 또한, 서열번호 20의 정방향 프라이머와 조합되는 서 열번호 19의 역방향 프라이머는 BRAF 유전자 인트론 15 부위의 422 내지 443번째 염기를 특이 적으로 인식하도록 고안되었다. 프라이머의 길이는 각각 프라이머 조합의 증폭산물의 크기가 lOObp 내지 600bp가 되도록
고안되었다.
[43] 한편, BRAF 유전자의 염기서 열분석을 위하여 본 발명 에서 제공되는 서 열번호 16의 정방향 프라이머는 BRAF 유전자 인트론 15 부위의 -58 내지 -35번째 염기를 특이 적으로 인식하도록 고안되 었고, 서 열번호 18의 정방향 프라이머는 BRAF 유전자 인트론 14 부위의 542 내지 562번째 염기를 특이적으로
인식하도록 고안되었으며 프라이머의 길이는 17mer에서 30mer사이로 고안되었다. 이들 프라이머는 서 열번호 17 및 19의 역방향 프라이머와 조합되어 증폭산물의 크기가 200bp 내지 900bp가 되도록 고안되 었다. 각각의 프라이머의 특성은 하기 표 2에 나타내었다. [44] [표 2]
Figure imgf000011_0001
[45] 3. PNA 기바의 심시 ? PCR 큼램 ¾음 이용하 BRAF돌여 ^ 이 검출
[46] 본 발명에 따른 BRAF 유전자 V600E 돌연변이 검출방법은
[47] (1) BRAF(B-type Raf Kinase) 유전자의 엑손 15 코돈 600번 뉴클레오티드를
포함하는 염기서 열을 증폭시키는 BRAF 유전자 클램핑 프라이머 세트와,야생형 BRAF 유전자의 액손 15 코돈 600번 뉴클레오티드를 포함하는 염기서 열과 완전하게 결합하는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에, BRAF 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;
[48] (2) 상기 실시간 PCR에 의한 유전자 증폭을 분석하여 BRAF 유전자의 돌연변이 유무 또는 농도를 결정하는:단계를 포함한다.
[49] 본 발명의 BRAF 유전자는 대상 검체로부터 추출하여 준비 한다. 본 발명에서는 핵산추출에 특별한 제한이 없으며 , 일반적으로 사용하는 모든 핵산 추출방법을 사용할 수 있으며,시판중인 핵산 추출키트 등을 사용하여 환자의 혈액 또는 종양 표본으로부터 DNA를 추출하여 준비한다.
[50] 본 발명의 실시간 PCR 클램핑 방법은 지수적 인 증폭이 일어나는 초기 시료의 양을 형광물질의 지수적 증가가 탐지되기 시작하는 사이클 수 (Cycle threshold, 이하 라 함)로 나타내므로 보다 정확한 정량분석이 가능하며 반웅을 실시간으로 분석할 수 있다. 상기 방법은 전기 영동 후 영상분석기로 강도를 측정하는 단계가 생략되고 증폭산물의 증폭 정도를 자동화 및 수치화시켜 신속.간편하게 진단할 수 있는 방법 이다.
[51] 본 발명에 있어서, PNA(Peptide Nucleic Acid) 클램핑 프로브는 19mer 이상
길이의 염기서 열로 이루아지며 , 바람직하게는 19 내지 30mer 길이의 염기서 열로 이루어지는 것이 바람직하다ᅳ
[52] 본 발명에서 실시간 PCR 클램핑의 반웅물 중 PNA 클램핑 프로브는 1 내지
1000 nM의 최종농도를 갖는 것이 바람직하다.
[53] 본 발명에서는 인터컬레이터 (intercalator) 방법을 이용하여 형광을 검출하는데 , 이 방법은 증폭된 이중가닥 DNA에 형광표지가 결합해 형광을 발하게 되는데 이 때의 형광 강도를 측정함으로써 증폭산물의 생성 량을 측정하게 된다.
