WO2011092990A1 - 電力貯蔵デバイスセルとその製造方法および蓄電デバイス - Google Patents

電力貯蔵デバイスセルとその製造方法および蓄電デバイス Download PDF

Info

Publication number
WO2011092990A1
WO2011092990A1 PCT/JP2010/073534 JP2010073534W WO2011092990A1 WO 2011092990 A1 WO2011092990 A1 WO 2011092990A1 JP 2010073534 W JP2010073534 W JP 2010073534W WO 2011092990 A1 WO2011092990 A1 WO 2011092990A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode layer
storage device
current collector
collector foil
Prior art date
Application number
PCT/JP2010/073534
Other languages
English (en)
French (fr)
Inventor
相原 茂
光田 憲朗
吉瀬 万希子
大吾 竹村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/512,056 priority Critical patent/US9040182B2/en
Priority to JP2011551716A priority patent/JP5368589B2/ja
Priority to CN201080060516.5A priority patent/CN102696144B/zh
Publication of WO2011092990A1 publication Critical patent/WO2011092990A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a configuration of a power storage device cell incorporating a configuration of a lithium ion capacitor and a lithium ion battery, a manufacturing method thereof, and a power storage device.
  • Power storage device cells include a capacitor that physically stores electric charge and a secondary battery that stores energy through an electrochemical reaction. Although the capacitor has a low energy density, it has a high output density and can respond to rapid charge / discharge, and the secondary battery has a feature that it has a high energy density and excellent sustainability although it is inferior in instantaneous power compared to the capacitor. Therefore, if a power storage device cell having both the instantaneous power of the capacitor and the sustainability of the secondary battery can be realized, it can be used for various applications such as a hybrid vehicle and various types of brake regeneration.
  • Capacitors and secondary batteries have different mechanisms for storing power as described above.
  • capacitors that use electrolyte also called electric double layer capacitors, supercapacitors, electrochemical capacitors, etc.
  • Lithium ion capacitor is a member of the same), which has polarizable electrodes (positive and negative electrodes) facing each other across the separator, and the electrostatic property of the electric double layer formed on the surface of the polarizable electrode in the electrolyte. Charges are stored using capacity, and are made of a material similar to that of a secondary battery.
  • the inventor of the present invention pays attention to a lithium ion battery having a particularly high energy density among secondary batteries, and uses a common negative electrode for a lithium ion capacitor and a lithium ion battery that operate with a common electrolyte solution.
  • a new power storage device cell having a single structure has been proposed (see, for example, Patent Document 1).
  • JP 2009-141181 A paragraphs 0015 and 0068, FIGS. 1 and 12)
  • the present invention has been made to solve the above-described problems, and has a highly reliable power storage device cell that has both instantaneous force and sustainability and can maintain a capacitance even after repeated rapid charge / discharge. It is to provide.
  • the power storage device cell includes a first electrode in which a first electrode layer containing activated carbon fine particles is formed on one surface of the first current collector foil, and one of the second current collector foils.
  • a second electrode in which a second electrode layer containing lithium-containing metal compound particles is formed on the surface and a third electrode in which a third electrode layer is formed on at least one surface of the third current collector foil And a first separator made of a porous insulating film, and a second separator made of a porous insulating film, wherein the third current collector foil has a transmission hole, and the first separator
  • a capacitor having the third electrode as a negative electrode is formed by sandwiching the first separator between an electrode layer and one surface of the third electrode, and the second electrode layer and the third electrode are formed.
  • the second separator is sandwiched between the other surface of the electrode and the third electrode is connected to the capacitor.
  • the cause of the decrease in capacitance was the concentration of lithium dendrite near the permeation holes of the current collector foil of the common negative electrode.
  • hard carbon particles were mixed with the carbon material of the common negative electrode.
  • the electrostatic capacity can be maintained even if repeated rapid charge and discharge is suppressed by suppressing the concentration of lithium dendrite, and it has both instantaneous power and sustainability.
  • a highly reliable power storage device cell that maintains capacitance can be obtained.
  • FIG. 1 is a cross-sectional view showing a partial configuration of the power storage device cell according to the first embodiment of the present invention.
  • a power storage device cell includes a capacitor positive electrode 11a in which a capacitor positive electrode layer 8 containing activated carbon fine particles is formed on the lower surface of the current collector foil 10a, and a lithium-containing metal compound on the upper surface of the current collector foil 10b.
  • Common cathode in which a capacitor cathode electrode layer 5 and a lithium anode electrode layer 6 are formed on the upper surface and the lower surface of a current collector foil 3 having a transmission hole 4, respectively.
  • the carbon material constituting the electrode layers 5 and 6 of the common negative electrode 7 is configured by mixing graphite particles and hard carbon particles, The ratio of the hard carbon particles in the carbon-based material is 5% by weight or more and 70% by weight or less.
  • the negative electrode of the capacitor unit and the lithium battery unit are shared by the common negative electrode 7, and the capacitor positive electrode 11a and the lithium positive electrode 11b are short-circuited. Therefore, when charging / discharging, Li ions between the capacitor part and the lithium battery part can move quickly through the transmission hole 4 provided in the common negative electrode 7, so that the capacitor part can also participate in charging / discharging and rapidly. It becomes possible to handle charging and discharging.
  • the common negative electrode having the above-described configuration is used in order to suppress the concentration of charging around the perforation hole. Details will be described below.
  • a common negative electrode 7 is a capacitor negative electrode layer 5 in which a mixture of graphite particles and hard carbon particles is applied to the front and back of a negative electrode current collector foil 3 provided with a plurality of transmission holes dispersed in the surface. And the lithium battery negative electrode layer 6 are formed.
  • the positive electrode is configured as a hybrid positive electrode 11 in which a capacitor positive electrode layer 8 including activated carbon particles and a lithium battery positive electrode layer 9 including lithium-containing metal compound particles are formed on the front and back of the positive electrode current collector foil 10.
  • the capacitor positive electrode layer 8 and the capacitor negative electrode layer 5 are opposed to each other via the first separator 12 to form a capacitor portion.
  • the lithium ion battery positive electrode layer 9 and the lithium battery negative electrode layer 6 are connected to the second separator 13.
  • the hybrid cathode 11 of the same specification in which the capacitor positive electrode layer 8 is formed on one surface of the current collector foil 10 and the lithium battery positive electrode layer 9 is formed on the other surface is shown in FIG. Therefore, the role of 11a is changed to the positive electrode of the capacitor and the role of 11b is changed to the positive electrode of the lithium battery.
  • the capacitor positive electrode provided with the capacitor positive electrode layer 8 on one side (lower side) of the strip-shaped positive electrode current collector foil 10a, the first separator 12, the common negative electrode 7, the second separator 13, and the positive electrode
  • the capacitor positive electrode provided with the capacitor positive electrode layer 8 on one side (lower side) of the strip-shaped positive electrode current collector foil 10a, the first separator 12, the common negative electrode 7, the second separator 13, and the positive electrode
  • a so-called stacked power storage device is configured.
  • the parallel laminated type it is desirable to arrange the common negative electrode 7 at both ends on the outermost layer. If the hybrid positive electrode 11 is disposed in the outermost layer, the capacitor positive electrode layer 8 or the lithium battery positive electrode layer 9 may be at a high potential and may be deteriorated.
  • the outermost layers at both ends are the capacitor negative electrode provided with the capacitor negative electrode layer 5 on one side of the strip-shaped negative electrode current collector foil, and the lithium battery negative electrode layer 6 on one side of the negative electrode current collector foil.
  • a lithium battery negative electrode provided with can also be used.
  • a negative electrode current collector foil having no transmission hole may be used.
  • the outermost layers at both ends are a capacitor positive electrode provided with a capacitor positive electrode layer 8 on one side of a strip-like positive electrode current collector foil, and a lithium battery positive electrode provided with a lithium battery positive electrode layer 9 on one side of the positive electrode current collector foil. It can also be used.
  • the outermost layer is preferably the first separator 12 in contact with the common negative electrode 7. If the outermost layer is the second separator 13 in contact with the hybrid positive electrode 11, the capacitor positive electrode layer 8 or the lithium battery positive electrode layer 9 has a high potential and may be deteriorated.
  • the materials of the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6 used for the common negative electrode 7 include hard carbon particles capable of occluding and releasing lithium from a high potential used in general lithium ion batteries.
  • a mixture of graphite particles capable of occluding and releasing a large amount of lithium ions at a low potential can be used.
  • the average particle diameter is preferably about 1 to 20 ⁇ m.
  • amorphous carbon, amorphous carbon, carbon particles obtained by heat-treating graphitizable carbon at a relatively low temperature of about 1000 ° C. to 1500 ° C. can be used.
  • a property common to these is that lithium ions can be occluded and released from a high potential of 1.0 V (vs. Li), and the potential gradually decreases.
  • Graphite particles include natural graphite such as Sri Lankan graphite, Madagascar graphite, and Chinese graphite, as well as artificial graphite such as mesocarbon microbead graphite, coke graphite, and scaly graphite, and particles such as expanded graphite with expanded layers. Can be used. A property common to these is that a large amount of lithium ions can be occluded and released at a low potential close to the oxidation-reduction potential of lithium. However, when the potential becomes 0.3 V (vs. Li) or more, almost all lithium ions are occluded and released. It is not possible.
  • FIG. 2 shows the lithium filling amount when Li dendrite occurs when the lithium filling amount (capacity) is 0% with respect to the Li reference potential for two types of carbon materials used for the common negative electrode, and the Li filling amount.
  • This shows the relationship with the potential of the carbon negative electrode on the basis of potential.
  • the lithium ion occlusion starts from a high potential of about 1 V, depending on the material. The potential decreases as the ratio of the lithium ion to be occluded, and reaches 0 V near 100%.
  • FIG. 3 shows a cross section during charging when a common negative electrode 7 is formed by electrode layers 5 and 6 in which hard carbon particles 1 and graphite particles 2 are alternately arranged on the front and back of a current collector foil 3 made of copper punching metal. It is an enlarged schematic diagram. Since lithium ions can move between the capacitor side and the lithium battery side through the transmission hole 4 of the negative electrode current collector foil 3, it is possible to charge the carbon around the capacitor negative electrode layer 5 of the capacitor portion during charging. . This is a great advantage of the common negative electrode. That is, not only the lithium ion negative electrode layer 6 but also the capacitor negative electrode layer 5 can participate in charging / discharging of the lithium battery. Thereby, the polarization on the negative electrode side can be greatly reduced, and the charge / discharge efficiency can be increased. Also, the power density is greatly improved.
  • lithium dendrite is preferentially placed on the carbon particles arranged in the vicinity of the transmission hole 4 when rapid charge / discharge is repeated.
  • the deposited dendrites may pass through the separator and cause a short circuit with the positive electrode. This is because the electrochemical potential in the vicinity of the permeation hole 4 decreases when the vicinity of the permeation hole 4 starts to be charged, making it easier to occlude lithium ions. That is, when the electrochemical potential is not uniform in the plane, a local low potential is generated.
  • lithium ions are preferentially occluded in the hard carbon particles 1 among the carbon-based particles in the electrode layer as shown in FIG.
  • the electrochemical potential can be kept constant over the entire surface of the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6.
  • the electrochemical potential gradually decreases to 0.1 V (vs. Li), so that lithium ions are occluded in the graphite particles 2 around the hard carbon particles 1. It becomes possible to occlude a large amount of lithium ions.
  • FIG. 4 shows a state during discharge of the same part as the part shown in FIG. 3, contrary to the time of charging, release of lithium ions from the graphite particles 2 is started, but the hard carbon particles 1 In this case, lithium ions are kept occluded, and the electrochemical potential can be kept constant over the entire surface of the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6.
  • the electrochemical potential gradually increases, and when it exceeds 0.2 V (vs. Li), the release of lithium ions from the hard carbon particles 1 is started and 1.0 V (vs. Li) continues to be released until (Li), and during this time, the electrochemical potential can be kept constant over the entire surface of the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6.
  • the hard carbon particles 1 are added in order to keep the electrochemical potential constant throughout the entire surface of the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6, a small amount of hard carbon particles 1 and graphite can be used. If about 5% of the total weight of the particles 2 (the whole carbon-based particle material) is added, the effect can be exhibited. When the weight ratio of the hard carbon particles 1 to be added is less than 5%, the effect of keeping the in-plane electrochemical potential uniform is reduced, and the effect of suppressing the generation of lithium dendrite generated in the vicinity of the transmission hole 4 is lost.
  • the weight ratio of the hard carbon particles 1 to be added is preferably 5% or more and less than 70%.
  • carbon-based particle materials have a broad particle size distribution. Therefore, when forming the electrode layer, if the ratio of the hard carbon particles 1 is less than 20% or exceeds 40%, the particles having a narrow particle size in the particle size distribution are selected and used. It is necessary and material efficiency becomes worse. Therefore, if the ratio of the hard carbon particles 1 is between 20% and 40%, the electrode layer can be formed without performing selection based on the particle diameter, so that the material efficiency can be improved.
  • the electrode layers 5 and 6 are not distinguished from each other, and a common electrode material is used.
  • the weight ratio of the hard carbon particles 1 is the surface of the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6. The value may be different from the inside. In particular, by arranging many hard carbon particles 1 on the capacitor negative electrode layer 5 side, it is possible to suppress the generation of lithium dendrite in the vicinity of the transmission hole 4 of the capacitor negative electrode layer 5.
  • the negative electrode current collector foil 3 includes a punching metal copper foil or an expanded metal copper foil having a thickness of about 10 ⁇ m or more and 20 ⁇ m or less in which the transmission holes 4 are formed in the surface in advance.
  • An etching foil in which holes are formed by chemical etching may be used.
  • the capacitor negative electrode layer 5 and the lithium battery negative electrode layer 6 can be formed and used on the front and back.
  • As the positive electrode current collector foil 10 an aluminum foil having a thickness of 7 ⁇ m or more and 50 ⁇ m or less can be used.
  • an electrolytic solution containing LiPF 6 as an electrolyte in an organic solvent can be used, which is shared by the capacitor unit and the lithium battery unit.
  • organic solvent for example, propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC) can be used.
  • the first separator 12 and the second separator 13 are, for example, porous having a thickness of about 10 to 50 ⁇ m, a porosity (porosity) of about 60 to 80% by volume, and an average pore diameter of about several to several tens of ⁇ m.
  • An insulating film such as cellulose, polyethylene, or polypropylene can be used.
  • the activated carbon particles of the capacitor positive electrode layer 8 it is desirable to use particles having an average particle diameter of about 1 to 10 ⁇ m, which are activated by steam or alkali using phenol resin, petroleum pitch, petroleum coke, coconut shell, or the like as a raw material. .
  • lithium cobalt oxide As the lithium-containing metal compound particles of the lithium battery positive electrode layer 9, lithium cobalt oxide (LiCoO 2 ) preferably has a large endothermic amount during charging and a large exothermic amount during discharging.
  • lithium cobalt oxide including olivine type lithium iron phosphate, lithium nickel oxide (LiNiO 2 ) and lithium manganese oxide (LiMn 2 O 4 ) may be used, and ternary or quaternary. It may be a multi-component system such as a system. It is desirable to use particles having an average particle diameter of about 1 to 10 ⁇ m.
  • the withstand voltage of the capacitor is higher, so it is possible to increase the burden on the capacitor during rapid charging, realizing a power storage device with greater flashiness can do.
  • the positive electrode was not a hybrid positive electrode, but a positive electrode dedicated to a lithium battery positive electrode and a positive electrode dedicated to a capacitor positive electrode were used.
  • Example 1 [Preparation of common negative electrode] As negative electrode layers 5 and 6, after mixing 5 parts of hard carbon having an average particle diameter of 7 ⁇ m and 95 parts of graphite particles having an average particle diameter of 5 ⁇ m (addition amount of hard carbon of 5% by weight), polyvinylidene fluoride as a binder An electrode paste made of n-methylpyrrolidone as a solvent was mixed and prepared. Next, this paste was applied as a negative electrode current collector foil 3 on both sides of a copper foil having a width of 300 mm, a thickness of 20 ⁇ m, and holes having a diameter of 1 mm (transmission holes 4) punched at a pitch of 5 mm, dried, and dried at 150 ° C.
  • This negative electrode was cut into a 32 mm ⁇ 52 mm strip, a 20 mm ⁇ 20 mm portion was cut from the corner, and a 7 mm ⁇ 20 mm tab portion was provided as a current terminal tab portion.
  • capacitor positive electrode As a capacitor positive electrode layer, an electrode paste made of activated carbon having an average particle diameter of 5 ⁇ m, an acrylic polymer as a binder, and water as a solvent was mixed and prepared. Next, this paste was applied to one surface of a current collector foil 10C made of pure aluminum having a width of 300 mm and a thickness of 50 ⁇ m to form a capacitor positive electrode layer 8 having a thickness of 100 ⁇ m to obtain a capacitor positive electrode 11C.
