WO2011093294A1 - セファロスポリン誘導体の製造方法 - Google Patents

セファロスポリン誘導体の製造方法 Download PDF

Info

Publication number
WO2011093294A1
WO2011093294A1 PCT/JP2011/051390 JP2011051390W WO2011093294A1 WO 2011093294 A1 WO2011093294 A1 WO 2011093294A1 JP 2011051390 W JP2011051390 W JP 2011051390W WO 2011093294 A1 WO2011093294 A1 WO 2011093294A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
cephem
carboxylic acid
alkali metal
Prior art date
Application number
PCT/JP2011/051390
Other languages
English (en)
French (fr)
Inventor
淳 和久井
宣彦 大原
洋介 田久保
信夫 松本
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to JP2011551861A priority Critical patent/JPWO2011093294A1/ja
Priority to CN2011800074870A priority patent/CN102725297A/zh
Publication of WO2011093294A1 publication Critical patent/WO2011093294A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/02Preparation
    • C07D501/04Preparation from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents
    • C07D501/06Acylation of 7-aminocephalosporanic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/207-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
    • C07D501/247-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3

Definitions

  • the present invention relates to a method for producing a cephalosporin derivative and an alkali metal salt thereof in which the content of the Z isomer is improved compared to the E isomer.
  • this method of synthesizing cefditorene includes a compound represented by the following general formula (A) as shown in the following reaction scheme (1) and a 7-amino-3-[(Z ) -2- (4-Methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or its alkali metal salt has been proposed (for example, see Patent Document 1). ).
  • R 1 in the formula needs to use a protected amino group. Is inevitably necessary, and the process becomes complicated, which is not industrially advantageous.
  • compound (2) 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof (compound (2)) is a cephalosporin antibiotic. It is a substance useful as a production intermediate. In this compound, there are two types of isomers, that is, the steric structure of the alkenyl group at the 3-position is a Z configuration and an E configuration. Among these two types of isomers, cephalosporin antibiotics using them as a raw material are known to have excellent antibacterial action as a pharmaceutical antibacterial agent, including the above-mentioned cefditoren, Z form. .
  • Patent Document 2 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid in which Z and E isomers are mixed or It has been proposed that a high porous polymer or activated carbon is allowed to act on the aqueous solution of the alkali metal salt to increase the content of the Z-form.
  • the high porous polymer used in this method include acrylic resins, phenolic resins, and styrene resins.
  • the activated carbon general activated carbon such as zinc chloride charcoal or steam charcoal is used.
  • an object of the present invention is to provide a method for producing a cephalosporin derivative or an alkali metal salt thereof that can eliminate the various disadvantages of the above-described prior art.
  • the present invention relates to 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid represented by the following formula (1):
  • An aqueous solution of the alkali metal salt is brought into contact with activated carbon having an iodine adsorption performance measured in accordance with JIS K-1474 of 1200 mg / g or more and a methylene blue adsorption performance of 250 ml / g or more, and is represented by the following formula (2).
  • 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof is used.
  • the objective cephalosporin derivative or alkali metal salt thereof having a high Z-form content can be provided by an industrially advantageous method in a simple process.
  • a specific activated carbon is allowed to act on the compound represented by the above formula (1) including the Z-form and the E-form or an alkali salt thereof, and the E-form is selected for the activated carbon. It is characterized by the fact that it is removed by adsorption and the content of the Z body is increased.
  • the alkali salt here means a pharmacologically acceptable alkali salt.
  • the compound represented by the formula (1) and its alkali metal salt are collectively referred to as “alkenyl cephem compound”.
  • the alkenyl cephem compound used in the present invention consists of a mixture of Z-form and E-form. Both Z-form and E-form are known compounds. There is no particular limitation on the abundance ratio of the Z form and the E form in the alkenyl cephem compound, and this abundance ratio depends on the production conditions of the alkenyl cephem compound. In view of the object of the present invention, it is desirable that the abundance ratio of the Z isomer is sufficiently higher than the abundance ratio of the E isomer. However, by using the method of the present invention, the Z isomer can be obtained easily and with a high yield. Is possible.
  • the abundance ratio of the E form in the alkenyl cephem compound is expressed by the content calculated based on the calculation formula for the E form content used in the examples described later, and is generally 0.3 to 20% in the state before the treatment with activated carbon. In particular, it is 2 to 12%.
  • the alkenyl cephem compound is brought into contact with activated carbon in the form of an aqueous solution.
  • the alkenyl cephem compound may be treated with an alkali to form a corresponding salt (for example, an alkali metal salt).
  • the alkali include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate; Can be used.
  • the pH of the aqueous solution may be in a high pH range such that the salt of the alkenyl cephem compound does not crystallize and precipitate, and is generally 7.1 to 9.0, particularly 7.5 to 8.5. It is preferable to use an alkali region.
  • the concentration of the salt of the alkenyl cephem compound contained in the aqueous solution is not critical in the present invention, and may be a low concentration that does not cause the salt crystals to precipitate.
  • the alkenyl cephem compound As another method for making the alkenyl cephem compound into an aqueous solution, there is a method of treating the alkenyl cephem compound with a mineral acid to form a corresponding mineral acid salt.
  • the mineral acid include hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the pH of the aqueous solution containing the mineral acid salt may be in a low pH region so that the mineral acid salt does not precipitate, and is generally 0.5 to 1.7, particularly 0.8 to 1.4. It is preferable to do. Further, the concentration of the mineral acid salt contained in the aqueous solution is not critical in the present invention, and may be any level as long as the mineral acid salt does not precipitate.
  • the alkali metal salt and the mineral acid salt are compared, it is preferable to use the mineral acid salt.
  • the mineral acid salt the use of hydrochloride is particularly preferable because the purity of the Z form can be further increased.
  • activated carbon treatment when activated carbon treatment, if phenylacetic acid or its derivative is present in the system, activated carbon is more likely to adsorb phenylacetic acid or its derivative than E-form.
  • the amount of expensive activated carbon used can be reduced. This is particularly preferable from the viewpoint of further increasing the purity.
  • the present inventors diligently investigated activated carbon for selectively adsorbing and removing E-forms from alkenyl cephem compounds, and it is effective to use activated carbon having a large pore diameter peak and a small pore diameter peak. found. Furthermore, as the inventors proceeded with investigations, activated carbon having such a pore size distribution has been identified with iodine adsorption performance measured according to JIS K-1474 and methylene blue adsorption performance measured according to JIS K-1474. It was found to be within the range. In the present invention, by using activated carbon having such specific iodine adsorption performance and methylene blue adsorption performance, it is possible to selectively adsorb and remove E form from the alkenyl cephem compound.
  • the upper limit of iodine adsorption performance of activated carbon used in the present invention is 1700 mg / g. g. Therefore, the range of iodine adsorption performance is preferably 1200 to 1700 mg / g, and more preferably 1400 to 1700 mg / g.
  • the higher the value of iodine adsorption performance the better. Therefore, there is no problem in using activated carbon having an iodine adsorption performance of more than 1700 mg / g.
  • the methylene blue adsorption performance those having a value of 250 ml / g or more are used.
  • the upper limit of the methylene blue adsorption performance of the activated carbon used in the present invention is 500 ml / g.
  • the range of methylene blue adsorption performance is preferably 250 to 500 ml / g, more preferably 260 to 500 ml / g.
  • the higher the value of the methylene blue adsorption performance the better. Therefore, there is no problem in using activated carbon having a methylene blue adsorption performance of more than 500 ml / g.
  • the physical properties of activated carbon used in water treatment, etc. have iodine adsorption performance of 1200 mg / g or less and methylene blue adsorption performance of 200 ml / g or less (“Applied technology of activated carbon”, supervised by Hideki Tachimoto, Kunio Abe , Issuer Techno System Co., Ltd., date of issue July 25, 2000, pages 409 and 555), these physical properties of the activated carbon used in the present invention are much higher than those of ordinary activated carbon. It is expensive. This is because large pores and small pores are distributed.
  • iodine adsorption performance is an indicator of small pore distribution (that is, an index of adsorptivity of a compound having a low molecular weight)
  • methylene blue adsorption performance is an indicator of distribution of a large pore (that is, an adsorptivity of a compound having a large molecular weight). Index).
  • Examples of the activated carbon satisfying the above-mentioned iodine adsorption performance and methylene blue adsorption performance include, for example, water vapor activated activated carbon using coconut shell, coal, wood material and the like as raw materials.
  • the above-described physical property values are satisfied by appropriately controlling the activation conditions and appropriately controlling the granulation conditions.
  • the activated carbon may be in the form of powder, granules or fibers, or may be a molded body. It is also possible to use a commercial product as activated carbon that satisfies the above physical property values.
  • Unitika activated carbon fiber Adol A-20 (trade name), which is activated carbon available from Unitika Ltd.
  • Liquid Phase Activated Carbon CL-KP activated carbon, available from Ajinomoto Fine Techno) Name
  • CL-K trade name
  • the method for bringing the above-mentioned activated carbon into contact with the alkenyl cephem compound there is no particular limitation on the method for bringing the above-mentioned activated carbon into contact with the alkenyl cephem compound.
  • a method of adding the above-mentioned activated carbon to an aqueous solution of an alkenyl cephem compound, or a method of adding an aqueous solution of an alkenyl cephem compound to the above-mentioned activated carbon can be employed.
  • the above-mentioned activated carbon is packed in a column, and an aqueous solution of the alkenyl cephem compound is fed to the column with a pump or the like, passed through the column, and further circulated through the column a plurality of times, or activated carbon is applied to a molded body such as a filter.
  • a method in which an aqueous solution of the alkenyl cephem compound is brought into contact with the contained one can also be adopted.
  • the ratio between the amount of activated carbon and the amount of alkenyl cephem compound is not particularly limited.
  • activated carbon is 10 to 300 parts by weight, particularly 10 to 200 parts by weight with respect to 100 parts by weight of alkenyl cephem compound contained in the aqueous solution. It is preferable to make it contact from the point which can reduce the loss rate of Z body and can remove E body and phenylacetic acid efficiently.
  • the temperature at the time of contact can be 0 to 20 ° C. By making the temperature at the time of contact within this range, the loss rate of the Z form can be reduced, and the E form and phenylacetic acid can be efficiently removed, which is preferable.
  • the contact time is preferably 0.5 to 3 hours, particularly 1 to 2 hours, provided that the temperature at the time of contact is in the above range. While the two are in contact with each other, the reaction system may be in a stirred state or may be left in a stationary state.