[54] 본 발명에서는 유전자 증폭산물을 확인하기 위한 형광물질로서 실시간 유전자 검출방법에 사용되는 DNA-결합 형광물질 (DNA-binding fluorophore)을 사용하며 그 종류에 특별한 제한은 없다. 예를 들어 , 사이버 그린 (SYBR Green) I 외에도 에버그린,에티디움브로마이드 (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, SYTOX Orange 등을 사용할 수 있다 et al, Nucleic Acids Res. 35(19):el27, 2007; Bengtsson et al, Nucleic Acids Res. 31(8):e45; Wittwer et al, Clinical Chemistry 49(6):853-860, 2003).
[55] 본 발명에서는 실시간 PCR 클램핑에 의한 유전자 증폭을 분석하여 , BRAF
유전자의 돌연변이 유무 또는 농도를 결정하는 바,증폭된 Ct값을 비교하여 BRAF 유전자의 돌연변이 유무를 확인할 수 있다. 야생형 유전자와
흔성화되도록 고안된 PNA 프로브가 BRAF 야생형 유전자에 흔성화되어 증폭을 저해하게 되면 증폭이 저해되어 높은 Ct값이 나타나게 된다.
[56] 돌연변이 유무 및 그 농도는 하기 식 1에 의해 얻어지는 AC,값으로부터
확인한다.
[57] [식 1]
ACt = 양성 대조 시료로부터 얻어진 ct값 - 미지의 시료로부터 얻어진 ct
[58] 돌연변이형 유전자가 다량 포함되어 있을수록 Ct 값이 낮게 나타나므로, A
값은 큰 값을 나타내게 된다.
[59] 본 발명은 Real-Time PCR 및 PNA 기 반의 실시간 PCR 클램핑을 이용하여
갑상선 유두암의 진단 표지 인자인 BRAF 유전자의 돌연변이를 검출할 수 있다. 보다 상세하게는 본 발명은 갑상선암을 비롯하여 악성 흑색종,난소암, 대장암 등의 종양을 검사하는데 이용할 수 있으며,종양 연구뿐만 아니라 BRAF 신호 전달 체계에 관여하는 기작을 연구하는 데에도 매우 유용하게 사용될 수 있다. 또한 개체군 -기초 연구와 같이 다량의 시료 분석을 요구하는 연구에도
효과적으로 적용될 수 있다.
[60]
[61] 이하, 본 발명을 실시 예에 의해 보다 구체적으로 설명하나,이는 본 발명의
이해를 돕기 위한 것일 뿐 본 발명의 범위를 어떤 식으로든 제한하고자 하는 것은 아니다.
[62]
[63] 실시 예 1: BRAF 액손 15 코돈 600 야생형 의 PNA 프로브 합성
[64] BRAF 유전자의 엑손 15 코돈 600의 야생형과 완벽하게 결합하는 14개의 PNA 프로브를 상기 표 1에 나타낸 바와 같이 제작하였다. 각 코돈의 야생형과 완벽하게 결합하는 프로브는 돌연변이와의 효과적 인 분리를 위하여 돌연변이가 일어나는 염기서 열이 프로브의 중간에 위치하도록 고안하였다. 한국등록특허 제 46426]호에 기재된 방법에 따라, PNA 프로브를 합성하였다 [Lee , Org Lett, 9:3291-3293, 2007]. [66] 실시 예 2: BRAF 액손 15 코돈 600 야생형의 돌연변이 세포주 (cell line)로부터의 핵산 추출
[67] BRAF 액손 15 코돈 600의 야생형 및 돌연변이의 표적핵산을 확보하기 위하여, 하기 표 3에 나타낸 바와 같이 BRAF 액손 15 코돈 600의 야생형 세포주인
Hela(genomic DNA) 인간 자궁암 세포주 [KCLB 10002,한국세포주은행 (KCLB), 서울, 한국] 및 돌연변이 세포주 2종을 한국세포주 은행으로부터 분양 받았다.
[68] [표 3]
Figure imgf000013_0001
[69] 상기 분양 받은 세포주는 RPMI1640(Hyclone, Thermo scientific, USA)에 10% 열-불활성화 우태아혈청 (FBS, Hyclone, Thermo scientific, USA)과 IX