  • This positive electrode 11C is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is
  • olivine type lithium iron phosphate having an average particle size of 5 ⁇ m
  • acetylene black and polyvinylidene fluoride (PVDF) as a binder are n-methylpyrrolidone ( NMP) and dried at 100 ° C. to form a lithium battery positive electrode layer 9 having a thickness of 100 ⁇ m and hot roll pressed at 150 ° C. to obtain a lithium battery positive electrode 11L.
  • NMP n-methylpyrrolidone
  • This positive electrode 11L is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the lithium battery positive electrode layer 9 is peeled off, and the foil portion is exposed. It was set as the current terminal tab part.
  • Capacitor positive electrode 11C (only one side of electrode layer 8 is formed), common negative electrode 7, and lithium battery positive electrode 11L (only one side of electrode layer 9 is formed) are laminated in such a manner that the respective electrode layers face each other, with a thickness between them.
  • a 35 ⁇ m cellulosic paper separator was sandwiched one by one.
  • the current collector tabs of the two positive electrodes 11C and 11L were overlapped, and an aluminum foil was connected to the current collector tab by ultrasonic welding (short circuit) to obtain a positive electrode current collector terminal TP. As shown in FIG.
  • FIG. 5 is a semi-transparent view of a test cell with an aluminum laminate sheath.
  • an aluminum laminate film exterior 19 is folded in two and three sides are heat-sealed 20 with a thermoplastic resin.
  • the current terminals TP and TN are heat-sealed to the exterior after the thermoplastic resin 17 with improved adhesion to metal is attached.
  • the exterior 19 is longer than the size of the electrode part because the gas accompanying deterioration from the electrode when performing a charge / discharge test by applying a surface pressure to the electrode part of 3 cm ⁇ 3 cm. This is because the gas generated in the extended exterior portion can be accumulated even if the gas is generated so that the test can be continued.
  • the negative electrode 7 has an outer shape larger than the positive electrodes 11C and 11L by 1 mm on all four sides, thereby preventing measurement errors due to the deviation between the positive electrode and the negative electrode.
  • the voltage holding after charging to 4.2 V was examined, and it was determined that there was a slight short circuit due to the generation of lithium dendrite if the voltage dropped greatly in a short time.
  • the reason why the temperature was set to 60 ° C. instead of room temperature and the upper limit voltage was increased to 4.2 V is to accelerate the generation of lithium dendrite.
  • the lithium salt concentration was also higher than usual (1.2 mol / l) to create an environment in which lithium dendrite was likely to occur.
  • Example 2 Example 1 was the same as Example 1 except that the amount of hard carbon 1 added to the capacitor negative electrode layer 5 and the lithium negative electrode layer 6 was 10% by weight.
  • Example 3 Example 1 was the same as Example 1 except that the amount of hard carbon 1 added to the capacitor negative electrode layer 5 and the lithium negative electrode layer 6 was 30% by weight.
  • Example 4 Example 1 was the same as Example 1 except that the amount of hard carbon 1 added to the capacitor negative electrode layer 5 and the lithium negative electrode layer 6 was 50% by weight.
  • Example 5 Example 1 was the same as Example 1 except that the amount of hard carbon 1 added to the capacitor negative electrode layer 5 and the lithium negative electrode layer 6 was 70% by weight.
  • Example 6 Example 1 was the same as Example 1 except that the amount of hard carbon 1 added to the capacitor negative electrode layer 5 was 30 wt% and the amount of hard carbon 1 added to the lithium negative electrode layer 6 was 10 wt%.
  • Comparative Example 1 Except that the capacitor negative electrode layer 5 and the lithium negative electrode layer 6 were prepared using only the graphite particles 2 (without adding the hard carbon particles 1), they were the same as those in Example 1.
  • Comparative Example 2 Except that the capacitor negative electrode layer 5 and the lithium negative electrode layer 6 were prepared using only the hard carbon 1 (without using the graphite particles 2), they were the same as those in Example 1.
  • Capacitor negative electrode layer 5 was prepared using only hard carbon 1 (not using graphite particles 2), and lithium negative electrode layer 6 was prepared using only graphite particles 2 (without adding hard carbon 1 particles). Except for this, it was the same as Example 1.
  • Comparative Example 4 The capacitor negative electrode layer 5 was prepared using only the graphite particles 2 (without adding the hard carbon particles 1), and the lithium negative electrode layer 6 was prepared using only the hard carbon 1 (without using the graphite particles 2). Except for this, it was the same as Example 1.
  • Table 1 summarizes the evaluation results of Examples 1 to 6 and Comparative Examples 1 to 4.
  • Example 6 when Example 6 and Comparative Example 3 are compared, in Comparative Example 3, the hard carbon particles 1 are used for the capacitor negative electrode layer 5, the graphite particles 2 are used for the lithium battery negative electrode layer 6, and the capacitor negative electrode Although the electrode layer 5 is configured so that lithium ions are preferentially occluded, a slight short circuit occurs due to the generation of lithium dendrite. This is because as the lithium ions are occluded in the capacitor negative electrode layer 5, a large shift in the electrochemical potential between the front and back surfaces occurs, and lithium dendrite is easily generated in the vicinity of the transmission hole 4. On the other hand, in Example 6, since the hard carbon 1 exists also in the lithium battery negative electrode layer 6, it is thought that the electrochemical potential of the front and back was kept uniform.
  • the capacitor positive electrode layer 8 which is the first electrode layer including the activated carbon fine particles on one surface of the first current collector foil 10a.
  • a transmission hole 4 is formed in the third current collector foil 3, and the first electrode layer 8 and the second separator 13 are formed.
  • the first separator 12 is placed between the electrode 3 and the surface on the electrode layer 5 side.
  • the second separator 13 is sandwiched between the second electrode layer 9 and the surface of the third electrode 7 on the electrode layer 6 side to A power storage device cell in which a lithium ion battery having the electrode 7 as a common negative electrode with a capacitor is formed and the capacitor positive electrode 11a and the lithium battery positive electrode 11b are short-circuited, and the third electrode layers 5 and 6 are graphite particles Since the carbon material is a mixture of hard carbon particles and the ratio of the hard carbon particles in the carbon material is 5% by weight or more and 70% by weight or less. Thus, it is possible to obtain a highly reliable power storage device cell that suppresses generation of lithium dendrite, has both instantaneous power and sustainability, and can maintain electrostatic capacity even after repeated rapid charge and discharge.
  • FIG. FIG. 6 is a schematic cross-sectional view of a power storage device cell according to the second embodiment of the present invention. The difference from the first embodiment is that a transmission hole of the current collector foil is formed by a through hole penetrating the common negative electrode.
  • the common negative electrode 207 is made of a copper foil having a thickness of about 10 ⁇ m or more and 20 ⁇ m or less with no through holes formed as a material for the negative electrode current collector foil 203, and a paste in which hard carbon particles and graphite particles are mixed is applied on the front and back
  • Kenzan Ikebana, a tool for fixing the roots of flowers and branches, a plurality of needles are arranged upward on a metal stand.
  • a through-hole 14 that physically penetrates the common negative electrode 207 is formed by using a needle-like object having a pointed tip like that in the surface. That is, after the electrode layer is applied to the metal foil before drilling, the protrusions are pressed to form the through holes 14, and the current collector foil 203 portion of the through term 14 is made of the current collector foil of the first embodiment.
  • a permeation hole was formed.
  • the large number of through-holes 14 penetrating the entire thickness direction of the common negative electrode 207 keeps the electrochemical potential of the common negative electrode 207 constant, and there is a risk of corrosion due to local high potential or low potential of the capacitor positive electrode 11a or the lithium battery positive electrode 11b.
  • the effect which can reduce a property significantly is acquired.
  • the electrolyte and ions can be quickly moved between the front and back separators 12 and 13 through the through-holes 14, they quickly respond to the expansion and contraction of the electrodes and prevent deterioration due to rapid charge and discharge. Effect is obtained.
  • an electrode layer can be apply
  • FIG. 6 shows the case where the electrode layers 205 and 206 are formed on both sides of the negative electrode current collector foil 203
  • the present invention is not limited to this.
  • the through-hole 14 can be formed after the electrode layer is formed, and the electrolyte and ions can be quickly moved between the separators 12 and 13 on the front and back sides.
  • the common negative electrode 207 that is the third electrode is provided with the through hole 14 that penetrates the thickness direction of the common negative electrode 207. Therefore, the electrolyte moves smoothly between the capacitor side and the lithium battery side, and the response to rapid charge / discharge is improved.
  • the third electrode layer 205 is formed before the transmission hole is formed in the negative electrode current collector foil 203 which is the third current collector foil. , 206 is applied, and the protrusions are pressed to form the through holes 14 after application, so that the current collector foil can be provided with transmission holes and the electrode layer can be applied satisfactorily. And quality is stable.
  • FIG. FIG. 7 is a schematic cross-sectional view of a power storage device cell according to Embodiment 3 of the present invention.
  • the through hole penetrating the entire common negative electrode is provided.
  • the shape of the through hole penetrating the entire common negative electrode is conical, and the capacitor negative electrode Two types (two directions) of through holes 314A narrowing toward the layer side and through holes 314B narrowing toward the lithium battery negative electrode layer side are provided. Therefore, the protrusions are pressed from both the capacitor negative electrode layer 305 side and the lithium battery negative electrode layer 306 side.
  • a drilling method for the common negative electrode 307 for example, a metal mold in which quadrangular pyramid protrusions having a base of 0.4 mm and a height of 0.7 mm are formed at intervals of 0.8 mm, and the surface is formed. It can be formed by installing a common negative electrode 307 having electrode layers 305 and 306 coated on both sides between smooth metal plates, and performing an operation of pressing at a pressure of about 0.3 MPa on the front side and the back side. In addition, a large number of holes can be made in the same manner by turning it upside down on a roller with a needle and passing it twice.
  • the through-hole 30 having a quadrangular pyramid configured from the front and back surfaces of the common negative electrode 307 facilitates the selective flow of the electrolyte in the narrowing direction.
  • the electrolyte from the first separator 12 to the second separator 13 is transmitted through the through-hole 314B.
  • the electrolyte solution is easily moved from the second separator 13 to the first separator 12 to make the lithium ion concentration uniform, and the generation of lithium dendrite near the through hole in the current collector foil 303 is prevented. The effect of suppressing is acquired.
  • the opening area of the portion corresponding to the transmission hole of the current collector foil 303 is preferably 1 to 50 area%, more preferably 5 to 20 area%, with respect to the total area of the negative electrode current collector foil 303. If it is in the range of 1 to 50 area%, both ionic conductivity and electrical conductivity can be ensured, and if it is in the range of 5 to 20 area%, the balance between ionic conductivity and electrical conductivity is good. At the same time, the strength of the current collector foil can be sufficiently maintained.
  • the opening area By changing the opening area, the ion conduction resistance when passing through the through-holes 314A and 314B changes, so that the difference in electrochemical potential between the capacitor part and the lithium battery part can be controlled, and the opening area can be reduced. As a result, the difference in electrochemical potential increases, and the electrochemical potential of the lithium battery section changes slowly.
  • the third electrode layers 305 and 306 are provided on both surfaces of the third current collector foil 303, and as the through holes, The first through hole 314B and the first through hole 314B that become narrower from the one surface side where the electrode layer 305 of the third electrode 307 is provided toward the other surface side where the electrode layer 306 is provided.
  • the paste for forming the electrode layers 305 and 306 is applied to the both sides of the metal foil with the through holes 314A and 314B applied. Later, since the projections are formed by pressing from the respective surfaces, the electrode layer can be applied satisfactorily and the quality is stabilized.
  • the hole formed in the current collector foil when the through hole is opened is the electrolyte transmission hole.
  • the transmission hole is formed separately from the through hole, the through hole Needless to say, the effect of smoothing the movement of the electrolyte can be obtained.
  • FIG. FIG. 8 is a schematic cross-sectional view of a power storage device cell according to Embodiment 4 of the present invention.
  • the common negative electrode 407 has a capacitor negative electrode layer 405 formed on one surface of the current collector foil 403, and the other surface of the current collector foil 403 has a lithium battery part side. That is, an electrical insulating layer 18 is formed.
  • the electrical insulating layer 18 is preferably a film such as polyethylene or polypropylene, or a layer coated with PVDF.
  • the capacitor negative electrode layer 5 also functions as the lithium battery negative electrode layer 6.
  • the conical through hole 414 that penetrates the entire common negative electrode 407 including the electric insulating layer 18 is formed from the electric insulating layer 18 side, and becomes narrower from the electric insulating layer 18 side toward the capacitor negative electrode layer 405. It is supposed to be.
  • a large number of through holes 414 can be opened by passing the common negative electrode 407 through a roller having a needle so that the electric insulating layer 18 side faces the needle.
  • the porosity is preferably 30% or more and 70% or less. When the porosity is less than 30%, the function of the capacitor negative electrode layer 5 as the lithium battery negative electrode layer 6 is lowered. On the other hand, if the open area ratio exceeds 70%, the performance of the negative electrode layer may be reduced due to a decrease in area.
  • the capacitor negative electrode layer 405 also functions as the lithium battery negative electrode layer 406
  • addition of hard carbon is important, and generation of lithium dendrite near the through-hole 414 serving as the transmission hole of the current collector foil 403 is generated. Can be prevented.
  • the electrical insulating layer 18 is provided on the surface of the negative electrode current collector foil 403 on which the electrode layer is not provided, the metal part of the current collector foil does not contact the electrolyte, and the part that does not contribute to the reaction is prevented. Elution (corrosion) of the foil can be suppressed.
  • the common negative electrode 407 has the electrode layer 405 formed on the capacitor portion side of the current collector foil 403, and the current collector foil 403 on the lithium battery side. Since the insulating film 18 is provided on the surface, and the through hole 414 that penetrates the thickness direction of the common negative electrode 407 that narrows from the insulating film 18 side toward the electrode layer 405 is provided, the metal of the current collector foil Of the portions, portions that do not contribute to the reaction are not touched by the electrolyte solution, and elution (corrosion) of the current collector foil can be suppressed.
  • FIG. FIG. 9 is a schematic cross-sectional view of a power storage device cell according to Embodiment 5 of the present invention.
  • the common negative electrode 507 has a lithium battery negative electrode layer 507 formed on one surface of the current collector foil 503, and the capacitor surface, which is the other surface of the current collector foil 503, has an electric An insulating layer 518 is formed.
  • the common negative electrode 507 has a configuration opposite to that of the common negative electrode 407 in the fourth embodiment in the thickness direction.
  • the lithium battery negative electrode layer 506 also functions as the capacitor negative electrode layer 505.
  • the conical through hole 514 penetrating the entire common negative electrode 507 is formed from the electric insulating layer 518 side, and becomes narrower from the electric insulating layer 518 side toward the lithium negative electrode layer 506.
  • a large number of through holes 514 can be opened by passing the common negative electrode 507 through a roller having a needle so that the electrical insulating layer 518 side faces the needle.
  • the porosity is preferably 30% or more and 70% or less. When the porosity is less than 30%, the function of the capacitor negative electrode layer 5 as the lithium battery negative electrode layer 6 is lowered. On the other hand, if the open area ratio exceeds 70%, the performance of the negative electrode layer may be reduced due to a decrease in area.
  • the lithium battery negative electrode layer 506 also functions as the capacitor negative electrode layer 505
  • addition of hard carbon is important, and generation of lithium dendrite near the through hole 514 serving as a transmission hole of the current collector foil 503 is generated. Can be prevented.
  • the electrical insulating layer 518 is provided on the surface of the negative electrode current collector foil 503 where the electrode layer is not provided, the portion of the metal portion of the current collector foil that does not contribute to the reaction is the electrolyte. It is no longer touched and the elution (corrosion) of the current collector foil can be suppressed.
  • the common negative electrode 507 has the electrode layer 506 formed on the lithium battery part side of the current collector foil 503, and the capacitor part side of the current collector foil 503. Since the insulating film 518 is provided on this surface, and the through-hole 514 that penetrates the thickness direction of the common negative electrode 507 that becomes narrower from the insulating film 518 side toward the electrode layer 506 is provided, Of the metal part, the part that does not contribute to the reaction does not come into contact with the electrolytic solution, and elution (corrosion) of the current collector foil can be suppressed.
  • FIG. 10 is a schematic sectional view of a power storage device cell according to Embodiment 6 of the present invention.
  • the difference from the first embodiment is that the ratio of graphite and hard carbon is different between the electrode layer 605 on the first separator 12 side and the electrode layer 606 on the second separator 13 side of the common negative electrode 607.
