WO2011092955A1 - 異質表面を有する複合微粒子の製造方法 - Google Patents

異質表面を有する複合微粒子の製造方法 Download PDF

Info

Publication number
WO2011092955A1
WO2011092955A1 PCT/JP2010/072364 JP2010072364W WO2011092955A1 WO 2011092955 A1 WO2011092955 A1 WO 2011092955A1 JP 2010072364 W JP2010072364 W JP 2010072364W WO 2011092955 A1 WO2011092955 A1 WO 2011092955A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fine particles
composite
liquid
composite fine
Prior art date
Application number
PCT/JP2010/072364
Other languages
English (en)
French (fr)
Inventor
田中 眞人
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to KR1020127022035A priority Critical patent/KR20120129921A/ko
Priority to JP2011551702A priority patent/JP5709268B2/ja
Priority to EP10844709.5A priority patent/EP2532702A4/en
Priority to US13/575,649 priority patent/US8771455B2/en
Priority to CN201080065834.0A priority patent/CN102884110B/zh
Publication of WO2011092955A1 publication Critical patent/WO2011092955A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing

Definitions

  • the present invention relates to a method for producing composite fine particles having a heterogeneous surface.
  • spherical particles for example, fine particles with one hemisphere surface being black and the other hemisphere surface being white, so-called black and white dichroic balls are used for display.
  • composite fine particles in which one hemisphere surface is hydrophilic and the other hemisphere surface is hydrophobic are used as dispersion stabilizers as surface active particles, and as constituents of the composite fine particles. Is also available.
  • a microreactor method and a nozzle method are known as a method for producing composite fine particles having the above-mentioned heterogeneous hemispherical surface.
  • two types of droplets generated from different nozzle tips are combined, or two types of droplets are combined in a micropath in the microreactor.
  • productivity is extremely low
  • interface conditions and flow conditions for combining two droplets into one droplet are complicated, and a stable operation is established.
  • droplets are generated using nozzles and microchannels, there is a limit to the particle size range that can be controlled.
  • Iv Droplets using nozzles and microchannels are limited.
  • the present invention has high productivity, the particle size can be arbitrarily controlled, and there are no restrictions on the different substances that can be added for function expression. It is an object of the present invention to provide a method for producing composite fine particles having a heterogeneous surface.
  • the method for producing composite fine particles having a heterogeneous surface according to the present invention is characterized in that a composite film prepared by laminating two or more kinds of films is cut into fine pieces, and then the fine pieces are melted. .
  • the composite film is formed by forming two or more kinds of liquids containing a polymerizable monomer into a liquid film and then performing a polymerization reaction to form two or more kinds of films, and then bonding the two or more kinds of films together. Further, it is obtained by a polymerization reaction.
  • the composite film is cut into substantially cubic fine pieces, and then the fine pieces are melted into a spherical shape.
  • the composite film is cut into substantially square columnar minute pieces, and then the minute pieces are melted into a cylindrical shape.
  • the composite film is cut by a laser cutting machine.
  • the composite film is obtained by forming a liquid containing a polymerizable monomer and a white pigment into a liquid film, followed by a polymerization reaction, and forming a liquid containing a polymerizable monomer and a black pigment into a liquid film. It is characterized by being obtained by laminating a film obtained by polymerization reaction and further polymerizing the film.
  • the composite film is obtained by forming a liquid containing a hydrophobic polymerizable monomer into a liquid film and then performing a polymerization reaction, and forming a liquid containing a hydrophilic polymerizable monomer into a liquid film. It is characterized by being obtained by laminating a film obtained by polymerization reaction and further polymerizing the film.
  • the composite film is obtained by forming a liquid containing a polymerizable monomer and a conductive material into a liquid film, followed by a polymerization reaction, and forming a liquid containing a polymerizable monomer and an insulating material into a liquid film. It is characterized by being obtained by pasting together a film obtained by polymerization reaction and then further polymerization reaction.
  • the composite film comprises a film obtained by polymerizing a liquid containing a polymerizable monomer and an anionic polymerization initiator and then a liquid containing a polymerizable monomer and a cationic polymerization initiator. It is characterized by being obtained by laminating a film obtained by carrying out a polymerization reaction after forming a liquid film, and further carrying out a polymerization reaction.
  • the composite film is formed by placing particles of the core substance at equal intervals on a film obtained by polymerizing a liquid containing a polymerizable monomer and then performing a polymerization reaction. It is characterized in that it is obtained by laminating another liquid obtained by polymerizing a liquid containing a monomer and then carrying out a polymerization reaction, followed by a polymerization reaction.
  • the core material particles are placed on the film by an ink jet method.
  • the composite film is cut so that particles of the core substance are located at the center of the minute piece.
  • the productivity is high, the particle size can be arbitrarily controlled, and there is no restriction on the different substances that can be added for function expression, and further, the different substances can be included in the sphere center of the composite fine particles.
  • a method of producing composite fine particles having a heterogeneous surface can be provided.
  • FIG. 6 is a flowchart of Examples 1 to 6.
  • 2 is an optical micrograph of composite fine particles obtained in Example 1.
  • FIG. 2 is an optical micrograph of composite fine particles obtained when the composite film is crushed, and an optical micrograph of composite fine particles obtained in Example 1.
  • FIG. 2 is a graph showing the relationship between the polymerization time of monomer mixtures A and B in Example 1 and the yield of two-color composite fine particles.