페니실린-스트랩토마이신 (Welgene, Korea)이 첨가된 배지를 사용하여 370C, 5% 이산화탄소 (C02)가 유지되는 배양기에서 배양하였다. 배양된 세포주는 Labopass ™티슈 미니 키트 (코스모진텍,한국)를 사용하여 키트에서 제공한 매뉴얼에 의거하여 DNA를 추출하여 표적핵산을 확보하였다. 상기 확보된 핵산은 나노드롭 스펙트로포토미터 (ND 2000C, Thermo Scientific, USA)를 사용하여 정량하고 -20°C에 보관하여 사용하였다.
[70] 상기 분양받은 인간 세포주들로부터 각각 분리한 전체 DNA를 상기 표 2에
기재되어 있는 서열번호 16 및 17의 프라이머 조합과 서 열번호 18 및 19의 프라이머 조합을 사용하여 증폭한 후, PC 산물을 Labopass™ PCR 정제 키트 (코스모진텍,한국)를 사용하여 정제한 다음,염 기서 열을 분석하여 유전자형을 확인하였다. 유전자형 이 확인된 야생형 및 변이형 세포주를 본 발명의 PNA 프로브를 이용한 실시간 PCR 클램핑 방법의 검체로 사용하였다.
[71]
[72] 실시 예 3: BRAF 액손 15 코돈 600의 표적 핵산을 증폭하기 위한 프라이머 합성 [73] BRAF 액손 15 코돈 600의 표적 핵산의 증폭 및 클램핑 PCR을 위하여 BRAF 유전자의 액손 15 부위를 분석하여 프라이머를 제작하였다. 프라이머는 야생형 및 돌연변이 유전자를 확인하기 위한 서 열번호 16 및 17으로 이루어진 프라이머 한 세트와 서 열번호 18 및 19로 이루어진 프라이머 한 세트 그리고 서 열번호 20의 BRAF 코돈 600의 클램핑 프라이 머를 합성하였으며 , 액손 15 코돈 600의 클램핑에 사용된 역방향 프라이머는 BRAF 유전자를 확인하기 위하여 고안된 서 열번호 17의 역방향 프라이머를 동일하게 사용하였다. 사용한프라이머의 서 열은 상기 표 2에 나타낸 바와 같다. 프라이 머는 (주)바이오니아 (한국)에 의뢰하여 합성하였다. [75] 실시예 4: PNA기반의실시간 PCR클램핑방법및최적의 PNA프로브선정 [76] 상기실시예 2의세포주로부터추출된 DNA를이용하여 PNA기반의실시간
PCR클램핑방법을확립하고최적의 PNA프로브를선정하였다.
[77] 주형 DNA용액 (50 ngl≠) 1 μΐ,상기표 2에나타난 1개의클램 ¾센스
프라이머 (lO pmole/ ) 1 μΆ,안티센스프라이머 (lOpmole/^) 1 βί,상기표 1에 나타낸프로브중 1개의클램핑프로브 (ΙΟΟηΜ) 1 /z£,2XIQ사이버그린 슈퍼믹스 (Bio-Rad, USA) 10 μΐ,증류수 6 ^를가하고실시간 DNA
증폭기 (Real-time PCR machine, CFX96TM Real-Time PCR System, Bio-RAD사 제품)를이용하여 95°C에서 3분동안반웅시킨후, 95°C 30초, 70°C 20초, 63°C
30초, 72°C 30초로이루어진반응과정을 40회반복하였다.형광은 72°C중합반응 단계에서측정하였다.
[78]
[79] 실시예 5:PNA기반의실시간 PCR클램핑을이용한 BRAF유전자의돌연변이 검출한계측정
[8이 상기실시예 4에서확립된실시간 PCR클램핑방법을사용하여야생형
유전자에돌연변이유전자를각각 50 ng, 10ng,5ng, 1 ng이포함하도록 제작하여돌연변이유전자의농도에따른 Ct값사이의상관관계를분석하여, 돌연변이형의검출한계를확인하고자하였다.
[81] 그결과를도 1에나타내었다.도 1에나타난바와같이,용액내상대적인
돌연변이유전자의농도가높을수록형광이역치값에도달하는반웅횟수를 나타내는 Ct값이일정하게감소하여용액내돌연변이유전자의농도와 값 사이에상관관계가있음을확인할수있었다.
[82]
[83] 비교예 1:BRAF액손 15코돈 600의 야생형검출을위한종래기술과의비교
[84] 미국공개특허 US2008/0268449에개시된 PNA프로브와본발명에따른 PNA 프로브를비교하기위하여,하기표 4에나타낸바와같은상기미국공개특허의 BRAF엑손 15코돈 600의야생형에대한 PNA프로브를제작하였다.