  • the hard carbon ratio of the electrode layer 605 on the separator 12 side is higher than the hard carbon ratio of the electrode layer 606 on the second separator 13 side. Since the capacitor portion side is compatible with rapid charge / discharge, a large current flows. For this reason, if there is much graphite, a potential will fall partially and the possibility that lithium will precipitate increases.
  • the capacitor-side electrode layer 605 contains a lot of hard carbon, lithium can be inserted with a high potential as described with reference to FIG. 2, so that the potential does not drop to the lithium deposition potential and short-circuiting is unlikely to occur. .
  • the ratio of the hard carbon in the electrode layer 605 on the first separator 12 side to the ratio of the hard carbon in the electrode layer 606 on the second separator 13 side may be larger than 1 and within 20 times, preferably Is 2 to 20 times, more preferably 5 to 20 times. If it is less than 1 time, the lithium battery part has more hard carbon than the capacitor part, so the possibility of lithium deposition in the capacitor part increases.
  • Example of power storage device cell according to Embodiment 6 of the present invention will be described.
  • a cell with various changes in the configuration of the common negative electrode was made and a performance test was conducted. Also in this performance test, in order to simplify the test conditions, as in the performance test in the first embodiment, not the hybrid positive electrode but the positive electrode dedicated to the lithium battery positive electrode and the positive electrode dedicated to the capacitor positive electrode are used as the positive electrode. It was decided.
  • Example 7 [Preparation of common negative electrode] As the negative electrode layer 605, after mixing 10 parts of hard carbon having an average particle diameter of 7 ⁇ m and 90 parts of graphite particles having an average particle diameter of 5 ⁇ m (addition amount of hard carbon of 10% by weight), polyvinylidene fluoride as a binder and a solvent An electrode paste comprising n-methylpyrrolidone as a mixture was prepared. Next, the paste was applied as a negative electrode current collector foil 603 to a surface of a copper foil having a width of 300 mm, a thickness of 20 ⁇ m, and a hole having a diameter of 1 mm (transmission holes 4) punched at a pitch of 5 mm and dried at 100 ° C. .
  • the negative electrode layer 606 As the negative electrode layer 606, 5 parts of hard carbon having an average particle diameter of 7 ⁇ m and 95 parts of graphite particles having an average particle diameter of 5 ⁇ m were mixed (addition amount of hard carbon 5% by weight), and then polyvinylidene fluoride as a binder and a solvent An electrode paste comprising n-methylpyrrolidone as a mixture was prepared. Next, this paste was applied and formed on the back surface of the negative electrode current collector foil 603 on which the negative electrode layer 605 was formed, and dried at 100 ° C.
  • the prepared double-coated negative electrode was hot pressed at 100 ° C. to obtain a common negative electrode 607.
  • This negative electrode was cut into a 32 mm ⁇ 52 mm strip, a 20 mm ⁇ 20 mm portion was cut from the corner, and a 7 mm ⁇ 20 mm tab portion was provided as a current terminal tab portion.
  • capacitor positive electrode As a capacitor positive electrode layer, an electrode paste composed of activated carbon having an average particle diameter of 5 ⁇ m, carbon black as a conductive additive, an acrylic polymer as a binder, and water as a solvent was prepared by mixing. Next, this paste was applied to one surface of a current collector foil 10C made of pure aluminum having a width of 300 mm and a thickness of 50 ⁇ m to form a capacitor positive electrode layer 8 having a thickness of 100 ⁇ m to obtain a capacitor positive electrode 11C.
  • This positive electrode 11C is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is
  • NMP N-methylpyrrolidone
  • olivine type lithium iron phosphate having an average particle size of 5 ⁇ m
  • acetylene black olivine type lithium iron phosphate having an average particle size of 5 ⁇ m
  • PVDF polyvinylidene fluoride
  • This positive electrode 11L is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the lithium battery positive electrode layer 9 is peeled off, and the foil portion is exposed. It was set as the current terminal tab part.
  • Capacitor positive electrode 11C (only one side of electrode layer 8 is formed), common negative electrode 607, lithium battery positive electrode 11L (only one side of electrode layer 9 is formed) are laminated in such a manner that the respective electrode layers face each other, and each layer has a thickness therebetween.
  • a 35 ⁇ m cellulosic paper separator was sandwiched one by one.
  • the current collector tabs of the two positive electrodes 11C and 11L were overlapped, and an aluminum foil was connected to the current collector tab by ultrasonic welding (short circuit) to obtain a positive electrode current collector terminal TP. As shown in FIG.
  • this electrode laminate is housed in the exterior of an aluminum laminate film, and contains 1.8 mol / l LiPF 6 as an electrolyte, and is mixed with ethylene carbonate-diethyl carbonate 3: 7.
  • the solvent was injected, and finally the aluminum laminate outer casing 19 was sealed to obtain a test cell.
  • an aluminum laminate film exterior 19 is folded in two and three sides are heat-sealed 20 with a thermoplastic resin.
  • the current terminal portions TP and TN are heat-sealed to the exterior after mounting the thermoplastic resin 17 with improved adhesion to metal.
  • the bottom side was vacuum-evacuated and impregnated with the electrolytic solution, and finally heat-sealed and sealed.
  • the exterior 19 is longer than the size of the electrode part because when the charge / discharge test is performed by applying a surface pressure to the electrode part of 3 cm ⁇ 3 cm, gas accompanying deterioration is generated from the electrode. This is because the gas generated in the lengthened exterior portion is accumulated so that the test can be continued.
  • the negative electrode 7 has an outer shape that is 1 mm larger than the positive electrodes 11C and 11L on all four sides, thereby preventing measurement errors due to misalignment between the positive electrode and the negative electrode.
  • the voltage holding after charging to 4.2 V was examined, and it was determined that there was a slight short circuit due to the generation of lithium dendrite if the voltage dropped greatly in a short time.
  • the reason why the temperature was set to 60 ° C. instead of room temperature and the upper limit voltage was increased to 4.2 V is to accelerate the generation of lithium dendrite.
  • the lithium salt concentration was also higher than usual (1.2 mol / l) to create an environment in which lithium dendrite was likely to occur.
  • Example 8 Example 7 was the same as Example 7 except that the amount of hard carbon added to the capacitor negative electrode layer 605 was 25% by weight.
  • Example 9 Example 7 was the same as Example 7 except that the amount of hard carbon added to the capacitor negative electrode layer 605 was 50% by weight.
  • Example 10 was the same as Example 7 except that the amount of hard carbon added to the capacitor negative electrode layer 605 was 70% by weight.
  • Example 7 was the same as Example 7 except that the amount of hard carbon added to the capacitor negative electrode layer 605 was 10 wt% and the amount of hard carbon added to the lithium battery negative electrode layer 606 was 50 wt%.
  • Example 11 since the ratio of hard carbon in the capacitor negative electrode layer is lower than that in the lithium negative electrode layer, it is superior to Comparative Examples 1 to 4, but the capacitance retention rate is slightly lower than in the other examples. Although there is no short circuit, there are some signs.
  • the common negative electrode 607 has the electrode layers 605 and 606 formed on both sides of the current collector foil 603, and the electrode layers 605 and 606 on both sides are formed.
  • the ratio of the hard carbon of the electrode layer 605 on the first separator 12 side is configured to be higher than the ratio of the hard carbon of the electrode layer 606 on the second separator 13 side, the occurrence of a fine short circuit is suppressed, A highly reliable power storage device cell with a high capacity retention rate can be obtained.
  • FIG. 11 is a schematic sectional view of a power storage device cell according to Embodiment 7 of the present invention.
  • a through-hole corresponding to 14, 314, 414, 514 and denoted as 714 in the present embodiment penetrating the common negative electrode in the second to fifth embodiments was created.
  • the space portion is filled with the material of the electrode layer 705 or the electrode layer 706 of the common negative electrode 707.
  • the electrode layer 705 remaining on the other surface is formed and at the same time the through hole is formed.
  • 714 was filled with a carbon material 21 constituting the electrode layer.
  • the hole diameter of the through hole 714 is larger than the void diameter in the electrode layers 705 and 706. Liquidity becomes worse.
  • the electrolyte may be gradually consumed.
  • the number of ion paths connecting the front and back of the common negative electrode 707 is reduced, and it becomes impossible to move ions between the front and back, resulting in deterioration of characteristics.
  • the inside of the through-hole 714 a porous body made of the same carbon as the electrode layer, the liquid retaining property of the electrolytic solution can be improved and the depletion of the electrolytic solution can be prevented.
  • the hard carbon ratio of the electrode layer 705 on the first separator 12 side of the common negative electrode 707 should be higher than the hard carbon ratio of the electrode layer 706 on the second separator 13 side.
  • the same carbon material as that of one of the electrode layers can be formed in the through hole 714 to prevent the electrolyte from being exhausted.
  • the material of the electrode layer 705 on the first separator 12 side of the common negative electrode 707 is further reduced. Filling the through hole 714 is more preferable because the ratio of hard carbon is further increased, so that formation of lithium dendrite near the through hole 714 is easily prevented.
  • the hard carbon ratio in the electrode layer 705 is configured to be 10 wt% or more and 95 wt% or less, and the hard carbon ratio in the electrode layer 706 is 5 wt% or more. It is preferable that the composition be 40% by weight or less. It was found that by filling the through hole 714 with the same material as the electrode layer 705, precipitation of lithium dendrite was suppressed even at a higher ratio of hard carbon, and no problem was found even at 95% by weight.
  • Example of power storage device cell according to Embodiment 7 of the present invention will be described.
  • a cell in which the configuration of the common negative electrode 707 was changed in various ways was manufactured, and a performance test was performed.
  • the positive electrode is not a hybrid positive electrode, but a positive electrode dedicated to a lithium battery positive electrode and a positive electrode dedicated to a capacitor positive electrode, as in the performance tests in the first and sixth embodiments. I decided to use it.
  • Example 12 [Preparation of common negative electrode] As the negative electrode layer 706, 5 parts of hard carbon having an average particle diameter of 7 ⁇ m and 95 parts of graphite particles having an average particle diameter of 5 ⁇ m are mixed (addition amount of hard carbon 5% by weight), and then polyvinylidene fluoride as a binder and a solvent An electrode paste comprising n-methylpyrrolidone as a mixture was prepared. Next, this paste was applied to and formed on one side of an electrolytic copper foil having a width of 300 mm and a thickness of 12 ⁇ m as a negative electrode current collector foil 703 and dried at 100 ° C.
  • the negative electrode layer 705 10 parts of hard carbon having an average particle diameter of 7 ⁇ m and 90 parts of graphite particles having an average particle diameter of 5 ⁇ m were mixed (addition amount of hard carbon 10 wt%), and then polyvinylidene fluoride as a binder and a solvent An electrode paste comprising n-methylpyrrolidone as a mixture was prepared. After forming the negative electrode layer 706 as described above, this paste was applied and formed on the surface of the negative electrode current collector foil 703 in which the through holes 714 were further formed, and dried at 100 ° C.
  • the prepared double-coated negative electrode was hot pressed at 100 ° C. to obtain a common negative electrode 707.
  • This negative electrode was cut into a 32 mm ⁇ 52 mm strip, a 20 mm ⁇ 20 mm portion was cut from the corner, and a 7 mm ⁇ 20 mm tab portion was provided as a current terminal tab portion.
  • a cross-sectional observation of the cut-out portion of the through hole 714 part confirmed that the filling layer 21 made of the same material as the negative electrode layer 705 was formed in the through hole 714 part.
  • capacitor positive electrode As a capacitor positive electrode layer, an electrode paste composed of activated carbon having an average particle diameter of 5 ⁇ m, carbon black as a conductive additive, an acrylic polymer as a binder, and water as a solvent was prepared by mixing. Next, this paste was applied to one surface of a current collector foil 10C made of pure aluminum having a width of 300 mm and a thickness of 50 ⁇ m to form a capacitor positive electrode layer 8 having a thickness of 100 ⁇ m to obtain a capacitor positive electrode 11C.
  • This positive electrode 11C is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the capacitor positive electrode layer 8 in that portion is peeled off, and the foil portion is exposed.
  • Current terminal tab is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is
  • NMP N-methylpyrrolidone
  • olivine-type lithium iron phosphate having an average particle diameter of 5 ⁇ m
  • acetylene black olivine-type lithium iron phosphate having an average particle diameter of 5 ⁇ m
  • PVDF polyvinylidene fluoride
  • This positive electrode 11L is cut into a 30 mm ⁇ 50 mm strip, a 23 mm ⁇ 20 mm portion is cut from the corner, a 7 mm ⁇ 20 mm tab portion is provided, the lithium battery positive electrode layer 9 is peeled off, and the foil portion is exposed. It was set as the current terminal tab part.
  • Capacitor positive electrode 11C (only one side of electrode layer 8 is formed), common negative electrode 707, and lithium battery positive electrode 11L (only one side of electrode layer 9 is formed) are laminated in such a manner that the respective electrode layers face each other, with a thickness in between.
  • a 35 ⁇ m cellulosic paper separator was sandwiched one by one.
  • the current collector tabs of the two positive electrodes 11C and 11L were overlapped, and an aluminum foil was connected to the current collector tab by ultrasonic welding (short circuit) to obtain a positive electrode current collector terminal TP.
  • this electrode laminate is also housed in the exterior of an aluminum laminate film as shown in FIG. 5, and contains 1.8 mol / l LiPF 6 as an electrolytic solution.
  • -Diethyl carbonate 3: 7 mixed solvent was poured, and finally the aluminum laminate outer casing 19 was sealed to obtain a test cell.
  • an aluminum laminate film exterior 19 is folded in two and three sides are heat-sealed 20 with a thermoplastic resin.
  • the current terminal portions TP and TN are heat-sealed to the exterior after mounting the thermoplastic resin 17 with improved adhesion to metal.
  • the bottom side was vacuum-evacuated and impregnated with the electrolytic solution, and finally heat-sealed and sealed.
  • the exterior 19 is longer than the size of the electrode part because when the charge / discharge test is performed by applying a surface pressure to the electrode part of 3 cm ⁇ 3 cm, gas accompanying deterioration is generated from the electrode. This is because the gas generated in the lengthened exterior portion is accumulated so that the test can be continued.
  • the negative electrode 7 has an outer shape that is 1 mm larger than the positive electrodes 11C and 11L on all four sides, thereby preventing measurement errors due to misalignment between the positive electrode and the negative electrode.
  • the voltage holding after charging to 4.2 V was examined, and it was determined that there was a slight short circuit due to the generation of lithium dendrite if the voltage dropped greatly in a short time.
  • the reason why the temperature was set to 60 ° C. instead of room temperature and the upper limit voltage was increased to 4.2 V is to accelerate the generation of lithium dendrite.
  • the lithium salt concentration was also higher than usual (1.2 mol / l) to create an environment in which lithium dendrite was likely to occur.
  • Example 12 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 25% by weight.
  • Example 14 Example 12 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 50% by weight.
  • Example 15 Example 12 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 70% by weight.
  • Example 16 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 95% by weight.
  • Example 12 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 95 wt% and the amount of hard carbon added to the lithium battery negative electrode layer 706 was 10 wt%.
  • Example 18 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 95% by weight and the amount of hard carbon added to the lithium battery negative electrode layer 706 was 20% by weight.
  • Example 19 Example 12 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 95% by weight and the amount of hard carbon added to the lithium battery negative electrode layer 706 was 30% by weight.
  • Example 20 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 95% by weight and the amount of hard carbon added to the lithium battery negative electrode layer 706 was 40% by weight.
  • Example 12 was the same as Example 12 except that the amount of hard carbon added to the capacitor negative electrode layer 705 was 10 wt% and the amount of hard carbon added to the lithium battery negative electrode layer 706 was 50 wt%.
  • Example 11 is superior to Comparative Examples 1 to 4 and Example 11 because the ratio of hard carbon in the capacitor negative electrode layer is lower than that of the lithium negative electrode layer. It is a little lower than the example, and there is no short circuit, but there are some signs of it.
  • the example in which the through hole 714 is filled with the material of the electrode layer applied to the surface where the through hole 714 is drilled has been described in order to avoid complicating the manufacturing process.
  • the effect of preventing depletion of the electrolyte in the through-hole 714 is not limited to the material of the electrode layer, and for example, an insulating powder may be used.
  • the particles used for the electrode layers 705 and 706 are formed so that a hole diameter smaller than the hole diameter formed between the particles in the electrode layers 705 and 706 is formed in a portion corresponding to the current collector foil 703 in the through holes 714. It may be filled with finer particles.
  • the electrolyte in the through hole is depleted and causes a decrease in the capacitance. Since the configuration is such that the particle material 21 is filled in 714, it is possible to prevent the electrolyte from being depleted, maintain the capacitance, and obtain a highly reliable power storage device cell.
  • the particulate material 21 is made of a material that forms the electrode layer on one surface of the common negative electrode 707, a highly reliable power storage device cell that maintains the capacitance without complicating the manufacturing process can be obtained. Obtainable.
  • the particulate material 21 is made of a material that forms the capacitor-side electrode layer 705 having a high hard carbon ratio in the common negative electrode 707, a negative electrode layer having a high hard carbon ratio is formed in the through hole 714. Thus, short-circuiting due to lithium deposition can be further suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 瞬発力と持続力を兼ね備えるとともに、急速充放電を繰り返しても静電容量を維持できる信頼性の高い電力貯蔵デバイスセルを得ることを目的とする。 キャパシタ正極(11a)とリチウム正極(11b)と、透過孔(4)が形成された集電箔に電極層(5,6)が形成された共通負極(7)を有し、キャパシタ正極(11a)と共通負極(7)の電極層(5)側の面との間に第1のセパレータ(12)を挟持してキャパシタを形成し、リチウム正極(11b)と共通負極(7)の電極層(6)側の面との間に第2のセパレータ(13)を挟持してリチウムイオン電池を形成し、キャパシタ正極(11a)とリチウム正極(11b)を短絡接続した電力貯蔵デバイスセルであって、共通負極(7)の電極層(5,6)は、黒鉛粒子とハードカーボン粒子とを混合した炭素系材料で構成され、炭素系材料中のハードカーボン粒子の比率が5重量%以上70重量%以下になるように構成した。