  • the above method may be performed only once, or may be repeated two or more times for the purpose of increasing the purity of the Z form.
  • the E-form is selectively adsorbed and removed from the alkenyl cephem compound including the Z-form and the E-form by activated carbon, and the content of the Z-form increases.
  • the activated carbon and the treatment liquid are separated, and acid such as hydrochloric acid, nitric acid, sulfuric acid (when made water-soluble with alkali) or alkali such as sodium hydroxide (when made water-soluble with mineral acid) is added to the treatment liquid.
  • the pH of the solution is adjusted to a weakly acidic region of 3.8 to 4.8 to precipitate crystals of the compound represented by formula (2).
  • the obtained crystals are separated by filtration or centrifugation, and washed with water and an organic solvent such as methanol.
  • the content of the Z isomer is improved as a target product with high purity and high yield. It can be recovered as a compound represented by the formula (1).
  • an alkenylcephem compound used as a starting material is, for example, a 7-substituted acylamino-3-[(E / Z) -2- (4-methylthiazol-5-yl) represented by the following formula (6). It can be obtained by subjecting a salt of vinyl] -3-cephem-4-carboxylic acid to an enzyme reaction to deprotect the amide bond at the 7-position. If this salt is water-soluble, there will be no restriction
  • R 3 represents a benzyl group or a phenoxymethyl group.
  • M represents a monovalent cation.
  • the solvent for the enzyme reaction water is preferably used from the viewpoint of maximizing enzyme activity.
  • the pH of the enzyme reaction is a factor that affects the activity of the enzyme. Although depending on the type of enzyme, it is preferable to maintain the pH at 7.5 to 8.5 from this viewpoint.
  • Various alkali aqueous solutions for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; alkali metal carbonates such as sodium carbonate and potassium carbonate; An aqueous solution can be used.
  • the temperature of the enzyme reaction is also a factor that affects the activity of the enzyme. Although depending on the type of enzyme, the temperature of the reaction system is preferably maintained at 25 to 35 ° C. from this viewpoint.
  • the reaction time is not critical in the present invention. In general, the reaction may be performed until the compound represented by formula (6) disappears from the reaction system. The reaction time can be generally 1 to 3 hours, provided that the pH and temperature are within the above-mentione
  • a conventionally known penicillin G acylase can be used without particular limitation.
  • Penicillin G amidase PGA-150, PGA-300, PGA-450 manufactured by Boehringer Mannheim; Penicillin G acylase manufactured by Dallas Biotech Limited; Penicillin G amidase manufactured by Roche Molecular Biochemicals; Biological Technology Co., Ltd. IPA-750; Atlas Biologics Co., Ltd. SynthaCLEC-PA, etc. can be used.
  • the amount of the enzyme used is preferably 30 to 150 parts by weight, particularly 50 to 100 parts by weight, based on 100 parts by weight of the compound represented by the formula (6), although it depends on the type.
  • the salt of the alkenyl cephem compound is obtained by the above enzymatic reaction.
  • phenylacetic acid or a derivative thereof (hereinafter collectively referred to as “phenylacetic acids”) is a by-product by deprotection of the amide protecting group at the 7-position in the compound represented by formula (6).
  • phenylacetic acids a by-product by deprotection of the amide protecting group at the 7-position in the compound represented by formula (6).
  • phenylacetic acids is a by-product by deprotection of the amide protecting group at the 7-position in the compound represented by formula (6).
  • Generate as This phenylacetic acid or the like is a 7-amino-3- [2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid having a high content of Z form, which is an object of this production method Since it is an impurity with respect to an acid, in the present invention, it is necessary to eliminate
  • the method for removing phenylacetic acid before the second step can be carried out by performing any of the following steps before or after the contact between the alkenyl cephem compound and activated carbon.
  • A Before contacting the alkenyl cepham compound represented by the formula (1) with activated carbon, the aqueous solution of the alkenyl cepham compound represented by the formula (1) is used in an aqueous solution of the phenylacetic acid. A process of performing an extraction process.
  • a crystallization treatment for precipitating the alkenyl cephem compound from an aqueous solution of the alkenyl cephem compound represented by formula (1) is performed before contacting the activated carbon with the alkenyl cephem compound represented by formula (1). Process.
  • the pH of the aqueous salt solution of the compound represented by the formula (1) obtained by the enzyme reaction is adjusted to an acidic range by mineral acid. It is preferable to adjust the salt of the compound represented by the formula (1) in the aqueous solution to the form of the corresponding mineral acid salt by adjusting it to 2 or less, particularly 1 or less.
  • the mineral acid include hydrochloric acid, nitric acid, sulfuric acid and the like.
  • organic solvent used for the extraction treatment examples include (a) lower alkyl esters of lower carboxylic acids, (b) ketones, (c) ethers, (d) substituted or unsubstituted aromatic hydrocarbons, ) Halogenated hydrocarbons, (f) aliphatic hydrocarbons, and (g) cycloalkanes. These organic solvents can be used alone or in combination of two or more.
  • Examples of the lower alkyl esters of the lower carboxylic acid (i) include methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, and ethyl propionate.
  • Examples of (b) ketones include methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, and diethyl ketone.
  • Examples of (iii) ethers include diethyl ether, ethyl propyl ether, ethyl butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, methyl cellosolve, dimethoxyethane and the like.
  • Examples of the substituted or unsubstituted aromatic hydrocarbons of (d) include benzene, toluene, xylene, chlorobenzene, anisole and the like.
  • halogenated hydrocarbons of (e) include dichloromethane, chloroform, dichloroethane, trichloroethane, dibromoethane, propylene dichloride, carbon tetrachloride and the like.
  • Aliphatic hydrocarbons pentane, hexane, heptane, octane and the like.
  • (g) cycloalkanes include cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
  • organic solvents those having a solubility in water at 20 ° C. of 1% by weight or less, specifically, toluene, chloroform, chlorobenzene and the like are preferable, and toluene is particularly preferable.
  • an organic solvent having high polarity and high solubility in water When an organic solvent having high polarity and high solubility in water is used, the organic solvent is dissolved in the aqueous solution of the alkenyl cephem compound to be extracted.
  • an aqueous solution of an alkenyl cephem compound in which an organic solvent is dissolved is subjected to the above-described treatment with activated carbon, the activated carbon adsorbs the organic solvent, so that the E-adsorption removal efficiency is reduced and the purity of the Z-form is improved. It becomes difficult. Therefore, when an organic solvent having high solubility in water is used, a concentration step is required to concentrate the aqueous solution after the extraction treatment and remove the organic solvent from the aqueous solution before performing the treatment with activated carbon.
  • Use of an organic solvent having a low solubility of 1% by weight or less at 20 ° C. in water is industrially advantageous because a concentration step is unnecessary.
  • organic solvents are preferably used in an amount of 5 to 50 liters, more preferably 10 to 30 liters per kg of the alkenyl cephem compound in the aqueous solution.
  • the extraction treatment is preferably performed at 0 to 20 ° C. If it is this preferable ratio, the content rate of phenylacetic acids can be reduced efficiently in an extraction process.
  • phenylacetic acids are represented by the content calculated based on the formula for calculating the phenylacetic acid content used in the examples described later, and reduced to 8% or less. It is preferable to make it. By repeating the extraction process a plurality of times, the content of phenylacetic acid gradually decreases. Therefore, if the content of phenylacetic acid does not become 8% or less in one extraction process, the solvent extraction may be performed a plurality of times. preferable.
  • the aqueous solution that has been extracted with the organic solvent can be directly brought into contact with activated carbon.
  • the pH of the aqueous salt solution of the compound represented by the formula (1) obtained by the enzyme reaction is weakly acidic with a mineral acid.
  • the salt of the compound represented by the formula (1) in the aqueous solution is precipitated as a free form by adjusting to a range, specifically 3.5 to 4.8, particularly 3.5 to 4.5. Make it easy.
  • pH adjustment can be performed by adding mineral acids, such as hydrochloric acid, nitric acid, and a sulfuric acid, to this aqueous solution.
  • the compound represented by the formula (1) in the aqueous solution can be precipitated by maintaining the aqueous solution at preferably 20 ° C. or lower, more preferably 1 to 10 ° C.
  • the crystallization treatment may be performed under stirring or standing.
  • the compound represented by formula (1), which is a precipitate, is solid-liquid separated by a conventional method and recovered from a treatment liquid containing phenylacetic acids.
  • the phenylacetic acids are represented by the content calculated based on the calculation formula for the content of phenylacetic acid used in the examples described later, and are up to 8% or less. It is preferable to reduce. Since the crystallization treatment has higher separation and removal efficiency of phenylacetic acids than the extraction treatment of (A), the crystallization treatment can be performed in one crystallization treatment under the conditions of pH 4.8 or less and 20 ° C. or less. It is possible to reduce the content of phenylacetic acids to 2% or less.
  • the crystallization treatment is preferably performed a plurality of times.
  • the precipitate (compound represented by formula (1)) obtained in the treatment step is dissolved in water to form an aqueous solution, and the aqueous solution is brought into contact with activated carbon.
  • the processing step (C) Prior to recovering the compound represented by the formula (2) by the precipitation operation after the above-mentioned activated carbon treatment and recovering it as the compound of the formula (1) in which the content of the Z-form is improved, in the treatment liquid treated with the activated carbon.
  • the contained phenylacetic acid is extracted with an organic solvent.
  • the activated carbon and the treatment liquid are separated, and an acid (when made water-soluble with alkali) or alkali (when made water-soluble with mineral acid) is added to the treatment liquid, and the pH of the liquid is preferably 2 or less More preferably, the solvent is extracted from this aqueous solution using an organic solvent.
  • the concentration of phenylacetic acids in the treatment liquid gradually decreases.
  • the same solvent as in the step (A) can be used. Specifically, (a) lower alkyl esters of lower carboxylic acids, (b) ketones, (c) ethers, (d) substituted or unsubstituted aromatic hydrocarbons, (e) halogenated hydrocarbons , (F) aliphatic hydrocarbons, and (g) cycloalkanes. These organic solvents can be used alone or in combination of two or more.
  • Examples of the lower alkyl esters of the lower carboxylic acid (i) include methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, and ethyl propionate.
  • Examples of (b) ketones include methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, and diethyl ketone.
  • Examples of (iii) ethers include diethyl ether, ethyl propyl ether, ethyl butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, methyl cellosolve, dimethoxyethane and the like.
  • Examples of the substituted or unsubstituted aromatic hydrocarbons of (d) include benzene, toluene, xylene, chlorobenzene, anisole and the like.
  • halogenated hydrocarbons of (e) include dichloromethane, chloroform, dichloroethane, trichloroethane, dibromoethane, propylene dichloride, carbon tetrachloride and the like.
  • Aliphatic hydrocarbons pentane, hexane, heptane, octane and the like.