  • 2 is an optical micrograph of columnar composite fine particles obtained in Example 1.
  • Example 6 is a graph showing the relationship between the mixing ratio of composite fine particles and specific resistance in Example 3.
  • 4 is an optical micrograph of the three-layer structured fine particles obtained in Example 5.
  • 10 is a schematic diagram showing a production method of Example 6.
  • FIG. 4 is an optical micrograph of microcapsule composite fine particles obtained in Example 6.
  • the method for producing composite fine particles having a heterogeneous surface according to the present invention is to cut a composite film prepared by laminating two or more kinds of films into fine pieces, and then melt the fine pieces.
  • the composite film is formed by liquidizing two or more kinds of liquids containing a polymerizable monomer to form two or more kinds of films, and then polymerizing the two or more kinds of films after bonding them together. It can be obtained by reacting.
  • the composite film can also be obtained from a liquid that does not contain a polymerizable monomer.
  • the composite film may be cut into substantially cubic shaped micro pieces, and then the micro pieces may be melted into a spherical shape, or the composite film may be cut into substantially quadrangular prism-shaped micro pieces, and thereafter The fine pieces may be melted to form a cylindrical shape.
  • substances having different physical properties such as color, chargeability, conductivity, thermal conductivity, functional group, and magnetism are dissolved or dispersed respectively.
  • polymerization is performed when the liquid is a polymerizable monomer
  • drying is performed when the liquid is a polymer solution
  • the liquid exhibits an ion-exchange gelling ability and a crosslinking action
  • a solution containing a substance it is gelled to form two types of films, and then these two types of films are bonded together.
  • the two types of films can be combined with good adhesion and formed into a film while maintaining the respective physical properties.
  • the combined composite film is cut into fine pieces having a size according to the purpose using a known laser cutting machine, fine cutting machine, or the like.
  • a known laser cutting machine, fine cutting machine, or the like After that, by adding the fine pieces of the composite film to an incompatible solvent at a temperature equal to or higher than the melting point of the composite film, and melting into a spherical shape, spherical composite fine particles with different hemispherical surfaces are obtained. Can be manufactured.
  • the polymerization, drying, or gelation may be further continued after melting into a spherical shape. In this process, by adjusting the polymerization time before film preparation and the polymerization time after composite film preparation, peeling of the composite film can be prevented, and composite fine particles having a good heterogeneous hemispheric surface can be efficiently prepared. it can.
  • FIG. 1 shows an example of a method for producing composite fine particles having a heterogeneous surface according to the present invention when the liquid is a polymerizable monomer.
  • the method for producing composite fine particles having two kinds of heterogeneous hemispherical surfaces includes a step of preparing a solution by dissolving or dispersing a functional expression substance in a solvent such as a polymerizable monomer, water, an organic solvent, and the like.
  • the process of preparing a film by carrying out drying or gelation, the process of carrying out polymerization, drying or gelation by laminating two kinds of films, the process of cutting the combined composite film, the solvent for the fine pieces It comprises the steps of melt spheronization, polymerization, drying, or gelation. Since these steps are extremely simple and can be easily constructed as a series of processes, the composite fine particles having the desired heterogeneous hemispherical surface can be produced in large quantities with a high recovery rate.
  • the particle size of the composite fine particles is determined by the thickness and cutting dimensions of each film, the particle size control is extremely easy.
  • the particle diameter of the composite fine particles can be controlled in the range of 5 to 5000 ⁇ m.
  • cutting can be performed with high dimensional accuracy, and monodispersed composite fine particles having a uniform particle size distribution can be prepared.
  • the composite film is cut into a substantially cubic shape, spherical composite fine particles can be obtained, and when the composite film is cut into a substantially quadrangular prism shape, cylindrical composite fine particles can be obtained.
  • films having different physical properties are prepared independently and combined, a variety of functions can be imparted to the respective hemispherical surfaces.
  • a third component serving as a core substance is coated on one film, coated, or particles of the third component at regular intervals by a one-shot injection method such as an inkjet method. And cut the composite film so that the particles of the third component are located in the center of the fine piece, and then melt the fine piece to bring the third component into the center of the spherical composite fine particles.
  • the content of the third component in the composite fine particles can be uniformly and arbitrarily controlled.
  • the encapsulation efficiency of the third component can be set to 100%. Therefore, this method is suitably used when the third component is expensive.
  • a core-shell microcapsule in which the shell and the core are concentric and the shell thickness is uniform can be easily prepared. Can do.
  • FIG. 2 shows an example of composite fine particles obtained by the method for producing composite fine particles having a heterogeneous surface of the present invention.
  • the method of making the liquid into a liquid film may be a method other than the casting method.
  • Polymerization initiators A, B, and C and additives A, B, and C are respectively added to and mixed with monomer mixtures A, B, and C made of polymerizable monomers, and polymerized for a predetermined time.
  • Each of the monomer mixtures A, B, and C is poured into a petri dish to form a sheet by a casting method, and preliminary bulk polymerization is performed for a predetermined time to obtain sheets A, B, and C. Next, these sheets are bonded together and polymerized for a certain period of time to prepare a composite sheet.
