WO2011093247A1 - 可燃性ガスの濃縮システム - Google Patents

可燃性ガスの濃縮システム Download PDF

Info

Publication number
WO2011093247A1
WO2011093247A1 PCT/JP2011/051240 JP2011051240W WO2011093247A1 WO 2011093247 A1 WO2011093247 A1 WO 2011093247A1 JP 2011051240 W JP2011051240 W JP 2011051240W WO 2011093247 A1 WO2011093247 A1 WO 2011093247A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
suction
adsorption
adsorption unit
control means
Prior art date
Application number
PCT/JP2011/051240
Other languages
English (en)
French (fr)
Inventor
森岡肇
夘瀧高久
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to UAA201209069A priority Critical patent/UA110022C2/uk
Priority to CN201180007257.4A priority patent/CN102741382B/zh
Priority to PL401475A priority patent/PL232835B1/pl
Priority to AU2011211029A priority patent/AU2011211029B2/en
Priority to US13/575,127 priority patent/US8932387B2/en
Priority to RU2012136471/04A priority patent/RU2542982C2/ru
Publication of WO2011093247A1 publication Critical patent/WO2011093247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • C10K1/22Apparatus, e.g. dry box purifiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40071Nine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds

Definitions

  • the present invention supplies a raw material gas containing a flammable gas and air to an adsorption unit filled with an adsorbent that selectively adsorbs the flammable gas inside to selectively adsorb the flammable gas.
  • the present invention relates to a system for concentrating combustible gas.
  • the system for concentrating a flammable gas described in Patent Document 1 includes an adsorption unit filled with an adsorbent that selectively adsorbs a flammable gas, and a source gas from the outside to the inside of the adsorption unit. It is provided with a source gas feed means which can be fed, and a suction means which can suck the gas from the inside of the adsorption unit. Then, the raw material gas is fed to the inside of the adsorption unit by the raw material gas feeding means to make the adsorbing material adsorb the flammable gas, and after the adsorption treatment, the adsorbing material wicks the combustible gas by the suction force of the suction means. And desorption to the outside.
  • the suction means for example, a vacuum pump device constituted by a pump and a drive motor for driving the pump is used.
  • suction means When operating the flammable gas concentration system, suction means are only required in the desorption process. Therefore, when the desorption process is not performed, the suction unit may be shut down to improve energy saving. However, if the start and stop of the operation of the suction means are repeated every time the desorption process is performed, the life of the suction means may be shortened.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a system for concentrating a flammable gas capable of improving energy saving property while considering the life of suction means. .
  • the features of the system for concentrating a flammable gas according to the present invention for achieving the above object are as follows: An adsorption unit filled with an adsorbent which selectively adsorbs flammable gas inside; A source gas feed unit capable of feeding the source gas containing the flammable gas from the outside into the inside of the adsorption unit; A suction means capable of sucking and processing gas from the inside of the adsorption unit; An adsorption process in which the raw material gas is fed to the inside of the adsorption unit by the raw material gas feed means, the combustible gas is adsorbed on the adsorbent, and the remaining gas is released to the gas release path; Control means for performing a desorption process for desorbing the flammable gas from the adsorbent and taking it out to the gas recovery path by the suction force of the suction means; The control means operates the suction means such that the suction force of the suction means when the desorption process is not performed is smaller than the suction force of
  • the control means operates the suction means so that the suction force of the suction means when the desorption process is not performed is smaller than the suction force of the suction means when the desorption process is performed.
  • the energy required to operate the suction means when not performing is smaller than the energy required to operate the suction means when performing the desorption process. That is, the energy saving property of the concentration system of combustible gas can be improved. Therefore, the concentration system of the flammable gas which can improve energy saving property can be provided, considering the lifetime of a suction means.
  • Another feature of the flammable gas concentration system according to the present invention is Equipped with one suction unit,
  • the control means operates the suction means so that the suction force of the suction means when performing the suction process is smaller than the suction force of the suction means when performing the desorption process. .
  • the control means operates the suction means such that the suction force of the suction means when performing the suction process is smaller than the suction force of the suction means when the desorption process is performed. Energy consumption of the suction means can be reduced during the adsorption process.
  • Yet another feature of the system for concentrating a flammable gas according to the present invention is Equipped with a plurality of the adsorption unit,
  • the suction means is also provided for suction inside the plurality of suction units,
  • the control means is configured such that the suction force of the suction means when the desorption process is not performed on any of the plurality of suction units is smaller than the suction force of the suction means when the desorption process is performed. The point is to operate the suction means.
  • the number of the suction means can be reduced.
  • the suction force of the suction unit when the desorption processing is not performed on any of the plurality of adsorption units is desorption
  • control means is, in addition to the adsorption process and the desorption process, an inside of the adsorption unit after the adsorption process is performed among a plurality of adsorption units and an inside of the adsorption unit after the desorption process is performed. Can be communicated via the communication passage to equalize the pressure inside the adsorption unit after the adsorption process and the pressure inside the adsorption unit after the desorption process.
  • the point is to operate the suction means so that the suction force of the suction means when performing the pressure equalization process becomes smaller than the suction force of the suction means when performing the desorption process.
  • control means operates the suction means such that the suction force of the suction means when performing the pressure equalization process is smaller than the suction force of the suction means when the desorption process is performed.
  • the energy required to operate the suction means can be reduced when performing pressure equalization processing.
  • the suction force of the suction means at the initial stage of the desorption treatment is larger than the suction force of the suction means at the initial stage and thereafter. As described above, the suction means is operated.
  • the amount of combustible gas adsorbed by the adsorbent of the adsorption unit is large at the beginning of the desorption process, a large amount of combustible gas can be desorbed if the suction power of the suction means is large.
  • the amount of combustible gas adsorbed by the adsorbent of the adsorption unit decreases from the initial stage of desorption treatment, only a relatively small amount of combustible gas is desorbed even if the suction power of the suction means is increased. I can not do it.
  • control means controls the suction means so that the suction force of the suction means at the initial stage of the desorption process is larger than the suction force of the suction means at the initial stage and thereafter.
  • a large amount of combustible gas can be desorbed effectively, and the combustible gas can be desorbed efficiently while reducing energy consumption from the initial stage.
  • the suction means includes a pump and a drive motor for driving the pump.
  • the control means controls the rotational speed of the drive motor by inverter control to adjust the suction force of the suction means.
  • control means can easily adjust the suction force of the suction means by controlling the rotational speed of the motor for driving the pump by inverter control.
  • FIG. 1 is a block diagram for explaining the configuration of the flammable gas enrichment system according to the first embodiment.
  • the concentration system S1 (S) includes an adsorption unit U (U1, U2, U3), a blower B as a raw material gas feed means, a vacuum pump device P as a suction means, and a control means C.
  • Each of the adsorption units U1, U2, and U3 has the same configuration, and is configured as an adsorption tower filled with an adsorbent a that selectively adsorbs the flammable gas.
  • the adsorbent a is not particularly limited as long as it can selectively adsorb the flammable gas.
  • activated carbon having an average pore diameter of 4.5 to 15 ⁇ by the MP method and having a methane gas adsorption amount of 20 Ncc / g or more under atmospheric pressure and 298 K as the adsorbent a.
  • a methane adsorbent which is at least one selected from the group consisting of zeolite, silica gel and organometallic complexes (copper fumarate, copper terephthalate, copper cyclohexanedicarboxylate, etc.).
  • the concentration system S1 includes, as gas passages, a gas supply passage d1 that supplies the raw material gas to the adsorption units U1, U2, and U3, and a flammable material in the adsorbent a in a state where the gas is supplied from the gas supply passage d1. And a gas release path d2 for releasing the remaining gas (off gas) to the outside after the adsorption of the sexing gas is completed.
  • a gas supply passage on-off valve 1 is provided in the gas supply passage d1 connected to the adsorption unit U1, and a gas supply passage on-off valve 4 is provided in the gas supply passage d1 connected to the adsorption unit U2.
  • a gas supply passage connected to the adsorption unit U3 A gas supply passage open / close valve 8 is provided at d1.
  • a gas release passage on-off valve 3 is provided in the gas release passage d2 connected to the adsorption unit U1, and a gas release passage on-off valve 6 is provided in the gas release passage d2 connected to the adsorption unit U2.
  • a gas release passage connected to the adsorption unit U3 A gas release passage on-off valve 10 is provided at d2.
  • the concentration system S1 has a gas recovery path d3 for recovering the product gas from the adsorption units U1, U2, U3 to the product tank T.
  • the gas recovery passage d3 connected to the adsorption unit U1 is provided with the gas recovery passage on-off valve 2, and the gas recovery passage d3 connected to the adsorption unit U2 is provided with the gas recovery passage on-off valve 5, and the gas recovery passage connected to the adsorption unit U3
  • a gas recovery passage on-off valve 9 is provided at d3.
  • gas inflow portion In a site where the gas flows in in the adsorption unit U
  • gas outflow portion Out a portion from which the gas flows out in the adsorption unit U
  • Gas sensors 13, 14 and 15 are provided in the gas release path d2.
  • Each gas sensor 13, 14, 15 is a device for detecting the point in time when the flammable gas adsorption capacity by the adsorbent a in each adsorption unit U1, U2, U3 reaches the limit, ie, the adsorption completion time (breakthrough time) It is.
  • the control means C detects when the flammable gas concentration (for example, methane gas concentration) detected by the gas sensors 13, 14 and 15 reaches a predetermined concentration, that is, when the adsorption capacity of the adsorbent a reaches a limit. I can know. As a result, the control means C can determine the end point of the supply of the source gas to the adsorption units U1, U2, U3.
  • the product tank T may be any one as long as it can safely store a highly concentrated combustible gas after concentration, and it is more preferable to use an adsorption type gas tank.
  • the blower B as a source gas feed means is configured to be capable of feeding the source gas containing the flammable gas from the outside into the interior of the adsorption unit U.
  • the source gas is a gas containing a combustible gas and air, but may be, for example, a coal mine gas containing methane gas and air.
  • the flammable gas is not particularly limited as long as it is a flammable gas, but may be, for example, methane gas contained in coal mine gas.
  • coal mine gas is gas generated from coal mine and depends on conditions, but coal mine gas contains about 20 to 40 Vol% of methane gas and about 60 to 80 Vol% of air (containing mainly nitrogen gas and oxygen gas). include.
  • the blower B sucks such a raw material gas, and supplies the raw material gas to the adsorption unit U substantially at atmospheric pressure without compression.
  • the vacuum pump device P as a suction means has a pump Pa and a drive motor Pb for driving the pump Pa, and is a device for decompressing the inside of the adsorption unit U and sucking the gas from the inside.
  • one vacuum pump device P is also provided for suction inside the suction units U1, U2, and U3.
  • a roots pump is used as the pump Pa.
  • the suction force (i.e., the exhaust speed) of the vacuum pump device P increases as the rotational speed of the drive motor Pb increases.
  • the control means C adjusts the suction force of the suction means by controlling the rotational speed of the drive motor Pb by inverter control.
  • the flammable gas adsorbed from the adsorption unit U to the adsorbent a is pressurized (the product tank T has a positive pressure) by the vacuum pump device P provided in the gas recovery path d3 working. It can be collected in the product tank T.
  • the concentration system S1 includes a communication passage d4 connecting between the inside of the adsorption unit U1 and the inside of the adsorption unit U2, a communication passage d5 connecting between the inside of the adsorption unit U1 and the inside of the adsorption unit U3, and an inside of the adsorption unit U2. And a communication passage d6 connecting the inside of the suction unit U3.
  • the communication passage d4 is provided with the communication passage on-off valve 7
  • the communication passage d5 is provided with the communication passage on-off valve 11
  • the communication passage d6 is provided with the communication passage on-off valve 12.
  • control means C is constituted by a storage medium such as a memory, a CPU, a microcomputer having an input / output unit, etc., and the computer executes the predetermined program to obtain the blower B and the vacuum pump device.
  • P control operation of gas supply passage open / close valves 1, 4, 8, gas release passage open / close valves 3, 6, 10, gas recovery passage open / close valves 2, 5, 9, communication passage open / close valves 7, 11, 12 .
  • the present embodiment is characterized in that the control means C operates the vacuum pump device P at all times, and appropriately adjusts the suction force of the vacuum pump device P by inverter control.
  • the control means C performs the adsorption process, the desorption process, the pressure equalization process, and the pressure increase process for each of the adsorption units U1, U2, and U3 between the first stage to the ninth stage. , And execute waiting processing.
  • the adsorption process is a process in which the raw material gas is supplied to the inside of the adsorption unit U by the blower B, the combustible gas is adsorbed on the adsorbent a, and the remaining gas is released to the gas release path.