  • (g) cycloalkanes include cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
  • the concentration of phenylacetic acid is represented by the content calculated based on the phenylacetic acid content calculation formula used in the examples described later, and is preferably 8% or less. It becomes possible to reduce to.
  • an alkali such as sodium hydrogen carbonate is added to the treatment liquid and isoelectric point precipitation is performed to precipitate crystals, which are collected.
  • the processing step (A), the processing step (B), and the processing step (C) can be appropriately combined.
  • which processing step is performed first is not particularly limited.
  • the E-form is adsorbed and removed by the activated carbon, and at the same time, phenylacetic acids are also adsorbed.
  • the amount of activated carbon used can be reduced.
  • the amount of activated carbon is preferably 10 to 200 parts by weight, particularly 20 to 100 parts by weight, based on 100 parts by weight of the alkenyl cephem compound contained in the aqueous solution.
  • the process process of the said (A) and the process process of (B) are preceded by an activated carbon process. Since the coloring component is also removed by performing, the compound represented by the formula (1) having an improved content of the Z isomer can reduce the coloration, and as a result, the final target formula (4a) or ( There is also an advantage that the cephalosporin derivative represented by 4b) is less colored.
  • a by-product of the deprotection reaction produced by subjecting the salt of the compound represented by the formula (6) to an enzyme reaction to deprotect the 7-position amide bond. It is preferable to use an alkenylcephem compound containing phenylacetic acid or a derivative thereof as a raw material.
  • the compound represented by the formula (6) can be synthesized by a known method.
  • a compound represented by the formula (6) can be obtained by deprotecting the 4-position carboxylic acid protecting group.
  • various methods known as a deprotection reaction of a carboxylic acid protecting group in a ⁇ -lactam compound can be employed.
  • a deprotection reaction in phenols described in JP-A No. 61-263984 can be employed.
  • R 3 is as defined above.
  • R 4 represents a carboxylic acid protecting group.
  • examples of the carboxylic acid protecting group represented by R 4 include a benzyl group optionally substituted with an electron donating group, a diphenylmethyl group optionally substituted with an electron donating group, and the like. Is mentioned.
  • examples of the electron donating group include an alkyl group having 1 to 6 carbon atoms; a hydroxy group, and an alkoxy group having 1 to 6 carbon atoms.
  • R 1 represents an alkyl group.
  • the alkyl group include lower alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group.
  • R 1 in the formula is particularly preferable because the methyl group can be directly derived into cefditorene.
  • X represents an active ester group.
  • the active ester group corresponding to X in the formula is, for example, an active ester group generated by a reaction between a compound represented by the following general formula (9) and a compound that introduces an active ester group into the compound of the formula (9).
  • transduces is mentioned.
  • Examples of the compound that introduces an active ester group into the compound of the formula (9) include thionyl chloride, oxalyl chloride, dicyclohexylcarbodiimide, bis- [benzothiazolyl- (2)] disulfide, 2-hydroxy-benzthiazole, 2-halo- N-methylpyridinium salt, thiophosphoric acid (for example, diethylthiophosphoric acid) and the like can be mentioned.
  • X in the formula is a reaction residue of bis- [benzothiazolyl- (2)] disulfide, represented by the following formula (5
  • the benzothiazolyl-2-thiol group represented by (II) is particularly preferred from the viewpoint of excellent reactivity with the purified alkenyl cepham compound and the desired product can be obtained in high yield.
  • the reaction between the compound represented by the general formula (9) and the compound that introduces an active ester group into the compound of the formula (9) is a known reaction (for example, JP-A-58-152488 and (See JP-T-2006-507290).
  • the compound represented by formula (3) is particularly preferably a compound in which R 1 is a methyl group and X is a benzothiazolyl-2-thiol group represented by formula (5). It is particularly preferable because it can be obtained in a yield and the compound itself is industrially available.
  • the amount of the compound represented by the formula (3) added to the reaction system is 1.0 to 1.5, preferably 1.1 to 1.3 in terms of a molar ratio to the purified alkenyl cepham compound. Is preferable from the standpoint that can be obtained with high purity and high yield.
  • the reaction according to the second step is performed in a solvent in the presence of a base.
  • a base for example, organic bases such as triethylamine, tri-n-butylamine, tert-butylamine, dicyclohexylamine, N-methylmorpholine, 2,3-dimethylaminopyridine, N-methylpyrrolidone are preferably used.
  • the addition amount of the base is 0.9 to 1.5, preferably 1.0 to 1.2 in terms of a molar ratio to the purified alkenyl cepham compound, whereby the target product can be obtained with high purity and high yield. From the viewpoint of being able to do so.
  • Solvents that can be used include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, water, acetone, acetonitrile, tetrahydrofuran, dichloromethane, dichloroethane, chloroform, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, ethyl acetate, propyl acetate
  • a solvent such as n-butyl acetate is preferable, and these solvents are used as one or a mixture of two or more.
  • the reaction temperature is ⁇ 10 to 40 ° C., preferably 0 to 20 ° C., and the reaction time is 2 hours or more, preferably 4 to 10 hours.
  • the cephalosporin derivative represented by the above or its alkali metal salt can be obtained.
  • the alkali metal salt of the formula (4a) means a pharmacologically acceptable alkali salt.
  • cephalosporin derivative represented by the formula (4a) or the alkali metal salt thereof obtained in the present invention is made into a Z-form by providing a third step of reacting with chloromethyl bivalinate in the presence of sodium iodide.
  • the method for analyzing the content of phenylacetic acid is as follows. Column: SUPELCO ODS HYPERSIL 5 ⁇ m 250 ⁇ 4.6 mm -Column temperature: 25 ° C Mobile phase (volume ratio): acetonitrile 20%, 50 mM potassium dihydrogen phosphate aqueous solution 80% ⁇ Flow rate: 1.0ml / min ⁇ Detection wavelength: 225 nm ⁇ Injection volume: 10 ⁇ l -Z-form + E-form retention time: 2.5-3.5 minutes- Phenylacetic acid retention time: 8.5-9.5 minutes- Phenylacetic acid content (calculation formula): [Phenylacetic acid area value / ((Z + E) body area value + phenylacetic acid area value)] ⁇ 100 (%)
  • Example 1 (1) Deprotection reaction step of 7-position amide bond A 10.0 g four-necked flask was weighed with a compound represented by the following formula (10) (content of E-form: 3.5%), and 6% by weight sodium bicarbonate An aqueous solution of sodium salt was obtained by adding 240 g of an aqueous solution. To this aqueous solution, 7.0 g of penicillin-G acylase enzyme (PGA-450, manufactured by Dalas Biotech Limited) was added. The 7-position deprotection reaction of the sodium salt of the compound represented by the formula (10) was carried out while adding a 5 wt% aqueous sodium carbonate solution at a liquid temperature of 25 to 35 ° C.
  • PGA-450 penicillin-G acylase enzyme
  • the aqueous solution contained 7.0 g of a sodium salt of a compound represented by the following formula (11) containing 3.5% of E form in terms of E form. Further, phenylacetic acid was contained at 16.6% in terms of phenylacetic acid content.
  • step A The enzyme (PGA-450) was filtered off from the aqueous solution obtained in the first step, and concentrated hydrochloric acid was added while maintaining the liquid temperature at 0 to 10 ° C. to adjust the pH of the aqueous solution to 0.9.
  • the sodium salt of the compound represented by the formula (11) contained therein was used as the hydrochloride of the compound represented by the formula (11).
  • the aqueous solution whose pH was adjusted was transferred to a separatory funnel, and 150 ml of toluene was added thereto to extract and remove by-products and impurities while maintaining the liquid temperature at 20 ° C.
  • the phenylacetic acid content after the extraction treatment was 6.1%.
  • the concentration of the alkenyl cephem compound in the aqueous solution after the extraction treatment was 2.2% by weight.
  • Z body yield (%) A ⁇ B / C A: Crude yield (%) of crystals obtained after the first step B: Purity (%) of the compound represented by formula (2) as Z-form C: Theoretical yield (%) of the Z form of the compound represented by the formula (1) based on the mineral acid salt of the compound represented by the formula (11) in the phenylacetic acid removal step (result of analysis) -Z body yield: 92.0% -E body content: 0.29% ⁇ Phenylacetic acid content: 0.1% -Color tone (visual): White- 1 H-NMR (D 2 O / DCl) ppm 2.52 (s, 3H), 3.56 to 3.60 (d, 1H, 18.3 Hz), 3.75 to 3.78 (d, 1H, 18.6 Hz), 5.25 to 5.26 (d , 1H, 5.2Hz), 5.44-5.45 (d, 1H, 5.2Hz), 6.78 (s, 2H), 9.78 (s, 1H)
  • Example 2 In the first step of Example 1, a compound represented by the formula (11) was obtained in the same manner as in Example 1 except that 2.8 g of CL-KP (trade name) manufactured by Ajinomoto Fine Techno was used as the activated carbon. Crystal was obtained. The activated carbon had an iodine adsorption performance of 1620 mg / g and a methylene blue adsorption performance of 280 ml / g.
  • 40 g of 2.5% aqueous sodium hydrogen carbonate solution was added and washed twice with 80 g of dichloromethane, and the aqueous layer was concentrated. Concentration precipitated the sodium salt of the compound represented by formula (7).
  • Table 1 shows various physical properties of the compound of the formula (11) obtained after completion of the first step
  • Table 2 shows various physical properties of the cephalosporin derivative obtained after completion of the second step.
  • Example 3 Deprotection reaction step of 7-position amide bond
  • the enzyme reaction was carried out under the same operation and conditions as in Example 1. After completion of the reaction, the aqueous solution contained 7.0 g of a sodium salt of the compound represented by the formula (11) containing 3.5% of E form in terms of E form content. Further, phenylacetic acid was contained at 16.6% in terms of phenylacetic acid content.
  • Phenylacetic acid removal step step B
  • the enzyme (PGA-450) was filtered off from the aqueous solution obtained in the first step, adjusted to pH 4.2 with concentrated hydrochloric acid while keeping the liquid temperature at 10 ° C., and aged for 1 hour.
  • activated carbon (Ajinomoto Fine Co., Ltd.) having iodine adsorption performance measured in accordance with JIS K-1474 of 1080 mg / g and methylene blue adsorption performance of 180 ml / g in place of the activated carbon used in the first step of Example 1 in this aqueous solution.
  • 5.6 g of Techno SD, trade name SD-2 was added all at once and stirred at 3 ° C. for 1 hour.
  • the phenylacetic acid content after the activated carbon treatment was 1.1%.
  • the activated carbon was filtered off, and solvent extraction was performed on the obtained filtrate in the same manner as in the second step of Example 1.
  • Example 4 (1) Third Step 4.5 g of the sodium salt of the compound represented by the formula (7) obtained in Example 2 is dissolved in 25 g of dimethylformamide (DMF), and chloromethyl pivalate (1.39 g) and iodine 25 ml of a DMF solution of iodomethyl pivalate prepared using sodium hydroxide (1.39 g) was added at 0-5 ° C., and the mixture was stirred at that temperature for 1 hour. Thereafter, 200 g of ethyl acetate was added to the reaction solution, and the mixture was washed 3 times with 100 g of water.
  • DMF dimethylformamide
  • 7-amino-3-[(E / Z) -2- (4-methylthiazol-5-yl) vinyl] -3-cephem-4-carboxylic acid or an alkali metal salt thereof is used.
  • the objective cephalosporin derivative or alkali metal salt thereof having a high Z-form content can be provided by an industrially advantageous method in a simple process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Cephalosporin Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 簡便な工程で、Z体の含有率が高い目的するセファロスポリン誘導体又はそのアルカリ金属塩を工業的に有利な方法で提供する。 下記一般式(1)で表される化合物の水溶液を、JIS K-1474に従い測定されたヨウ素吸着性能が1200mg/g以上であり、メチレンブルー吸着性能が250ml/g以上である活性炭と接触させて、下記一般式(2)で表わされるZ体の含有率が向上した下記一般式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩を得る第1工程、 次いで、前記第1工程で得られたZ体の含有率が向上した式(1)で表される化合物と、下記一般式(3)で表される化合物とを反応させる第2工程を含むことを特徴とする下記一般式(4a)で表されるセファロスポリン誘導体又はそのアルカリ金属塩の製造方法。