[85] [표 4]
Figure imgf000014_0001
[86] 상기미국공개특허의프로브와본발명에따른프로브를이용하여실시간 PCR 클램핑을실시하여돌연변이검출여부를확인하였다.
[87] 그결과를도 4및도 5에나타내었다.도 4및도 5로부터확인할수있는바와 같이,상기미국공개특허의프로브사용시에는돌연변이형의존재나농도 증가에따라 Ct값에별다른차이가없어 (즉 AC,값이작아)돌연변이의검출이 어려웠던것에비해,본발명에따른 PNA프로브사용시돌연변이형의존재에 의해 Ct값이크게감소할 (즉, ACt값이클)뿐만아니라,돌연변이형의농도 증가에따라 Ct값이 일정하게감소하여돌연변이형을효과적으로검출해낼수 있었다.또한,도 4내지 5에나타난바와같이,본발명에따른 PNA프로브사용 시 1%의비율로섞여있는돌연변이의유무도검출할수있음을확인할수 있었다.
서열목록 Free Text
[88] 서열목록 1은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS23-2의 염기서열이다.
[89] 서열목록 2는본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS24-1의 염기서열이다.
[90] 서열목록 3은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS24-2의 염기서열이다.
[91] 서열목록 4는본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS25의 염기서열이다.
[92] 서열목록 5는본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS23의 염기서열이다.
[93] 서열목록 6은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS22-]의 염기서열이다.
[94] 서열목록 7은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS22-2의 염기서열이다.
[95] 서열목록 8은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS21의 염기서열이다.
[96] 서열목록 9는본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CAS20의 염기서열이다.
[97] 서열목록 10은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CS23의 염기서열이다.
[98] 서열목록 Π은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CS22-1의 염기서열이다.
[99] 서열목록 12는본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CS22-2의 염기서열이다ᅳ
[100] 서열목록 13은본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CS21의 염기서열이다.
[101] 서열목록 14는본발명의돌연변이검출을위한 PNA클램핑프로브
BRAF-CS20의 염기서열이다.
[102] 서열목록 15는본발명의비교예 1에서 이용한종래기술의프로브 PNA18의 염기서열이다.
[103] 서열목록 16은본발명의 BRAF유전자정방향클램핑프라이머 BRAF-230F의 염기서열이다.
[104] 서열목록 17은본발명의 BRAF유전자역방향클램핑프라이머 BRAF-230R의 염기서열이다.
[105] 서열목록 18은본발명의 BRAF유전자정방향클램핑프라이머 BRAF-180F의 염기서열이다.
[106] 서열목록 19는본발명의 BRAF유전자역방향클램핑프라이머 BRAF-180F의 염기서열이다.
[107] 서열목록 20은본발명의 BRAF유전자정방향클램핑프라이머
BRAF-clamping F의 염기서열이다.