  • the desorption process is a process of desorbing the flammable gas from the adsorbent a by the suction force of the vacuum pump after the adsorption process and taking it out to the gas recovery path.
  • the pressure equalization process is a process of bringing the inside of the adsorption unit U after the desorption process into communication with the inside of another adsorption unit U after the adsorption process to balance the pressure inside the adsorption units U.
  • air pressure increasing gas
  • adsorption treatment is performed between the first stage to the third stage, pressure equalization treatment is performed at the fourth stage, and desorption treatment is performed between the fifth stage to the sixth stage, and the seventh stage is performed.
  • the pressure equalization process is performed in the stage, the pressure increasing process is performed in the eighth stage, and the standby process is performed in the ninth stage. Since the configurations of the adsorption units U1, U2, and U3 are the same as each other, the procedures of the adsorption processing, pressure equalization processing, desorption processing, pressure increase processing, and standby processing performed in each adsorption unit U1, U2, and U3 are substantially the same. It is.
  • the timing at which each process is performed differs from that of the adsorption unit U1. Therefore, the following description will focus on the procedures of adsorption processing, pressure equalization processing, desorption processing, pressurizing processing, standby processing performed in the adsorption unit U1 between the first to ninth stages, and the adsorption unit U2 and the adsorption unit U3. The detailed description of the procedure of each process performed in step S2 is omitted.
  • the control means C performs the adsorption process on the adsorption unit U1 in the first to third stages. Specifically, the control means C opens the gas supply passage on-off valve 1 and the gas release passage on-off valve 3 and closes the gas recovery passage on-off valve 2, the communication passage on-off valve 7 and the communication passage on-off valve 11. .
  • control means C operates the blower B to supply the raw material gas into the adsorption unit U1 through the gas supply passage d1 to adsorb the combustible gas contained in the raw material gas to the adsorbent a, thereby causing the adsorption unit Of the raw material gas supplied into U1, the off gas not adsorbed to the adsorbent a is released to the external space of the adsorption unit U1 through the gas release passage d2.
  • a raw material gas such as a coal mine gas is supplied into the adsorption unit U1 under atmospheric pressure to selectively adsorb the methane gas as a combustible gas contained in the coal mine gas to the adsorbent a while being valuable in the off gas. Can be prevented from flowing out with the methane gas contained.
  • the control means C does not execute the desorption process for any of the adsorption units U (U1, U2, U3) in the first stage, but continues the vacuum pump device P. I am driving.
  • the controller C does not perform the desorption process on any of the plurality of adsorption units U (U1, U2, U3) as described above, the suction force of the vacuum pump apparatus P performs the desorption process.
  • the vacuum pump device P is controlled to be smaller than the suction force of the pump device P. Specifically, when the suction force is increased, the degree of rotation is set to a high rotation speed, and when reduced, the rotation speed is set lower than the rotation speed.
  • the control means C adjusts the suction force of the vacuum pump device P by controlling the rotational speed of the drive motor Pb of the vacuum pump device P by inverter control.
  • the control means C controls the rotational speed of the drive motor Pb to 600 rpm.
  • the control means C controls the rotational speed of the drive motor Pb to 1100 rpm when the desorption process is performed in any of the adsorption units U (U1, U2, U3).
  • the control means C detects whether or not the concentration of the flammable gas in the off gas released to the gas release path d2 is equal to or higher than a predetermined concentration by the gas sensor 13.
  • the control means C stops the supply of the raw material gas to the adsorption unit U1, and ends the adsorption process. That is, the control means C recognizes that the concentration of the combustible gas detected in the gas release passage d2 has reached the predetermined concentration or more as the adsorption material a has reached the adsorption limit, and ends the adsorption process. Do.
  • the control means C performs pressure equalization processing to equalize the internal pressure of the adsorption unit U1 and the internal pressure of the adsorption unit U3 in the fourth stage. Specifically, the control means C opens the communication passage on-off valve 11 provided in the communication passage d5 connecting between the adsorption unit U1 and the adsorption unit U3 so that the gas supply passage on-off valve 1, the gas recovery passage The on-off valve 2, the gas release passage on-off valve 3, and the communication passage on-off valve 7 are closed.
  • the internal pressure of the adsorption unit U1 indicates a relatively high pressure after the adsorption process is performed in the third stage, and the inside of the adsorption unit U3 The pressure indicates a relatively low pressure after the desorption process has been performed in the third stage. Then, when the communication passage on-off valve 11 is opened in the fourth stage and pressure equalization processing is executed, the internal pressure of the adsorption unit U1 decreases, the internal pressure of the adsorption unit U3 increases, and both pressures increase. Balance.
  • a gas containing a low concentration flammable gas remaining inside the adsorption unit U1 mainly in the gas phase without being adsorbed by the adsorbent a is diffused toward the adsorption unit U3. Therefore, the low concentration flammable gas can be prevented from being collected toward the product tank T when the desorption process is performed in the subsequent fifth step.
  • the pressure in the adsorption unit U3 can be raised to some extent before the pressure increasing process to be performed later.
  • control means C does not execute the desorption process for any of the adsorption units U (U1, U2, U3) in the fourth stage, but continues to operate the vacuum pump device P to operate. doing. However, as in the case of the first stage, the control means C does not perform the desorption process of the vacuum pump apparatus P when the desorption process is not performed on any of the plurality of adsorption units U (U1, U2, U3).
  • the vacuum pump device P is controlled so as to be smaller than the suction force of the vacuum pump device P when performing the above.
  • the control means C controls the rotational speed of the drive motor Pb at 600 rpm.
  • the control means C performs the desorption process on the adsorption unit U1 in the fifth to sixth stages. Specifically, the control means C closes the gas supply passage on-off valve 1, the gas discharge passage on-off valve 3, the communication passage on-off valve 7, and the communication passage on-off valve 11, and opens the gas recovery passage on-off valve 2. Do. At the fourth stage, the control means C increases the suction force of the vacuum pump device P (controls the rotational speed of the drive motor Pb to 1100 rpm), and reduces the pressure in the adsorption unit U1 lower than atmospheric pressure. The adsorbed combustible gas is desorbed from the adsorbent a.
  • the flammable gas is drawn to the gas recovery path d3 side and collected and stored in the product tank T.
  • the control means C closes the gas recovery passage on-off valve 2 to stop the recovery of the combustible gas from the adsorption unit U1.
  • the control means C monitors the internal pressure of the adsorption unit U1. This makes it possible to judge the completion of the desorption process.
  • the control means C executes pressure equalization processing on U1 in the seventh stage.
  • the control means C executes pressure equalization processing to balance the internal pressure of the adsorption unit U1 and the internal pressure of the adsorption unit U2.
  • the control means C closes the gas supply passage opening / closing valve 1, the gas recovery passage opening / closing valve 2, the gas release passage opening / closing valve 3 and the communication passage opening / closing valve 11, and combines the adsorption unit U1 and the adsorption unit U2.
  • the communication passage on-off valve 7 provided in the communication passage d4 connecting the two is opened.
  • the internal pressure of the adsorption unit U1 shows a relatively low pressure after the desorption process is performed in the sixth stage before the seventh stage is started, and the inside of the adsorption unit U2 is The pressure indicates a relatively high pressure after the adsorption process is performed in the sixth stage. Then, when the communication passage on-off valve 7 is opened in the seventh stage and pressure equalization processing is executed, the internal pressure of the adsorption unit U1 increases, the internal pressure of the adsorption unit U2 decreases, and the pressure of both is increased. Balance. As a result, in the adsorption unit U1, the internal pressure can be raised to some extent before the pressure increasing process to be performed later.
  • a gas containing a low concentration flammable gas remaining inside the adsorption unit U2 mainly in the gas phase without being adsorbed by the adsorbent a is diffused toward the adsorption unit U1. .
  • the control means C does not execute the desorption process for any of the adsorption units U (U1, U2, U3) in the seventh stage as in the case of the pressure equalization process in the fourth stage, but the vacuum pump The device P is continuously operated. However, as in the case of the fourth stage, the control means C does not perform the desorption process of the vacuum pump apparatus P when the desorption process is not performed on any of the plurality of adsorption units U (U1, U2, U3).
  • the vacuum pump device P is controlled so as to be smaller than the suction force of the vacuum pump device P when performing the above.
  • the control means C controls the rotational speed of the drive motor Pb at 600 rpm.
  • the control means C executes a pressure increasing process on the adsorption unit U1 in the eighth stage. Specifically, the control means C opens the gas release passage on-off valve 3 and closes the gas supply passage on-off valve 1, the gas recovery passage on-off valve 2, the communication passage on-off valve 7 and the communication passage on-off valve 11. .
  • air pressure boosting gas
  • the control means C opens the gas release passage on-off valve 3 and closes the gas supply passage on-off valve 1, the gas recovery passage on-off valve 2, the communication passage on-off valve 7 and the communication passage on-off valve 11.
  • air pressure boosting gas
  • the flammable gas can be easily adsorbed.
  • the control means C performs a standby process on the adsorption unit U1 in the ninth stage. Specifically, the control means C keeps the gas supply passage open / close valve 1, the gas recovery passage open / close valve 2, the gas discharge passage open / close valve 3, the communication passage open / close valve 7 and the communication passage open / close valve 11 closed. Wait for the start of the later adsorption process.
  • the control means C executes the desorption process to any of the plurality of adsorption units U (U1, U2, U3) during the first to ninth stages.
  • the vacuum pump device P is controlled such that the suction force of the vacuum pump device P when not performing is smaller than the suction force of the vacuum pump device P when the desorption process is performed.
  • FIG. 3 is a graph showing transition of the rotational speed of the drive motor Pb of the vacuum pump device P between the first stage to the ninth stage.
  • FIG. 4 is a graph showing the transition of the axial output of the drive motor Pb of the vacuum pump device P between the first stage to the ninth stage.
  • FIGS. 3 and 4 show the case of the normal operation in which the rotational speed of the drive motor Pb of the vacuum pump device P is controlled to be constant between the first stage to the ninth stage as a comparative example.
  • the suction force of the vacuum pump apparatus P when the control means C does not execute the desorption process for any of the plurality of adsorption units U (U1, U2, U3) is the desorption process.
  • the average power during the first to ninth steps implements the inverter control of the present invention as described above for the drive motor Pb provided in one vacuum pump device P. In this case, it is about 86 kW, and is about 91 kW in the case of the comparative example in which the normal operation in which the drive motor Pb is operated at a constant rotational speed is performed.
  • the concentration system S1 of the present invention power of about 5 kW can be reduced per hour.
  • the power that can be reduced by the number increases.
  • concentration system of the flammable gas of the second embodiment is different from the concentration system of the first embodiment in that an adsorption unit of two columns is provided.
  • concentration system of the second embodiment will be described below, the description of the same components as those of the first embodiment will be omitted.
  • FIG. 5 is a block diagram for explaining the configuration of the flammable gas enrichment system according to the second embodiment.
  • the concentration system S2 (S) includes an adsorption unit U (U1, U2), a blower B as a raw material gas delivery means, a vacuum pump device P as a suction means, and a control means C.
  • the concentration system S2 is obtained by removing the components related to the adsorption unit U3 from the concentration system S1 described in the first embodiment.
  • the concentration system S2 of the second embodiment includes a gas supply passage d1 for supplying a raw material gas to the adsorption units U1 and U2, and a combustible gas in the adsorbent a in a state where the gas is supplied from the gas supply passage d1. After the adsorption is completed, it has a gas release path d2 for releasing the remaining gas (off gas) to the outside.
  • a gas supply passage on-off valve 1 is provided in the gas supply passage d1 connected to the adsorption unit U1, and a gas supply passage on-off valve 4 is provided in the gas supply passage d1 connected to the adsorption unit U2.
  • a gas discharge passage on-off valve 3 is provided in the gas discharge passage d2 connected to the adsorption unit U1, and a gas discharge passage on-off valve 6 is provided in the gas discharge passage d2 connected to the adsorption unit U2.
  • the concentration system S2 has a gas recovery path d3 for recovering the product gas from each of the adsorption units U1, U2 to the product tank T.
  • a gas recovery passage on-off valve 2 is provided in the gas recovery passage d3 connected to the adsorption unit U1, and a gas recovery passage on-off valve 5 is provided in the gas recovery passage d3 connected to the adsorption unit U2.
  • a communication passage d4 capable of communicating the inside of the adsorption unit U1 with the inside of the adsorption unit U2 is provided.
  • a communication passage on-off valve 7 is provided in the communication passage d4. When the communication passage on-off valve 7 is opened, the pressure in the adsorption unit U1 and the pressure in the adsorption unit U2 are balanced.
  • control means C executes the adsorption process, the desorption process, the pressure equalization process, and the pressure increase process for each of the adsorption units U1 and U2 between the first stage to the sixth stage. Do.