Description

セファロスポリン誘導体の製造方法
 本発明は、E体に比してZ体の含有率を向上させたセファロスポリン誘導体及びそのアルカリ金属塩の製造方法に関するものである。
 下記一般式(7)で表される7-[2-メトキシイミノ-2-(2-アミノチアゾール-4-イル)アセトアミド]-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸(シン異性体、シス異性体)はセフジトレン(Cefditoren)と言われる優れたセファロスポリン抗生物質であることが知られている。
Figure JPOXMLDOC01-appb-C000008

 従来、このセフジトレンの合成方法は、下記反応スキーム(1)に示すように下記一般式(A)で表される化合物と、下記式(2)で表される7-アミノ-3-[(Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩との反応により製造する方法が提案されている(例えば、特許文献1参照。)。
Figure JPOXMLDOC01-appb-C000009

 しかしながら、前記の反応スキーム(1)の方法では、目的とするセファロスポリン抗生物質を得るには式中のRは保護されたアミノ基を用いる必要があり、このためアミノ保護基の除去工程が必然的に必要で、工程が複雑になり工業的に有利でない。
 7-アミノ-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩(化合物(2))は、セファロスポリン系抗生物質の製造中間体として有用な物質である。この化合物には、3位のアルケニル基の立体構造がZ配置であるものとE配置であるものの2種類の異性体が存在する。これら2種類の異性体のうち、それを原料とするセファロスポリン系抗生物質が医薬抗菌剤として優れた抗菌作用を発現するものは、前述したセフジトレンを含めZ体であることが知られている。
 7-アミノ-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩からセファロスポリン系抗生物質を合成する場合には、反応系にZ体のみを存在させ、E体を極力存在させないことが重要である。
 この観点から、特許文献2においては、Z体とE体とが混在した7-アミノ-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の水溶液に、ハイポーラスポリマーや活性炭を作用させて、Z体の含有率を高めることが提案されている。この方法で用いられるハイポーラスポリマーとしては、アクリル系樹脂、フェノール系樹脂、スチレン系樹脂が例示されている。一方、活性炭としては、塩化亜鉛炭や水蒸気炭といった一般的な活性炭が用いられている。
 前記の特許文献2に記載の方法に従えば、Z体の含有率が高まった7-アミノ-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩が得られ、また、該化合物を中間原料として用いることにより、Z体含有率が高いセファロスポリン誘導体が得られるが、更に最終目的物のセファロスポリン誘導体において、Z体の含有率が高いものが望まれている。
特公平3-64503号公報 特開2005-343854号公報
 したがって本発明の目的は、前述した従来技術が有する種々の欠点を解消し得るセファロスポリン誘導体又はそのアルカリ金属塩の製造方法を提供することにある。
 本発明は、下記式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の水溶液を、JIS K-1474に従い測定されたヨウ素吸着性能が1200mg/g以上であり、メチレンブルー吸着性能が250ml/g以上である活性炭と接触させて、下記式(2)で表される7-アミノ-3-[(Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩を得る第1工程。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

 次いで、前記第1工程で得られた一般式(2)で表される7-アミノ-3-[(Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩と、下記一般式(3)で表される化合物とを反応させる第2工程を含むことを特徴とする下記一般式(4a)で表されるセファロスポリン誘導体又はそのアルカリ金属塩の製造方法を提供することにより前記目的を達成したものである。
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

(式中、Rは、アルキル基を示す。Xは活性エステル基を示す。)
 本発明によれば、7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩を用い、簡便な工程で、Z体の含有率が高い目的するセファロスポリン誘導体又はそのアルカリ金属塩を工業的に有利な方法で提供することができる。
<第1工程>
 本発明に係る第1工程では、Z体とE体とが含まれる前記の式(1)で表される化合物又はそのアルカリ塩に、特定の活性炭を作用させて、該活性炭にE体を選択的に吸着させることで除去し、Z体の含有率を高める点に特徴を有する。ここで言うアルカリ塩とは、薬理学上許容されるアルカリ塩を意味する。なお、以下の説明においては、式(1)で表される化合物と、そのアルカリ金属塩を総称して、「アルケニルセフェム化合物」という。
 本発明において使用されるアルケニルセフェム化合物は、Z体とE体との混合物からなる。Z体及びE体はいずれも公知化合物である。アルケニルセフェム化合物におけるZ体とE体との存在割合に特に制限はなく、この存在割合はアルケニルセフェム化合物の製造条件等に依存する。本発明の目的にかんがみれば、Z体の存在割合がE体の存在割合よりも十分に高いことが望ましいが、本発明の方法を用いることで、簡便にかつ高収率でZ体を得ることが可能である。アルケニルセフェム化合物におけるE体の存在割合は、後述の実施例において用いたE体含有率の計算式に基づいて算出された含有率で表して活性炭による処理前の状態において一般に0.3~20%、特に2~12%である。
 本発明においては、アルケニルセフェム化合物を、水溶液の状態で活性炭と接触させる。アルケニルセフェム化合物を水溶液とするには、例えばアルケニルセフェム化合物をアルカリで処理し、対応する塩(例えばアルカリ金属塩)の形とすればよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物;炭酸水素ナトリウム等のアルカリ金属炭酸水素塩;炭酸ナトリウム、炭酸カリウム、炭酸リチウム等のアルカリ金属炭酸塩等を用いることができる。これらのアルカリを含む水溶液と、アルケニルセフェム化合物とを混合することで、アルケニルセフェム化合物を水溶液とすることができる。
 前記の水溶液のpHは、アルケニルセフェム化合物の塩が結晶化して析出しない程度に高pH領域であればよく、一般的には7.1~9.0、特に7.5~8.5の弱アルカリ領域とすることが好ましい。また、前記の水溶液に含まれるアルケニルセフェム化合物の塩の濃度は、本発明において臨界的なものではなく、該塩の結晶が析出しない程度の低濃度であればよい。
 アルケニルセフェム化合物を水溶液とするための別法として、該アルケニルセフェム化合物を、鉱酸で処理し、対応する鉱酸塩の形とする方法が挙げられる。鉱酸としては、例えば塩酸、硫酸、硝酸等が挙げられる。これらの鉱酸と、アルケニルセフェム化合物とを混合することで、該化合物が鉱酸塩の状態となった水溶液を得ることができる。
 前記の鉱酸塩を含む水溶液のpHは、該鉱酸塩が沈殿しない程度に低pH領域であればよく、一般的には0.5~1.7、特に0.8~1.4とすることが好ましい。また、前記の水溶液に含まれる鉱酸塩の濃度は、本発明において臨界的なものではなく、該鉱酸塩の結晶が沈殿しない程度であればよい。
 前記のアルカリ金属塩と鉱酸塩とを比較すると、鉱酸塩を用いることが好ましい。この理由は、アルケニルセフェム化合物を合成する際に生じる副生成物であるフェニル酢酸又はその誘導体(これについては後ほど詳述する)の吸着除去を、E体の吸着除去と同時に行い得る点からである。鉱酸塩のうち、特に塩酸塩を用いると、Z体の純度を一層高めることができるので好ましい。
 なお、活性炭処理の際に、系内にフェニル酢酸又はその誘導体が存在すると、活性炭がE体よりもフェニル酢酸又はその誘導体を吸着しやすいため、活性炭と接触させる前に予め後述する(A)の処理工程又は/及び(B)の処理工程を行い、系内のフェニル酢酸又はその誘導体を出来るだけ除去しておくことが、高価な活性炭の使用量を低減することができ、また、Z体の純度を一層高めることができる観点から特に好ましい。
 アルケニルセフェム化合物からE体を選択的に吸着除去するための活性炭について本発明者らが鋭意検討したところ、大きな細孔径のピークと小さな細孔径のピークを有する活性炭を用いることが有効であることが判明した。更に本発明者らが検討を推し進めたところ、このような細孔径分布を有する活性炭は、JIS K-1474に従い測定されたヨウ素吸着性能と、同じくJIS K-1474に従い測定されたメチレンブルー吸着性能が特定の範囲内にあることが判明した。本発明においては、かかる特定のヨウ素吸着性能及びメチレンブルー吸着性能を有する活性炭を用いることで、アルケニルセフェム化合物からE体を選択的に吸着除去することが可能となった。
 上述した特定のヨウ素吸着性能については、その値が1200mg/g以上であるものを用いる。なお、ヨウ素吸着性能が1700mg/g超であり、かつ以下に述べるメチレンブルー吸着性能を兼ね備えた活性炭を工業的に入手することは極めて困難なので、本発明において用いる活性炭のヨウ素吸着性能の上限は1700mg/gとする。したがって、ヨウ素吸着性能の範囲は好ましくは1200~1700mg/gであり、更に好ましくは1400~1700mg/gである。尤も、ヨウ素吸着性能の値は高ければ高いほど好ましいので、1700mg/g超のヨウ素吸着性能を有する活性炭を用いることに何ら差し支えはない。
 メチレンブルー吸着性能については、その値が250ml/g以上であるものを用いる。なお、メチレンブルー吸着性能が500ml/g超であり、かつ上述したヨウ素吸着性能を兼ね備えた活性炭を工業的に入手することは極めて困難なので、本発明において用いる活性炭のメチレンブルー吸着性能の上限は500ml/gとする。したがって、メチレンブルー吸着性能の範囲は好ましくは250~500ml/gであり、更に好ましくは260~500ml/gである。尤も、メチレンブルー吸着性能の値は高ければ高いほど好ましいので、500ml/g超のメチレンブルー吸着性能を有する活性炭を用いることに何ら差し支えはない。
 通常、水処理等で用いられる活性炭の諸物性は、ヨウ素吸着性能が1200mg/g以下であり、メチレンブルー吸着性能が200ml/g以下である(「活性炭の応用技術」、監修 立本英樹、安部邦夫、発行所 株式会社テクノシステム、発行日 2000年7月25日、第409頁、第555頁参照)ことから、本発明で使用する活性炭のこれらの物性値は、通常の活性炭の値よりも極めて高いものである。このことは、大きな細孔と小さな細孔とが分布していることに起因している。一般に、ヨウ素吸着性能は小さな細孔の分布の指標(つまり、分子量の小さい化合物の吸着性の指標)であり、メチレンブルー吸着性能は大きな細孔の分布の指標(つまり、分子量の大きな化合物の吸着性の指標)である。
 上述のヨウ素吸着性能及びメチレンブルー吸着性能を満足する活性炭としては、例えばヤシ殻、石炭、木質材等を原料にした水蒸気賦活活性炭が挙げられる。この場合、賦活の条件を適切に制御することや、造粒の条件を適切に制御することで、上述の物性値が満たされるようになる。なお、活性炭の形状は、粉末、粒状又は繊維状でもよく、あるいは成形体であってもよい。上述の物性値を満足する活性炭として市販品を用いることも可能である。そのような市販品としては、例えばユニチカ株式会社から入手可能な活性炭であるユニチカ活性炭繊維 アドールA-20(商品名)や味の素ファインテクノから入手可能な活性炭である液相用活性炭CL-KP(商品名)、CL-K(商品名)等が挙げられる。
 上述の活性炭と、アルケニルセフェム化合物とを接触させる方法に特に制限はない。例えばアルケニルセフェム化合物の水溶液中に、上述の活性炭を添加する方法や、逆に上述の活性炭にアルケニルセフェム化合物の水溶液を添加する方法を採用することができる。あるいは、上述の活性炭をカラムに充填し、アルケニルセフェム化合物の水溶液をポンプ等でカラム送液し、カラム内を通過させ、更にカラム内を複数回循環させる方法や、フィルター等の成形体に活性炭を含有させたものに、アルケニルセフェム化合物の水溶液を接触させる方法を採用することもできる。活性炭の量とアルケニルセフェム化合物の量との比率に特に制限はないが、例えば、水溶液中に含まれるアルケニルセフェム化合物100重量部に対して、活性炭を10~300重量部、特に10~200重量部接触させることが、Z体のロス率を少なくでき、かつE体とフェニル酢酸を効率良く除去できる点から好ましい。
 上述の活性炭と、アルケニルセフェム化合物とを接触させる条件にも特に制限はない。例えば接触時の温度は、0~20℃とすることができる。接触時の温度をこの範囲内にすることで、Z体のロス率を少なくでき、かつE体とフェニル酢酸を効率よく除去できるので好ましい。接触時間は、接触時の温度が上述の範囲であることを条件として、0.5~3時間、特に1~2時間であることが好ましい。両者を接触させている間、反応系を攪拌状態にしておいてもよく、あるいは静置状態にしておいてもよい。
 以上の方法は、1回のみ行ってよく、あるいはZ体の純度を高める目的で2回以上の複数回繰り返して行ってもよい。
 以上の操作によって、Z体及びE体を含むアルケニルセフェム化合物から、E体が選択的に活性炭に吸着除去され、Z体の含有率が高まる。その後は活性炭と処理液とを分離し、処理液に塩酸、硝酸、硫酸等の酸(アルカリで水溶性にした場合)、又は水酸化ナトリウム等のアルカリ(鉱酸で水溶性にした場合)を加えて液のpHを3.8~4.8の弱酸性領域に調整して、式(2)で表される化合物の結晶を沈殿させる。得られた結晶を、濾別や遠心分離によって分離し、水及びメタノール等の有機溶媒によって洗浄する。処理液のpHを上述の範囲に調整し、その範囲のpHにおいて式(2)で表される化合物を析出させることによって、高純度でかつ高収率で目的物としてZ体の含有率が向上した式(1)で表わされる化合物として回収することができる。
 本発明において、出発物質として用いられるアルケニルセフェム化合物は、例えば下記式(6)で表される7-置換アシルアミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸の塩を酵素反応に付して7位アミド結合の脱保護反応を行うことで得られる。この塩は水溶性であればその種類に特に制限はない。水溶性の塩としては例えばアルカリ金属塩やアンモニウム塩が挙げられる。
Figure JPOXMLDOC01-appb-C000014