Description

電力貯蔵デバイスセルとその製造方法および蓄電デバイス
 この発明は、リチウムイオンキャパシタとリチウムイオン電池との構成を内蔵した電力貯蔵デバイスセルの構成とその製造方法および蓄電デバイスに関する。
 電力貯蔵デバイスセルとしては、物理的に電荷を蓄えるキャパシタと電気化学反応によりエネルギーを蓄える二次電池がある。キャパシタは、エネルギー密度は低いものの、出力密度が高く、急速な充放電に対応でき、二次電池はキャパシタと較べると瞬発力は劣るもののエネルギー密度が高く、持続力に優れるという特徴を有する。したがってキャパシタの瞬発力と二次電池の持続力との両方を兼ね備えた電力貯蔵デバイスセルを実現できれば、ハイブリッド自動車や各種のブレーキ回生など、さまざまな用途に利用することができる。
 キャパシタと二次電池とは、上述したように電力を蓄えるメカニズムが異なっているが、キャパシタの中でも電解液を用いるキャパシタ(電気二重層キャパシタ、スーパーキャパシタ、電気化学キャパシタなどとも呼ばれ、以下に記述するリチウムイオンキャパシタもその仲間である)は、セパレータを挟んで互いに対向する分極性電極(正極および負極)を設け、電解液中においてこの分極性電極の表面に形成される電気二重層の静電容量を利用して電荷を蓄えるものであり、二次電池と類似した材料により構成されている。
 そこで、本発明の発明者は、二次電池の中でもとくにエネルギー密度の高いリチウムイオン電池に注目し、リチウムイオン電池と共通の電解液で作動するリチウムイオンキャパシタとリチウムイオン電池とを共通負極を用いてひとつの構造体とした新しい電力貯蔵デバイスセルを提案した(例えば特許文献1参照)。
特開2009-141181号公報(段落0015、0068、図1、図12)
 上記構造体により、電気二重層キャパシタの瞬発力とリチウムイオン電池の持続力を併せ持つ電力貯蔵デバイスセルを実現することができた。しかしながら、上記構造体の電力貯蔵デバイスセルで、急速な充放電を繰り返すと、キャパシタ単体のときには顕れなかった静電容量の早期減少が発生し、信頼性が低下するという問題があることがわかった。
 この発明は、上述のような課題を解決するためになされたもので、瞬発力と持続力を兼ね備えるとともに、急速充放電を繰り返しても静電容量を維持できる信頼性の高い電力貯蔵デバイスセルを提供するものである。
 この発明に係る電力貯蔵デバイスセルは、第1の集電箔の一方の面に活性炭の微粒子を含む第1の電極層が形成された第1の電極と、第2の集電箔の一方の面にリチウム含有金属化合物の粒子を含んだ第2の電極層が形成された第2の電極と第3の集電箔の少なくとも一方の面に第3の電極層が形成された第3の電極と、多孔質の絶縁フィルムからなる第1のセパレータと、多孔質の絶縁フィルムからなる第2のセパレータと、を備え、前記第3の集電箔には透過孔が形成され、前記第1の電極層と前記第3の電極の一方の面との間に前記第1のセパレータを挟持して前記第3の電極を負極とするキャパシタを形成し、前記第2の電極層と前記第3の電極の他方の面との間に前記第2のセパレータを挟持して前記第3の電極を前記キャパシタとの共通負極とするリチウムイオン電池を形成し、前記第1の電極と前記第2の電極を短絡接続した電力貯蔵デバイスセルであって、前記第3の電極層は、黒鉛粒子とハードカーボン粒子とを混合した炭素系材料で構成され、前記炭素系材料中の前記ハードカーボン粒子の比率が5重量%以上70重量%以下であることを特徴とする。
 静電容量の低下の原因が、共通負極の集電箔の透過孔近傍でのリチウムデンドライトの集中発生であることを発見し、その対策として、共通負極の炭素系材料にハードカーボン粒子を混合するようにしたので、リチウムデンドライトの集中発生を抑制して急速充放電を繰り返しても静電容量を維持することができるようになり、瞬発力と持続力を兼ね備えるとともに、急速充放電を繰り返しても静電容量を維持する信頼性の高い電力貯蔵デバイスセルを得ることができる。
本発明の実施の形態1にかかる電力貯蔵デバイスセルの部分断面模式図である。 ハードカーボンと黒鉛のリチウム充填量に対する充電電位を示す図である。 本発明の実施の形態1にかかる電力貯蔵デバイスセルにおける充電時の共通負極集電箔の透過孔近傍のリチウムイオンの動きを示す拡大断面模式図である。 本発明の実施の形態1にかかる電力貯蔵デバイスセルにおける放電時の共通負極集電箔の透過孔近傍のリチウムイオンの動きを示す拡大断面模式図である。 本発明の実施の形態1にかかる電力貯蔵デバイスの性能試験用セルの平面構成図である。 本発明の実施の形態2にかかる電力貯蔵デバイスセルの部分断面模式図である。 本発明の実施の形態3にかかる電力貯蔵デバイスセルの部分断面模式図である。 本発明の実施の形態4にかかる電力貯蔵デバイスセルの部分断面模式図である。 本発明の実施の形態5にかかる電力貯蔵デバイスセルの部分断面模式図である。 本発明の実施の形態6にかかる電力貯蔵デバイスセルの部分断面模式図である。 本発明の実施の形態7にかかる電力貯蔵デバイスセルの部分断面模式図である。
実施の形態1.
<電力貯蔵デバイスセルの基本的な構造>
 図1は、本発明の実施の形態1にかかる電力貯蔵デバイスセルの部分的な構成を示す断面図である。図において、電力貯蔵デバイスセルは、集電箔10aの図中下面に活性炭の微粒子を含むキャパシタ正極電極層8が形成されたキャパシタ正極11aと、集電箔10bの図中上面にリチウム含有金属化合物の粒子を含んだリチウム正極層9が形成されたリチウム正極11bと、透過孔4を有する集電箔3の上面と下面にそれぞれキャパシタ負極電極層5とリチウム負極電極層6が形成された共通負極7と、多孔質の絶縁フィルムからなる第1のセパレータ12と、多孔質の絶縁フィルムからなる第2のセパレータ13と、を備え、キャパシタ正極電極層8と共通負極7のキャパシタ負極電極層5が形成された面との間に第1のセパレータ12を挟持してキャパシタ部を形成し、リチウム正極層9と共通負極7のリチウム負極電極層6が形成された面との間に第2のセパレータ13を挟持してリチウム電池部を形成しキャパシタ正極11aとリチウム電池正極11bを短絡接続している。そして、上述した静電容量の低下を防止するための具体的な構成として、共通負極7の電極層5と6を構成する炭素材料を、黒鉛粒子とハードカーボン粒子とを混合して構成し、ハードカーボン粒子の炭素系材料中の比率を5重量%以上70重量%以下としたものである。
 上記構成の電力貯蔵デバイスセルでは、キャパシタ部とリチウム電池部の負極が共通負極7で共用され、キャパシタ正極11aとリチウム正極11bとを短絡接続されている。そのため、充放電の際に、共通負極7に設けられた透過孔4を介してキャパシタ部とリチウム電池部間でのLiイオンが迅速に移動できるので、キャパシタ部も充放電に参加でき、急速な充放電に対応できるようになる。
<静電容量低下原因の発見>
 ここで、背景技術にて説明したように、上記キャパシタとリチウム電池のハイブリッド構造である電力貯蔵セルデバイスの共通負極を、従来通り黒鉛粒子のみの炭素材料で構成したときには、急速充放電を行った際に静電容量が低下する現象が生じていた。そこで、静電容量が低下したデバイスを分解して観察したところ、共通負極にリチウムデンドライトが生じていることがわかった。リチウムデンドライトの発生は、通常のリチウムイオンキャパシタの場合にも知られている現象であったが、リチウム電池と組み合わされていない状態のときに発生するデンドライトは電極面の全体で生じており、短絡や静電容量の低下を引き起こすことはなかった。一方、キャパシタとリチウム電池のハイブリッド構造の電力貯蔵セルデバイスで急速な充放電を繰り返した場合に発生するリチウムデンドライトは、ハイブリッド構造をとるために設けた共通負極集電箔の透過孔の周辺に集中して発生していた。この集中発生により、リチウムデンドライトがセパレータに向かって大きく成長し、セパレータにまで侵入することで、静電容量維持率が著しく低下することがわかった。また、リチウムデンドライトがさらに対極まで成長すると微小短絡が生じ、内部短絡に至る恐れがあることもわかった。
 そして、リチウムデンドライトが透過孔周辺に集中して発生するのは、透過孔の周辺部でリチウムの充電反応が集中して起こるためであることが判明した。そこで、本発明では、透過孔周辺での充電の集中を抑制するために、上記のような構成の共通負極を用いたのである。以下に、詳細を説明する。
<ハイブリッド構造の構成>
 図1において、共通負極7は、複数の透過孔を面内に分散して設けた負極集電箔3の表裏に、黒鉛粒子とハードカーボン粒子の混合したものを塗布してキャパシタ負極電極層5とリチウム電池負極電極層6を形成することにより構成される。正極としては、正極集電箔10の表裏に、活性炭粒子を含むキャパシタ正極電極層8と、リチウム含有金属化合物粒子を含むリチウム電池正極電極層9を形成したハイブリッド正極11として構成している。キャパシタ正極電極層8とキャパシタ負極電極層5を第1のセパレータ12を介して対峙させ、キャパシタ部を構成し、リチウムイオンの電池正極電極層9とリチウム電池負極電極層6を第2のセパレータ13を介して対峙させている。つまり、集電箔10の一方の面に、キャパシタ正極電極層8、他方の面にリチウム電池正極電極層9が形成された同仕様のハイブリッド正極11を、図1では配置の違い(使用する面の違い)により、11aをキャパシタ正極、11bをリチウム電池正極と、それぞれ役割を変えるようにしている。
 ここで、短冊状の正極集電箔10aの片面(下側)にキャパシタ正極電極層8を設けたキャパシタ正極と、第1のセパレータ12と、共通負極7と、第2のセパレータ13と、正極集電箔10bの片側(上側)にリチウム電池正極電極層9を設けたリチウム電池正極を積層し、キャパシタ正極とリチウム電池正極とを短絡することで、もっとも単純な積層形の電力貯蔵デバイスセルを構成することができる。
 また、短冊状の共通負極7と第1のセパレータ12とハイブリッド正極11と第2のセパレータ13とを交互に積層することで多数の正極および負極を並列に積層した主積層部を有する積層体で構成した、いわゆる積層形の蓄電デバイスが構成される。並列積層形の場合には、最外層に両端とも共通負極7を配置することが望ましい。最外層にハイブリッド正極11を配置すると、キャパシタ正極電極層8もしくはリチウム電池正極電極層9が高電位になり劣化が生じる恐れがある。また、並列積層形の場合に、両端の最外層を、短冊状の負極集電箔の片面にキャパシタ負極電極層5を設けたキャパシタ負極と、負極集電箔の片側にリチウム電池負極電極層6を設けたリチウム電池負極とを用いることもできる。この場合、負極集電箔に透過孔の無いものを用いても良い。あるいは両端の最外層を、短冊状の正極集電箔の片面にキャパシタ正極電極層8を設けたキャパシタ正極と、正極集電箔の片側にリチウム電池正極電極層9を設けたリチウム電池正極とを用いることもできる。
 また、ロール状の共通負極7と第1のセパレータ12とハイブリッド正極11と第2のセパレータ13とを一緒に巻回することで、巻回形もしくは扁平巻回形の蓄電デバイスが構成される。この場合、最外層は共通負極7に接した第1のセパレータ12とすることが望ましい。もしも最外層をハイブリッド正極11に接した第2のセパレータ13とした場合には、キャパシタ正極電極層8もしくはリチウム電池正極電極層9が高電位になり劣化が生じる恐れがある。
<共通負極について>
 共通負極7に用いられるキャパシタ負極電極層5とリチウム電池負極電極層6の材料としては、一般のリチウムイオン電池に使われている高電位からリチウムの吸蔵放出を行うことのできるハードカーボン系粒子と、低電位で大量のリチウムイオンの吸蔵放出を行うことのできる黒鉛系粒子とを混合したものを用いることができる。平均粒子径は、それぞれ1~20μm程度が望ましい。
 ハードカーボン系粒子としては、非晶質カーボン、アモルファスカーボン、易黒鉛化カーボンを1000℃から1500℃程度の比較的低温で熱処理したカーボンの粒子などを用いることができる。これらに共通する性質は、電位が1.0V(vs.Li)と高い電位からリチウムイオンを吸蔵放出することができ、徐々に電位が低下するというものである。
 黒鉛系粒子としては、スリランカ産黒鉛、マダカスカル産黒鉛、中国産黒鉛などの天然黒鉛の他、メソカーボンマイクロビーズ黒鉛、コークス系黒鉛、鱗状黒鉛などの人造黒鉛や層間を広げた膨張黒鉛などの粒子を用いることができる。これらに共通する性質は、リチウムの酸化還元電位に近い低い電位で大量のリチウムイオンの吸蔵放出が可能であるが、電位が0.3V(vs.Li)以上になると、リチウムイオンをほとんど吸蔵放出できないというものである。
 つぎに、共通負極に用いるカーボン粒子の電気化学的性質について説明する。図2は、共通負極に用いる2種類の炭素材料に対し、それぞれLi基準電位に対し0Vのときのリチウム充填量(容量)を100%とした場合のリチウムデンドライトが生じるときのリチウム充填量とLi電位基準のカーボン負極の電位との関係を示したものである。図において、当該電位に対応する充填量を超えるとLiが析出する、つまりデンドライトを発生させることになる。ハードカーボン系のみの場合、材質によって多少異なるが、およそ1V程度の高い電位からリチウムイオンの吸蔵が始まり、吸蔵するリチウムイオンの比率が高まるにつれて電位が低下し、100%近くでは0Vに達する。一方、黒鉛系のみの場合、材質によって多少異なるが、およそ0.1V程度の低い電位になるまでは、いっさいリチウムイオンを吸蔵せず、0.1Vを下回った段階で、大量のリチウムイオンを吸蔵することができる。
 図3は、銅のパンチングメタルからなる集電箔3の表裏に、ハードカーボン粒子1と黒鉛粒子2を交互に配置した電極層5、6で共通負極7を形成したときの、充電時の断面拡大模式図である。負極集電箔3の透過孔4を通じてリチウムイオンがキャパシタ側とリチウム電池側間を移動することができるので、充電時に、キャパシタ部のキャパシタ負極電極層5に回り込んでカーボンに充電することができる。これが共通負極の大きな利点となっている。すなわち、リチウムイオン負極電極層6だけでなく、キャパシタ負極電極層5もリチウム電池の充電・放電に参加することができる。これによって、負極側の分極を大きく低減でき、充放電効率を高めることができる。また、出力密度も大きく改善される。
 このとき、従来のように、黒鉛粒子2のみで共通負極の電極層を構成した場合には、急速充放電を繰り返すと、透過孔4の近傍に配置されたカーボン粒子上に優先的にリチウムデンドライトが析出し、析出したデンドライトがセパレータを貫通して正極との短絡を引き起こすおそれがあった。これは、透過孔4近傍に充電されはじめると、透過孔4近傍の電気化学電位が下がって、よりリチウムイオンを吸蔵しやすくなるためである。すなわち面内で電気化学電位が均一にならない時には局部的な低電位が生じる。
 しかし、本発明の実施の形態に係る電力貯蔵デバイスセルでは、図3に示すように充電初期には、電極層内の炭素系粒子のうち、ハードカーボン粒子1に優先的にリチウムイオンが吸蔵されて、キャパシタ負極電極層5とリチウム電池負極電極層6の面内全体にわたって、電気化学電位を一定に保つことが出来る。吸蔵するリチウムイオンの量の増加に伴って電気化学電位が徐々に下がり、0.1V(vs.Li)にまで下がると、ハードカーボン粒子1の周辺の黒鉛粒子2にリチウムイオンが吸蔵されるようになり、大量のリチウムイオンの吸蔵が可能になる。
 図4は、図3で示した部分と同じ部分の放電時の様子を示したものであり、充電時とは逆に、黒鉛粒子2からリチウムイオンの放出が開始されるが、ハードカーボン粒子1にはリチウムイオンは吸蔵されたままの状態が保たれ、キャパシタ負極電極層5とリチウム電池負極電極層6の面内全体にわたって、電気化学電位を一定に保つことが出来る。放出するリチウムイオンの量の増加に伴って電気化学電位が徐々に上がり、0.2V(vs.Li)を越えると、ハードカーボン粒子1からのリチウムイオンの放出が開始され、1.0V(vs.Li)になるまでリチウムイオンの放出が継続されると共に、この間、キャパシタ負極電極層5とリチウム電池負極電極層6の面内全体にわたって、電気化学電位を一定に保つことが出来る。