  • the adsorption process is performed in the first stage, the pressure equalization process is performed in the second stage, the desorption process is performed between the third stage and the fourth stage, and the pressure equalization process is performed in the fifth stage.
  • the boosting process is performed in the sixth stage. Since the configurations of the adsorption units U1 and U2 are the same as each other, the procedures of the adsorption process, pressure equalization process, desorption process, and pressure increase process performed in the adsorption units U1 and U2 are substantially the same. That is, in the suction unit U2, the timing at which each process is performed differs from that of the suction unit U1.
  • the control means C performs the adsorption process on the adsorption unit U1 in the first stage. Specifically, the control means C opens the gas supply passage on-off valve 1 and the gas release passage on-off valve 3 and closes the gas recovery passage on-off valve 2 and the communication passage on-off valve 7.
  • control means C operates the blower B to supply the raw material gas into the adsorption unit U1 through the gas supply passage d1 to adsorb the combustible gas contained in the raw material gas to the adsorbent a, thereby causing the adsorption unit Of the raw material gas supplied into U1, the off gas not adsorbed to the adsorbent a is discharged to the external space of the adsorption unit U1 through the gas discharge path d2.
  • the control means C detects whether or not the concentration of the flammable gas in the off gas released to the gas release path d2 is equal to or higher than a predetermined concentration by the gas sensor 13.
  • the control means C stops the supply of the raw material gas to the adsorption unit U1, and ends the adsorption process. That is, the control means C recognizes that the concentration of the combustible gas detected in the gas release passage d2 has reached the predetermined concentration or more as the adsorption material a has reached the adsorption limit, and ends the adsorption process. Do.
  • the control means C performs pressure equalization processing to balance the internal pressure of the adsorption unit U1 and the internal pressure of the adsorption unit U2 in the second stage. Specifically, the control means C opens the communication passage on-off valve 7 provided in the communication passage d4 connecting between the adsorption unit U1 and the adsorption unit U2, and the gas supply passage on-off valve 1 and the gas recovery passage The on-off valve 2 and the gas release passage on-off valve 3 are closed.
  • the internal pressure of the adsorption unit U1 shows a relatively high pressure after the adsorption process is performed in the first stage, and the internal pressure of the adsorption unit U2 is desorbed in the first stage Indicates a relatively low pressure after the treatment has been performed.
  • the communication passage on-off valve 7 is opened and pressure equalization processing is executed, the internal pressure of the adsorption unit U1 decreases, the internal pressure of the adsorption unit U2 increases, and both pressures increase. Balance.
  • the adsorption unit U1 a gas containing a low concentration flammable gas remaining inside the adsorption unit U1 mainly in the gas phase without being adsorbed by the adsorbent a is diffused toward the adsorption unit U2 Therefore, the low concentration flammable gas can be prevented from being collected toward the product tank T when the desorption process is performed in the subsequent third stage.
  • the pressure in the adsorption unit U2 can be raised to some extent before the pressure increasing process to be performed later.
  • the control means C does not execute the desorption process for any of the adsorption units U (U1, U2) in the second stage, but continues to operate the vacuum pump device P. However, when the controller C does not execute the desorption process for any of the plurality of adsorption units U (U1, U2), the suction force of the vacuum pump apparatus P causes the suction of the vacuum pump apparatus P when the desorption process is performed.
  • the vacuum pump device P is controlled to be smaller than the force.
  • the control means C controls the rotational speed of the drive motor Pb to 600 rpm.
  • the control means C performs the desorption process on the adsorption unit U1 in the third to fourth stages. Specifically, the control means C closes the gas supply passage on-off valve 1, the gas discharge passage on-off valve 3, and the communication passage on-off valve 7, and opens the gas recovery passage on-off valve 2. In the third to fourth stages, the control means C increases the suction force of the vacuum pump device P (controls the rotational speed of the drive motor Pb to 1100 rpm), and causes the inside of the adsorption unit U1 to be above atmospheric pressure. The pressure is reduced low to desorb the adsorbed combustible gas from the adsorbent a. When the pressure in the adsorption unit U1 is reduced to a predetermined pressure, the control means C closes the gas recovery passage on-off valve 2 to stop the recovery of the combustible gas from the adsorption unit U1.
  • Step 5 The control means C executes pressure equalization processing to equalize the internal pressure of the adsorption unit U1 and the internal pressure of the adsorption unit U2 in the fifth stage.
  • the procedure for performing the fifth stage pressure equalization process is the same as the procedure for performing the second stage pressure equalization process.
  • the internal pressure of the adsorption unit U1 shows a relatively low pressure after the desorption process is performed in the fourth stage, and the internal pressure of the adsorption unit U2 is adsorbed in the fourth stage Indicates a relatively high pressure after the treatment has been performed.
  • the communication passage on-off valve 7 is opened in the fifth stage and pressure equalization processing is executed, the internal pressure of the adsorption unit U1 increases, the internal pressure of the adsorption unit U2 decreases, and both pressures increase. Balance.
  • the internal pressure can be raised to some extent before the pressure increasing process to be performed later.
  • a gas containing a low concentration flammable gas remaining inside the adsorption unit U2 mainly in the gas phase without being adsorbed by the adsorbent a is diffused toward the adsorption unit U1. .
  • the control means C does not execute the desorption process for any of the adsorption units U (U1, U2) in the fifth stage as in the case of the pressure equalization process in the second stage, but the vacuum pump apparatus P You are driving continuously. However, as in the case of the second stage, the control means C performs the desorption process when the suction force of the vacuum pump apparatus P does not execute the desorption process for any of the plurality of adsorption units U (U1, U2).
  • the vacuum pump device P is controlled to be smaller than the suction force of the vacuum pump device P at the time of Also in the fifth step, as shown in Table 4, the control means C controls the rotational speed of the drive motor Pb at 600 rpm.
  • the control means C executes the pressure raising process on the adsorption unit U1 in the sixth stage. Specifically, the control means C opens the gas release passage on-off valve 3 and closes the gas supply passage on-off valve 1, the gas recovery passage on-off valve 2 and the communication passage on-off valve 7. As a result, air (pressure boosting gas) is externally introduced into the inside of the adsorption unit U1 through the gas release passage on-off valve 3 to raise the pressure in the adsorption unit U1 to near the atmospheric pressure, which is subsequently performed. In the adsorption process, the flammable gas can be easily adsorbed.
  • the control unit C does not perform the desorption process on any of the plurality of adsorption units U (U1 and U2) in the second and fifth stages.
  • the vacuum pump device P is controlled such that the suction force of the pump device P is smaller than the suction force of the vacuum pump device P when performing the desorption process. As a result, unnecessary power consumption can be prevented in the second and fifth stages.
  • the concentration system for combustible gas according to the third embodiment is different from the concentration system according to the first embodiment in that the single column adsorption unit is provided.
  • concentration system of 3rd Embodiment is demonstrated, description is abbreviate
  • FIG. 3 is a block diagram for explaining the configuration of the flammable gas enrichment system of the third embodiment.
  • the concentration system S3 (S) includes an adsorption unit U (U1), a blower B as a source gas feed unit, a vacuum pump device P as a suction unit, and a control unit C.
  • the concentration system S3 is obtained by removing the components related to the adsorption unit U2 and the adsorption unit U3 from the concentration system S1 described in the first embodiment.
  • the concentration system S3 finishes adsorption of the combustible gas in the adsorbent a in a state where the gas is supplied from the gas supply passage d1 for supplying the raw material gas to the adsorption unit U1 and the gas supply passage d1. And a gas release path d2 for releasing the remaining gas (off gas) to the outside.
  • a gas supply passage on-off valve 1 is provided in a gas supply passage d1 connected to the adsorption unit U1.
  • a gas release passage on-off valve 3 is provided in a gas release passage d2 connected to the adsorption unit U1.
  • the concentration system S3 has a gas recovery passage d3 for recovering the product gas into the product tank T.
  • a gas recovery passage on-off valve 2 is provided in a gas recovery passage d3 connected to the adsorption unit U1.
  • control means C performs the adsorption process, the desorption process, and the pressure increasing process on the adsorption unit U1 between the first stage and the third stage.
  • the control means C performs the adsorption process on the adsorption unit U1 in the first stage. Specifically, the control means C opens the gas supply passage on-off valve 1 and the gas release passage on-off valve 3 and closes the gas recovery passage on-off valve 2. In addition, the control means C operates the blower B to supply the raw material gas into the adsorption unit U1 through the gas supply passage d1 to adsorb the combustible gas contained in the raw material gas to the adsorbent a, thereby causing the adsorption unit Of the raw material gas supplied into U1, the off gas not adsorbed to the adsorbent a is discharged to the external space of the adsorption unit U1 through the gas discharge path d2.
  • the control means C detects whether or not the concentration of the flammable gas in the off gas released to the gas release path d2 is equal to or higher than a predetermined concentration by the gas sensor 13.
  • the control means C stops the supply of the raw material gas to the adsorption unit U1, and ends the adsorption process. That is, the control means C recognizes that the concentration of the combustible gas detected in the gas release passage d2 has reached the predetermined concentration or more as the adsorption material a has reached the adsorption limit, and ends the adsorption process. Do.
  • the control means C operates the vacuum pump device P also when performing the adsorption process. Specifically, the control means C is configured such that the suction force of the vacuum pump device P when performing the adsorption process in the first stage is smaller than the suction force of the vacuum pump device P when the desorption process is performed.
  • the vacuum pump device P is controlled.
  • the control means C controls the rotational speed of the drive motor Pb at 600 rpm.
  • the control means C performs the desorption process on the adsorption unit U1 in the second stage. Specifically, the control means C closes the gas supply passage on-off valve 1 and the gas discharge passage on-off valve 3 and opens the gas recovery passage on-off valve 2. At the second stage, the control means C enlarges the suction force of the vacuum pump device P (controls the rotational speed of the drive motor Pb to 1100 rpm), and reduces the pressure in the adsorption unit U1 lower than atmospheric pressure. The adsorbed combustible gas is desorbed from the adsorbent a. When the pressure in the adsorption unit U1 is reduced to a predetermined pressure, the control means C closes the gas recovery passage on-off valve 2 to stop the recovery of the combustible gas from the adsorption unit U1.
  • the control means C executes the pressure raising process on the adsorption unit U1 in the third stage. Specifically, the control means C opens the gas release passage on-off valve 3 and closes the gas supply passage on-off valve 1 and the gas recovery passage on-off valve 2. As a result, air (pressure boosting gas) is externally introduced into the inside of the adsorption unit U1 through the gas release passage on-off valve 3 to raise the pressure in the adsorption unit U1 to near the atmospheric pressure, which is subsequently performed. In the adsorption process, the flammable gas can be easily adsorbed.
  • the control means C operates the vacuum pump device P also when performing the pressure increasing process. Specifically, the control means C is configured such that the suction force of the vacuum pump device P when performing the pressure raising process in the third stage is smaller than the suction force of the vacuum pump device P when the desorption process is performed.
  • the vacuum pump device P is controlled.
  • the control means C controls the rotational speed of the drive motor Pb at 600 rpm.
  • control means C operates the drive motor Pb of the vacuum pump device P at a constant rotational speed (1100 rpm) during the desorption process.
  • the rotation speed may be changed.
  • the control means C may operate the vacuum pump device P such that the suction force of the vacuum pump device (suction means) P at the initial stage of the desorption process is larger than the suction force of the vacuum pump device P at the initial stage and thereafter. .
  • a large amount of combustible gas can be effectively desorbed from the adsorbent a at the initial stage of the desorption treatment, and efficiently after the initial stage while reducing the energy consumption.
  • the flammable gas can be desorbed from the adsorbent a.
  • the structure of the concentration system S of combustible gas can be changed suitably.
  • a mechanism for over-adsorption may be additionally provided to increase the amount of combustible gas adsorbed to the adsorption unit U by feeding the source gas to the adsorption unit U at a high pressure by a pump or the like.
  • a vacuum pump device P is provided and used for suction in the plurality of suction units U has been described.
  • a vacuum pump device is separately provided for each of the plurality of suction units U P may be provided.
  • the concentration system S including one to three adsorption units U is illustrated, but a concentration system including four or more adsorption units U may be configured.
  • the present invention supplies a raw material gas containing a flammable gas and air to an adsorption unit filled with an adsorbent that selectively adsorbs the flammable gas inside to selectively adsorb the flammable gas. It can be used for the concentration system of flammable gas to be concentrated.
  • Adsorbent B Blower Blower (raw gas feed means)
  • Control means P Vacuum pump device (suction means)
  • Pa pump Pb drive motor S S1, S2, S3
  • Combustible gas concentration system T
  • Product tank U U1, U2, U3 Adsorption unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