(式中、Rはベンジル基、フェノキシメチル基を示す。Mは一価のカチオンを示す。)
 前記の酵素反応の溶媒としては、酵素活性を最大限に引き出す観点から水を用いることが好ましい。酵素反応のpHは、酵素の活性に影響を及ぼす要因となる。酵素の種類にもよるが、この観点からpHを7.5~8.5に維持することが好ましい。pHの維持には各種のアルカリ水溶液、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物;炭酸水素ナトリウム等のアルカリ金属炭酸水素塩;炭酸ナトリウムや炭酸カリウム等のアルカリ金属炭酸塩等の水溶液を用いることができる。酵素反応の温度も、酵素の活性に影響を及ぼす要因となる。酵素の種類にもよるが、この観点から反応系の温度を25~35℃に維持することが好ましい。反応時間は本発明において臨界的でない。一般に式(6)で表される化合物が反応系から消失するまで反応を行えばよい。前記のpH及び温度の範囲であることを条件として、反応時間は一般に1~3時間とすることができる。
 使用する酵素としては従来公知のペニシリンGアシラーゼを特に制限なく用いることができる。例えばベーリンガーマンハイム社製のペニシリンGアミダーゼPGA-150、PGA-300、PGA-450;ダラス・バイオテック・リミテッド社製のペニシリンGアシラーゼ;ロシュ・モレキュラー・バイオケミカルズ社製のペニシリンGアミダーゼ;湖南福来格生物技術有限公司のIPA-750;アトラス・バイオロジクス社製のSynthaCLEC-PA等を用いることができる。
 酵素の使用量は、その種類にもよるが、式(6)で表される化合物100重量部に対して30~150重量部、特に50~100重量部であることが好ましい。
 以上の酵素反応によって、アルケニルセフェム化合物の塩が得られる。この酵素反応においては、式(6)で表される化合物における7位のアミド保護基の脱保護によってフェニル酢酸又はその誘導体(以下、これらを総称して「フェニル酢酸類」という)が副生成物として生成する。このフェニル酢酸等は、本製造方法の目的物であるZ体の含有率が高い7-アミノ-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸に対する不純物であることから、本発明において、第2工程に付す前にその存在を極力排除する必要がある。
 第2工程に付す前にフェニル酢酸を除去する方法としては、アルケニルセフェム化合物と活性炭との接触前或いは接触後に、下記の何れかの工程を行うことにより実施することができる。
(A)式(1)で表わされるアルケニルセファム化合物と活性炭の接触の前に、式(1)で表されるアルケニルセファム化合物の水溶液に対し、有機溶媒を用いて、前記フェニル酢酸類の抽出処理を行う工程。
(B)式(1)で表わされるアルケニルセファム化合物と活性炭の接触の前に、式(1)で表されるアルケニルセファム化合物の水溶液から、該アルケニルセフェム化合物を析出させる晶析処理を行う工程。
(C)式(1)で表わされるアルケニルセファム化合物と活性炭の接触の後、上述の析出操作によって式(2)で表される化合物を回収するに先立ち、有機溶媒を用いて、前記フェニル酢酸類の抽出処理を行う工程。
 以下、前記(A)の処理工程について、説明する。
 フェニル酢酸類の抽出除去を確実に行う観点から、抽出処理に先立ち、鉱酸により、前記酵素反応によって得られた式(1)で表される化合物の塩の水溶液のpHを酸性域、具体的には2以下、特に1以下に調整して、水溶液中の式(1)で表される化合物の塩を、対応する鉱酸塩の形態とすることが好ましい。該鉱酸としては、塩酸、硝酸、硫酸等が挙げられる。
 抽出処理に使用する有機溶媒としては、(イ)低級カルボン酸の低級アルキルエステル類、(ロ)ケトン類、(ハ)エーテル類、(ニ)置換又は非置換の芳香族炭化水素類、(ホ)ハロゲン化炭化水素類、(ヘ)脂肪族炭化水素類、(ト)シクロアルカン類がある。これらの有機溶媒は、単独で又は2種以上を組み合わせて用いることができる。(イ)の低級カルボン酸の低級アルキルエステル類としては、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。(ロ)のケトン類としては、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン等が挙げられる。(ハ)のエーテル類としては、ジエチルエーテル、エチルプロピルエーテル、エチルブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチルセロソルブ、ジメトキシエタン等が挙げられる。(ニ)の置換又は非置換の芳香族炭化水素類としては、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソール等が挙げられる。(ホ)のハロゲン化炭化水素類としては、ジクロロメタン、クロロホルム、ジクロロエタン、トリクロロエタン、ジブロモエタン、プロピレンジクロライド、四塩化炭素等が挙げられる。(ヘ)の脂肪族炭化水素類ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。(ト)のシクロアルカン類としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。
 これらの有機溶媒の中でも、20℃での水への溶解度が1重量%以下のもの、具体的には、トルエン、クロロホルム、クロロベンゼン等が好ましく、特にトルエンが好ましい。
 極性が高く水への溶解度が高い有機溶媒を用いると、抽出処理するアルケニルセフェム化合物の水溶液中に有機溶媒が溶解してしまう。有機溶媒が溶解したアルケニルセフェム化合物の水溶液を、前述した活性炭による処理に供すると、活性炭が有機溶媒を吸着してしまうため、E体の吸着除去効率が低下し、Z体の純度を向上させることが困難となる。そのため、水への溶解度が高い有機溶媒を用いた場合は、活性炭による処理を行う前に、抽出処理後の水溶液を濃縮して該水溶液から有機溶媒を除去する濃縮工程が必要となる。水への溶解度が20℃で1重量%以下という溶解度の低い有機溶媒を用いると、濃縮工程が不要なため工業的に有利である。
 これらの有機溶媒は、前記水溶液中のアルケニルセフェム化合物1kg当たり、好ましくは5~50リットル、更に好ましくは10~30リットル使用する。また、抽出処理は0~20℃にて行うことが好ましい。この好ましい比率であれば、抽出処理において効率的にフェニル酢酸類の含有率を低減することができる。
 本発明の製造方法においては、抽出処理後において、フェニル酢酸類を、後述の実施例において用いたフェニル酢酸含有率の計算式に基づいて算出された含有率で表して、8%以下にまで低減させることが好ましい。抽出処理を複数回繰り返すことで、フェニル酢酸類の含有率が次第に低下するので、1回の抽出処理でフェニル酢酸類の含有率が8%以下とならない場合は、溶媒抽出を複数回行うことが好ましい。
 前記(A)の処理工程後、有機溶媒による抽出処理を終えた水溶液を、そのまま活性炭と接触させることができる。
 以下、前記(B)の処理工程について、説明する。
 式(1)で表される化合物を析出させて収率よく回収する観点から、鉱酸により、前記酵素反応によって得られた式(1)で表される化合物の塩の水溶液のpHを弱酸性域、具体的には3.5~4.8、特に3.5~4.5に調整して、水溶液中の式(1)で表される化合物の塩を、フリーの形態として、析出しやすい状態にする。なお、pH調整は、塩酸、硝酸、硫酸などの鉱酸を該水溶液に添加することにより行うことができる。
 次いで、該水溶液を好ましくは20℃以下、さらに好ましくは1~10℃に保持することにより、水溶液中の式(1)で表される化合物を析出させることができる。なお、晶析処理は攪拌下に行っても、静置下に行ってもよい。析出物である式(1)で表される化合物は、常法により固液分離して、フェニル酢酸類を含む処理液より回収する。
 本発明の製造方法においては、晶析処理後において、フェニル酢酸類を、後述の実施例において用いたフェニル酢酸含有率の計算式に基づいて算出された含有率で表して、8%以下にまで低減させることが好ましい。晶析処理は、前記(A)の抽出処理に比べて、フェニル酢酸類の分離除去効率が高いため、前述のpH4.8以下で20℃以下の条件であれば、1回の晶析処理でフェニル酢酸類の含有率を2%以下にまで低減させることが可能である。なお、1回の晶析処理でフェニル酢酸類の含有率が8%以下、好ましくは2%以下とならない場合は、晶析処理を複数回行うことが好ましい。
 前記(B)の処理工程後は、該処理工程により得られた析出物(式(1)で表される化合物)を水に溶解して水溶液とし、該水溶液を活性炭と接触させる。
 以下、前記(C)の処理工程について、説明する。
 上述の活性炭処理後の析出操作によって式(2)で表される化合物を析出させZ体の含有率が向上した式(1)の化合物として回収するに先立ち、活性炭で処理された処理液中に含まれているフェニル酢酸類を有機溶媒により抽出する。具体的には、活性炭と処理液とを分離し、処理液に酸(アルカリで水溶性にした場合)又はアルカリ(鉱酸で水溶性にした場合)を加えて液のpHを好ましくは2以下、更に好ましくは1以下にし、有機溶媒を用いてこの水溶液からフェニル酢酸類を溶媒抽出する。溶媒抽出を複数回繰り返すことで、処理液中のフェニル酢酸類の濃度が次第に低下する。
 溶媒抽出に用いられる有機溶媒としては、前記(A)工程と同じ溶媒を用いることができる。具体的には(イ)低級カルボン酸の低級アルキルエステル類、(ロ)ケトン類、(ハ)エーテル類、(ニ)置換又は非置換の芳香族炭化水素類、(ホ)ハロゲン化炭化水素類、(ヘ)脂肪族炭化水素類、(ト)シクロアルカン類がある。これらの有機溶媒は、単独で又は2種以上を組み合わせて用いることができる。(イ)の低級カルボン酸の低級アルキルエステル類としては、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。(ロ)のケトン類としては、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン等が挙げられる。(ハ)のエーテル類としては、ジエチルエーテル、エチルプロピルエーテル、エチルブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチルセロソルブ、ジメトキシエタン等が挙げられる。(ニ)の置換又は非置換の芳香族炭化水素類としては、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソール等が挙げられる。(ホ)のハロゲン化炭化水素類としては、ジクロロメタン、クロロホルム、ジクロロエタン、トリクロロエタン、ジブロモエタン、プロピレンジクロライド、四塩化炭素等が挙げられる。(ヘ)の脂肪族炭化水素類ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。(ト)のシクロアルカン類としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。
 以上の溶媒抽出を複数回行うことで、フェニル酢酸類の濃度を、後述の実施例において用いたフェニル酢酸含有率の計算式に基づいて算出された含有率で表して好適には8%以下にまで低減させることが可能となる。溶媒抽出の後は、処理液に炭酸水素ナトリウム等のアルカリを加えて等電点沈殿を行い、結晶を析出させ、これを回収する。
 前記(A)の処理工程、(B)の処理工程及び(C)の処理工程は適宜組み合わせて行うことができる。また、(A)の処理工程と(B)の処理工程を組み合わせて行う場合は、いずれの処理工程を先に行うかは特に制限されない。
 また、上述の活性炭を、強酸性領域においてアルケニルセフェム化合物と接触させることで、該活性炭によってE体が吸着除去されるのと同時に、フェニル酢酸類も吸着されることから、活性炭処理に先だって、前記(A)工程及び/前記(B)工程を行うことにより、使用する活性炭の使用量を低減することができるという利点を有する。この場合、活性炭の使用量は、例えば、水溶液中に含まれるアルケニルセフェム化合物100重量部に対して、活性炭を10~200重量部、特に20~100重量部とすることが望ましい。
 また、従来の方法で得られるZ体の含有率が向上した式(1)で表される化合物は着色を呈するが、活性炭処理に先だって前記(A)の処理工程及び(B)の処理工程を行うことにより、着色成分も除去されるため、Z体の含有率が向上した式(1)で表わされる化合物は着色を少なくすることができ、その結果、最終目的物の式(4a)又は(4b)で表わされるセファロスポリン誘導体の着色も少ないという利点も有する。
 このように、本発明においては、式(6)で表される化合物の塩を酵素反応に付して7位アミド結合の脱保護反応を行うことで生成した、該脱保護反応の副生成物であるフェニル酢酸又はその誘導体を含んだアルケニルセフェム化合物を原料として用いることが好適である。
 式(6)で表される化合物は、公知の方法で合成することができる。例えば、下記式(8)で表される7-置換アシルアミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸化合物に、4位カルボン酸保護基の脱保護反応を行うことで、式(6)で表される化合物を得ることができる。脱保護反応としては、β-ラクタム化合物におけるカルボン酸保護基の脱保護反応として公知である種々の方法を採用することができる。例えば、特開平61-263984号公報に記載されている、フェノール類中での脱保護反応を採用することができる。
Figure JPOXMLDOC01-appb-C000015