 ハードカーボン粒子1は、キャパシタ負極電極層5とリチウム電池負極電極層6の面内全体にわたって、電気化学電位を一定に保つ役割を果たすために添加するので、少量でよく、ハードカーボン粒子1と黒鉛粒子2の合計重量(炭素系粒子材料全体)に対して、5%程度添加されていれば効果を発揮できる。添加するハードカーボン粒子1の重量比が5%を下回ると、面内の電気化学電位を均一に保つ効果が薄れ、透過孔4近傍に生じるリチウムデンドライト発生の抑制効果が無くなる。また、添加するハードカーボン粒子1の重量比が70%を越えると、透過孔4近傍のハードカーボン1が増えて、結局、透過孔4近傍にリチウムデンドライト発生が起こってしまう恐れがある。したがって、添加するハードカーボン粒子1の重量比は5%以上70%未満が望ましい。一方、炭素系の粒子材料は粒子径分布に広がりをもっている。そのため、電極層を形成するにあたって、ハードカーボン粒子1の割合を20%未満にしたり、あるいは40%を超えるようにすると、粒子径分布のうちの狭い粒子径の範囲のものを選別して使用する必要があり、材料効率が悪くなる。そこで、ハードカーボン粒子1の割合を20%から40%の間にすれば、粒子径による選別を行わなくても電極層が形成できるので材料効率をも向上させることができる。
 なお、上記の例では電極層5と6とで区別せず、共通の電極材料を用いていたが、ハードカーボン粒子1の重量比は、キャパシタ負極電極層5とリチウム電池負極電極層6の面内とで異なる値であってよい。とくに、キャパシタ負極電極層5側に多くのハードカーボン粒子1を配置することで、キャパシタ負極電極層5の透過孔4近傍部でのリチウムデンドライト発生を抑制することができる。
 負極集電箔3は、あらかじめ透過孔4が面内に形成された厚さ約10μm以上20μm以下のパンチングメタルの銅箔やエキスパンドメタルの銅箔などの他、マスクを使って部分的に多数の孔を化学エッチングで設けるエッチング箔を用いても良い。その表裏に、キャパシタ負極電極層5とリチウム電池負極電極層6を形成して用いることができる。正極集電箔10には、厚さ7μm以上50μm以下のアルミニウム箔を用いることができる。
<その他の構成材料について>
 電解液としては、例えば電解質であるLiPFを有機溶媒に含有させた電解液を用いることができ、キャパシタ部とリチウム電池部とで共用する。有機溶媒としては、例えば炭酸プロピレン(PC:Propylene Carbonate)や炭酸エチレン(EC:Ethylene Carbonate)と炭酸ジエチル(DEC:Diethyl Carbonate)などを用いることができる。
 第1のセパレータ12および第2のセパレータ13は、例えば厚さが10~50μm程度、気孔率(空隙率)が60~80体積%程度、平均気孔径が数~数十μm程度の多孔質のセルロース、ポリエチレン、ポリプロピレンなどの絶縁フィルムを用いることができる。
 キャパシタ正極電極層8の活性炭粒子としては、フェノール樹脂、石油ピッチ、石油コークス、ヤシガラなどを原料として、水蒸気賦活もしくはアルカリ賦活を施した、平均粒子径が1~10μm程度の粒子を用いることが望ましい。
 リチウム電池正極電極層9のリチウム含有金属化合物の粒子としては、リチウムコバルト酸化物(LiCoO)が充電時の吸熱量と放電時の発熱量が大きくて望ましいが、この他に、充電時に吸熱、放電時に発熱するものとして、オリビン型リン酸鉄リチウム、リチウムニッケル酸化物(LiNiO)やリチウムマンガン酸化物(LiMn)を含むリチウムコバルト酸化物であってよく、3元系や4元系などの多元系であってもよい。平均粒子径は、1~10μm程度の粒子を用いることが望ましい。とくに、オリビン型リン酸鉄を用いた場合には、キャパシタの耐電圧の方が高いので、急速充電の時にキャパシタの負担を大きくすることができ、より大きな瞬発性をそなえた電力貯蔵デバイスを実現することができる。
 つぎに、本発明の実施の形態1にかかる電力貯蔵デバイスセルの性能を検証するため、共通負極の構成を色々と変化させたセルを試作し、性能試験を実施した。なお、本性能試験においては、試験条件を単純化するために、正極はハイブリッド正極ではなく、リチウム電池正極専用の正極とキャパシタ正極専用の正極を使用することとした。
実施例1
[共通負極の作製]
 負極電極層5、6として、平均粒径7μmのハードカーボン5部と平均粒径5μmの黒鉛粒子95部とを混合(ハードカーボンの添加量5重量%)した後、バインダーとしてのポリフッ化ビニリデンと、溶媒としてのn-メチルピロリドンからなる電極ペーストを混合調製した。次にこのペーストを負極集電箔3として、幅300mm、厚さ20μmで、直径1mmの孔(透過孔4)が5mmピッチでパンチングされた銅箔の両面に塗工形成して乾燥し150℃でホットプレスし共通負極とした。この負極を32mm×52mmの短冊に切断し、角から20mm×20mmの部分を切除して、7mm×20mmのタブ部を設け電流端子タブ部とした。
[キャパシタ正極の作製]
 キャパシタ正極電極層として、平均粒径5μmの活性炭とバインダーとしてのアクリル系ポリマー、溶媒としての水からなる電極ペーストを混合調製した。次にこのペーストを幅300mm、厚さ50μmの純アルミニウム製の集電箔10Cの片面に塗工し厚さ100μmのキャパシタ正極電極層8を形成して、キャパシタ正極11Cを得た。この正極11Cを30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、その部分のキャパシタ正極電極層8を剥がし、箔部を露出させて電流端子タブ部とした。
[リチウム電池正極の作製]
 厚さ50μmの純アルミ集電箔10Lの裏面にリチウム電池正極電極層として、平均粒径5μmのオリビン型リン酸鉄リチウム、アセチレンブラック、バインダーとしてのポリフッ化ビニリデン(PVDF)をn-メチルピロリドン(NMP)に分散させ100℃で乾燥させて厚さ100μmのリチウム電池正極電極層9を形成し、150℃でホットロールプレスして、リチウム電池正極11Lを得た。この正極11Lを30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、そのリチウム電池正極電極層9を剥がし、箔部を露出させて電流端子タブ部とした。
[セルの作製]
 キャパシタ正極11C(電極層8のみ片面形成)、共通負極7、リチウム電池正極11L(電極層9のみ片面形成)の順に互いの電極層が対向するように中心を揃えて積層し、間にそれぞれ厚さ35μmのセルロース系紙セパレータを1枚ずつはさんだ。2枚の正極11C、11Lの集電タブを重ねてこの集電タブにアルミニウム箔を超音波溶接により接続(短絡)して正極集電端子TPとした。この電極積層体を図5のようにアルミラミネートフィルムの外装に収納し、電解液として、1.8mol/lのLiPFを含む、エチレンカーボネート-ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネート外装19を封口し試験用セルとした。図5は、アルミラミネート外装を施した試験用セルの半透過図である。図において、アルミラミネートフィルムの外装19は2つ折りして、3辺を熱可塑性樹脂で熱融着20する。電流端子部TP、TNには、金属との密着性を改善した熱可塑性樹脂17を装着した後、外装に熱融着している。図5の底辺については、真空引きを行って電解液を含浸した後、最終的に熱融着して封止した。なお、図5において、外装19が電極部分の大きさと較べて長くなっているのは、3cm×3cmの電極部に面圧をかけて充放電試験を実施する際に、電極から劣化に伴うガスが発生しても、長くなった外装部に発生したガスを溜めて、試験を継続できるようにするためである。なお、正極11C、11Lよりも負極7を外形で4辺とも1mm大きくして、正極と負極のずれによる測定誤差を防いでいる。
[セルの評価]
 このセルについて3cm×3cmの電極部にステンレス製の押さえ板で5kg/cmの面圧をかけて、60℃環境下で下限電圧1.5V、上限電圧4.3Vで6分間充電、6分間放電(10C)を48時間繰り返す充放電試験を行った。試験前と試験後に、充放電を3回繰り返し、3回目の放電曲線から、静電容量を求めた。初期の静電容量を100%として、試験後の静電容量維持率を求めた。また、試験後、4.2Vまで充電した後の電圧保持を調べ、短時間で大きく電圧が低下するものをリチウムデンドライト発生による微短絡が存在すると判定した。温度を室温ではなく60℃とし、上限電圧を4.2Vまで高めたのは、リチウムデンドライトの発生を加速するためである。また、リチウム塩の濃度も通常(1.2mol/l)よりも高めてリチウムデンドライトの発生しやすい環境とした。
実施例2
 キャパシタ負極電極層5およびリチウム負極電極層6のハードカーボン1の添加量を10重量%としたこと以外は、実施例1と同じとした。
実施例3
  キャパシタ負極電極層5およびリチウム負極電極層6のハードカーボン1の添加量を30重量%としたこと以外は、実施例1と同じとした。
実施例4
  キャパシタ負極電極層5およびリチウム負極電極層6のハードカーボン1の添加量を50重量%としたこと以外は、実施例1と同じとした。
実施例5
  キャパシタ負極電極層5およびリチウム負極電極層6のハードカーボン1の添加量を70重量%としたこと以外は、実施例1と同じとした。
実施例6
  キャパシタ負極電極層5のハードカーボン1の添加量を30重量%とし、リチウム負極電極層6のハードカーボン1の添加量を10重量%としたこと以外は、実施例1と同じとした。
比較例1
 キャパシタ負極電極層5およびリチウム負極電極層6を黒鉛粒子2のみを用いて(ハードカーボン粒子1は添加せず)作製したこと以外は、実施例1と同じとした。
比較例2
 キャパシタ負極電極層5およびリチウム負極電極層6をハードカーボン1のみを用いて(黒鉛粒子2は使用せず)作製したこと以外は、実施例1と同じとした。
比較例3
 キャパシタ負極電極層5をハードカーボン1のみを用いて(黒鉛粒子2は使用せず)作製し、リチウム負極電極層6を黒鉛粒子2のみを用いて(ハードカーボン1粒子は添加せず)作製したこと以外は、実施例1と同じとした。
比較例4
 キャパシタ負極電極層5を黒鉛粒子2のみを用いて(ハードカーボン粒子1は添加せず)作製し、リチウム負極電極層6をハードカーボン1のみを用いて(黒鉛粒子2は使用せず)作製したこと以外は、実施例1と同じとした。
 実施例1~6と比較例1~4の評価結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、実施例と比較例とを比較すると、実施例はいずれも短絡が発生しなかったのに対して、比較例1と比較例3と比較例4で、リチウムデンドライトの発生による正極と負極間の微短絡が発生した。また、実施例1~6ではいずれの場合も静電容量維持率は、初期に比べて79~89%の高い値が保たれたが、比較例1~4では、48~68%の低い値となった。また、比較例2では、微短絡までには至っていないが、静電容量維持率が大きく低下している。静電容量維持率の低下は、リチウムデンドライトの発生の前兆と考えられる。
 表1において、実施例6と比較例3とを比較すると、比較例3では、キャパシタ負極電極層5にハードカーボン粒子1を用い、リチウム電池負極電極層6に黒鉛粒子2を用いて、キャパシタ負極電極層5にリチウムイオンが優先して吸蔵されるように構成しているにも拘わらず、リチウムデンドライト発生による微短絡が発生した。これは、キャパシタ負極電極層5にリチウムイオンが吸蔵されるにつれて表裏の電気化学電位の大きなずれが生じ、透過孔4近傍にリチウムデンドライトが発生しやすくなったためである。これに対して、実施例6では、リチウム電池負極電極層6にもハードカーボン1が存在するので、表裏の電気化学電位が均一に保たれたと考えられる。
 なお、上記実施例と比較例では、小型セルでの試験のため、正極集電箔の片面に正極電極層を設けたそれぞれ専用のキャパシタ正極11C、リチウム電池正極11Lを形成した場合を示したが、図1のように正極集電箔11の両面に正極電極層8、9を設けたハイブリッド正極11を用いて、セパレータを介して交互に積層する構成でも、同じ効果が得られることは自明である。また、長尺にして、巻回、あるいは扁平巻回しても同じ効果が得られることは自明である。
 以上のように、本発明の実施の形態1にかかる電力貯蔵デバイスセルによれば、第1の集電箔10aの一方の面に活性炭の微粒子を含む第1の電極層であるキャパシタ正極層8が形成された第1の電極(キャパシタ正極)11aと、第2の集電箔10bの一方の面にリチウム含有金属化合物の粒子を含んだ第2の電極層であるリチウム電池正極層9が形成された第2の電極(リチウム正極)11bと、第3の集電箔3の少なくとも一方の面に第3の電極層5、6が形成された第3の電極7と、多孔質の絶縁フィルムからなる第1のセパレータ12と、多孔質の絶縁フィルムからなる第2のセパレータ13と、を備え、第3の集電箔3には透過孔4が形成され、第1の電極層8と第3の電極の電極層5側の面との間に第1のセパレータ12を挟持して第3の電極を負極とするキャパシタを形成し、第2の電極層9と第3の電極7の電極層6側の面との間に第2のセパレータ13を挟持して第3の電極7をキャパシタとの共通負極とするリチウムイオン電池を形成し、キャパシタ正極11aとリチウムイ電池正極11bを短絡接続した電力貯蔵デバイスセルであって、第3の電極層5、6は、黒鉛粒子とハードカーボン粒子とを混合した炭素系材料で構成され、炭素系材料中のハードカーボン粒子の比率が5重量%以上70重量%以下になるように構成したので、急速充放電時の透過孔近傍のリチウムデンドライト発生を抑制し、瞬発力と持続力を兼ね備えるとともに、急速充放電を繰り返しても静電容量を維持できる信頼性の高い電力貯蔵デバイスセルを得ることができる。
実施の形態2.
 図6は、この発明の実施の形態2にかかる電力貯蔵デバイスセルの断面模式図である。実施の形態1との違いは、共通負極を貫通する貫通孔によって集電箔の透過孔を形成していることである。図において、共通負極207には、負極集電箔203材料として透過孔が形成されていない厚さ約10μm以上20μm以下の銅箔を用い、表裏にハードカーボン粒子と黒鉛粒子を混合したペーストを塗布してキャパシタ負極電極層205とリチウム電池負極電極層206を形成した後に、剣山(生け花で、花や枝の根元と固定するための道具で、金属の台に、複数の針を上向きに並べたもの)のような先端の尖った針状物が面内に並んだものを用いて物理的に共通負極207を貫く貫通孔14を開口して形成した。つまり、孔開け前の金属箔に電極層を塗布した後、突起物を押し当てて貫通孔14を形成し、貫通項14のうちの集電箔203部分を実施の形態1における集電箔の透過孔とした。
 共通負極207の厚み方向全体を貫通する多数の貫通孔14は、共通負極207の電気化学電位を一定に保ち、キャパシタ正極11aもしくはリチウム電池正極11bの局部的な高電位や低電位による腐食の危険性を大幅に軽減することができる効果が得られる。また、電解液やイオンを、貫通孔14を介して表裏のセパレータ12、13間を速やかに移動させることができるので、電極の膨張収縮に速やかに応答して、急速な充放電による劣化を防止する効果が得られる。また、電極層を孔のない金属箔に塗布できるので、容易に電極層を塗布でき、均質な電極層を形成することができる。
 なお、図6では、負極集電箔203の両側に電極層205、206を形成する場合について記載したが、これに限られることはない。例えば、電極層205のみ、または206のみを形成した場合でも電極層形成後に貫通孔14を形成でき、電解液やイオンを、表裏のセパレータ12、13間で速やかに移動させることができる。