 吸引手段の寿命を考慮しながら、省エネルギ性を向上させることのできる可燃性ガスの濃縮システムを提供するために、可燃性ガスの濃縮システムSが、内部に可燃性ガスを選択的に吸着する吸着材aが充填された吸着ユニットUと、可燃性ガスを含有する原料ガスを外部から吸着ユニットUの内部に送給可能な原料ガス送給手段Bと、吸着ユニットUの内部からガスを吸引処理可能な吸引手段Pと、吸着ユニットUの内部に原料ガスを送給して吸着材aに可燃性ガスを吸着させる吸着処理と、吸着処理の後で吸引手段Pの吸引力により吸着材aから可燃性ガスを脱着させて外部へ取り出す脱着処理とを実行する制御手段Cとを備え、制御手段Cは、脱着処理を実行しないときの吸引手段Pの吸引力が脱着処理を実行するときの吸引手段Pの吸引力よりも小さくなるように吸引手段Pを作動させる。

Description

可燃性ガスの濃縮システム
 本発明は、可燃性ガスおよび空気を含有する原料ガスを、内部に可燃性ガスを選択的に吸着する吸着材が充填された吸着ユニットに供給して、可燃性ガスを選択的に吸着させて濃縮する可燃性ガスの濃縮システムに関する。
 可燃性ガスを燃料などとして有効に利用する場合には、その可燃性ガスを含有する原料ガスから空気などのガスを分離して、適当な範囲にまで可燃性ガスを濃縮する必要がある。このような可燃性ガスを濃縮する装置や方法は種々提案されているが、例えば特許文献1では、可燃性ガスとしてのメタンガスを含有する炭鉱から発生するガス(いわゆる炭鉱ガス)を原料ガスとして、この原料ガスから吸着材を用いて空気(主に窒素、酸素、二酸化炭素が含まれる)を分離し、メタンガスを濃縮して利用する発明が提案されている。
 具体的には、特許文献1に記載の可燃性ガスの濃縮システムは、内部に可燃性ガスを選択的に吸着する吸着材が充填された吸着ユニットと、外部から吸着ユニットの内部に原料ガスを送給可能な原料ガス送給手段と、吸着ユニットの内部からガスを吸引処理可能な吸引手段とを備える。そして、原料ガス送給手段により吸着ユニットの内部に原料ガスを送給して吸着材に可燃性ガスを吸着させる吸着処理と、吸着処理の後で吸引手段の吸引力により吸着材から可燃性ガスを脱着させて外部へ取り出す脱着処理とが実行される。上記吸引手段として、例えば、ポンプと、そのポンプを駆動する駆動用モータとで構成される真空ポンプ装置が用いられる。
日本国特開2009-220004号公報
 可燃性ガスの濃縮システムを稼動させるとき、吸引手段は脱着処理においてのみ必要である。そのため、脱着処理を実行しないとき、省エネルギ性を向上させるために吸引手段を運転停止させてもよい。
 しかし、脱着処理を実行する度に吸引手段の運転開始と運転停止とを繰り返していては、吸引手段の寿命を短くする可能性がある。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、吸引手段の寿命を考慮しながら、省エネルギ性を向上させることのできる可燃性ガスの濃縮システムを提供する点にある。
 上記目的を達成するための本発明に係る可燃性ガスの濃縮システムの特徴構成は、
 内部に可燃性ガスを選択的に吸着する吸着材が充填された吸着ユニットと、
 前記可燃性ガスを含有する原料ガスを、外部から前記吸着ユニットの内部に送給可能な原料ガス送給手段と、
 前記吸着ユニットの内部からガスを吸引処理可能な吸引手段と、
 前記原料ガス送給手段により前記吸着ユニットの内部に前記原料ガスを送給して前記吸着材に可燃性ガスを吸着させ残余のガスをガス放出路へ放出する吸着処理と、前記吸着処理の後で前記吸引手段の吸引力により前記吸着材から可燃性ガスを脱着させてガス回収路へ取り出す脱着処理と、を実行する制御手段と、を備え、
 前記制御手段は、前記脱着処理を実行しないときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる点にある。
 上記特徴構成によれば、脱着処理を実行しないときにも吸引手段を作動させることで、脱着処理を実行する度に吸引手段の運転開始と運転停止とを頻繁に繰り返すような運転形態は採られない。そのため、吸引手段の運転開始と運転停止とを頻繁に繰り返すような運転形態を採った場合に比べて、吸引手段の寿命を長くできる。
 加えて、制御手段が、脱着処理を実行しないときの吸引手段の吸引力が、脱着処理を実行するときの吸引手段の吸引力よりも小さくなるように吸引手段を作動させることで、脱着処理を実行しないときに吸引手段を作動させるために要するエネルギは、脱着処理を実行するときに吸引手段を作動させるために要するエネルギよりも小さくなる。つまり、可燃性ガスの濃縮システムの省エネルギ性を向上させることができる。
 従って、吸引手段の寿命を考慮しながら、省エネルギ性を向上させることのできる可燃性ガスの濃縮システムを提供できる。
 本発明に係る可燃性ガスの濃縮システムの別の特徴構成は、
 前記吸着ユニットを1つ備え、
 前記制御手段は、前記吸着処理を実行するときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる点にある。
 1つの吸着ユニットに対して吸着処理と脱着処理とが同時に実行されることはないので、吸着処理を実行しているとき、吸引手段の吸引力を大きくしておく必要はない。
 本特徴構成によれば、制御手段が、吸着処理を実行するときの吸引手段の吸引力が、脱着処理を実行するときの吸引手段の吸引力よりも小さくなるように吸引手段を作動させるので、吸着処理の間における吸引手段の消費エネルギを小さくできる。
 本発明に係る可燃性ガスの濃縮システムの更に別の特徴構成は、
 前記吸着ユニットを複数備え、
 前記吸引手段は、複数の前記吸着ユニットの内部の吸引用に兼用で設けられ、
 前記制御手段は、複数の前記吸着ユニットの何れにも前記脱着処理を実行しないときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる点にある。
 上記特徴構成によれば、1つの吸引手段を、複数の吸着ユニットの内部の吸引用に兼用で設けることで、吸引手段の設置数を少なくできる。加えて、1つの吸引手段を用いて複数の吸着ユニットに対して吸着処理及び脱着処理を実行するとき、複数の吸着ユニットの何れにも脱着処理を実行しないときの吸引手段の吸引力が、脱着処理を実行するときの吸引手段の吸引力よりも小さくなるように吸引手段を作動させることで、複数の吸着ユニットの何れにも脱着処理を実行しないときに吸引手段を作動させるために要するエネルギを小さくできる。
 本発明に係る可燃性ガスの濃縮システムの更に別の特徴構成は、
 前記制御手段は、前記吸着処理及び前記脱着処理に加えて、複数の前記吸着ユニットのうちの、前記吸着処理を実行した後の吸着ユニットの内部と前記脱着処理を実行した後の吸着ユニットの内部とを連通路を介して連通させて、前記吸着処理を実行した後の吸着ユニットの内部の圧力と前記脱着処理を実行した後の吸着ユニットの内部の圧力とを均衡させる均圧処理を実行可能であり、並びに、
 前記均圧処理を実行するときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる点にある。
 上記特徴構成によれば、制御手段が、均圧処理を実行するときの吸引手段の吸引力が、脱着処理を実行するときの吸引手段の吸引力よりも小さくなるように吸引手段を作動させることで、均圧処理を実行するときに吸引手段を作動させるために要するエネルギを小さくできる。
 本発明に係る可燃性ガスの濃縮システムの更に別の特徴構成は、前記制御手段は、前記脱着処理の初期における前記吸引手段の吸引力が、前記初期以降における前記吸引手段の吸引力より大きくなるように前記吸引手段を作動させる点にある。
 脱着処理の初期は吸着ユニットの吸着材に吸着されている可燃性ガスの量が多いため、吸引手段の吸引力が大きければ多量の可燃性ガスを脱着させることができる。一方で、脱着処理の初期以降は吸着ユニットの吸着材に吸着されている可燃性ガスの量が少なくなるため、吸引手段の吸引力を大きくしても比較的少量の可燃性ガスしか脱着させることはできない。
 本特徴構成によれば、制御手段が、脱着処理の初期における吸引手段の吸引力が、その初期以降における吸引手段の吸引力より大きくなるように吸引手段を制御するので、脱着処理の初期には多量の可燃性ガスを効果的に脱着させることができ、且つ、その初期以降には消費エネルギを小さくしつつ効率的に可燃性ガスを脱着させることができる。
 本発明に係る可燃性ガスの濃縮システムの更に別の特徴構成は、
 前記吸引手段は、ポンプと、当該ポンプを駆動する駆動用モータとを有し、
 前記制御手段は、インバータ制御により前記駆動用モータの回転速度を制御することで、前記吸引手段の吸引力を調整する点にある。
 上記特徴構成によれば、制御手段は、ポンプを駆動するモータの回転速度をインバータ制御により制御することで、吸引手段の吸引力を容易に調整できる。
第1実施形態の可燃性ガスの濃縮システムの構成を説明するブロック図である。 各吸着ユニットの内部の圧力の推移を示すグラフである。 真空ポンプ装置の駆動用モータの回転速度の推移を示すグラフである。 真空ポンプ装置の駆動用モータの軸出力の推移を示すグラフである。 第2実施形態の可燃性ガスの濃縮システムの構成を説明するブロック図である。 第3実施形態の可燃性ガスの濃縮システムの構成を説明するブロック図である。
<第1実施形態>
 以下に図面を参照して第1実施形態の可燃性ガスの濃縮システムについて説明する。
 図1は、第1実施形態の可燃性ガスの濃縮システムの構成を説明するブロック図である。濃縮システムS1(S)は、吸着ユニットU(U1、U2、U3)と、原料ガス送給手段としてのブロアBと、吸引手段としての真空ポンプ装置Pと、制御手段Cとを備える。
 各吸着ユニットU1、U2、U3は、互いに同じ構成であり、内部に可燃性ガスを選択的に吸着する吸着材aが充填された吸着塔として構成される。吸着材aは、可燃性ガスを選択的に吸着できれば、特に制限されない。例えば、メタンを可燃性ガスとして吸着する場合、吸着材aとして、MP法による平均細孔直径が4.5~15Åで、かつ大気圧および298K下におけるメタンガス吸着量が20Ncc/g以上である活性炭、ゼオライト、シリカゲルおよび有機金属錯体(フマル酸銅、テレフタル酸銅、シクロヘキサンジカルボン酸銅など)からなる群から選択される少なくとも一つであるメタン吸着材を用いるとよい。