(式中、Rは前記と同義。Rはカルボン酸保護基を示す。)
 式(8)中、Rで表されるカルボン酸保護基としては、例えば電子供与性基で置換されていてもよいベンジル基や、電子供与性基で置換されていてもよいジフェニルメチル基等が挙げられる。電子供与性基としては、例えば炭素数1~6のアルキル基;ヒドロキシ基、炭素数1~6のアルコキシ基等が挙げられる。
<第2工程>
 第1工程終了後、前記第1工程で得られたZ体の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩と、前記一般式(3)で表される化合物とを反応させ、目的とする(4a)で表されるセファロスポリン誘導体又はそのアルカリ金属塩を得る。以下、Z体の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩を総称して、「精製アルケニルセファム化合物」という。
 第2工程に係る式(3)で表わされる化合物の式中、Rは、アルキル基を示す。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~6の低級アルキル基が挙げられる。
 この中、式中のRはメチル基がそのままセフジトレンに誘導できることから特に好ましい。
 式(3)で表わされる化合物の式中、Xは活性エステル基を示す。該式中のXに相当する活性エステル基は、例えば、下記一般式(9)で表わされる化合物と、式(9)の化合物に活性エステル基を導入する化合物との反応により生成する活性エステル基を導入する化合物の反応残基が挙げられる。
Figure JPOXMLDOC01-appb-C000016

(式中のRは前記と同義。)
 前記式(9)の化合物に活性エステル基を導入する化合物としては、例えば塩化チオニル、塩化オキサリル、ジシクロヘキシルカルボジイミド、ビス-〔ベンゾチアゾリル-(2)〕ジスルフィド、2-ヒドロキシ-ベンジチアゾール、2-ハロ-N-メチルピリジニウム塩、又はチオリン酸(例えば、ジエチルチオリン酸)等が挙げられ、特に好ましくは、式中のXはビス-〔ベンゾチアゾリル-(2)〕ジスルフィドの反応残基である下記式(5)で表わされるベンゾチアゾリル-2-チオール基が、精製アルケニルセファム化合物との反応性に優れ、また、目的物が高収率で得られる観点から特に好ましい。
Figure JPOXMLDOC01-appb-C000017

 なお、前記一般式(9)で表わされる化合物と、式(9)の化合物に活性エステル基を導入する化合物との反応は、公知の反応である(例えば、特開昭58-152488号公報及び特表2006-507290号公報参照。)。
 本発明において、式(3)で表わされる化合物は、特に式中のRがメチル基であり、Xが式(5)で表わされるベンゾチアゾリル-2-チオール基である化合物が、目的物を高収率で得ることができ、また、該化合物自体も工業的に入手可能であることから特に好ましい。
 式(3)で表わされる化合物の反応系への添加量は、精製アルケニルセファム化合物に対するモル比で1.0~1.5、好ましくは1.1~1.3で行うことが、目的物を高純度で、且つ高収率で得ることができる観点から好ましい。
 第2工程に係る反応は、溶媒中で塩基の存在下に行われる。
 使用できる塩基としては、例えば、トリエチルアミン、トリ-n-ブチルアミン、tert-ブチルアミン、ジシクロヘキシルアミン、N-メチルモルホリン、2,3-ジメチルアミノピリジン、N-メチルピロリドン等の有機塩基が好ましく用いられる。
 塩基の添加量は、精製アルケニルセファム化合物に対するモル比で0.9~1.5、好ましくは1.0~1.2で行うことが、目的物を高純度で、且つ高収率で得ることができる観点から好ましい。
 使用できる溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール等のアルコール、水、アセトン、アセトニトリル、テトラヒドロフラン、ジクロロメタン、ジクロロエタン、クロロホルム、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、酢酸エチル、酢酸プロピル、酢酸n-ブチル等の溶媒が好ましく、また、これらの溶媒は1種又は2種以上の混合溶媒として用いられる。
 反応温度は-10~40℃、好ましくは0~20℃で、反応時間は2時間以上、好ましくは4~10時間である。
 反応終了後、必要によりジクロロメタンやクロロホルム等の水と混合しない有機溶媒で洗浄後、鉱酸を用いて弱酸性側にpH調整し、溶媒を更に減圧下に除去することで目的とする式(4a)で表されるセファロスポリン誘導体又はそのアルカリ金属塩を得ることができる。なお、ここで式(4a)のアルカリ金属塩とは、薬理学上許容されるアルカリ塩を意味する。
<第3工程>
 また、本発明で得られる式(4a)で表わされるセファロスポリン誘導体又はそのアルカリ金属塩は、ヨウ化ソーダの存在下にビバリン酸クロロメチルと反応させる第3工程を設けることにより、Z体の含有率の高い下記一般式(4b)
Figure JPOXMLDOC01-appb-C000018