 以上のように、本発明の実施の形態2にかかる電力貯蔵デバイスセルによれば、第3の電極である共通負極207に共通負極207の厚み方向を貫通する貫通孔14を設けるように構成したので、キャパシタ側とリチウム電池側の電解質の移動がスムーズになり、急速充放電への応答がよくなる。
 また、本発明の実施の形態2にかかる電力貯蔵デバイスセルの製造方法によれば、第3の集電箔である負極集電箔203に透過孔が形成される前に第3の電極層205、206を形成するためのペーストを塗布し、塗布後に突起物を押し当てて貫通孔14を形成するようにしたので、集電箔に透過孔を設けることができるとともに、電極層が良好に塗布でき、品質が安定する。
実施の形態3.
 図7は、この発明の実施の形態3にかかる電力貯蔵デバイスセルの断面模式図である。実施の形態2と同様に、共通負極全体を貫通する貫通孔を有しているが、実施の形態2との違いとして、共通負極全体を貫通する貫通孔の形状を錐状とし、キャパシタ負極電極層側に向かって狭まる貫通孔314Aとリチウム電池負極電極層側に向かって狭まる貫通孔314Bとの2種類(2方向)の貫通孔を設けたことである。そのため突起物は、キャパシタ負極電極層305側からとリチウム電池負極電極層306側からの両方から押し当てることになる。具体的には、共通負極307の穴開け加工方法としては、例えば、底辺0.4mm、高さ0.7mmの四角錐の突起が0.8mm間隔で形成されている金属金型と、表面が平滑な金属板の間に両面に電極層305、306を塗布した共通負極307を設置し、0.3MPa程度の圧力でプレスする操作を表側、裏側それぞれでおこなうことで形成できる。また、針をもったローラーに表裏ひっくり返して2回通して同様に多数の孔を開けることができる。
 共通負極307の表裏両面から構成された四角錐の貫通孔30は、その狭まる方向へ選択的に電解液を流通しやすくなり、貫通孔314Bでは第1セパレータ12から第2セパレータ13への電解液の移動、貫通孔314Aでは、第2セパレータ13から第1セパレータ12への電解液の移動を容易にしてリチウムイオン濃度を均一化し、集電箔303での貫通孔近傍でのリチウムデンドライトの発生を抑制する効果が得られる。
 貫通孔のうちの集電箔303の透過孔に当たる部分の開口面積としては、負極集電箔303の全面積に対して、1~50面積%が好ましく、さらには5~20面積%が望ましい。1~50面積%の範囲であればイオン伝導性および電気伝導性をともに確保することができ、さらに5~20面積%の範囲であれば、イオン伝導性と電気伝導性のバランスが良好となるとともに、集電箔の強度を十分に保つことができる。この開口面積を変化させることによって、貫通孔314A、314Bを透過する場合のイオン伝導抵抗が変化するので、キャパシタ部およびリチウム電池部の電気化学電位の差異を制御することができ、開口面積を小さくするほど、電気化学電位の差異が大きくなって、リチウム電池部の電気化学電位が緩慢に変化するようになる。
 以上のように、本発明の実施の形態3にかかる電力貯蔵デバイスセルによれば、第3の電極層305、306が第3の集電箔303の両面に設けられており、貫通孔として、第3の電極307の電極層305が設けられた一方の面側から電極層306が設けられた他方の面側に向かうにつれて狭くなる第1の貫通孔314Bと、第1の貫通孔314Bとは逆に、第3の電極307の電極層306が設けられた他方の面側から電極層305が設けられた一方の面側に向かうにつれて狭くなる第2の貫通孔314Aとの2種類の貫通孔を有するように構成したので、キャパシタ側からリチウム電池側、リチウム電池側からキャパシタ側と双方向の電解質の移動がスムーズになり、急速充放電への応答がよくなる。
 また、本発明の実施の形態3にかかる電力貯蔵デバイスセルの製造方法によれば、貫通孔314A、314Bを金属箔の両面に電極層305、306を形成するためのペーストを塗布し、塗布した後に、それぞれの面から突起物を押し当てて形成するように構成したので、電極層が良好に塗布でき、品質が安定する。
 なお、本実施の形態2または3においては、貫通孔を開ける際に集電箔に生じた孔を電解質の透過孔としたが、貫通孔とは別に透過孔を形成していても、貫通孔によって電解質の移動をスムーズにする効果を得ることができることはいうまでもない。
実施の形態4.
 図8は、この発明の実施の形態4にかかる電力貯蔵デバイスセルの断面模式図である。実施の形態1との違いは、共通負極407には、集電箔403の一方の面にキャパシタ負極電極層405が形成され、集電箔403の他方の面であるリチウム電池部側には、電気絶縁層18が形成されていることである。電気絶縁層18としては、ポリエチレン、ポリプロピレンなどのフィルムやPVDFを塗布した層などが望ましい。キャパシタ負極電極層5は、リチウム電池負極電極層6としても機能する。そして、電気絶縁層18も含めて共通負極407全体を貫通する錐状の貫通孔414は、電気絶縁層18側から形成しており、電気絶縁層18側からキャパシタ負極電極層405に向かうにつれて狭くなるようになっている。針をもったローラーに、電気絶縁層18側が針に向かうように共通負極407を通すことにより、多数の貫通孔414を開けることができる。開孔率としては、30%以上70%以下が望ましく、開孔率が30%を下回ると、キャパシタ負極電極層5の、リチウム電池負極電極層6としての機能が低下する。また、開孔率が70%を上回ると、負極電極層の面積低下による性能低下をもたらす恐れがある。
 キャパシタ負極電極層405が、リチウム電池負極電極層406としても機能する場合にも、ハードカーボンの添加が重要であり、集電箔403の透過孔になっている貫通孔414付近のリチウムデンドライトの発生を防止することができる。さらに、負極集電箔403の電極層が設けられない面に、電気絶縁層18を設けたので、集電箔の金属部分のうち、反応に寄与しない部分が電解液に触れることがなくなり、集電箔の溶出(腐食)を抑制できる。
 以上のように、本実施の形態4にかかる電力貯蔵デバイスセルによれば、共通負極407は、集電箔403のキャパシタ部側に電極層405が形成され、集電箔403のリチウム電池側の面に絶縁皮膜18が設けられ、絶縁被膜18側から電極層405に向かうにつれて狭くなる共通負極407の厚み方向を貫通する貫通孔414が設けられているように構成したので、集電箔の金属部分のうち、反応に寄与しない部分が電解液に触れることがなくなり、集電箔の溶出(腐食)を抑制できる。
実施の形態5.
 図9は、この発明の実施の形態5にかかる電力貯蔵デバイスセルの断面模式図である。実施の形態1との違いは、共通負極507には、集電箔503の一方の面にリチウム電池負極電極層507が形成され、集電箔503の他方の面であるキャパシタ側には、電気絶縁層518が形成されていることである。共通負極507については、実施の形態4の共通負極407と厚み方向でちょうど逆の構成になる。リチウム電池負極電極層506は、キャパシタ負極電極層505としても機能する。
 共通負極507全体を貫通する錐状の貫通孔514は、電気絶縁層518側から形成しており、電気絶縁層518側からリチウム負極電極層506に向かうにつれて狭くなるようになっている。針をもったローラーに、電気絶縁層518側が針に向かうように共通負極507を通すことにより、多数の貫通孔514を開けることができる。開孔率としては、30%以上70%以下が望ましく、開孔率が30%を下回ると、キャパシタ負極電極層5の、リチウム電池負極電極層6としての機能が低下する。また、開孔率が70%を上回ると、負極電極層の面積低下による性能低下をもたらす恐れがある。
 リチウム電池負極電極層506が、キャパシタ負極電極層505としても機能する場合にも、ハードカーボンの添加が重要であり、集電箔503の透過孔になっている貫通孔514付近のリチウムデンドライトの発生を防止することができる。また、本実施の形態でも、負極集電箔503の電極層が設けられない面に、電気絶縁層518を設けたので、集電箔の金属部分のうち、反応に寄与しない部分が電解液に触れることがなくなり、集電箔の溶出(腐食)を抑制できる。
 以上のように、本実施の形態5にかかる電力貯蔵デバイスセルによれば、共通負極507は、集電箔503のリチウム電池部側に電極層506が形成され、集電箔503のキャパシタ部側の面に絶縁皮膜518が設けられ、絶縁被膜518側から電極層506に向かうにつれて狭くなる共通負極507の厚み方向を貫通する貫通孔514が設けられているように構成したので、集電箔の金属部分のうち、反応に寄与しない部分が電解液に触れることがなくなり、集電箔の溶出(腐食)を抑制できる。
実施の形態6.
 図10はこの発明の実施の形態6にかかる電力貯蔵デバイスセルの断面模式図である。実施の形態1との違いは、共通負極607の第1のセパレータ12側の電極層605と第2のセパレータ13側の電極層606とにおいて、黒鉛とハードカーボンの比率が異なっており、第1のセパレータ12側の電極層605のハードカーボンの割合が第2のセパレータ13側の電極層606のハードカーボンの割合より高くしている。キャパシタ部側は急速充放電に対応しているため、大電流が流れる。このため、黒鉛が多いと部分的に電位が低下し、リチウムが析出する可能性が高まる。キャパシタ側の電極層605にハードカーボンが多く含まれていると図2で説明したように電位が高い状態でリチウムを挿入可能なため、リチウム析出電位まで電位低下が起こりにくく、短絡が生じにくくなる。
 また、ハードカーボンを用いると大電流への応答性を向上させることができるのでハードカーボンを多く用いることで、瞬間的な大電流を流すために有用でもある。一方、リチウム電池部側はキャパシタ側と比較して、あまり大きい電流が流れないため、電極層606に黒鉛の割合が多くてもリチウム析出にいたる可能性は低い。また、黒鉛を多く用いることで、容量を大きくすることが可能となり、電流の持続性を向上することが可能となる。この時、第2のセパレータ13側の電極層606中のハードカーボンの割合に対する第1のセパレータ12側の電極層605中のハードカーボンの割合は1倍より大きく20倍以内であればよく、好ましくは2倍以上20倍以内、より好ましくは5倍以上20倍以内である。1倍以下ではリチウム電池部の方がキャパシタ部よりハードカーボンが多くなるため、キャパシタ部においてリチウム析出の可能性が高まる。
 本発明の実施の形態6にかかる電力貯蔵デバイスセルの実施例を示す。共通負極の構成を色々と変化させたセルを試作し、性能試験を実施した。なお、本性能試験においても、試験条件を単純化するために、実施の形態1での性能試験同様、正極にはハイブリッド正極ではなく、リチウム電池正極専用の正極とキャパシタ正極専用の正極を使用することとした。
実施例7
[共通負極の作製]
 負極電極層605として、平均粒径7μmのハードカーボン10部と平均粒径5μmの黒鉛粒子90部とを混合(ハードカーボンの添加量10重量%)した後、バインダーとしてのポリフッ化ビニリデンと、溶媒としてのn-メチルピロリドンからなる電極ペーストを混合調製した。次にこのペーストを負極集電箔603として、幅300mm、厚さ20μmで、直径1mmの孔(透過孔4)が5mmピッチでパンチングされた銅箔の片面に塗布形成して100℃で乾燥した。
 負極電極層606として、平均粒径7μmのハードカーボン5部と平均粒径5μmの黒鉛粒子95部とを混合(ハードカーボンの添加量5重量%)した後、バインダーとしてのポリフッ化ビニリデンと、溶媒としてのn-メチルピロリドンからなる電極ペーストを混合調製した。次にこのペーストを負極電極層605が形成された負極集電箔603の裏面に塗布形成して100℃で乾燥した。
 作製した両面塗布負極を100℃でホットプレスし共通負極607とした。この負極を32mm×52mmの短冊に切断し、角から20mm×20mmの部分を切除して、7mm×20mmのタブ部を設け電流端子タブ部とした。
[キャパシタ正極の作製]
 キャパシタ正極電極層として、平均粒径5μmの活性炭と導電助剤としてのカーボンブラック、バインダーとしてのアクリル系ポリマー、溶媒としての水からなる電極ペーストを混合調製した。次にこのペーストを幅300mm、厚さ50μmの純アルミニウム製の集電箔10Cの片面に塗布し厚さ100μmのキャパシタ正極電極層8を形成して、キャパシタ正極11Cを得た。この正極11Cを30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、その部分のキャパシタ正極電極層8を剥がし、箔部を露出させて電流端子タブ部とした。
[リチウム電池正極の作製]
 厚さ50μmの純アルミ集電箔10Lにリチウム電池正極電極層として、平均粒径5μmのオリビン型リン酸鉄リチウム、アセチレンブラック、バインダーとしてのポリフッ化ビニリデン(PVDF)をn-メチルピロリドン(NMP)に分散させ100℃で乾燥させて厚さ100μmのリチウム電池正極電極層9を形成し、100℃でホットロールプレスして、リチウム電池正極11Lを得た。この正極11Lを30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、そのリチウム電池正極電極層9を剥がし、箔部を露出させて電流端子タブ部とした。
[セルの作製]
 キャパシタ正極11C(電極層8のみ片面形成)、共通負極607、リチウム電池正極11L(電極層9のみ片面形成)の順に互いの電極層が対向するように中心を揃えて積層し、間にそれぞれ厚さ35μmのセルロース系紙セパレータを1枚ずつはさんだ。2枚の正極11C、11Lの集電タブを重ねてこの集電タブにアルミニウム箔を超音波溶接により接続(短絡)して正極集電端子TPとした。この電極積層体を実施の形態1で説明した図5のようにアルミラミネートフィルムの外装に収納し、電解液として、1.8mol/lのLiPFを含む、エチレンカーボネート-ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネート外装19を封口し試験用セルとした。図において、アルミラミネートフィルムの外装19は2つ折りして、3辺を熱可塑性樹脂で熱融着20する。電流端子部TP、TNには、金属との密着性を改善した熱可塑性樹脂17を装着した後、外装に熱融着している。ここでも、底辺については、真空引きを行って電解液を含浸した後、最終的に熱融着して封止した。そして、外装19が電極部分の大きさと較べて長くなっているのは、3cm×3cmの電極部に面圧をかけて充放電試験を実施する際に、電極から劣化に伴うガスが発生しても、長くなった外装部に発生したガスを溜めて、試験を継続できるようにするためである。なお、正極11C、11Lよりも負極7を外形で4辺とも1mm大きくして、正極と負極のずれによる測定誤差を防いでいる。
[セルの評価]
 このセルについて3cm×3cmの電極部にステンレス製の押さえ板で5kg/cmの面圧をかけて、60℃環境下で下限電圧1.5V、上限電圧4.3Vで6分間充電、6分間放電(10C)を48時間繰り返す充放電試験を行った。試験前と試験後に、充放電を3回繰り返し、3回目の放電曲線から、静電容量を求めた。初期の静電容量を100%として、試験後の静電容量維持率を求めた。また、試験後、4.2Vまで充電した後の電圧保持を調べ、短時間で大きく電圧が低下するものをリチウムデンドライト発生による微短絡が存在すると判定した。温度を室温ではなく60℃とし、上限電圧を4.2Vまで高めたのは、リチウムデンドライトの発生を加速するためである。また、リチウム塩の濃度も通常(1.2mol/l)よりも高めてリチウムデンドライトの発生しやすい環境とした。
実施例8
 キャパシタ負極電極層605のハードカーボンの添加量を25重量%としたこと以外は、実施例7と同じとした。
実施例9