Claims

청구범위
(1) BRAF(B-type Raf Kinase) 유전자의 액손 15 코돈 600번 뉴클레오티드를 포함하는 염기서 열을 증폭시키는 BRAF 유전자 클램핑 프라이머 세트와,야생형 BRAF 유전자의 액손 15 코돈 600번 뉴클레오티드를 포함하는 염기서 열과 완전하게 결합하는 PNA(Peptide Nucleic Acid) 클램핑 프로브의 존재 하에 , BRAF 유전자에 대해 실시간 PCR(real-time Polymerase Chain Reaction)을 수행하고;
(2) 상기 실시간 PCR에 의 한 유전자 증폭을 분석하여 BRAF 유전자의 돌연변이 유무 또는 농도를 결정하는:
단계를 포함하는, BRAF 유전자의 V600E 돌연변이 검출 방법 . 제 1항에 있어서 ,
상기 BRAF 유전자의 돌연변이 검출은 실시간 PCR의 C,(cycle threshold)값을 측정하여 BRAF 유전자의 돌연변이 유무 또는 농도를 결정하는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 1항 또는 제 2항에 있어서 ,
상기 (1) 단계의 PNA(Peptide Nucleic Acid) 클램핑 프로브는 19 내지 30mer 길이의 염기서 열로 이루어지는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 1항 또는 제 2항에 있어서,
상기 (1) 단계의 PNA(Peptide Nucleic Acid) 클램핑 프로브는 서 열번호 1 내지 14로부터 선택되는 어느 하나인 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 1항 또는 제 2항에 있어서,
상기 (1) 단계의 BRAF 유전자 클램핑 프라이머 세트는 BRAF 유전자 코돈 600 상류부분에 특이적으로 결합하는 정 방향 프라이머를 포함하는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 5항에 있어서 ,
상기 BRAF 유전자 클램핑 프라이머 세트는 정방향 프라이 머로서 서 열번호 20을 포함하는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 6항에 있어서 ,
상기 BRAF 유전자 클램핑 프라이머 세트는 서 열번호 17 또는 서 열번호 19의 역방향 프라이머를 포함하는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 . 제 1항 또는 제 2항에 있어서,
상기 (1) 단계의 PNA 클램핑 프로브는 실시간 PCR의 반웅물 중 1 내지 1000 nM의 최종농도를 갖는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 1항 또는 제 2항에 있어서,
상기 BRAF 유전자의 돌연변이 검출은 DNA 삽입 (intercalating) 형광물질올 사용하여 유전자 증폭을 분석하는 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 9항에 있어서,
상기 DNA 삽입 (intercalating) 형광물질은 사이버 그린 I, 에버그린, 에티디움브로마이드 (EtBr), BEBO, YO-PRO-1, TO-PRO-3, LC 그린, SYTO-9, SYTO-13, SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3 및 SYTOX 오렌지로 구성된 그룹으로부터 선택되는 하나 이상의 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
제 1항 또는 제 2항에 있어서 ,
상기 BRAF 유전자의 돌연변이 검출은 악성 흑색종,갑상선암, 대장암, 또는 난소암을 진단하는데 사용하기 위한 것을 특징으로 하는 BRAF 유전자의 V600E 돌연변이 검출 방법 .
서 열번호 1 내지 14로부터 선택되는 어느 하나의 PNA 클램핑 프로브를 포함하는ᅳ 제 4항에 따른 BRAF 유전자의 V600E 돌연변이 검출방법에 사용하기 위 한 키트.
PCT/KR2011/000251 2010-02-01 2011-01-13 Pna 기반의 실시간 pcr 클램핑을 이용한 braf 돌연변이 검출 방법 및 키트 WO2011093606A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0009041 2010-02-01
KR1020100009041A KR101825117B1 (ko) 2010-02-01 2010-02-01 Pna 기반의 실시간 pcr 클램핑을 이용한 braf 돌연변이 검출 방법 및 키트