  • a composite sheet having a two-layer structure is prepared from the two sheets A and B, and a composite sheet having a three-layer structure is prepared from the three sheets A, B, and C.
  • composite fine particles (I) having a heterogeneous hemispherical surface can be prepared by cutting the composite sheet having a two-layer structure into a substantially cubic shape.
  • Three-layer composite fine particles (III) can be prepared by cutting a three-layer composite sheet into a substantially cubic shape.
  • Columnar composite fine particles (IV) can be prepared by cutting a two-layer composite sheet into a substantially quadrangular prism shape.
  • a microcapsule (II) or a columnar microcapsule (V) having a heterogeneous spherical surface can be prepared by placing a core substance on one sheet. it can.
  • composite fine particles having a heterogeneous surface of the present invention information recording materials (conductive-insulating, black-white, negatively charged-positively charged), stationery (black-white), pharmaceuticals (negatively charged-positively)
  • Composite fine particles useful in fields such as charging, hydrophilicity-hydrophobicity), adhesives / paints (magnetic-nonmagnetic, conductive-insulating, thermal conductive-nonthermal conductive) can be produced.
  • various core substances it can be used in fields such as agriculture, cosmetics, civil engineering / architecture, and food.
  • high-value-added composite fine particles having uniform quality can be obtained.
  • the polymerization initiator A, additive A, and surfactant were added to the monomer mixture A and mixed, and preliminary bulk polymerization was performed for a predetermined time. Thereafter, the mixed monomer was poured into a petri dish to form a film by a casting method, and the preliminary bulk polymerization was continued to obtain a sheet A.
  • the polymerization initiator B, additive B, and surfactant were added to the monomer mixture B and mixed, and preliminary bulk polymerization was performed for a predetermined time. Thereafter, the mixed monomer was poured into a petri dish to form a film by a casting method, and the preliminary bulk polymerization was continued to obtain a sheet B.
  • the two types of films, sheet A and sheet B are laminated and polymerized for 30 to 60 minutes, and then the composite film is cut into a size of 20 to 30 ⁇ m square with a laser cutting machine. It was put into a continuous phase at 80 ° C. and melted into a spherical shape.
  • a continuous phase a solution in which 0.5 g of polyvinyl alcohol and 2.5 g of tricalcium phosphate were dissolved in 100 g of ethylene glycol was used.
  • the polymerization is continued in order to consume the residual monomer, and then, by cooling, the two-color composite fine particles in which one hemisphere is black and the other hemisphere is white as shown in FIG. Obtained.
  • FIG. 4 shows an optical micrograph of the obtained composite fine particles. It was confirmed that the particles were aligned when a voltage was applied in the insulating oil. As described above, it was confirmed that the obtained composite fine particles can be controlled in arrangement by application of a voltage and can be used as a twist ball of a display.
  • composite fine particles prepared by the same method as in this example, except that the composite film was pulverized instead of being cut by a laser cutting machine, had a uniform particle size. According to the example, composite fine particles having a uniform particle diameter (FIG. 5B) were obtained.
  • FIG. 7 shows a micrograph of the composite fine particles obtained.
  • hydrophilic / hydrophobic fine particles As a hydrophobic monomer mixture A, 5 g of a mixture of styrene monomer and ethylhexyl acrylate, 5 g of a mixture of styrene monomer, ethylhexyl acrylate and methacrylic acid as a monomer mixture B containing methacrylic acid as a hydrophilic monomer, polymerization initiator A, As B, 0.5 g of AIBN (azobisisobutylnitrile) is used, and 0.05 g of Span 80 (sorbitan monooriate) is used as a surfactant to be added to the monomer mixtures A and B, respectively, according to the flow shown in FIG. In the same manner as in Example 1, composite fine particles were produced.
  • AIBN azobisisobutylnitrile
  • Span 80 sorbitan monooriate
  • composite fine particles were obtained in which one hemisphere was hydrophobic and the other hemisphere was hydrophilic.
  • hydrophilic / hydrophobic fine particles 2 The same as above except that a mixture of 5 g of styrene monomer and 2 g of butyl acrylate was used as the hydrophobic monomer mixture A, and a mixture of 5 g of styrene monomer, 2 g of butyl acrylate and 1 g of methacrylic acid was used as the hydrophilic monomer mixture B. In this way, composite fine particles were produced.
  • composite fine particles were obtained in which one hemisphere was hydrophobic and the other hemisphere was hydrophilic.
  • the composite fine particles when added to an O / W dispersion system composed of styrene monomer (O) and water (W) to form a pickering emulsion system, the composite fine particles adhere to the surface of the oil droplets to form an emulsion system. Stabilized.
  • FIG. 9 shows a micrograph of the composite fine particles obtained.
  • Example 2 The same operations as in Example 1 were performed until the sheets A and B were created. Then, silver particles were placed on the sheet A at equal intervals of 20 to 30 ⁇ m according to the interval of cutting with a cutting machine. Thereafter, the two types of films, sheet A and sheet B, were laminated and polymerized for 30 to 60 minutes, and then the composite film was cut into a size of 20 to 30 ⁇ m square with a cutting machine, and this was continuously performed at 80 ° C. It was put into the phase and melted into a spherical shape.
  • a continuous phase a solution in which 0.5 g of polyvinyl alcohol and 2.5 g of tricalcium phosphate were dissolved in 100 g of ethylene glycol was used.
  • FIG. 11 shows a micrograph of the composite fine particles obtained.
  • a polymer solution can be applied to prepare two types of films, and the film can be prepared by removing the solvent after preparing the liquid film.
  • polystyrene can be used as the polymer
  • limonene or dichloromethane can be used as the solvent.
  • hydrophilic monomer is used for two types of film formation
  • hydrophilic composite microparticles with different hemispherical surfaces can be prepared.
  • saccharide that is a water-soluble polysaccharide and gels with a gelling agent composite fine particles having a heterogeneous hemispherical surface in which the matrix is made of the polysaccharide can be prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