(式中、Rはアルキル基を示す。)で表されるセファロスポリン誘導体を製造することができ、特に式中のRがメチル基である7-[2-メトキシイミノ-2-(2-アミノチアゾール-4-イル)アセトアミド]-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸ピバロイルオキシメチルエステル(セフジトレンピボキシル)はセファロスポリン抗生物質として有用な物質であることが知られている。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されず、当業者の通常の創作能力の範囲内での適宜の改変は、本発明の範囲に属するものである。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。
 実施例及び比較例を説明するに先立ち、使用した分析方法について説明する。アルケニルセフェム化合物及び精製アルケニルセフェム化合物の分析には高速液体クロマトグラフィ(HPLC)を用いた。その詳細は以下のとおりである。
・カラム:Unison UK-C18、3μm、250mm×4.6mm
・カラム温度:30℃
・移動相(体積比):アセトニトリル13%、10mMへプタンスルホン酸ナトリウム水溶液87%
・流量:0.8ml/min
・検出波長:254nm
・注入量:10μl
・Z体保持時間:29.0~30.0分
・E体保持時間:31.0~32.0分
・E体含有率(計算式):〔E体面積値/(Z体面積値+E体面積値)〕×100(%)
 フェニル酢酸の含有率の分析方法は以下のとおりである。
・カラム:SUPELCO ODS HYPERSIL 5μm 250×4.6mm
・カラム温度:25℃
・移動相(体積比):アセトニトリル20%、50mMリン酸二水素カリウム水溶液80%
・流量:1.0ml/min
・検出波長:225nm
・注入量:10μl
・Z体+E体保持時間:2.5~3.5分
・フェニル酢酸保持時間:8.5~9.5分
・フェニル酢酸含有率(計算式):
 〔フェニル酢酸面積値/((Z+E)体面積値+フェニル酢酸面積値)〕×100(%)
  〔実施例1〕
(1)7位アミド結合の脱保護反応工程
 下記式(10)で表される化合物(E体の含有率3.5%)を10.0g四口フラスコにはかり取り、6重量%炭酸水素ナトリウム水溶液240gを加えてナトリウム塩の水溶液となした。この水溶液に、ペニシリン-Gアシラーゼ酵素(PGA-450、Dalas Biotech Limited製)を7.0g添加した。液温25~35℃、5重量%炭酸ナトリウム水溶液を添加して、pHを7.5~8.5に制御しながら式(10)で表される化合物のナトリウム塩の7位脱保護反応を2時間行った。反応終了後、水溶液中には、E体をE体含有率で3.5%含有する下記式(11)で表される化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸がフェニル酢酸含有率で16.6%含まれていた。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(2)フェニル酢酸類除去工程(A工程)
 第1工程で得られた水溶液から酵素(PGA-450)を濾別し、液温を0~10℃に保ちながら濃塩酸を添加して、水溶液のpHを0.9に調整し、水溶液に含まれていた式(11)で表される化合物のナトリウム塩を、式(11)で表される化合物の塩酸塩とした。pH調整が終了した水溶液を分液ロートに移し替え、液温を20℃に保ちながら、ここに150mlのトルエンを加えて副生成物及び不純物を抽出除去した。抽出処理後のフェニル酢酸含有率は6.1%であった。尚、抽出処理後の水溶液中のアルケニルセフェム化合物の濃度は2.2重量%であった。
(3)第1工程
 溶媒抽出後の水溶液に活性炭(味の素ファインテクノ社製、商品名CL-K)3.2gを一括で添加し、3℃で1時間攪拌した。この活性炭は、JIS K-1474に従い測定されたヨウ素吸着性能が1550mg/gであり、メチレンブルー吸着性能が310ml/gであった。その後、活性炭を濾別し、水溶液に1Nの水酸化ナトリウム水溶液を加えてpH4.3に調整し、1時間熟成した。この熟成によって式(2)で表される化合物の結晶が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。得られた結晶の分析結果は以下のとおりであった。尚、下記分析結果中のZ体収率は、以下の計算式により算出した値である。また、第1工程終了後に得られた式(11)の化合物の諸物性を表1に示す。
 Z体収率(%)=A×B/C
 A;第1工程後に得られた結晶の粗収率(%)
 B;式(2)で表される化合物のZ体としての純度(%)
 C;フェニル酢酸類除去工程の式(11)で表される化合物の鉱酸塩を基準にした式(1)で表される化合物のZ体の理論収率(%)
(分析結果)
・Z体収率:92.0%
・E体含有率:0.29%
・フェニル酢酸含有率:0.1%
・色調(目視):白色
1H-NMR(D2O/DCl) ppm 
 2.52(s、3H)、3.56~3.60(d、1H、18.3Hz)、3.75~3.78(d、1H、18.6Hz)、5.25~5.26(d、1H、5.2Hz)、5.44~5.45(d、1H、5.2Hz)、6.78(s、2H)、9.78(s、1H)
(4)第2工程
Figure JPOXMLDOC01-appb-C000021

 四口フラスコに上記第1工程で得られた式(11)で表される化合物4.0g、式(3)においてXが式(5)及びRがCH基である化合物(3a)5.3g、水25g、テトラヒドロフラン25g、トリエチルアミン1.4gを加え、5~10℃で5時間撹拌した。その後、反応液に2.5%炭酸水素ナトリウム水溶液40gを添加してジクロロメタン80gで2回洗浄した。さらに水層に1N塩酸を加えてpH2.0に調整し、30分熟成した。この熟成によって式(7)で表される化合物が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。得られた結晶の分析結果は以下のとおりであった。また、第2工程終了後に得られたセファロスポリン誘導体の諸物性を表2に示す。
・Z体収率:74.0%
・E体含有率:0.23%
1H-NMR(D2O) ppm 
 2.27(s、3H)、3.23~3.26(d、1H、18.3Hz)、3.49~3.53(d、1H、18.3Hz)、3.88(s、3H)、5.26~5.27(d、1H、4.6Hz)、 5.73~5.74(d、1H、4.6Hz)、6.19~6.21(d、1H、11.9Hz)、 6.55~6.57(d、1H、11.5Hz)、6.92(s、1H)、8.67(s、1H)
  〔実施例2〕
 実施例1の第1工程において、活性炭として、味の素ファインテクノ製のCL-KP(商品名)2.8gを用いた以外は、実施例1と同様にして、式(11)で表される化合物の結晶を得た。この活性炭のヨウ素吸着性能は1620mg/gであり、メチレンブルー吸着性能は280ml/gであった。
 次いで、実施例1の第2工程と同様に反応後、2.5%炭酸水素ナトリウム水溶液40gを添加してジクロロメタン80gで2回洗浄し、水層を濃縮した。濃縮により式(7)で表される化合物のナトリウム塩が析出した。さらにアセトン50gを加えて0~5℃で30分熟成し、析出した結晶を濾集、水及びアセトンで結晶を洗浄、乾燥した。また、第1工程終了後に得られた式(11)の化合物の諸物性を表1に、第2工程終了後に得られたセファロスポリン誘導体の諸物性を表2に示した。
・Z体収率:67.0%
・E体含有率:0.10%  
  〔実施例3〕
(1)7位アミド結合の脱保護反応工程
 実施例1と同様の操作及び条件で酵素反応を行った。反応終了後、水溶液中には、E体をE体含有率で3.5%含有する式(11)で表される化合物のナトリウム塩が7.0g含まれていた。また、フェニル酢酸がフェニル酢酸含有率で16.6%含まれていた。
(2)フェニル酢酸除去工程(B工程)
 第1工程で得られた水溶液から酵素(PGA-450)を濾別し、液温を10℃に保ちながら濃塩酸でpH4.2に調整し、そのまま1時間熟成した。この熟成により式(1)で表される化合物が析出し、次いで濾過して、析出物を回収した。なお、得られた析出物のフェニル酢酸含有率は0.5%であった。
(3)第1工程
 340gの水に第2工程で得られた析出物7.0g(Z体6.5g含有)を分散させ、20℃に保ちながら濃硫酸でpH1.0に調整し、該析出物を溶解した。この水溶液に、活性炭として味の素ファインテクノ製のCL-KP(商品名、ヨウ素吸着性能1620mg/g、メチレンブルー吸着性能280ml/g)1.5gを一括で添加し、3℃で1時間撹拌した。その後、活性炭を濾別し、水溶液に1Nの水酸化ナトリウム水溶液を加えてpH4.2に調整し、1時間熟成した。この熟成によって式(11)で表される化合物の結晶が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。また、第1工程終了後に得られた式(11)の化合物の諸物性を表1に示した。
(4)第2工程
 実施例2と同様な操作を実施し、式(7)で表される化合物のナトリウム塩を得た。また、第2工程終了後に得られたセファロスポリン誘導体の諸物性を表2に示した。
  〔比較例1〕
 実施例1の7位アミド結合の脱保護反応工程と同様にして酵素反応を行い、得られた式(11)で表される化合物のナトリウム塩を含有する水溶液から酵素を濾別した。濾液の全量を、液温20℃に保ちながら濃塩酸でpH0.9に調整した。これによって式(11)で表される化合物の塩酸塩の水溶液を得た。次いで、この水溶液に実施例1の第1工程で用いた活性炭に代えてJIS K-1474に従い測定されたヨウ素吸着性能が1080mg/gであり、メチレンブルー吸着性能が180ml/gである活性炭(味の素ファインテクノ社製、商品名SD-2)5.6gを一括で添加し、3℃で1時間攪拌した。活性炭処理後のフェニル酢酸含有率は1.1%であった。その後、活性炭を濾別し、得られた全量の濾液に対し、実施例1の第2工程と同様にして溶媒抽出を行った。溶媒抽出後の水溶液に1Nの水酸化ナトリウム水溶液を加えてpH4.3に調整し、1時間熟成した。この熟成によって式(11)で表される化合物の結晶が析出した。析出した結晶を濾集し、水及びメタノールで結晶を洗浄、乾燥した。また、第1工程終了後に得られた式(11)の化合物の諸物性を表1に示した。
(第2工程)
 実施例2と同様な操作を実施し、式(7)で表される化合物のナトリウム塩を得た。また、第2工程終了後に得られたセファロスポリン誘導体の諸物性を表2に示した。
  〔比較例2〕
 比較例1の第1工程で用いたものと同じ活性炭(SD-2)3.2gを一括で添加し、3℃で1時間攪拌した以外は、(1)7位アミド結合の脱保護反応工程、(2)フェニル酢酸除去工程を実施し、式(11)で表される化合物の結晶を得た。また、第1工程終了後に得られたセファロスポリン誘導体の諸物性を表1に示した。
(第2工程)
 実施例2と同様な操作を実施し、式(7)で表される化合物のナトリウム塩を得た。また、第2工程終了後に得られたセファロスポリン誘導体の諸物性を表2に示した。
Figure JPOXMLDOC01-appb-T000022