 加えて、濃縮システムS1は、ガス路として、吸着ユニットU1、U2、U3に原料ガスを供給するガス供給路d1と、そのガス供給路d1からガスが供給される状態で吸着材aでの可燃性ガスの吸着を終えた後、残余のガス(オフガス)を外部に放出するガス放出路d2とを有する。吸着ユニットU1につながるガス供給路d1にはガス供給路開閉弁1が設けられ、吸着ユニットU2につながるガス供給路d1にはガス供給路開閉弁4が設けられ、吸着ユニットU3につながるガス供給路d1にはガス供給路開閉弁8が設けられている。吸着ユニットU1につながるガス放出路d2にはガス放出路開閉弁3が設けられ、吸着ユニットU2につながるガス放出路d2にはガス放出路開閉弁6が設けられ、吸着ユニットU3につながるガス放出路d2にはガス放出路開閉弁10が設けられている。加えて、濃縮システムS1は、各吸着ユニットU1、U2、U3から製品ガスを製品タンクTに回収するためのガス回収路d3を有する。吸着ユニットU1につながるガス回収路d3にはガス回収路開閉弁2が設けられ、吸着ユニットU2につながるガス回収路d3にはガス回収路開閉弁5が設けられ、吸着ユニットU3につながるガス回収路d3にはガス回収路開閉弁9が設けられている。
 本願では、作動状態で、吸着ユニットU(U1、U2、U3)の内部に原料ガスが供給される状態で、吸着ユニットUでガスが流入する部位を「ガス流入部In」と呼び、吸着ユニットUからオフガスが放出される状態で、吸着ユニットUでガスが流出する部位を「ガス流出部Out」と呼ぶ。
 ガス放出路d2には、ガスセンサ13、14、15が設けられている。各ガスセンサ13、14、15は、各吸着ユニットU1、U2、U3内の吸着材aによる可燃性ガス吸着能力が限界に達した時点、すなわち吸着完了時点(破過時点)を検出するための装置である。制御手段Cは、ガスセンサ13、14、15にて検出される可燃性ガス濃度(例えば、メタンガス濃度)が所定の濃度になった時点、即ち、吸着材aの吸着能力が限界に達した時点を知ることができる。その結果、制御手段Cは、吸着ユニットU1、U2、U3への原料ガスの供給終了時点を判断できる。
 製品タンクTは、濃縮後の高濃度の可燃性ガスを安全に貯蔵することができるものであればよく、吸着式ガスタンクを使用するとより好ましい。
 原料ガス送給手段としてのブロアBは、可燃性ガスを含有する原料ガスを、外部から吸着ユニットUの内部に送給可能に構成される。原料ガスは、可燃性ガスと空気とを含むガスであるが、例えばメタンガスと空気とを含む炭鉱ガスとすることもできる。また、可燃性ガスとしては、可燃性の気体であれば特に制限されないが、例えば炭鉱ガスに含まれるメタンガスとすることもできる。なお、炭鉱ガスとは炭鉱から発生するガスであり、条件により異なるが、炭鉱ガス中には、メタンガス20~40Vol%程度、空気(主として窒素ガス、酸素ガスが含まれる)60~80Vol%程度が含まれている。ブロアBは、このような原料ガスを吸引し、その原料ガスを圧縮せずに実質的に大気圧にて吸着ユニットUへ供給する。
 吸引手段としての真空ポンプ装置Pは、ポンプPaと、そのポンプPaを駆動する駆動用モータPbとを有し、吸着ユニットUの内部を減圧して、内部からガスを吸引処理する装置である。本実施形態において、真空ポンプ装置Pは、各吸着ユニットU1、U2、U3の内部の吸引用に兼用で1台設けられる。例えば、ポンプPaとしてはルーツポンプが使用される。真空ポンプ装置Pの吸引力(即ち、排気速度)は、駆動用モータPbの回転速度が速くなるにつれて大きくなる。本実施形態において、制御手段Cは、インバータ制御により駆動用モータPbの回転速度を制御することで、吸引手段の吸引力を調整する。製品ガスは、ガス回収路d3に備えられる真空ポンプ装置Pが働くことにより、吸着ユニットUから吸着材aに吸着された可燃性ガスを加圧状態(製品タンクT内は正圧となる)で製品タンクTに回収可能となっている。
 濃縮システムS1は、吸着ユニットU1の内部と吸着ユニットU2の内部との間をつなぐ連通路d4、吸着ユニットU1の内部と吸着ユニットU3の内部との間をつなぐ連通路d5、吸着ユニットU2の内部と吸着ユニットU3の内部との間をつなぐ連通路d6を有する。そして、連通路d4には連通路開閉弁7が設けられ、連通路d5には連通路開閉弁11が設けられ、連通路d6には連通路開閉弁12が設けられる。
 本実施形態において、制御手段Cは、メモリ等からなる記憶媒体、CPU、入出力部を備えたマイクロコンピュータなどで構成され、このコンピュータが所定のプログラムを実行することにより、ブロアB、真空ポンプ装置P、ガス供給路開閉弁1、4、8、ガス放出路開閉弁3、6、10、ガス回収路開閉弁2、5、9、連通路開閉弁7、11、12などの作動を制御する。特に、本実施形態は、制御手段Cが、真空ポンプ装置Pを常時運転しておき、インバータ制御により真空ポンプ装置Pの吸引力を適宜調整する点に特徴がある。
 以下に第1実施形態の濃縮システムS1の動作を説明する。
 制御手段Cは、表1に示すように、第1段階~第9段階の間において各吸着ユニットU1、U2、U3に対して、吸着処理と、脱着処理と、均圧処理と、昇圧処理と、待機処理とを実行する。吸着処理は、ブロアBにより吸着ユニットUの内部に原料ガスを送給して吸着材aに可燃性ガスを吸着させ残余のガスをガス放出路へ放出する処理である。脱着処理は、吸着処理の後で真空ポンプの吸引力により吸着材aから可燃性ガスを脱着させてガス回収路へ取り出す処理である。均圧処理は、脱着処理の後の吸着ユニットUの内部と吸着処理の後の別の吸着ユニットUの内部とを連通してそれら吸着ユニットUの内部の圧力を均衡させる処理である。昇圧処理は、吸着ユニットUの内部に空気(昇圧ガス)を導入して圧力を大気圧付近にまで昇圧する処理である。
 図2は、第1段階~第9段階の間において各吸着ユニットU1、U2、U3に対して、吸着処理と、脱着処理と、均圧処理と、昇圧処理と、待機処理とを実行するときの、各吸着ユニットU1、U2、U3の内部の圧力の推移を示すグラフである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 吸着ユニットU1では、第1段階~第3段階の間に吸着処理が行われ、第4段階に均圧処理が行われ、第5段階~第6段階の間に脱着処理が行われ、第7段階に均圧処理が行われ、第8段階に昇圧処理が行われ、第9段階に待機処理が行われる。各吸着ユニットU1、U2、U3の構成は互いに同じであるので、各吸着ユニットU1、U2、U3で行われる吸着処理、均圧処理、脱着処理、昇圧処理、待機処理の手順は実質的に同じである。つまり、吸着ユニットU2及び吸着ユニットU3では、各処理が行われるタイミングが吸着ユニットU1と異なる。従って、以下、第1段階~第9段階の間に吸着ユニットU1で行われる吸着処理、均圧処理、脱着処理、昇圧処理、待機処理の手順を中心に説明し、吸着ユニットU2及び吸着ユニットU3で行われる各処理の手順の詳細な説明は省略する。
〔第1段階~第3段階〕
 制御手段Cは、第1段階~第3段階において吸着ユニットU1に対して吸着処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1及びガス放出路開閉弁3を開弁し、ガス回収路開閉弁2、連通路開閉弁7及び連通路開閉弁11を閉弁する。加えて、制御手段Cは、ブロアBを作動させることにより、原料ガスをガス供給路d1を通じて吸着ユニットU1内に供給して原料ガスに含まれる可燃性ガスを吸着材aに吸着させ、吸着ユニットU1内に供給された原料ガスのうち吸着材aに吸着されなかったオフガスを、ガス放出路d2を通じて吸着ユニットU1の外部空間に放出させる。これにより、炭鉱ガスなどの原料ガスを大気圧下で吸着ユニットU1内に供給して、炭鉱ガスに含まれる可燃性ガスとしてのメタンガスを吸着材aに選択的に吸着させつつ、オフガス内に貴重なメタンガスが含まれたまま流出するのを防止できる。
 表1に示すように、制御手段Cは、第1段階において、何れの吸着ユニットU(U1、U2、U3)に対しても脱着処理を実行していないが、真空ポンプ装置Pを継続して運転している。但し、制御手段Cは、このように複数の吸着ユニットU(U1、U2、U3)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。具体的には、吸引力を大きくする場合には高回転側度とし、小さくする場合にはその回転速度より低い回転速度とする。制御手段Cは、インバータ制御により真空ポンプ装置Pの駆動用モータPbの回転速度を制御することで、真空ポンプ装置Pの吸引力を調整する。本実施形態では、制御手段Cは、表2に示すように、駆動用モータPbの回転速度を600rpmに制御している。尚、制御手段Cは、何れかの吸着ユニットU(U1、U2、U3)で脱着処理を実行するとき、駆動用モータPbの回転速度を1100rpmに制御している。
 その後、制御手段Cは、ガスセンサ13により、ガス放出路d2に放出されたオフガス中の可燃性ガスの濃度が所定の濃度以上であるか否かを検出する。制御手段Cは、検出された可燃性ガスの濃度が所定の濃度以上である場合には、原料ガスの吸着ユニットU1への供給を停止して、吸着処理を終了する。つまり、制御手段Cは、ガス放出路d2で検出された可燃性ガスの濃度が所定の濃度以上になったことを、吸着材aが吸着限界に達したこととして認識して、吸着処理を終了する。
〔第4段階〕
 制御手段Cは、第4段階において、吸着ユニットU1の内部圧力と吸着ユニットU3の内部圧力とを均衡させる均圧処理を実行する。具体的には、制御手段Cは、吸着ユニットU1と吸着ユニットU3との間をつなぐ連通路d5に設けられている連通路開閉弁11を開弁し、ガス供給路開閉弁1、ガス回収路開閉弁2及びガス放出路開閉弁3、連通路開閉弁7を閉弁する。
 図2に示すように、第4段階が開始される前の時点において、吸着ユニットU1の内部圧力は第3段階で吸着処理が実行された後の比較的高い圧力を示し、吸着ユニットU3の内部圧力は第3段階で脱着処理が実行された後の比較的低い圧力を示す。そして、第4段階において連通路開閉弁11が開弁されて均圧処理が実行されると、吸着ユニットU1の内部圧力が低下し、吸着ユニットU3の内部圧力が上昇して、両者の圧力が均衡する。その結果、吸着ユニットU1では、吸着材aには吸着されずに主に気相状態で吸着ユニットU1の内部に残っている低濃度の可燃性ガスを含むガスが吸着ユニットU3の方へ拡散されるため、その低濃度の可燃性ガスが引き続く第5段階で脱着処理を実行するときに製品タンクTの方へ回収されないようにできる。また、吸着ユニットU3では、後に行われる昇圧処理の前に、吸着ユニットU3の内部の圧力をある程度上昇させておくことができる。
 表1に示すように、制御手段Cは、第4段階において何れの吸着ユニットU(U1、U2、U3)に対しても脱着処理を実行していないが、真空ポンプ装置Pを継続して運転している。但し、制御手段Cは、第1段階の場合と同様に、複数の吸着ユニットU(U1、U2、U3)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。第4段階でも、制御手段Cは、表2に示すように、駆動用モータPbの回転速度を600rpmに制御している。