生産性が高く、粒径を任意にコントロールでき、機能発現のために添加できる異種物質に制限がなく、さらに、複合微粒子の球体中心に異種物質を包含させることができる、異質表面を有する複合微粒子の製造方法を提供する。2種類以上のフィルムを貼り合せて作成した複合フィルムを切断して微小片とし、その後、この微小片を溶融して球状とする。前記複合フィルムは、重合性モノマーを含んだ2種類以上の液体をそれぞれ液膜状にしてから重合反応させて2種類以上のフィルムとし、その後、この2種類以上のフィルムを貼り合せてからさらに重合反応させることにより得ることができる。

Description

異質表面を有する複合微粒子の製造方法
 本発明は、異質表面を有する複合微粒子の製造方法に関する。
 球状粒子の半球部分が異なる物性、例えば、一方の半球体表面が黒色で他の半球体表面が白色の微粒子、いわゆる白黒二色ボールはディスプレーに利用されている。また、一方の半球体表面が親水性で、他方の半球体表面が疎水性である複合微粒子は、界面活性粒子として分散系の安定剤として利用されているし、また、複合微粒子の構成成分としても利用可能である。
 上記の異質半球表面を有する複合微粒子の製造方法としては、マイクロリアクター法やノズル法と呼ばれる方法が知られている。これらの方法は、それぞれ別のノズル先端から生成した2種の液滴を合体させ、あるいは、マイクロリアクター内の微小路中で2種の液滴を合体させるものである。しかしながら、これらの方法では、(i)生産性が極めて低い、(ii)2液滴を合体させて一個の液滴とするための界面条件や流動条件が複雑であり、安定な操作を確立することは困難である、(iii)ノズルや微小流路を用いて液滴を生成することから、コントロールできる粒径範囲には限度がある、(iv)ノズルや微小流路を用いて液滴を生成することから、機能発現のために添加できる異種物質が制限され、特に固体粉末はノズルや微小流路を閉塞させるので添加できない、(v)複合微粒子の球体中心に異種物質を包含させることは不可能である、などの問題があった。
特表2001-500172号公報
 そこで、本発明は上記問題点に鑑み、生産性が高く、粒径を任意にコントロールでき、機能発現のために添加できる異種物質に制限がなく、さらに、複合微粒子の球体中心に異種物質を包含させることができる、異質表面を有する複合微粒子の製造方法を提供することを目的とする。
 上記課題を達成するため種々検討した結果、2種類のフィルムを貼り合せて作成した複合フィルムを切断して微小片とし、その後、この微小片を溶融して球状とすることにより異質半球表面を有する複合微粒子が得られることを見出し、本発明を完成させた。
 すなわち、本発明の異質表面を有する複合微粒子の製造方法は、2種類以上のフィルムを貼り合せて作成した複合フィルムを切断して微小片とし、その後、この微小片を溶融することを特徴とする。
 また、前記複合フィルムは、重合性モノマーを含んだ2種類以上の液体をそれぞれ液膜状にしてから重合反応させて2種類以上のフィルムとし、その後、この2種類以上のフィルムを貼り合せてからさらに重合反応させることにより得られたものであることを特徴とする。
 また、前記複合フィルムを切断して略立方体形状の微小片とし、その後、この微小片を溶融して球状とすることを特徴とする。
 また、前記複合フィルムを切断して略四角柱形状の微小片とし、その後、この微小片を溶融して円柱状とすることを特徴とする。
 また、前記複合フィルムをレーザー式切断機により切断することを特徴とする。
 また、前記複合フィルムは、重合性モノマーと白色顔料を含んだ液体を液膜状にしてから重合反応させて得たフィルムと、重合性モノマーと黒色顔料を含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする。
 また、前記複合フィルムは、疎水性の重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得たフィルムと、親水性の重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする。
 また、前記複合フィルムは、重合性モノマーと導電性材料を含んだ液体を液膜状にしてから重合反応させて得たフィルムと、重合性モノマーと絶縁性材料を含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする。
 また、前記複合フィルムは、重合性モノマーとアニオン性重合開始剤を含んだ液体を液膜状にしてから重合反応させて得たフィルムと、重合性モノマーとカチオン性重合開始剤を含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする。
 また、前記複合フィルムは、重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得たフィルム上に芯物質の粒子を等間隔に載置し、その後、このフィルム上に重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得た別のフィルムを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする。
 また、前記芯物質の粒子をインクジェット方式により前記フィルム上に載置することを特徴とする。
 また、前記微小片の中心に前記芯物質の粒子が位置するように前記複合フィルムを切断することを特徴とする。
 本発明によれば、生産性が高く、粒径を任意にコントロールでき、機能発現のために添加できる異種物質に制限がなく、さらに、複合微粒子の球体中心に異種物質を包含させることができる、異質表面を有する複合微粒子の製造方法を提供することができる。