*活性炭処理の後で抽出処理;活性炭処理後のフェニル酢酸含有率は1.1%
Figure JPOXMLDOC01-appb-T000023

 表2の結果より、本発明の実施例1~3により得られるセファロスポリン誘導体は比較例1~2のものに比べ、Z体の含有率が高く、更に着色もないことが分かる。
  〔実施例4〕
(1)第3工程
 実施例2で得られた式(7)で表される化合物のナトリウム塩4.5gをジメチルホルムアミド(DMF)25gに溶解し、ピバリン酸クロロメチル(1.39g)とヨウ化ソーダ(1.39g)を用いて調製したピバリン酸ヨードメチルのDMF溶液25mlを0~5℃で添加し、その温度で1時間撹拌した。その後、反応液に酢酸エチル200gを加え、100gの水で3回洗浄した。続いて結晶が析出し始めるまで濃縮し、n-ヘキサン100gを加えて0~5℃で1時間熟成した。熟成終了後、結晶を濾集、n-ヘキサンで洗浄し、乾燥し7-[2-メトキシイミノ-2-(2-アミノチアゾール-4-イル)アセトアミド]-3-[2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸ピバロイルオキシメチルエステル(セフジトレンピボキシル)の淡黄白色結晶を得た。
 HPLC純度97.8%(分析方法は「第十五改正日本薬局方(第一追補)」、平成19年9月28日、厚生労働省 告示316号、セフジトレン ピポキシルの項参照。)
 本発明によれば、7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩を用い、簡便な工程で、Z体の含有率が高い目的するセファロスポリン誘導体又はそのアルカリ金属塩を工業的に有利な方法で提供することができる。

Claims (7)

  1.  下記式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の水溶液を、JIS K-1474に従い測定されたヨウ素吸着性能が1200mg/g以上であり、メチレンブルー吸着性能が250ml/g以上である活性炭と接触させて、下記式(2)で表される7-アミノ-3-[(Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩を得る第1工程、
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

     次いで、前記第1工程で得られた一般式(2)で表される7-アミノ-3-[(Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の含有率が向上した式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩と、下記一般式(3)で表される化合物とを反応させる第2工程を含むことを特徴とする下記一般式(4a)で表されるセファロスポリン誘導体又はそのアルカリ金属塩の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    (式中、Rは、アルキル基を示す。Xは活性エステル基を示す。)
  2.  前記活性エステル基が下記一般式(5)で表されるベンゾチアゾリル-2-チオール基である請求項1記載の製造方法。
    Figure JPOXMLDOC01-appb-C000005
  3.  前記式(1)で表される化合物を、鉱酸で処理して鉱酸塩となし、該鉱酸塩を含む低pH領域の前記水溶液を前記活性炭と接触させる請求項1又は2記載の製造方法。
  4.  前記鉱酸が塩酸である請求項3記載の製造方法。
  5.  前記活性炭で処理した後の処理液のpHを3.8~4.8に調整して、式(2)で表される化合物の結晶を沈殿させる請求項1乃至4のいずれかに記載の製造方法。
  6.  前記式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はそのアルカリ金属塩の水溶液が、下記一般式(6)で表される7-置換アシルアミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸の塩を酵素反応に付して7位アミド結合の脱保護反応を行い、該脱保護反応の副生成物であるフェニル酢酸又はその誘導体を含んだ前記一般式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はその塩の水溶液を得た後、下記(A)又は(B)の何れかの処理工程を行ったものである請求項1乃至5記載の製造方法。
    (A)得られる前記式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はその塩の水溶液に対し、有機溶媒を用いて、前記フェニル酢酸又はその誘導体の抽出処理を行う工程。
    (B)得られる前記式(1)で表される7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はその塩の水溶液から該7-アミノ-3-[(E/Z)-2-(4-メチルチアゾール-5-イル)ビニル]-3-セフェム-4-カルボン酸又はその塩を析出させる晶析処理を行う工程。
    Figure JPOXMLDOC01-appb-C000006

    (式中、Rはベンジル基、フェノキシメチル基を示す。Mは一価のカチオンを示す。)
  7.  更に、請求項1乃至6の何れか1項に記載の方法で得られた前記一般式(4a)で表されるセファロスポリン誘導体又はそのアルカリ金属塩を、ヨウ化ソーダの存在下にビバリン酸クロロメチルと反応させる第3工程を有することを特徴とする下記一般式(4b)で表されるセファロスポリン誘導体又はそのアルカリ金属塩の製造方法。
    Figure JPOXMLDOC01-appb-C000007

    (式中、Rは前記と同義。)
PCT/JP2011/051390 2010-01-27 2011-01-26 セファロスポリン誘導体の製造方法 WO2011093294A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011551861A JPWO2011093294A1 (ja) 2010-01-27 2011-01-26 セファロスポリン誘導体の製造方法
CN2011800074870A CN102725297A (zh) 2010-01-27 2011-01-26 头孢菌素衍生物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010016053 2010-01-27
JP2010-016053 2010-01-27

Publications (1)

Publication Number Publication Date
WO2011093294A1 true WO2011093294A1 (ja) 2011-08-04

Family

ID=44319281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051390 WO2011093294A1 (ja) 2010-01-27 2011-01-26 セファロスポリン誘導体の製造方法

Country Status (3)

Country Link
JP (1) JPWO2011093294A1 (ja)
CN (1) CN102725297A (ja)
WO (1) WO2011093294A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665002A (zh) * 2013-12-18 2014-03-26 成都医路康医学技术服务有限公司 一种头孢妥仑匹酯的制备方法
WO2016068330A1 (ja) * 2014-10-30 2016-05-06 三栄源エフ・エフ・アイ株式会社 ゲニポシド、ゲニピン、又はこれらの両方を除去する方法
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106366097A (zh) * 2016-08-19 2017-02-01 陕西思尔生物科技有限公司 一种头孢妥仑匹脂的制备方法
CN109180704B (zh) * 2018-11-19 2020-06-05 齐鲁安替制药有限公司 一种头孢妥仑匹酯的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178991A (ja) * 1984-09-07 1986-08-11 Meiji Seika Kaisha Ltd 新規セフアロスポリン化合物
WO2005003141A2 (en) * 2003-07-04 2005-01-13 Orchid Chemicals & Pharmaceuticals Ltd An improved process for the preparation of cefditoren
JP2005343854A (ja) * 2004-06-04 2005-12-15 Meiji Seika Kaisha Ltd 3−アルケニルセフェム化合物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219593A (ja) * 1985-07-18 1987-01-28 Meiji Seika Kaisha Ltd 新規セフエム化合物
DK0658558T3 (da) * 1993-11-17 2001-04-17 Biochemie Gmbh Adskillelse af cephalosporinisomere
WO2005016936A2 (en) * 2003-08-14 2005-02-24 Ranbaxy Laboratories Limited Process for selective preparation of z-isomer of cefditoren and pharmaceutically acceptable salts and esters thereof
WO2005100369A1 (en) * 2004-04-13 2005-10-27 Ranbaxy Laboratories Limited Depletion of e-isomers in preparation of z-enriched 3-(2-substituted vinyl) cephalosporins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178991A (ja) * 1984-09-07 1986-08-11 Meiji Seika Kaisha Ltd 新規セフアロスポリン化合物
WO2005003141A2 (en) * 2003-07-04 2005-01-13 Orchid Chemicals & Pharmaceuticals Ltd An improved process for the preparation of cefditoren
JP2005343854A (ja) * 2004-06-04 2005-12-15 Meiji Seika Kaisha Ltd 3−アルケニルセフェム化合物の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11965139B2 (en) 2011-04-15 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
CN103665002A (zh) * 2013-12-18 2014-03-26 成都医路康医学技术服务有限公司 一种头孢妥仑匹酯的制备方法
CN103665002B (zh) * 2013-12-18 2016-02-03 成都医路康医学技术服务有限公司 一种头孢妥仑匹酯的制备方法
WO2016068330A1 (ja) * 2014-10-30 2016-05-06 三栄源エフ・エフ・アイ株式会社 ゲニポシド、ゲニピン、又はこれらの両方を除去する方法
JPWO2016068330A1 (ja) * 2014-10-30 2017-08-10 三栄源エフ・エフ・アイ株式会社 ゲニポシド、ゲニピン、又はこれらの両方を除去する方法
US10611914B2 (en) 2014-10-30 2020-04-07 San-Ei Gen F.F.I., Inc. Method for removing geniposide or genipin or both
US11072709B2 (en) 2014-10-30 2021-07-27 San-Ei Gen F.F.I., Inc. Method for removing geniposide or genipin or both
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom

Also Published As

Publication number Publication date
CN102725297A (zh) 2012-10-10
JPWO2011093294A1 (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2011093294A1 (ja) セファロスポリン誘導体の製造方法
CA2124322C (en) Process for the purification of a 3-cephem-4-carboxylic acid derivative
FR2517308A1 (fr) Procede de preparation de derives de 3-alcoxymethylcephalosporines
WO2005003141A2 (en) An improved process for the preparation of cefditoren
KR100515273B1 (ko) 3-(2-치환-비닐)-세파로스포린의 z-이성체의 선택적제조방법
EP1752459B1 (en) Process for production of 3-alkenylcephem compounds
US20070111980A1 (en) Process for preparing pure cephalosporine intermediates
JPH05132488A (ja) 新規セフアロスポリン誘導体
JP4705199B2 (ja) 3−アルケニルセフェム化合物の製造方法
JP4659074B2 (ja) 3−アルケニルセフェム化合物の製造方法
JPH064646B2 (ja) 新規セフアロスポリン誘導体
KR101618874B1 (ko) 3-알케닐세펨 화합물의 제조 방법
CN108299470B (zh) 一种头孢特仑新戊酯的制备方法
EP2723882B1 (en) Process for preparing 3'-thiosubstituted cephalosporins employing a penicillin g acylase
CN113185538B (zh) 一种头孢泊肟酸的制备方法
EP1029864B1 (en) Process for the purification of a 3-cephem-4-carboxylic acid derivative
US20150112057A1 (en) Novel crystalline cefoperazone intermediate
WO2012175587A2 (en) Novel crystalline cefoperazone intermediate
US20070083042A1 (en) Processes for the preparation of cephalosporin derivatives
JP2002053568A (ja) アミドチアゾール酢酸誘導体の製造方法
JPS6310708B2 (ja)
CN110590812A (zh) 一种头孢米诺钠的制备方法
JP2002234893A (ja) 3−(2−置換−ビニル)−セファロスポリンのz異性体の選択的な製造方法
WO2005042543A1 (en) Processes for the preparation of cephem derivatives
JPS5913787A (ja) セフアロスポリン化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007487.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551861

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6579/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737007

Country of ref document: EP

Kind code of ref document: A1