〔第5段階~第6段階〕
 制御手段Cは、第5段階~第6段階において吸着ユニットU1に対して脱着処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1、ガス放出路開閉弁3、連通路開閉弁7及び連通路開閉弁11を閉弁して、ガス回収路開閉弁2を開弁する。制御手段Cは、第4段階において、真空ポンプ装置Pの吸引力を大きくして(駆動用モータPbの回転速度を1100rpmに制御して)、吸着ユニットU1内を大気圧よりも低く減圧して、吸着された可燃性ガスを吸着材aから脱着させる。その結果、可燃性ガスがガス回収路d3側へ吸引されて、製品タンクT内に収集されて貯蔵される。制御手段Cは、吸着ユニットU1内を所定の圧力まで減圧すると、吸着ユニットU1からの可燃性ガスの回収を停止するべく、ガス回収路開閉弁2を閉じる。図2に示すように、吸着材aからの可燃性ガスの脱着が進行すると、吸着ユニットU1の内部圧力が徐々に低下してくるので、制御手段Cは、吸着ユニットU1の内部圧力を監視することで、脱着処理の完了判断を行える。
〔第7段階〕
 制御手段Cは、第7段階においてU1に対して均圧処理を実行する。特に、制御手段Cは、吸着ユニットU1の内部圧力と吸着ユニットU2の内部圧力とを均衡させる均圧処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1、ガス回収路開閉弁2、ガス放出路開閉弁3及び連通路開閉弁11を閉弁し、吸着ユニットU1と吸着ユニットU2との間をつなぐ連通路d4に設けられている連通路開閉弁7を開弁する。
 図2に示すように、第7段階が開始される前の時点において、吸着ユニットU1の内部圧力は第6段階で脱着処理が実行された後の比較的低い圧力を示し、吸着ユニットU2の内部圧力は第6段階で吸着処理が実行された後の比較的高い圧力を示す。そして、第7段階において連通路開閉弁7が開弁されて均圧処理が実行されると、吸着ユニットU1の内部圧力が上昇し、吸着ユニットU2の内部圧力が低下して、両者の圧力が均衡する。その結果、吸着ユニットU1では、後に行われる昇圧処理の前に内部の圧力をある程度上昇させておくことができる。また、吸着ユニットU2では、吸着材aには吸着されずに主に気相状態で吸着ユニットU2の内部に残っている低濃度の可燃性ガスを含むガスが吸着ユニットU1の方へ拡散される。
 制御手段Cは、上記第4段階の均圧処理の場合と同様に、第7段階において何れの吸着ユニットU(U1、U2、U3)に対しても脱着処理を実行していないが、真空ポンプ装置Pを継続して運転している。但し、制御手段Cは、第4段階の場合と同様に、複数の吸着ユニットU(U1、U2、U3)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。第7段階でも、制御手段Cは、表2に示すように、駆動用モータPbの回転速度を600rpmに制御している。
〔第8段階〕
 制御手段Cは、第8段階において吸着ユニットU1に対して昇圧処理を実行する。具体的には、制御手段Cは、ガス放出路開閉弁3を開弁し、ガス供給路開閉弁1、ガス回収路開閉弁2、連通路開閉弁7及び連通路開閉弁11を閉弁する。これにより、ガス放出路開閉弁3を介して外部から吸着ユニットU1の内部に空気(昇圧ガス)を流入させることにより吸着ユニットU1内の圧力を大気圧付近にまで昇圧して、後に実行される上記吸着処理において、可燃性ガスを吸着し易くすることができる。
〔第9段階〕
 制御手段Cは、第9段階において吸着ユニットU1に対して待機処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1、ガス回収路開閉弁2、ガス放出路開閉弁3、連通路開閉弁7及び連通路開閉弁11を閉弁した状態のまま、後の吸着処理の開始を待つ。
 以上のように、本実施形態の濃縮システムS1では、制御手段Cは、第1段階~第9段階の間において、複数の吸着ユニットU(U1、U2、U3)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御している。図3は、第1段階~第9段階の間での真空ポンプ装置Pの駆動用モータPbの回転速度の推移を示すグラフである。図4は、第1段階~第9段階の間での真空ポンプ装置Pの駆動用モータPbの軸出力の推移を示すグラフである。図3及び図4では、比較例として第1段階~第9段階の間で真空ポンプ装置Pの駆動用モータPbの回転速度を一定に制御する通常運転の場合について示す。
 図3及び図4に示すように、制御手段Cが、複数の吸着ユニットU(U1、U2、U3)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御することで、不要な電力消費が行われることを防止できる。例えば、図4に示すように、第1段階~第9段階の間における平均電力は、1台の真空ポンプ装置Pが備える駆動用モータPbに対して上述したような本発明のインバータ制御を実施した場合には約86kWとなり、駆動用モータPbを一定回転速度で運転する通常運転を実施した比較例の場合には約91kWとなる。その結果、本発明の濃縮システムS1を採用することで、1時間当たり約5kWの電力を削減できる。更に、真空ポンプ装置Pを複数台設置する場合には、その台数分だけ削減可能な電力が増大する。
<第2実施形態>
 第2実施形態の可燃性ガスの濃縮システムは、2塔の吸着ユニットを備える点で上記第1実施形態の濃縮システムと異なっている。以下に、第2実施形態の濃縮システムについて説明するが、第1実施形態と同様の構成部分については説明を省略する。
 図5は、第2実施形態の可燃性ガスの濃縮システムの構成を説明するブロック図である。濃縮システムS2(S)は、吸着ユニットU(U1、U2)と、原料ガス送給手段としてのブロアBと、吸引手段としての真空ポンプ装置Pと、制御手段Cとを備える。この濃縮システムS2は、第1実施形態で説明した濃縮システムS1から吸着ユニットU3に関連する構成部分を取り除いたものである。
 第2実施形態の濃縮システムS2は、各吸着ユニットU1、U2に原料ガスを供給するガス供給路d1と、そのガス供給路d1からガスが供給される状態で吸着材aでの可燃性ガスの吸着を終えた後、残余のガス(オフガス)を外部に放出するガス放出路d2とを有する。吸着ユニットU1につながるガス供給路d1にはガス供給路開閉弁1が設けられ、吸着ユニットU2につながるガス供給路d1にはガス供給路開閉弁4が設けられている。吸着ユニットU1につながるガス放出路d2にはガス放出路開閉弁3が設けられ、吸着ユニットU2につながるガス放出路d2にはガス放出路開閉弁6が設けられている。加えて、濃縮システムS2は、各吸着ユニットU1、U2から製品ガスを製品タンクTに回収するためのガス回収路d3を有する。吸着ユニットU1につながるガス回収路d3にはガス回収路開閉弁2が設けられ、吸着ユニットU2につながるガス回収路d3にはガス回収路開閉弁5が設けられている。
 第2実施形態の濃縮システムS2では、吸着ユニットU1の内部と吸着ユニットU2の内部とを連通可能な連通路d4が設けられている。連通路d4には連通路開閉弁7が設けられている。連通路開閉弁7が開弁されると、吸着ユニットU1の内部の圧力と吸着ユニットU2の内部の圧力とが均衡する。
 以下に第2実施形態の濃縮システムS2の動作を説明する。
 制御手段Cは、表3に示すように、第1段階~第6段階の間において各吸着ユニットU1、U2に対して、吸着処理と、脱着処理と、均圧処理と、昇圧処理とを実行する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 吸着ユニットU1では、第1段階に吸着処理が行われ、第2段階に均圧処理が行われ、第3段階~第4段階の間に脱着処理が行われ、第5段階に均圧処理が行われ、第6段階に昇圧処理が行われる。各吸着ユニットU1、U2の構成は互いに同じであるので、各吸着ユニットU1、U2で行われる吸着処理、均圧処理、脱着処理、昇圧処理の手順は実質的に同じである。つまり、吸着ユニットU2では、各処理が行われるタイミングが吸着ユニットU1と異なる。従って、以下、第1段階~第6段階の間に吸着ユニットU1で行われる吸着処理、均圧処理、脱着処理、昇圧処理の手順を中心に説明し、吸着ユニットU2で行われる各処理の手順の詳細な説明は省略する。
〔第1段階〕
 制御手段Cは、第1段階において吸着ユニットU1に対して吸着処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1及びガス放出路開閉弁3を開弁し、ガス回収路開閉弁2及び連通路開閉弁7を閉弁する。加えて、制御手段Cは、ブロアBを作動させることにより、原料ガスをガス供給路d1を通じて吸着ユニットU1内に供給して原料ガスに含まれる可燃性ガスを吸着材aに吸着させ、吸着ユニットU1内に供給された原料ガスのうち吸着材aに吸着されなかったオフガスを、ガス放出路d2を通じて吸着ユニットU1の外部空間に放出する。
 その後、制御手段Cは、ガスセンサ13により、ガス放出路d2に放出されたオフガス中の可燃性ガスの濃度が所定の濃度以上であるか否かを検出する。制御手段Cは、検出された可燃性ガスの濃度が所定の濃度以上である場合には、原料ガスの吸着ユニットU1への供給を停止して、吸着処理を終了する。つまり、制御手段Cは、ガス放出路d2で検出された可燃性ガスの濃度が所定の濃度以上になったことを、吸着材aが吸着限界に達したこととして認識して、吸着処理を終了する。
〔第2段階〕
 制御手段Cは、第2段階において、吸着ユニットU1の内部圧力と吸着ユニットU2の内部圧力とを均衡させる均圧処理を実行する。具体的には、制御手段Cは、吸着ユニットU1と吸着ユニットU2との間をつなぐ連通路d4に設けられている連通路開閉弁7を開弁し、ガス供給路開閉弁1、ガス回収路開閉弁2及びガス放出路開閉弁3を閉弁する。
 第2段階が開始される前の時点において、吸着ユニットU1の内部圧力は第1段階で吸着処理が実行された後の比較的高い圧力を示し、吸着ユニットU2の内部圧力は第1段階で脱着処理が実行された後の比較的低い圧力を示す。そして、第2段階において連通路開閉弁7が開弁されて均圧処理が実行されると、吸着ユニットU1の内部圧力が低下し、吸着ユニットU2の内部圧力が上昇して、両者の圧力が均衡する。その結果、吸着ユニットU1では、吸着材aには吸着されずに主に気相状態で吸着ユニットU1の内部に残っている低濃度の可燃性ガスを含むガスが吸着ユニットU2の方へ拡散されるため、その低濃度の可燃性ガスが引き続く第3段階で脱着処理を実行するときに製品タンクTの方へ回収されないようにできる。また、吸着ユニットU2では、後に行われる昇圧処理の前に、吸着ユニットU2の内部の圧力をある程度上昇させておくことができる。