本発明の異質表面を有する複合微粒子の製造方法の一実施例を示す概要図である。 本発明の異質表面を有する複合微粒子の製造方法により得られる複合微粒子の例を示す模式図である。 実施例1~6のフロー図である。 実施例1により得られた複合微粒子の光学顕微鏡写真である。 複合フィルムを粉砕した場合に得られた複合微粒子の光学顕微鏡写真と、実施例1により得られた複合微粒子の光学顕微鏡写真である。 実施例1におけるモノマー混合物A,Bの重合時間と二色複合微粒子の収率の関係を示すグラフである。 実施例1により得られた円柱状の複合微粒子の光学顕微鏡写真である。 実施例3における複合微粒子の混合比と比抵抗の関係を示すグラフである。 実施例5により得られた三層構造微粒子の光学顕微鏡写真である。 実施例6の製造方法示す概要図である。 実施例6により得られたマイクロカプセル型複合微粒子の光学顕微鏡写真である。
 以下、本発明の異質表面を有する複合微粒子の製造方法について説明する。
 本発明の異質表面を有する複合微粒子の製造方法は、2種類以上のフィルムを貼り合せて作成した複合フィルムを切断して微小片とし、その後、この微小片を溶融するものである。
 前記複合フィルムは、重合性モノマーを含んだ2種類以上の液体をそれぞれ液膜状にしてから重合反応させて2種類以上のフィルムとし、その後、この2種類以上のフィルムを貼り合せてからさらに重合反応させることにより得ることができる。
 なお、複合フィルムは、重合性モノマーを含まない液体からも得ることができる。
 また、前記複合フィルムを切断して略立方体形状の微小片とし、その後、この微小片を溶融して球状としてもよく、或いは、前記複合フィルムを切断して略四角柱形状の微小片とし、その後、この微小片を溶融して円柱状としてもよい。
 例えば、2種類の異質表面を有する複合微粒子を製造する場合には、色彩、帯電性、導電性、熱伝導性、官能基、磁性など、異なる物性を呈する物質をそれぞれ溶解、或いは分散してなる2種類の液体をそれぞれ、例えばキャスト法により液膜状にした後に、液体が重合性モノマーの場合は重合、液体が高分子溶液の場合は乾燥、液体がイオン交換ゲル化能や架橋作用を呈する物質を含む溶液の場合はゲル化させて2種類のフィルムとした後、この2種類のフィルムを貼り合せる。それから所定時間、さらに重合、乾燥、又はゲル化させることにより、それぞれの物性を維持しつつ、2種類のフィルムを密着性よく合体しフィルム化することができる。この合体化した複合フィルムを、公知のレーザー式切断機、微細切断機などを用いて、目的に応じた大きさの微小片に切断する。その後、この複合フィルムの微小片を、この複合フィルムの融点以上の温度にあり相溶性のない溶媒に添加して、溶融して球状とすることにより、それぞれの半球表面が異なる球状の複合微粒子が製造できる。なお、溶融して球状としてから重合、乾燥、又はゲル化をさらに継続してもよい。このプロセスにおいて、フィルム調製前の重合時間と、複合フィルム調製後の重合の時間を調整することにより、複合フィルムの剥離を防止でき、良好な異質半球表面を有する複合微粒子を効率良く調製することができる。
 液体が重合性モノマーの場合における本発明の異質表面を有する複合微粒子の製造方法の一実施例を図1に示す。
 この2種類の異質半球表面を有する複合微粒子の製造法は、機能性発現物質を重合性モノマー、水、有機溶媒などの溶媒に溶解或いは分散させて溶液を調製する工程、この溶液中で重合、乾燥、又はゲル化を実施してフィルムを調製する工程、2種類のフィルムを貼り合せて重合、乾燥、又はゲル化を実施する工程、合体化した複合フィルムを切断するする工程、微小片を溶媒中で溶融球状化し、重合、乾燥、又はゲル化を実施する工程、からなる。これらの工程は極めて単純であり、一連のプロセスとして構築することが容易であることから、目的とする異質半球面をもつ複合微粒子を高回収率で大量に製造することができる。
 また、複合微粒子の大きさは、それぞれのフィルムの厚さと切断寸法によって決まることから、粒径制御は極めて容易である。例えば、複合微粒子の粒径を5~5000μmの範囲で制御可能である。特にレーザー式切断機を用いた場合は高い寸法精度で切断が可能であり、粒径の揃った粒径分布が単分散の複合微粒子を調製することができる。また、複合フィルムを略立方体形状に切断すれば球状の複合微粒子を得ることができ、複合フィルムを略四角柱形状に切断すれば円柱状の複合微粒子を得ることができる。
 また、異なる物性のフィルムを独自に調製し、これを合体させることから、それぞれの半球表面に多種多様な機能を付与することができる。
 また、2種類のフィルムを合体させる前に、一方のフィルム上に芯物質となる第三の成分を塗布、コートし、或いはインクジェット方式などのワンショット射出法で等間隔に第三の成分の粒子を置き、微小片の中心に第三の成分の粒子が位置するように複合フィルムを切断し、その後、微小片を溶融することにより、球状の複合微粒子の中心部に、この第三の成分をカプセル化することができる。このとき、ワンショット射出法により第三の成分の射出量を制御することにより、複合微粒子中における第三の成分の含有量を均一、かつ任意に制御することができる。また、この方法によれば第三の成分のカプセル化効率を100%とすることが可能であることから、この方法は第三の成分が高価である場合に好適に用いられる。また、フィルムの厚さ、第三の成分の載置位置、フィルムの切断位置を制御することにより、シェルとコアとが同心であってシェル厚が均一なコアシェル型マイクロカプセルを容易に調製することができる。
 さらに、2種類のフィルム厚を等しくすることにより、球状粒子の赤道を境界面とした異質半球表面を形成することができる。
 図2に本発明の異質表面を有する複合微粒子の製造方法により得られる複合微粒子の例を示す。
 なお、上記の例では2種類の液体を用いているが、3種類以上の液体を用いても同様に実施できる。また、液体を液膜状にする方法はキャスト法以外の方法であってもよい。
 以下、本発明の異質表面を有する複合微粒子の製造方法について、重合性モノマーを用いた場合を例にとって、図3を参照しながら説明する。なお、図3において、「フィルム」を「シート」と表記している。