Publications (2)

Publication Number Publication Date
WO2011093606A2 true WO2011093606A2 (ko) 2011-08-04
WO2011093606A3 WO2011093606A3 (ko) 2011-12-01

Family

ID=44319953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000251 WO2011093606A2 (ko) 2010-02-01 2011-01-13 Pna 기반의 실시간 pcr 클램핑을 이용한 braf 돌연변이 검출 방법 및 키트

Country Status (2)

Country Link
KR (1) KR101825117B1 (ko)
WO (1) WO2011093606A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181125A2 (en) 2012-05-29 2013-12-05 Abbott Laboratories, Inc. Method of designing primers, method of detecting single nucleotide polymorphisms (snps), method of distinguishing snps, and related primers, detectable oligonucleotides, and kits
CN103571948A (zh) * 2013-10-09 2014-02-12 武汉康录生物技术有限公司 一种用于检测braf基因热点突变的试剂盒及其检测方法
CN104031992A (zh) * 2014-05-27 2014-09-10 武汉海吉力生物科技有限公司 人类B-raf基因V600突变检测试剂盒
CN104928355A (zh) * 2014-03-19 2015-09-23 李跃 检测braf基因突变的方法及其试剂盒
US20160194691A1 (en) * 2014-06-10 2016-07-07 Michael J Powell Dna mutation detection employing enrichment of mutant polynucleotide sequences and minimally invasive sampling
WO2018129293A1 (en) 2017-01-05 2018-07-12 Diacarta Llc Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080176226A1 (en) * 2007-01-19 2008-07-24 Chang Gung University Methods and kits for the detection of nucleotide mutations using peptide nucleic acid as both pcr clamp and sensor probe
US20080268449A1 (en) * 2007-02-26 2008-10-30 John Wayne Cancer Institute Utility of b-raf dna mutation in diagnosis and treatment of cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080176226A1 (en) * 2007-01-19 2008-07-24 Chang Gung University Methods and kits for the detection of nucleotide mutations using peptide nucleic acid as both pcr clamp and sensor probe
US20080268449A1 (en) * 2007-02-26 2008-10-30 John Wayne Cancer Institute Utility of b-raf dna mutation in diagnosis and treatment of cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KYGER ET AL.: 'Detection of the hereditary hemochromatosis gene mutation by real-time fluorescence polymerase chain reaction and peptide nucleic acid clamping' ANALYTICAL BIOCHEMISTRY vol. 260, no. 2, 01 July 1998, pages 142 - 148 *
MIYAKE ET AL.: 'Sensitive detection of FGFR3 mutations in bladder cancer and urine sediments by peptide nucleic acid-mediated real-time PCR clamping' BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS vol. 362, no. 4, 27 August 2007, pages 865 - 871 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181125A2 (en) 2012-05-29 2013-12-05 Abbott Laboratories, Inc. Method of designing primers, method of detecting single nucleotide polymorphisms (snps), method of distinguishing snps, and related primers, detectable oligonucleotides, and kits
EP3604552A1 (en) 2012-05-29 2020-02-05 Abbott Molecular Inc. Method of designing primers, method of detecting single nucleotide polymorphisms (snps), method of distinguishing snps, and related primers, detect able oligonucleotides, and kits
CN103571948A (zh) * 2013-10-09 2014-02-12 武汉康录生物技术有限公司 一种用于检测braf基因热点突变的试剂盒及其检测方法
CN104928355A (zh) * 2014-03-19 2015-09-23 李跃 检测braf基因突变的方法及其试剂盒
CN104031992A (zh) * 2014-05-27 2014-09-10 武汉海吉力生物科技有限公司 人类B-raf基因V600突变检测试剂盒
CN104031992B (zh) * 2014-05-27 2016-03-09 武汉海吉力生物科技有限公司 人类B-raf基因V600突变检测试剂盒
US20160194691A1 (en) * 2014-06-10 2016-07-07 Michael J Powell Dna mutation detection employing enrichment of mutant polynucleotide sequences and minimally invasive sampling
US10400277B2 (en) * 2014-06-10 2019-09-03 Diacarta Ltd DNA mutation detection employing enrichment of mutant polynucleotide sequences and minimally invasive sampling
WO2018129293A1 (en) 2017-01-05 2018-07-12 Diacarta Llc Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence
CN109996891A (zh) * 2017-01-05 2019-07-09 南京帝基生物科技有限公司 用于进行结肠癌和/或结肠癌前体细胞的早期检测和用于监测结肠癌复发的方法
EP3494236A4 (en) * 2017-01-05 2020-04-29 Diacarta LLC METHOD FOR PERFORMANCE DETECTION OF COLONAL CANCER AND / OR COLUMN CANCER PRECELLER CELLS AND FOR MONITORING THE RECURRENCY OF COLONAL CANCER
CN109996891B (zh) * 2017-01-05 2020-10-16 南京帝准生物科技有限公司 用于进行结肠癌和/或结肠癌前体细胞的早期检测和用于监测结肠癌复发的方法