 制御手段Cは、第2段階において何れの吸着ユニットU(U1、U2)に対しても脱着処理を実行していないが、真空ポンプ装置Pを継続して運転している。但し、制御手段Cは、複数の吸着ユニットU(U1、U2)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。第2段階では、制御手段Cは、表4に示すように、駆動用モータPbの回転速度を600rpmに制御している。
〔第3段階~第4段階〕
 制御手段Cは、第3段階~第4段階において吸着ユニットU1に対して脱着処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1、ガス放出路開閉弁3及び連通路開閉弁7を閉弁して、ガス回収路開閉弁2を開弁する。制御手段Cは、第3段階~第4段階において、真空ポンプ装置Pの吸引力を大きくして(駆動用モータPbの回転速度を1100rpmに制御して)、吸着ユニットU1内を大気圧よりも低く減圧して、吸着された可燃性ガスを吸着材aから脱着させる。制御手段Cは、吸着ユニットU1内を所定の圧力まで減圧すると、吸着ユニットU1からの可燃性ガスの回収を停止するべく、ガス回収路開閉弁2を閉じる。
〔第5段階〕
 制御手段Cは、第5段階において吸着ユニットU1の内部圧力と吸着ユニットU2の内部圧力とを均衡させる均圧処理を実行する。第5段階の均圧処理を実行するときの手順は第2段階の均圧処理を実行するときの手順と同じである。
 第5段階が開始される前の時点において、吸着ユニットU1の内部圧力は第4段階で脱着処理が実行された後の比較的低い圧力を示し、吸着ユニットU2の内部圧力は第4段階で吸着処理が実行された後の比較的高い圧力を示す。そして、第5段階において連通路開閉弁7が開弁されて均圧処理が実行されると、吸着ユニットU1の内部圧力が上昇し、吸着ユニットU2の内部圧力が低下して、両者の圧力が均衡する。その結果、吸着ユニットU1では、後に行われる昇圧処理の前に内部の圧力をある程度上昇させておくことができる。また、吸着ユニットU2では、吸着材aには吸着されずに主に気相状態で吸着ユニットU2の内部に残っている低濃度の可燃性ガスを含むガスが吸着ユニットU1の方へ拡散される。
 制御手段Cは、上記第2段階の均圧処理の場合と同様に、第5段階において何れの吸着ユニットU(U1、U2)に対しても脱着処理を実行していないが、真空ポンプ装置Pを継続して運転している。但し、制御手段Cは、第2段階の場合と同様に、複数の吸着ユニットU(U1、U2)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。第5段階でも、制御手段Cは、表4に示すように、駆動用モータPbの回転速度を600rpmに制御している。
〔第6段階〕
 制御手段Cは、第6段階において吸着ユニットU1に対して昇圧処理を実行する。具体的には、制御手段Cは、ガス放出路開閉弁3を開弁し、ガス供給路開閉弁1、ガス回収路開閉弁2及び連通路開閉弁7を閉弁する。これにより、ガス放出路開閉弁3を介して外部から吸着ユニットU1の内部に空気(昇圧ガス)を流入させることにより吸着ユニットU1内の圧力を大気圧付近にまで昇圧して、後に実行される上記吸着処理において、可燃性ガスを吸着し易くすることができる。
 以上のように、本実施形態の濃縮システムS2でも、制御手段Cは、第2段階及び第5段階において、複数の吸着ユニットU(U1、U2)の何れにも脱着処理を実行しないときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御している。その結果、第2段階及び第5段階において、不要な電力消費が行われることを防止できる。
<第3実施形態>
 第3実施形態の可燃性ガスの濃縮システムは、1塔の吸着ユニットを備える点で上記第1実施形態の濃縮システムと異なっている。以下に、第3実施形態の濃縮システムについて説明するが、第1実施形態と同様の構成部分については説明を省略する。
 図3は、第3実施形態の可燃性ガスの濃縮システムの構成を説明するブロック図である。濃縮システムS3(S)は、吸着ユニットU(U1)と、原料ガス送給手段としてのブロアBと、吸引手段としての真空ポンプ装置Pと、制御手段Cとを備える。この濃縮システムS3は、第1実施形態で説明した濃縮システムS1から吸着ユニットU2及び吸着ユニットU3に関連する構成部分を取り除いたものである。
 第3実施形態の濃縮システムS3は、吸着ユニットU1に原料ガスを供給するガス供給路d1と、そのガス供給路d1からガスが供給される状態で吸着材aでの可燃性ガスの吸着を終えた後、残余のガス(オフガス)を外部に放出するガス放出路d2とを有する。吸着ユニットU1につながるガス供給路d1にはガス供給路開閉弁1が設けられる。吸着ユニットU1につながるガス放出路d2にはガス放出路開閉弁3が設けられる。加えて、濃縮システムS3は、製品ガスを製品タンクTに回収するためのガス回収路d3を有する。吸着ユニットU1につながるガス回収路d3にはガス回収路開閉弁2が設けられる。
 以下に第1実施形態の濃縮システムS3の動作を説明する。
 制御手段Cは、表5に示すように、第1段階~第3段階の間において吸着ユニットU1に対して、吸着処理と、脱着処理と、昇圧処理とを実行する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
〔第1段階〕
 制御手段Cは、第1段階において吸着ユニットU1に対して吸着処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1及びガス放出路開閉弁3を開弁し、ガス回収路開閉弁2を閉弁する。加えて、制御手段Cは、ブロアBを作動させることにより、原料ガスをガス供給路d1を通じて吸着ユニットU1内に供給して原料ガスに含まれる可燃性ガスを吸着材aに吸着させ、吸着ユニットU1内に供給された原料ガスのうち吸着材aに吸着されなかったオフガスを、ガス放出路d2を通じて吸着ユニットU1の外部空間に放出する。
 その後、制御手段Cは、ガスセンサ13により、ガス放出路d2に放出されたオフガス中の可燃性ガスの濃度が所定の濃度以上であるか否かを検出する。制御手段Cは、検出された可燃性ガスの濃度が所定の濃度以上である場合には、原料ガスの吸着ユニットU1への供給を停止して、吸着処理を終了する。つまり、制御手段Cは、ガス放出路d2で検出された可燃性ガスの濃度が所定の濃度以上になったことを、吸着材aが吸着限界に達したこととして認識して、吸着処理を終了する。
 制御手段Cは、吸着処理を実行しているときも、真空ポンプ装置Pを運転している。具体的には、制御手段Cは、第1段階において吸着処理を実行するときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。本実施形態において、制御手段Cは、表6に示すように、駆動用モータPbの回転速度を600rpmに制御している。
〔第2段階〕
 制御手段Cは、第2段階において吸着ユニットU1に対して脱着処理を実行する。具体的には、制御手段Cは、ガス供給路開閉弁1及びガス放出路開閉弁3を閉弁して、ガス回収路開閉弁2を開弁する。制御手段Cは、第2段階において、真空ポンプ装置Pの吸引力を大きくして(駆動用モータPbの回転速度を1100rpmに制御して)、吸着ユニットU1内を大気圧よりも低く減圧して、吸着された可燃性ガスを吸着材aから脱着させる。制御手段Cは、吸着ユニットU1内を所定の圧力まで減圧すると、吸着ユニットU1からの可燃性ガスの回収を停止するべく、ガス回収路開閉弁2を閉じる。
〔第3段階〕
 制御手段Cは、第3段階において吸着ユニットU1に対して昇圧処理を実行する。具体的には、制御手段Cは、ガス放出路開閉弁3を開弁し、ガス供給路開閉弁1及びガス回収路開閉弁2を閉弁する。これにより、ガス放出路開閉弁3を介して外部から吸着ユニットU1の内部に空気(昇圧ガス)を流入させることにより吸着ユニットU1内の圧力を大気圧付近にまで昇圧して、後に実行される上記吸着処理において、可燃性ガスを吸着し易くすることができる。
 制御手段Cは、昇圧処理を実行しているときも、真空ポンプ装置Pを運転している。具体的には、制御手段Cは、第3段階において昇圧処理を実行するときの真空ポンプ装置Pの吸引力が、脱着処理を実行するときの真空ポンプ装置Pの吸引力よりも小さくなるように真空ポンプ装置Pを制御する。本実施形態において、制御手段Cは、表6に示すように、駆動用モータPbの回転速度を600rpmに制御している。
<別実施形態>
<1>
 上記実施形態において、制御手段Cは、脱着処理の間は真空ポンプ装置Pの駆動用モータPbを一定回転速度(1100rpm)で作動させる例を説明したが、脱着処理の間に駆動用モータPbの回転速度を変更してもよい。例えば、制御手段Cが、脱着処理の初期における真空ポンプ装置(吸引手段)Pの吸引力が、初期以降における真空ポンプ装置Pの吸引力より大きくなるように真空ポンプ装置Pを作動させてもよい。このような制御を行うことで、脱着処理の初期には多量の可燃性ガスを吸着材aから効果的に脱着させることができ、且つ、その初期以降には消費エネルギを小さくしつつ効率的に可燃性ガスを吸着材aから脱着させることができる。
<2>
 上記実施形態では、吸着ユニットUにおいて吸着処理、脱着処理などを表1、表3及び表5で示したような順序で実行する例を説明したが、吸着ユニットUにおいて吸着処理、脱着処理などをどのような順序で実行するのかは適宜変更可能である。
<3>
 上記実施形態において、可燃性ガスの濃縮システムSの構成は適宜変更可能である。例えば、吸着ユニットUに対して原料ガスをポンプなどによって高圧で送り込むことで、吸着ユニットUに吸着される可燃性ガスの量を増加させるための過吸着用の機構を追加で設けてもよい。
 また、上記実施形態では、真空ポンプ装置Pを1台設け、複数の吸着ユニットUの内部の吸引用に兼用で利用する例を説明したが、複数の吸着ユニットUに対して各別に真空ポンプ装置Pを設けてもよい。
<4>
 上記実施形態では、1塔~3塔の吸着ユニットUを備える濃縮システムSを例示したが、4塔以上の吸着ユニットUを備える濃縮システムを構成してもよい。
<5>
 上記実施形態では、吸着ユニットUの内部の圧力値や真空ポンプ装置Pの駆動用モータPbの回転速度などの具体例を示したが、それらの値は適宜変更可能である。
 本発明は、可燃性ガスおよび空気を含有する原料ガスを、内部に可燃性ガスを選択的に吸着する吸着材が充填された吸着ユニットに供給して、可燃性ガスを選択的に吸着させて濃縮する可燃性ガスの濃縮システムに利用できる。
a 吸着材
B ブロア(原料ガス送給手段)
C 制御手段
P 真空ポンプ装置(吸引手段)
Pa ポンプ
Pb 駆動用モータ
S(S1、S2、S3) 可燃性ガスの濃縮システム
T 製品タンク
U(U1、U2、U3) 吸着ユニット