 重合性モノマーからなるモノマー混合物A、B、Cに、重合開始剤A、B、C、添加物A、B、Cをそれぞれ添加、混合し、所定時間重合する。それぞれのモノマー混合物A、B、Cをシャーレに注入してキャスト法にてシート化し、さらに予備塊状重合を所定時間行い、シートA、B、Cを得る。つぎに、これらのシートを貼り合わせて一定時間重合を実施して、複合シートを作成する。2枚のシートA、Bからは二層構造の複合シートが、3枚のシートA、B、Cからは三層構造の複合シートが調製される。
 つぎに、複合シートを切断機で所定の大きさに切断(シートカッティング)して微小片とし、この微小片を連続相(例えば80℃の水相)中に投入して溶融、冷却する。ここで、二層構造の複合シートを略立方体形状に切断することにより、異質半球面をもつ複合微粒子(I)を調製することができる。三層構造の複合シートを略立方体形状に切断することにより、三層構造複合微粒子(III)を調製することができる。二層構造の複合シートを略四角柱形状に切断することにより、柱状複合微粒子(IV)を調製することができる。また、2枚のシートA、Bを貼り合せる前に、一方のシート上に芯物質を載置することにより、異質球面をもつマイクロカプセル(II)や柱状マイクロカプセル(V)を調製することができる。
 本発明の異質表面を有する複合微粒子の製造方法によれば、情報記録材料(導電性-絶縁性、黒色-白色、負帯電-正帯電)、文房具(黒色-白色)、医薬品(負帯電-正帯電、親水性-疎水性)、接着剤・塗料(磁性-非磁性、導電性-絶縁性、熱伝導性-非熱伝導性)などの分野に有用な複合微粒子を製造することができる。また、種々の芯物質を包含させることにより、農業、化粧品、土木・建築、食品などの分野に利用可能である。特に本発明の異質表面を有する複合微粒子の製造方法によれば、品質が均一であって高付加価値の複合微粒子が得られる。
 以下、具体的な実施例に基づいて説明する。
 [白黒微粒子の製造]
 モノマー混合物A,Bとして、スチレンモノマーとエチルヘキシルアクリレートの混合物をそれぞれ5g、重合開始剤A,Bとして、AIBN(アゾビスイソブチルニトリル)をそれぞれ0.5g、添加物Aとして、白色顔料である二酸化チタン(TiO)粉末を0.5g、添加物Bとして、黒色顔料であるマグネタイト(Fe)粉末を0.5g、モノマー混合物A,Bに添加する界面活性剤として、Span80(ソルビタンモノオリエート)をそれぞれ0.05g用いて、図3に示すフローに従って複合微粒子を製造した。
 モノマー混合物Aに重合開始剤A、添加物A、界面活性剤を加えて混合し、所定時間予備塊状重合した。その後、この混合モノマーをシャーレに注入してキャスト法にてフィルム化し、さらに予備塊状重合を継続し、シートAを得た。同様に、モノマー混合物Bに重合開始剤B、添加物B、界面活性剤を加えて混合し、所定時間、予備塊状重合した。その後、この混合モノマーをシャーレに注入してキャスト法にてフィルム化し、さらに予備塊状重合を継続し、シートBを得た。
 重合終了後、シートAとシートBの2種類のフィルムを貼り合せて30~60分間の重合を実施した後に、複合フィルムを20~30μm角の大きさにレーザー式切断機で切断し、これを80℃の連続相中に投入して溶融して球状にした。ここで、連続相として、エチレングリコール100gにポリビニルアルコール0.5gとリン酸三カルシウム2.5gを溶解したものを用いた。
 その後、残存モノマーを消費するために重合を継続した後、冷却することにより、図2(a)に示すような、一方の半球体が黒色で、他方の半球体が白色の二色複合微粒子が得られた。
 得られた複合微粒子の光学顕微鏡写真を図4に示す。絶縁油中で電圧を印加すると、粒子の向きが揃うことが確認された。このように、得られた複合微粒子は、電圧の印加により配置が制御可能であり、ディスプレーのツイストボールとして利用可能であることが確認された。
 また、レーザー式切断機で切断する代わりに複合フィルムを粉砕するほかは本実施例と同様の方法で作成した複合微粒子(図5(a))は粒径が揃っていないのに対し、本実施例によれば粒径が揃った複合微粒子(図5(b))が得られた。
 [白黒微粒子の製造2]
 モノマー混合物A,Bとして、スチレンモノマー5gとアクリル酸ブチル2gの混合物をそれぞれ用いたほかは、上記と同様にして複合微粒子を製造した。
 その結果、図2(a)に示すような、一方の半球体が黒色で、他方の半球体が白色の二色複合微粒子が得られた。
 また、モノマー混合物A,Bの重合時間と二色複合微粒子(白黒粒子)の収率の関係を検討したところ、図6に示すように、重合時間が60分間(重合率58%)を超えたときに高い収率となった。
 [白黒微粒子の製造3]
 複合フィルムを四角柱形状に切断したほかは、上記と同様にして複合微粒子を製造した。
 その結果、円柱状の複合微粒子が得られた。
 図7に得られた複合微粒子の顕微鏡写真を示す。
 [親水性/疎水性微粒子の製造]
 疎水性のモノマー混合物Aとして、スチレンモノマーとエチルヘキシルアクリレートの混合物を5g、親水性のモノマーとしてメタクリル酸を含むモノマー混合物Bとして、スチレンモノマー、エチルヘキシルアクリレート、メタクリル酸の混合物を5g、重合開始剤A,Bとして、AIBN(アゾビスイソブチルニトリル)をそれぞれ0.5g、モノマー混合物A,Bに添加する界面活性剤として、Span80(ソルビタンモノオリエート)をそれぞれ0.05g用いて、図3に示すフローに従って、実施例1と同様にして複合微粒子を製造した。
 その結果、図2(b)に示すような、一方の半球体が疎水性で、他方の半球体が親水性の複合微粒子が得られた。
 [親水性/疎水性微粒子の製造2]
 疎水性のモノマー混合物Aとして、スチレンモノマー5gとアクリル酸ブチル2gの混合物、親水性のモノマー混合物Bとして、スチレンモノマー5g、アクリル酸ブチル2g、メタクリル酸1gの混合物を用いたほかは、上記と同様にして複合微粒子を製造した。
 その結果、図2(b)に示すような、一方の半球体が疎水性で、他方の半球体が親水性の複合微粒子が得られた。