 キャパシタ負極電極層605のハードカーボンの添加量を50重量%としたこと以外は、実施例7と同じとした。
実施例10
 キャパシタ負極電極層605のハードカーボンの添加量を70重量%としたこと以外は、実施例7と同じとした。
実施例11
 キャパシタ負極電極層605のハードカーボンの添加量を10重量%とし、リチウム電池負極電極層606のハードカーボンの添加量を50重量%としたこと以外は、実施例7と同じとした。
実施例7~11の評価結果をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において実施例7~10のセルではいずれも短絡が発生しなかった。また、表1の実施例1~5と比較しても、実施例7~10の静電容量維持率は全体的に高い値が保たれているので、リチウム負極電極層よりキャパシタ負極電極層のハードカーボンの割合が高いセルの方が微短絡の発生を抑制する構成であることがわかる。実施例11はリチウム負極電極層よりキャパシタ負極電極層のハードカーボンの割合が低いため、比較例1~4よりは優れているものの、静電容量維持率が他の実施例よりも少し低めであり、短絡はしていないが、その兆候が少し現れている。
 なお、上記実施例では、小型セルでの試験のため、正極集電箔の片面に正極電極層を設けたそれぞれ専用のキャパシタ正極11C、リチウム電池正極11Lを形成した場合を示したが、図10のように正極集電箔11の両面に正極電極層8、9を設けたハイブリッド正極11を用いて、セパレータを介して交互に積層する構成でも、同じ効果が得られることは自明である。また、長尺にして、巻回、あるいは扁平巻回しても同じ効果が得られることは自明である。
 以上のように、本実施の形態6にかかる電力貯蔵デバイスセルによれば、共通負極607には、集電箔603の両面に電極層605、606が形成され、両面の電極層605、606のうち、第1のセパレータ12側の電極層605のハードカーボンの割合が第2のセパレータ13側の電極層606のハードカーボンの割合よりも高いように構成したので、微短絡の発生を抑制し、容量維持率の高い信頼性の高い電力貯蔵デバイスセルが得られる。
実施の形態7.
 本実施の形態7においては、上記実施の形態2から5における共通負極を貫通する貫通孔を設けた場合、貫通孔の電解液が枯渇して静電容量低下の原因になっていることを発見したため、その対策として見出した形態である。図11はこの発明の実施の形態7にかかる電力貯蔵デバイスセルの断面模式図である。本実施の形態にかかる電力貯蔵デバイスセルでは、実施の形態2から5における共通負極を貫通する貫通孔(14,314,414,514に対応し、本実施の形態では714と表記)を作成した際の空間部に対して、共通負極707の電極層705もしくは電極層706の材料を充填したものである。具体的には、共通負極707のうち、一方の電極層705または706(図では706)を塗工後に貫通孔714を形成した後、もう一方の面に残る電極層705を形成すると同時に貫通孔714にその電極層を構成するカーボン材料21を充填した。
 共通負極707に貫通孔714を形成して、集電箔703に透過孔を形成した場合、貫通孔714の孔径が電極層705、706内の空隙径と比較して大きいため、電解液の保液性が悪くなる。電力貯蔵デバイスセルを長期間使用した場合、電解液が徐々に消耗する可能性がある。このとき、孔径の大きい貫通孔714内の電解液からなくなっていくため、共通負極707の表裏を結ぶイオン経路が減少して、表裏間のイオンの行き来ができなくなり、特性低下することが考えられる。しかし、この貫通孔714内を電極層と同じカーボンによる多孔質体とすることにより、電解液の保液性が向上し、電解液の枯渇を防止できる。
 この場合でも、実施の形態6のように共通負極707の第1のセパレータ12側の電極層705のハードカーボンの割合が第2のセパレータ13側の電極層706のハードカーボンの割合より高くすることが望ましく、どちらか一方の電極層と同じカーボン材料を貫通孔714中に形成することで電解液の枯渇を防止できるが、更に共通負極707の第1のセパレータ12側の電極層705の材料を貫通孔714中に充填することで、よりハードカーボンの比率が高まるため、貫通孔714付近でのリチウムデンドライトの形成を防止しやすくなるためより好ましい。貫通孔714中に電極層705を形成する場合、電極層705におけるハードカーボンの比率は10重量%以上95重量%以下になるように構成し、電極層706におけるハードカーボンの比率は5重量%以上40重量%以下になるように構成することがよい。貫通孔714中に電極層705と同じ材料を充填することにより、ハードカーボンがより高い比率でもリチウムデンドライトの析出が抑制されることがわかり、95重量%でも問題ないことが分かった。
 本発明の実施の形態7にかかる電力貯蔵デバイスセルの実施例を示す。共通負極707の構成を色々と変化させたセルを試作し、性能試験を実施した。なお、本性能試験においても、試験条件を単純化するために、実施の形態1、6での性能試験同様、正極にはハイブリッド正極ではなく、リチウム電池正極専用の正極とキャパシタ正極専用の正極を使用することとした。
実施例12
[共通負極の作製]
 負極電極層706として、平均粒径7μmのハードカーボン5部と平均粒径5μmの黒鉛粒子95部とを混合(ハードカーボンの添加量5重量%)した後、バインダーとしてのポリフッ化ビニリデンと、溶媒としてのn-メチルピロリドンからなる電極ペーストを混合調製した。次にこのペーストを負極集電箔703として、幅300mm、厚さ12μmの電解銅箔の片面に塗布形成して100℃で乾燥した。作製した片面塗布負極を室温で軽くプレスした後、底辺0.4mm、高さ0.7mmの四角錐の突起が0.8mm間隔で形成されている金属金型と、表面が平滑な金属板の間に片面塗布負極を集電箔が突起部側になるように設置し、0.3MPa程度の圧力で加圧して貫通孔を作製した。
 負極電極層705として、平均粒径7μmのハードカーボン10部と平均粒径5μmの黒鉛粒子90部とを混合(ハードカーボンの添加量10重量%)した後、バインダーとしてのポリフッ化ビニリデンと、溶媒としてのn-メチルピロリドンからなる電極ペーストを混合調製した。上記のように負極電極層706を形成後、さらに貫通孔714が形成された負極集電箔703の面に、このペーストを塗布形成して100℃で乾燥した。
 作製した両面塗布負極を100℃でホットプレスし共通負極707とした。この負極を32mm×52mmの短冊に切断し、角から20mm×20mmの部分を切除して、7mm×20mmのタブ部を設け電流端子タブ部とした。切除した部分の貫通孔714部を断面観察したところ、貫通孔714部に負極電極層705と同じ材料の充填層21が形成されていることを確認した。
 [キャパシタ正極の作製]
 キャパシタ正極電極層として、平均粒径5μmの活性炭と導電助剤としてのカーボンブラック、バインダーとしてのアクリル系ポリマー、溶媒としての水からなる電極ペーストを混合調製した。次にこのペーストを幅300mm、厚さ50μmの純アルミニウム製の集電箔10Cの片面に塗布し厚さ100μmのキャパシタ正極電極層8を形成して、キャパシタ正極11Cを得た。この正極11Cを30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、その部分のキャパシタ正極電極層8を剥がし、箔部を露出させて電流端子タブ部とした。
 [リチウム電池正極の作製]
 厚さ50μmの純アルミ集電箔10Lにリチウム電池正極電極層として、平均粒径5μmのオリビン型リン酸鉄リチウム、アセチレンブラック、バインダーとしてのポリフッ化ビニリデン(PVDF)をn-メチルピロリドン(NMP)に分散させ100℃で乾燥させて厚さ100μmのリチウム電池正極電極層9を形成し、100℃でホットロールプレスして、リチウム電池正極11Lを得た。この正極11Lを30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、そのリチウム電池正極電極層9を剥がし、箔部を露出させて電流端子タブ部とした。
 [セルの作製]
 キャパシタ正極11C(電極層8のみ片面形成)、共通負極707、リチウム電池正極11L(電極層9のみ片面形成)の順に互いの電極層が対向するように中心を揃えて積層し、間にそれぞれ厚さ35μmのセルロース系紙セパレータを1枚ずつはさんだ。2枚の正極11C、11Lの集電タブを重ねてこの集電タブにアルミニウム箔を超音波溶接により接続(短絡)して正極集電端子TPとした。
 この電極積層体も上記実施の形態1および6で説明したように、図5に示すようにアルミラミネートフィルムの外装に収納し、電解液として、1.8mol/lのLiPFを含む、エチレンカーボネート-ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネート外装19を封口し試験用セルとした。図において、アルミラミネートフィルムの外装19は2つ折りして、3辺を熱可塑性樹脂で熱融着20する。電流端子部TP、TNには、金属との密着性を改善した熱可塑性樹脂17を装着した後、外装に熱融着している。ここでも、底辺については、真空引きを行って電解液を含浸した後、最終的に熱融着して封止した。そして、外装19が電極部分の大きさと較べて長くなっているのは、3cm×3cmの電極部に面圧をかけて充放電試験を実施する際に、電極から劣化に伴うガスが発生しても、長くなった外装部に発生したガスを溜めて、試験を継続できるようにするためである。なお、正極11C、11Lよりも負極7を外形で4辺とも1mm大きくして、正極と負極のずれによる測定誤差を防いでいる。
 [セルの評価]
 このセルについて3cm×3cmの電極部にステンレス製の押さえ板で5kg/cmの面圧をかけて、60℃環境下で下限電圧1.5V、上限電圧4.3Vで6分間充電、6分間放電(10C)を48時間繰り返す充放電試験を行った。試験前と試験後に、充放電を3回繰り返し、3回目の放電曲線から、静電容量を求めた。初期の静電容量を100%として、試験後の静電容量維持率を求めた。また、試験後、4.2Vまで充電した後の電圧保持を調べ、短時間で大きく電圧が低下するものをリチウムデンドライト発生による微短絡が存在すると判定した。温度を室温ではなく60℃とし、上限電圧を4.2Vまで高めたのは、リチウムデンドライトの発生を加速するためである。また、リチウム塩の濃度も通常(1.2mol/l)よりも高めてリチウムデンドライトの発生しやすい環境とした。
実施例13
 キャパシタ負極電極層705のハードカーボンの添加量を25重量%としたこと以外は、実施例12と同じとした。
実施例14
 キャパシタ負極電極層705のハードカーボンの添加量を50重量%としたこと以外は、実施例12と同じとした。
実施例15
 キャパシタ負極電極層705のハードカーボンの添加量を70重量%としたこと以外は、実施例12と同じとした。
実施例16
 キャパシタ負極電極層705のハードカーボンの添加量を95重量%としたこと以外は、実施例12と同じとした。
実施例17
 キャパシタ負極電極層705のハードカーボンの添加量を95重量%とし、リチウム電池負極電極層706のハードカーボンの添加量を10重量%としたこと以外は、実施例12と同じとした。
実施例18
 キャパシタ負極電極層705のハードカーボンの添加量を95重量%とし、リチウム電池負極電極層706のハードカーボンの添加量を20重量%としたこと以外は、実施例12と同じとした。
実施例19
 キャパシタ負極電極層705のハードカーボンの添加量を95重量%とし、リチウム電池負極電極層706のハードカーボンの添加量を30重量%としたこと以外は、実施例12と同じとした。
実施例20
 キャパシタ負極電極層705のハードカーボンの添加量を95重量%とし、リチウム電池負極電極層706のハードカーボンの添加量を40重量%としたこと以外は、実施例12と同じとした。
実施例21
 キャパシタ負極電極層705のハードカーボンの添加量を10重量%とし、リチウム電池負極電極層706のハードカーボンの添加量を50重量%としたこと以外は、実施例12と同じとした。
実施例11~21の評価結果をまとめて表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、各実施例のセルではいずれも短絡が発生しなかった。また、表2の実施例7~10と比較して、実施例12~20の静電容量維持率は全体的に少し高い値が保たれているので、貫通孔714中にキャパシタ部側の負極電極層を形成することにより微短絡しにくい構成であることがわかる。また、貫通孔714中にハードカーボン比率の高い負極電極層を形成することにより、よりハードカーボン比率の高い電極層でもリチウム析出による短絡が防げることがわかった。一方、実施例11はリチウム負極電極層よりキャパシタ負極電極層のハードカーボンの割合が低いため、比較例1~4、および実施例11よりは優れているものの、静電容量維持率が他の実施例よりも少し低めであり、短絡はしていないが、その兆候が少し現れている。
 なお、上記実施例では、小型セルでの試験のため、正極集電箔の片面に正極電極層を設けたそれぞれ専用のキャパシタ正極11C、リチウム電池正極11Lを形成した場合を示したが、図10のように正極集電箔11の両面に正極電極層8、9を設けたハイブリッド正極11を用いて、セパレータを介して交互に積層する構成でも、同じ効果が得られることは自明である。また、長尺にして、巻回、あるいは扁平巻回しても同じ効果が得られることは自明である。
 なお、本実施の形態7においては、製造工程を複雑化させないために、貫通孔714には、貫通孔714を穿孔した面に塗布する電極層の材料を充填する例について説明したが、これに限られることはない。貫通孔714内の電解質の枯渇を防止する効果としては、電極層の材料に限ることなく、例えば、絶縁性の粉末でもよい。さらに、貫通孔714のうち、集電箔703にあたる部分については、電極層705、706中の粒子間に形成された孔径よりも小さな孔径が形成されるように、電極層705、706に用いる粒子よりも微細な粒子が充填されるようにしてもよい。
 以上のように、本実施の形態7にかかる電力貯蔵デバイスセルによれば、貫通孔の電解液が枯渇して静電容量低下の原因になっていることを発見し、その対策として、貫通孔714に粒子材料21が充填されているように構成したので、電解液枯渇を防止し、静電容量を維持し信頼性の高い電力貯蔵デバイスセルを得ることができる。
 とくに、粒子材料21が、共通負極707の一方の面の電極層を形成する材料で構成したので、製造工程を複雑化することなく、静電容量を維持し信頼性の高い電力貯蔵デバイスセルを得ることができる。
 さらに、粒子材料21が、共通負極707のうち、ハードカーボン比率の高いキャパシタ側の電極層705を形成する材料で構成したので、貫通孔714中にハードカーボン比率の高い負極電極層を形成することにより、リチウム析出による短絡をさらに抑制する事ができる。
 1 ハードカーボン粒子、 2 黒鉛粒子、 3 負極集電箔(第3の集電箔)、 4 負極集電箔の透過孔、 5 キャパシタ負極電極層(第3の電極層)、 6 リチウム電池負極電極層(第3の電極層)、 7 共通負極(第3の電極)、 8 キャパシタ正極電極層(第1の電極層)、
9 リチウム電池正極電極層(第1の電極層)、 10 正極集電箔(10a:第1の集電箔、10b:第2の集電箔)、 11 正極(11a:ハイブリッド正極(キャパシタ正極扱い)、11b:ハイブリッド正極(リチウム電池正極扱い)、11C:キャパシタ正極、11L:リチウム電池正極、 12 第1のセパレータ、 13 第2のセパレータ、 14 共通負極の貫通孔、 18 電気絶縁層、 19 外装、 20 熱融着部、 21 貫通孔中の(多孔質)充填材
 100位の数字は実施の形態ごとの変形例を示す。