Claims (6)

  1.  内部に可燃性ガスを選択的に吸着する吸着材が充填された吸着ユニットと、
     前記可燃性ガスを含有する原料ガスを、外部から前記吸着ユニットの内部に送給可能な原料ガス送給手段と、
     前記吸着ユニットの内部からガスを吸引処理可能な吸引手段と、
     前記原料ガス送給手段により前記吸着ユニットの内部に前記原料ガスを送給して前記吸着材に可燃性ガスを吸着させ残余のガスをガス放出路へ放出する吸着処理と、前記吸着処理の後で前記吸引手段の吸引力により前記吸着材から可燃性ガスを脱着させてガス回収路へ取り出す脱着処理と、を実行する制御手段と、を備え、
     前記制御手段は、前記脱着処理を実行しないときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる可燃性ガスの濃縮システム。
  2.  前記吸着ユニットを1つ備え、
     前記制御手段は、前記吸着処理を実行するときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる請求項1記載の可燃性ガスの濃縮システム。
  3.  前記吸着ユニットを複数備え、
     前記吸引手段は、複数の前記吸着ユニットの内部の吸引用に兼用で設けられ、
     前記制御手段は、複数の前記吸着ユニットの何れにも前記脱着処理を実行しないときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる請求項1記載の可燃性ガスの濃縮システム。
  4.  前記制御手段は、前記吸着処理及び前記脱着処理に加えて、複数の前記吸着ユニットのうちの、前記吸着処理を実行した後の吸着ユニットの内部と前記脱着処理を実行した後の吸着ユニットの内部とを連通路を介して連通させて、前記吸着処理を実行した後の吸着ユニットの内部の圧力と前記脱着処理を実行した後の吸着ユニットの内部の圧力とを均衡させる均圧処理を実行可能であり、並びに、
     前記均圧処理を実行するときの前記吸引手段の吸引力が、前記脱着処理を実行するときの前記吸引手段の吸引力よりも小さくなるように前記吸引手段を作動させる請求項3記載の可燃性ガスの濃縮システム。
  5.  前記制御手段は、前記脱着処理の初期における前記吸引手段の吸引力が、前記初期以降における前記吸引手段の吸引力より大きくなるように前記吸引手段を作動させる請求項1~4の何れか一項に記載の可燃性ガスの濃縮システム。
  6.  前記吸引手段は、ポンプと、当該ポンプを駆動する駆動用モータとを有し、
     前記制御手段は、インバータ制御により前記駆動用モータの回転速度を制御することで、前記吸引手段の吸引力を調整する請求項1~5の何れか一項に記載の可燃性ガスの濃縮システム。
PCT/JP2011/051240 2010-01-26 2011-01-24 可燃性ガスの濃縮システム WO2011093247A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
UAA201209069A UA110022C2 (uk) 2010-01-26 2011-01-24 Збагачувальна система для пального газу
CN201180007257.4A CN102741382B (zh) 2010-01-26 2011-01-24 可燃性气体的浓缩系统
PL401475A PL232835B1 (pl) 2010-01-26 2011-01-24 Sposób wzbogacania gazu palnego
AU2011211029A AU2011211029B2 (en) 2010-01-26 2011-01-24 Enrichment system for combustible gas
US13/575,127 US8932387B2 (en) 2010-01-26 2011-01-24 Enrichment system for combustible gas
RU2012136471/04A RU2542982C2 (ru) 2010-01-26 2011-01-24 Система обогащения горючего газа

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010014534A JP5743308B2 (ja) 2010-01-26 2010-01-26 可燃性ガスの濃縮システム
JP2010-014534 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011093247A1 true WO2011093247A1 (ja) 2011-08-04

Family

ID=44319235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051240 WO2011093247A1 (ja) 2010-01-26 2011-01-24 可燃性ガスの濃縮システム

Country Status (8)

Country Link
US (1) US8932387B2 (ja)
JP (1) JP5743308B2 (ja)
CN (1) CN102741382B (ja)
AU (1) AU2011211029B2 (ja)
PL (2) PL232835B1 (ja)
RU (1) RU2542982C2 (ja)
UA (1) UA110022C2 (ja)
WO (1) WO2011093247A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879571A (zh) * 2014-12-10 2016-08-24 北京信诺海博石化科技发展有限公司 处理大规模油气量的吸附法油气回收工艺
DE102018108316B4 (de) * 2018-04-09 2020-01-16 Thyssenkrupp Ag Verbindung, Anordnung und Verfahren für einen Schwingungsdämpfer und ein Anbauteil einer Radaufhängung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193520A (ja) * 1984-03-15 1985-10-02 Showa Denko Kk 圧力変動吸着法によるタ−ンダウン制御方法
JP2002361022A (ja) * 2001-06-06 2002-12-17 Nippon Sanso Corp 圧力変動吸着ガス分離方法及び装置
WO2008053680A1 (fr) * 2006-10-31 2008-05-08 Osaka Gas Co., Ltd. Dispositif et procédé pour la concentration de gaz inflammable

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU506222A1 (ru) * 1973-06-18 1976-08-05 Государственный научно-исследовательский институт теплоэнергетического приборостроения Измерительный преобразователь давлени агрессивных сред
DE2724763C2 (de) * 1977-06-01 1984-02-16 Linde Ag, 6200 Wiesbaden Verfahren zum Reinigen und Zerlegen eines Gasgemisches
US4305734A (en) * 1979-09-19 1981-12-15 Mcgill Incorporated Recovery of hydrocarbon components from a hydrocarbon-carrier gas mixture
JPS58198591A (ja) 1982-05-14 1983-11-18 Shigeji Honda メタン濃縮法
DE3306371A1 (de) 1983-02-24 1984-08-30 Bergwerksverband Gmbh, 4300 Essen Verfahren zur erzeugung eines methanreichen gasgemisches, insbesondere aus grubengas
JPS61136419A (ja) 1984-12-05 1986-06-24 Kobe Steel Ltd 圧力スイング吸着の選択脱着方法
JPH072205B2 (ja) 1988-09-14 1995-01-18 日本酸素株式会社 圧力変動吸着装置の減量運転方法
JPH03127604A (ja) 1989-10-09 1991-05-30 Hitachi Ltd 酸素製造方法
JP2813830B2 (ja) 1990-04-03 1998-10-22 株式会社日本製鋼所 水素濃度調整装置及び水素濃度調整方法
JPH06193520A (ja) 1992-12-24 1994-07-12 Mazda Motor Corp エンジンの蒸発燃料供給装置
JP3375355B2 (ja) 1992-12-25 2003-02-10 凸版印刷株式会社 カード及びカードの真偽判定方法
JPH078231A (ja) 1992-12-31 1995-01-13 Kodomari Suisanbutsu Kako:Kk 粉末にした蜆貝のエキス及び製造方法
JP3378949B2 (ja) 1993-03-09 2003-02-17 日本酸素株式会社 圧力変動式空気分離装置及びその運転方法
US5733359A (en) 1996-06-19 1998-03-31 The Boc Group, Inc. Pressure swing adsorption process turndown control
JPH11267439A (ja) 1998-03-24 1999-10-05 Sanyo Denshi Kogyo Kk ガス分離方法及びこの方法を実施するガス分離装置
US5951741A (en) * 1998-03-27 1999-09-14 John Zink Company Hydrocarbon vapor recovery processes and apparatus
JP2001179030A (ja) 1999-12-25 2001-07-03 Advan Riken:Kk 酸素・窒素濃縮器
TWI410260B (zh) * 2006-09-22 2013-10-01 Teijin Pharma Ltd Oxygen enrichment device
CN101617031B (zh) * 2006-10-31 2015-07-29 大阪瓦斯株式会社 可燃性气体浓缩装置及可燃性气体浓缩方法
CN201124073Y (zh) * 2007-11-14 2008-10-01 中国石油化工股份有限公司 一种装有变频风机的油气回收装置
JP2009220004A (ja) * 2008-03-14 2009-10-01 Osaka Gas Co Ltd 可燃性ガスの濃縮方法および可燃性ガスの濃縮システム
US8545603B2 (en) * 2010-06-24 2013-10-01 ADSORPTECH Inc. Method to improve recovery and efficiency of adsorption processes using reversible blowers
US8623118B2 (en) * 2011-06-24 2014-01-07 Praxair Technology, Inc. Cyclic adsorption process using centrifugal compressors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193520A (ja) * 1984-03-15 1985-10-02 Showa Denko Kk 圧力変動吸着法によるタ−ンダウン制御方法
JP2002361022A (ja) * 2001-06-06 2002-12-17 Nippon Sanso Corp 圧力変動吸着ガス分離方法及び装置
WO2008053680A1 (fr) * 2006-10-31 2008-05-08 Osaka Gas Co., Ltd. Dispositif et procédé pour la concentration de gaz inflammable

Also Published As

Publication number Publication date
AU2011211029A1 (en) 2012-08-16
RU2012136471A (ru) 2014-03-10
UA110022C2 (uk) 2015-11-10
AU2011211029B2 (en) 2015-07-23
US8932387B2 (en) 2015-01-13
US20130205665A1 (en) 2013-08-15
PL232835B1 (pl) 2019-07-31
CN102741382B (zh) 2015-03-25
JP2011153184A (ja) 2011-08-11
JP5743308B2 (ja) 2015-07-01
RU2542982C2 (ru) 2015-02-27
PL401475A1 (pl) 2013-05-27
CN102741382A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
AU2007315541B2 (en) Flammable gas concentration device and flammable gas concentration method
EP2497516B1 (en) Oxygen enrichment device
JP6198646B2 (ja) 圧力変動吸着式水素製造方法
JP5968252B2 (ja) メタンガス濃縮方法
JP2004122129A (ja) 真空圧力変動式吸着装置におけるエネルギー回収系
TW201032886A (en) Pressure swing adsorption type gas generation device
JP2008229493A (ja) 圧力スイング吸着型酸素濃縮器
WO2011093247A1 (ja) 可燃性ガスの濃縮システム
JP4673440B1 (ja) 目的ガスの分離回収方法
JP2009219990A (ja) 酸素濃縮器
JP7205348B2 (ja) 二酸化炭素回収装置、炭化水素製造装置、および、二酸化炭素回収方法
JP6218464B2 (ja) 圧力スイング吸着装置の使用方法と圧力スイング吸着装置
JP2009220004A (ja) 可燃性ガスの濃縮方法および可燃性ガスの濃縮システム
JP3764370B2 (ja) ガス濃縮装置
JP6239435B2 (ja) 気体分離装置
JP5939917B2 (ja) 気体分離装置
JP2006141896A (ja) 酸素濃縮器
JP2009220003A (ja) 可燃性ガスの濃縮方法および可燃性ガスの濃縮システム
WO2017163792A1 (ja) 濃縮された目的ガスの製造方法
JPH11179133A (ja) 濃縮酸素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007257.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011211029

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: P.401475

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011211029

Country of ref document: AU

Date of ref document: 20110124

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201209069

Country of ref document: UA

Ref document number: 2012136471

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13575127

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11736960

Country of ref document: EP

Kind code of ref document: A1