Also Published As

Publication number Publication date
KR101825117B1 (ko) 2018-02-06
WO2011093606A3 (ko) 2011-12-01
KR20110089577A (ko) 2011-08-09

Similar Documents

Publication Publication Date Title
JP2009544283A (ja) 血液試料中egfr変異の検出のための方法
KR101819938B1 (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 egfr 돌연변이 검출 방법 및 키트
WO2011093606A2 (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 braf 돌연변이 검출 방법 및 키트
Dekaliuk et al. Discrimination of the V600E mutation in BRAF by rolling circle amplification and forster resonance energy transfer
WO2013057581A2 (en) Composite biomarkers for non-invasive screening, diagnosis and prognosis of colorectal cancer
KR101875199B1 (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 bcr-abl 융합 유전자의 돌연변이 검출 방법 및 키트
KR101819937B1 (ko) PNA 기반의 실시간 PCR 클램핑을 이용한 K-ras 돌연변이 검출 방법 및 키트
KR20120119571A (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 jak2 v617f 돌연변이 검출 방법 및 키트
KR101825121B1 (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 pik3ca 돌연변이 검출 방법 및 키트
KR101927884B1 (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 mthfr 유전자의 유전형 분석 방법 및 키트
AU2016256302B2 (en) Method, sequences, compositions and kit for detection of mutations in the Htert gene promoter
KR20110130638A (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 유전자의 메틸화 분석 방법 및 키트
JP6153758B2 (ja) 多型検出用プローブ、多型検出方法、薬効判定方法及び多型検出用キット
JP2012524537A (ja) 肉腫の予後分子署名およびその使用
MX2015003386A (es) Metodo para la deteccion de mutaciones de braf y pi3k.
CN103789436B (zh) 一种基于人工修饰引物的定量突变检测系统
JP6205216B2 (ja) 変異検出用プローブ、変異検出方法、薬効判定方法及び変異検出用キット
CN110997938A (zh) Abl1 t315i突变的表达水平的测定方法
KR20130125533A (ko) PNA 기반의 실시간 PCR 클램핑을 이용한 c-Kit 돌연변이 검출 방법 및 키트
KR20120127679A (ko) Pna 기반의 실시간 pcr 클램핑을 이용한 idh1, idh2 돌연변이 검출 방법 및 키트
KR20160005731A (ko) 위암의 재발을 예측하는 방법
US20040048258A1 (en) Multiple-gene diagnostic probes and assay kits and method for the assessment of multiple markers for breast cancer prognosis
KR20160036906A (ko) 프로브 혼합체의 반응성을 높일 수 있는 프라이머 및 그의 용도
WO2005013893A2 (en) Cancer related genes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737245

Country of ref document: EP

Kind code of ref document: A2