Claims (17)

  1.  第1の集電箔の一方の面に活性炭の微粒子を含む第1の電極層が形成された第1の電極と、
     第2の集電箔の一方の面にリチウム含有金属化合物の粒子を含んだ第2の電極層が形成された第2の電極と、
     第3の集電箔の少なくとも一方の面に第3の電極層が形成された第3の電極と、
     多孔質の絶縁フィルムからなる第1のセパレータと、
     多孔質の絶縁フィルムからなる第2のセパレータと、を備え、
     前記第3の集電箔には透過孔が形成され、前記第1の電極層と前記第3の電極の一方の面との間に前記第1のセパレータを挟持して前記第3の電極を負極とするキャパシタを形成し、前記第2の電極層と前記第3の電極の他方の面との間に前記第2のセパレータを挟持して前記第3の電極を前記キャパシタとの共通負極とするリチウムイオン電池を形成し、前記第1の電極と前記第2の電極を短絡接続した電力貯蔵デバイスセルであって、
     前記第3の電極層は、黒鉛粒子とハードカーボン粒子とを混合した炭素系材料で構成され、前記炭素系材料中の前記ハードカーボン粒子の比率が5重量%以上70重量%以下であることを特徴とする電力貯蔵デバイスセル。
  2.  前記第2の電極層のリチウム含有金属化合物が、オリビン型リン酸鉄リチウムであることを特徴とする請求項1記載の電力貯蔵デバイスセル。
  3.  前記第3の電極層は、前記第3の集電箔の両面に設けられており、
     前記第3の電極層のうち、前記第1のセパレータ側の電極層のハードカーボンの割合が前記第2のセパレータ側の電極層のハードカーボンの割合よりも高いことを特徴とする請求項1または2に記載の電力貯蔵デバイスセル。
  4.  前記第3の電極に前記第3の電極の厚み方向を貫通する貫通孔が設けられていることを特徴とする請求項1ないし3のいずれか1項に記載の電力貯蔵デバイスセル。
  5.  前記第3の電極層は、前記第3の集電箔の両面に設けられており、
     前記貫通孔は、当該第3の電極の一方の面側から他方の面側に向かうにつれて狭くなる第1の貫通孔と、当該第3の電極の他方の面側から一方の面側に向かうにつれて狭くなる第2の貫通孔との2種類の貫通孔であることを特徴とする請求項4に記載の電力貯蔵デバイスセル。 
  6.  前記第3の電極は、前記第3の集電箔の一方の面に前記第3の電極層が形成され、前記第3の集電箔の他方の面に絶縁皮膜が設けられ、前記絶縁被膜側から前記第3の電極層に向かうにつれて狭くなる前記第3の電極の厚み方向を貫通する貫通孔が設けられていることを特徴とする請求項1または2に記載の電力貯蔵デバイスセル。 
  7.  前記第3の電極層を前記第1のセパレータを介して前記第1の電極層に対峙させ、前記絶縁皮膜を前記第2のセパレータを介して前記第2の電極層に対峙させたことを特徴とする請求項6に記載の電力貯蔵デバイスセル。
  8.  前記第3の電極層を前記第2のセパレータを介して前記第2の電極層に対峙させ、前記絶縁皮膜を前記第1のセパレータを介して前記第1の電極層に対峙させたことを特徴とする請求項6に記載の電力貯蔵デバイスセル。
  9.  前記貫通孔に粒子材料が充填されていることを特徴とする請求項4または5に記載の電力貯蔵デバイスセル。
  10.  前記粒子材料が、前記第3の電極の一方の面の電極層を形成する材料であることを特徴とする請求項9に記載の電力貯蔵デバイスセル。
  11.  前記粒子材料が、前記第3の電極の前記第1のセパレータ側の電極層を形成する材料であることを特徴とする請求項10に記載の電力貯蔵デバイスセル。
  12.  活性炭の微粒子にバインダーを加えたペーストを前記第1の集電箔に塗布して前記第1の電極層を有する前記第1の電極を形成し、
     リチウム含有金属化合物に導電剤とバインダーを加えたペーストを前記第2の集電箔に塗布して前記第2の電極層を有する前記第2の電極を形成し、
     炭素系材料にバインダーを加えたペーストを前記第3の集電箔に塗布して前記第3の電極層を有する前記第3の電極を形成し、
     前記第1の電極、前記第1のセパレータ、前記第3の電極、前記第2のセパレータ、前記第2の電極を積層して、前記電力貯蔵デバイスセルを製造する方法であって、
     前記第3の電極は、前記第3の集電箔に前記透過孔が形成される前にペーストを塗布し、塗布後に突起物を押し当てて前記貫通孔を形成することを特徴とする請求項4または5に記載の電力貯蔵デバイスセルの製造方法。
  13.  活性炭の微粒子にバインダーを加えたペーストを前記第1の集電箔に塗布して前記第1の電極層を有する前記第1の電極を形成し、
     リチウム含有金属化合物に導電剤とバインダーを加えたペーストを前記第2の集電箔に塗布して前記第2の電極層を有する前記第2の電極を形成し、
     炭素系材料にバインダーを加えたペーストを前記第3の集電箔に塗布して前記第3の電極層を有する前記第3の電極を形成し、
     前記第1の電極、前記第1のセパレータ、前記第3の電極、前記第2のセパレータ、前記第2の電極を積層して、前記電力貯蔵デバイスセルを製造する方法であって、
     前記第3の電極は、前記第3の集電箔に前記透過孔が形成される前にペーストを塗布し、塗布後に前記絶縁被膜側から突起物を押し当てて前記貫通孔を形成することを特徴とする請求項5ないし7のいずれか1項に記載の電力貯蔵デバイスセルの製造方法。
  14.  活性炭の微粒子に導電剤とバインダーを加えたペーストを前記第1の集電箔に塗布して前記第1の電極層を有する前記第1の電極を形成し、
     リチウム含有金属化合物に導電剤とバインダーを加えたペーストを前記第2の集電箔に塗布して前記第2の電極層を有する前記第2の電極を形成し、
     炭素系材料にバインダーを加えたペーストを前記第3の集電箔に塗布して前記第3の電極層を有する前記第3の電極を形成し、
     前記第1の電極、前記第1のセパレータ、前記第3の電極、前記第2のセパレータ、前記第2の電極を積層して、前記電力貯蔵デバイスセルを製造する方法であって、
     前記第3の電極は、前記第3の集電箔に前記透過孔が形成される前に一方の面にペーストを塗布・乾燥し、他方の面側から突起物を押し当てて前記貫通孔を形成し、前記貫通孔が形成された他方の面にペーストを塗布・乾燥して前記貫通孔中に粒子材料を充填することを特徴とする請求項9ないし11のいずれか1項に記載の電力貯蔵デバイスセルの製造方法。
  15.  前記第1の電極および前記第2の電極は、集電箔の一方の面に前記第1の電極層を形成し、他方の面に前記第2の電極層を形成したハイブリッド電極であり、
     前記第3の電極、前記第1のセパレータ、前記ハイブリッド電極、前記第2のセパレータの順で積層を繰り返して請求項1ないし11のいずれか1項に記載の電力貯蔵デバイスセルの複数を積層した主積層部を有する積層体で構成したことを特徴とする蓄電デバイス。
  16.  前記積層体の両端部が前記第3の電極となるように積層したことを特徴とする請求項15に記載の蓄電デバイス。
  17.  前記第1の電極および前記第2の電極は、集電箔の一方の面に前記第1の電極層を形成し、他方の面に前記第2の電極層を形成したハイブリッド電極であり、
     前記第3の電極、前記第1のセパレータ、前記ハイブリッド電極、前記第2のセパレータの順で積層し、積層したものを巻回して請求項1ないし11のいずれか1項に記載の電力貯蔵デバイスセルを構成したことを特徴とする蓄電デバイス。
PCT/JP2010/073534 2010-01-28 2010-12-27 電力貯蔵デバイスセルとその製造方法および蓄電デバイス WO2011092990A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/512,056 US9040182B2 (en) 2010-01-28 2010-12-27 Power storage device cell, manufacturing method therefor, and electric storage device
JP2011551716A JP5368589B2 (ja) 2010-01-28 2010-12-27 電力貯蔵デバイスセルとその製造方法および蓄電デバイス
CN201080060516.5A CN102696144B (zh) 2010-01-28 2010-12-27 电力储存设备单元及其制造方法以及蓄电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-016586 2010-01-28
JP2010016586 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011092990A1 true WO2011092990A1 (ja) 2011-08-04

Family

ID=44318989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073534 WO2011092990A1 (ja) 2010-01-28 2010-12-27 電力貯蔵デバイスセルとその製造方法および蓄電デバイス

Country Status (4)

Country Link
US (1) US9040182B2 (ja)
JP (1) JP5368589B2 (ja)
CN (1) CN102696144B (ja)
WO (1) WO2011092990A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114415A (ja) * 2010-11-04 2012-06-14 Mitsubishi Electric Corp 電力貯蔵デバイスセル
CN102610791A (zh) * 2012-02-27 2012-07-25 宁德新能源科技有限公司 一种用于插电式混合动力汽车的锂离子电池及其负极
JP2015516645A (ja) * 2012-03-15 2015-06-11 アクイオン エナジー インコーポレイテッド 大型電気化学エネルギー貯蔵装置ハウジングおよびモジュール
US9461347B2 (en) 2010-01-28 2016-10-04 Mitsubishi Electric Corporation Power storage device cell, manufacturing method and storing method therefor, and electric storage device
JP2016225137A (ja) * 2015-05-29 2016-12-28 株式会社Gsユアサ 蓄電素子
JP2016225138A (ja) * 2015-05-29 2016-12-28 株式会社Gsユアサ 蓄電素子
JP2018500725A (ja) * 2014-11-12 2018-01-11 インテック・エナジー・ストレージ・コーポレイションIntec Energy Storage Corp. 電池のための急速充電装置
JP2019160781A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 正極及びリチウムイオン二次電池
WO2020110705A1 (ja) * 2018-11-30 2020-06-04 株式会社村田製作所 二次電池
US11539047B2 (en) 2018-03-12 2022-12-27 Tdk Corporation Positive electrode and lithium ion secondary battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892420B2 (ja) * 2012-01-18 2016-03-23 日産自動車株式会社 電気デバイス用電極、電気デバイス用電極の製造方法、電気デバイス用電極構造体及び電気デバイス
KR20140075836A (ko) * 2012-11-27 2014-06-20 삼성전기주식회사 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
US10074848B2 (en) 2013-07-02 2018-09-11 Samsung Sdi Co., Ltd. Rechargeable lithium battery with controlled particle size ratio of activated carbon to positive active material
WO2015152092A1 (ja) * 2014-03-31 2015-10-08 株式会社クレハ 非水電解質二次電池負極材料、非水電解質二次電池用負極合剤、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
TWI528619B (zh) * 2014-07-16 2016-04-01 輝能科技股份有限公司 金屬鋰極板
CN104466259A (zh) * 2014-12-06 2015-03-25 西南科技大学 一种基于锂离子电容器和锂电池混合储能单体的制备方法
JP6776530B2 (ja) * 2015-12-14 2020-10-28 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
MY195773A (en) * 2016-05-20 2023-02-11 Kyocera Avx Components Corp Multi-Cell Ultracapacitor
GB2572221A (en) * 2018-03-23 2019-09-25 Zapgo Ltd Electrical energy dispensing system
CN109859952A (zh) * 2018-12-07 2019-06-07 广东风华高新科技股份有限公司 一种电芯及其锂离子超级电容器、制备方法
EP3981038A4 (en) * 2019-06-11 2023-12-20 The Regents of the University of Michigan 3-D COMPOSITE ANODES OF HIGH CAPACITY AND FAST CHARGING LI-ION BATTERIES
CN110797963B (zh) * 2019-10-25 2021-06-11 上海空间电源研究所 一种电容器与热电池的复合电源
CN112820952A (zh) 2019-11-15 2021-05-18 通用汽车环球科技运作有限责任公司 电容器辅助的电池模块和系统
CN111916842B (zh) * 2020-06-30 2022-06-14 珠海冠宇电池股份有限公司 一种三极耳叠片式复合型电池
CN111916816B (zh) * 2020-06-30 2022-03-01 珠海冠宇电池股份有限公司 一种叠片式复合型电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294240A (ja) * 1999-04-08 2000-10-20 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム複合酸化物およびこれを用いたリチウム二次電池
JP2002118036A (ja) * 2000-10-10 2002-04-19 Sanshin:Kk 蓄電用電子部品および複合電極体
JP2008235169A (ja) * 2007-03-23 2008-10-02 Nec Tokin Corp 非水電解液系電気化学デバイス
JP2009026480A (ja) * 2007-07-17 2009-02-05 Fuji Heavy Ind Ltd 蓄電デバイス
JP2009141181A (ja) * 2007-12-07 2009-06-25 Mitsubishi Electric Corp 電力貯蔵デバイスセルおよびその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627777B1 (en) * 1993-06-03 2000-02-02 Sony Corporation Non-aqueous liquid electrolyte secondary battery
JP2000058051A (ja) 1998-08-05 2000-02-25 Osaka Gas Co Ltd 二次電池用炭素複合材
JP4825344B2 (ja) 2000-06-07 2011-11-30 Fdk株式会社 電池・キャパシタ複合素子
WO2011093126A1 (ja) 2010-01-28 2011-08-04 三菱電機株式会社 電力貯蔵デバイスセルとその製造方法、保管方法および蓄電デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294240A (ja) * 1999-04-08 2000-10-20 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム複合酸化物およびこれを用いたリチウム二次電池
JP2002118036A (ja) * 2000-10-10 2002-04-19 Sanshin:Kk 蓄電用電子部品および複合電極体
JP2008235169A (ja) * 2007-03-23 2008-10-02 Nec Tokin Corp 非水電解液系電気化学デバイス
JP2009026480A (ja) * 2007-07-17 2009-02-05 Fuji Heavy Ind Ltd 蓄電デバイス
JP2009141181A (ja) * 2007-12-07 2009-06-25 Mitsubishi Electric Corp 電力貯蔵デバイスセルおよびその制御方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461347B2 (en) 2010-01-28 2016-10-04 Mitsubishi Electric Corporation Power storage device cell, manufacturing method and storing method therefor, and electric storage device
JP2012114415A (ja) * 2010-11-04 2012-06-14 Mitsubishi Electric Corp 電力貯蔵デバイスセル
CN102610791A (zh) * 2012-02-27 2012-07-25 宁德新能源科技有限公司 一种用于插电式混合动力汽车的锂离子电池及其负极
JP2015516645A (ja) * 2012-03-15 2015-06-11 アクイオン エナジー インコーポレイテッド 大型電気化学エネルギー貯蔵装置ハウジングおよびモジュール
JP2018500725A (ja) * 2014-11-12 2018-01-11 インテック・エナジー・ストレージ・コーポレイションIntec Energy Storage Corp. 電池のための急速充電装置
JP2016225138A (ja) * 2015-05-29 2016-12-28 株式会社Gsユアサ 蓄電素子
JP2016225137A (ja) * 2015-05-29 2016-12-28 株式会社Gsユアサ 蓄電素子
US9991563B2 (en) 2015-05-29 2018-06-05 Gs Yuasa International Ltd. Energy storage device and energy storage apparatus
JP2019160781A (ja) * 2018-03-12 2019-09-19 Tdk株式会社 正極及びリチウムイオン二次電池
JP7135840B2 (ja) 2018-03-12 2022-09-13 Tdk株式会社 正極及びリチウムイオン二次電池
US11539047B2 (en) 2018-03-12 2022-12-27 Tdk Corporation Positive electrode and lithium ion secondary battery
WO2020110705A1 (ja) * 2018-11-30 2020-06-04 株式会社村田製作所 二次電池
JPWO2020110705A1 (ja) * 2018-11-30 2021-09-27 株式会社村田製作所 二次電池
JP7156393B2 (ja) 2018-11-30 2022-10-19 株式会社村田製作所 二次電池

Also Published As

Publication number Publication date
JP5368589B2 (ja) 2013-12-18
JPWO2011092990A1 (ja) 2013-05-30
US20120276421A1 (en) 2012-11-01
CN102696144B (zh) 2015-01-14
CN102696144A (zh) 2012-09-26
US9040182B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
JP5368589B2 (ja) 電力貯蔵デバイスセルとその製造方法および蓄電デバイス
JP5357276B2 (ja) 電力貯蔵デバイスセル、およびその製造方法と保管方法
JP4857073B2 (ja) リチウムイオンキャパシタ
JP5040626B2 (ja) 電力貯蔵デバイスセルおよびその制御方法
JP4868556B2 (ja) リチウム二次電池
US8906525B2 (en) Energy storage device cell
JP6156939B2 (ja) リチウムイオン二次電池
WO2015111710A1 (ja) 非水二次電池
JP6491040B2 (ja) リチウムイオン二次電池
WO2007026492A1 (ja) リチウムイオンキャパシタ
TW200536169A (en) Lithium secondary cell with high charge and discharge rate capability
JP2012169576A (ja) 電気化学デバイス
JP2011029079A (ja) 非水電解質二次電池
JP2008252013A (ja) リチウムイオンキャパシタ
JP2012138408A (ja) 電気化学デバイスおよびその製造方法
CN115458707A (zh) 二次电池及用电设备
WO2016178147A1 (zh) 可于宽温度范围提供高放电脉冲的锂电池组件及形成方法
WO2012147647A1 (ja) リチウムイオン二次電池
JP2007180429A (ja) リチウムイオンキャパシタ
JP2014022245A (ja) リチウムイオン二次電池およびその製造方法
JP2006303118A (ja) リチウムイオンキャパシタ
JP2012028366A (ja) 蓄電デバイス
JP5072123B2 (ja) 扁平形非水電解質二次電池
JP2017199510A (ja) リチウムイオン二次電池の製造方法
JP2012043940A (ja) 電極、蓄電素子、リチウムイオンキャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551716

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13512056

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844744

Country of ref document: EP

Kind code of ref document: A1