 また、この複合微粒子を、スチレンモノマー(O)と水(W)からなるO/W分散系に添加してピッカリングエマルション系を生成したところ、複合微粒子が油滴表面に付着してエマルション系を安定にした。
 [導電性/絶縁性微粒子の製造]
 モノマー混合物A,Bとして、スチレンモノマーとエチルヘキシルアクリレートの混合物をそれぞれ5g、重合開始剤A,Bとして、AIBN(アゾビスイソブチルニトリル)をそれぞれ0.5g、添加物Aとして、導電性を有するマグネタイト(Fe)粉末を0.5g、添加物Bとして、絶縁性を有する二酸化ケイ素(SiO)粉末を0.5g、モノマー混合物A,Bに添加する界面活性剤として、Span80(ソルビタンモノオリエート)をそれぞれ0.05g用いて、図3に示すフローに従って、実施例1と同様にして複合微粒子を製造した。
 その結果、図2(c)に示すような、一方の半球体が導電性で、他方の半球体が絶縁性の複合微粒子が得られた。
 [導電性/絶縁性微粒子の製造2]
 モノマー混合物A,Bとして、スチレンモノマー5gとアクリル酸ブチル2gの混合物をそれぞれ用い、添加物Bを添加しないほかは、上記と同様にして複合微粒子を製造した。
 その結果、図2(c)に示すような、一方の半球体が導電性で、他方の半球体が絶縁性の複合微粒子が得られた。
 また、この複合微粒子(CP)と絶縁性のポリスチレン粒子(PS)の混合比を変化させて、比抵抗を比抵抗測定装置により測定したところ、図8に示すように、複合微粒子の添加量が増すにつれて、比抵抗が低下した。
 [正/負帯電性微粒子の製造]
 モノマー混合物A,Bとして、スチレンモノマーとエチルヘキシルアクリレートの混合物をそれぞれ5g、重合開始剤Aとして、アニオン性重合開始剤であるAIBN(アゾビスイソブチルニトリル)を0.5g、重合開始剤Bとして、カチオン性重合開始剤であるAIBA(アゾビスイソブチルアミジン塩酸塩)、モノマー混合物A,Bに添加する界面活性剤として、Span80(ソルビタンモノオリエート)をそれぞれ0.05g用いて、図3に示すフローに従って、実施例1と同様にして複合微粒子を製造した。
 その結果、図2(d)に示すような、一方の半球体が正帯電性で、他方の半球体が負帯電性の複合微粒子が得られた。
 [正/負帯電性微粒子の製造2]
 モノマー混合物A,Bとして、スチレンモノマー5gとアクリル酸ブチル2gの混合物をそれぞれ用いたほかは、上記と同様にして複合微粒子を製造した。
 その結果、図2(d)に示すような、一方の半球体が正帯電性で、他方の半球体が負帯電性の複合微粒子が得られた。
 [三層構造微粒子の製造]
 モノマー混合物A,B,Cとして、スチレンモノマーとエチルヘキシルアクリレートの混合物をそれぞれ5g、重合開始剤A,B,Cとして、AIBN(アゾビスイソブチルニトリル)をそれぞれ0.5g、添加物A,Cとして、導電性を有するマグネタイト(Fe)粉末をそれぞれ0.5g、添加物Bとして、絶縁性を有する二酸化ケイ素(SiO)粉末を0.5g、モノマー混合物A,Bに添加する界面活性剤として、Span80(ソルビタンモノオリエート)をそれぞれ0.05g用いて、図3に示すフローに従って、実施例1と同様にして複合微粒子を製造した。
 その結果、三層構造の複合微粒子が得られた。
 [三層構造微粒子の製造2]
 モノマー混合物A,B,Cとして、スチレンモノマー5gとアクリル酸ブチル2gの混合物をそれぞれ用い、添加物Bを添加しないほかは、上記と同様にして複合微粒子を製造した。
 その結果、三層構造の複合微粒子が得られた。
 図9に得られた複合微粒子の顕微鏡写真を示す。
 [マイクロカプセル型微粒子の製造]
 モノマー混合物A,Bとして、スチレンモノマーとエチルヘキシルアクリレートの混合物をそれぞれ5g、重合開始剤A,Bとして、AIBN(アゾビスイソブチルニトリル)をそれぞれ0.5g、芯物質として、銀粒子、モノマー混合物A,Bに添加する界面活性剤として、Span80(ソルビタンモノオリエート)をそれぞれ0.05g用いて、図3に示すフロー及び図10に従って複合微粒子を製造した。
 シートAとシートBの作成までは実施例1と同様にして操作を行った。そして、切断機で切断する間隔に合せて20~30μmの間隔で等間隔に、シートA上に銀粒子を置いた。その後、シートAとシートBの2種類のフィルムを貼り合せて30~60分間の重合を実施した後に、複合フィルムを20~30μm角の大きさに切断機で切断し、これを80℃の連続相中に投入して溶融して球状にした。ここで、連続相として、エチレングリコール100gにポリビニルアルコール0.5gとリン酸三カルシウム2.5gを溶解したものを用いた。
 その後、残存モノマーを消費するために重合を継続した後、冷却することにより、芯物質として銀粒子を中心部に包含したマイクロカプセルの形態を有する複合微粒子が得られた。
 [マイクロカプセル型微粒子の製造2]
 モノマー混合物A,Bとして、スチレンモノマー5gとアクリル酸ブチル2gの混合物をそれぞれ用い、芯物質として2質量%のL-アスコルビン酸水溶液を用いたほかは、上記と同様にして複合微粒子を製造した。なお、L-アスコルビン酸水溶液をインクジェットノズルによりシートA上に吐出してから水分を蒸発させてからシートAとシートBを貼り合わせた。
 その結果、芯物質としてL-アスコルビン酸を中心部に包含したマイクロカプセルの形態を有する複合微粒子が得られた。
 図11に得られた複合微粒子の顕微鏡写真を示す。
 上記の実施例のほか、2種類のフィルムを調製するためにポリマー溶液が適用でき、液膜調製後に、溶媒を除去することによりフィルムが調製できる。例えば、ポリマーとしてポリスチレンを、溶媒としてリモネンやジクロロメタンが適用できる。また、2種類のフィルム形成に親水性モノマーを使用すれば、それぞれの半球表面が異なる親水性複合微粒子が調製できる。さらに、水溶性多糖類で、ゲル化剤によりゲル化する糖類を用いることにより、マトリックスが多糖類からなる異質半球面をもつ複合微粒子が調製できる。

Claims (12)

  1. 2種類以上のフィルムを貼り合せて作成した複合フィルムを切断して微小片とし、その後、この微小片を溶融することを特徴とする異質表面を有する複合微粒子の製造方法。
  2. 前記複合フィルムは、重合性モノマーを含んだ2種類以上の液体をそれぞれ液膜状にしてから重合反応させて2種類以上のフィルムとし、その後、この2種類以上のフィルムを貼り合せてからさらに重合反応させることにより得られたものであることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  3. 前記複合フィルムを切断して略立方体形状の微小片とし、その後、この微小片を溶融して球状とすることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  4. 前記複合フィルムを切断して略四角柱形状の微小片とし、その後、この微小片を溶融して円柱状とすることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  5. 前記複合フィルムをレーザー式切断機により切断することを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  6. 前記複合フィルムは、重合性モノマーと白色顔料を含んだ液体を液膜状にしてから重合反応させて得たフィルムと、重合性モノマーと黒色顔料を含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  7. 前記複合フィルムは、疎水性の重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得たフィルムと、親水性の重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  8. 前記複合フィルムは、重合性モノマーと導電性材料を含んだ液体を液膜状にしてから重合反応させて得たフィルムと、重合性モノマーと絶縁性材料を含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  9. 前記複合フィルムは、重合性モノマーとアニオン性重合開始剤を含んだ液体を液膜状にしてから重合反応させて得たフィルムと、重合性モノマーとカチオン性重合開始剤を含んだ液体を液膜状にしてから重合反応させて得たフィルムとを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  10. 前記複合フィルムは、重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得たフィルム上に芯物質の粒子を等間隔に載置し、その後、このフィルム上に重合性モノマーを含んだ液体を液膜状にしてから重合反応させて得た別のフィルムを貼り合せ、さらに重合反応させることにより得られたものであることを特徴とする請求項1記載の異質表面を有する複合微粒子の製造方法。
  11. 前記芯物質の粒子をインクジェット方式により前記フィルム上に載置することを特徴とする請求項10記載の異質表面を有する複合微粒子の製造方法。
  12. 前記微小片の中心に前記芯物質の粒子が位置するように前記複合フィルムを切断することを特徴とする請求項10記載の異質表面を有する複合微粒子の製造方法。
PCT/JP2010/072364 2010-01-27 2010-12-13 異質表面を有する複合微粒子の製造方法 WO2011092955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127022035A KR20120129921A (ko) 2010-01-27 2010-12-13 이질 표면을 갖는 복합 미립자의 제조 방법
JP2011551702A JP5709268B2 (ja) 2010-01-27 2010-12-13 異質表面を有する複合微粒子の製造方法
EP10844709.5A EP2532702A4 (en) 2010-01-27 2010-12-13 METHOD FOR PRODUCING FINE COMPOSITE PARTICLES WITH HETEROGENIC SURFACES
US13/575,649 US8771455B2 (en) 2010-01-27 2010-12-13 Process for production of composite fine particles with heterogeneous surfaces
CN201080065834.0A CN102884110B (zh) 2010-01-27 2010-12-13 具有异质表面的复合微粒子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-016029 2010-01-27
JP2010016029 2010-01-27

Publications (1)

Publication Number Publication Date
WO2011092955A1 true WO2011092955A1 (ja) 2011-08-04

Family

ID=44318954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072364 WO2011092955A1 (ja) 2010-01-27 2010-12-13 異質表面を有する複合微粒子の製造方法

Country Status (6)

Country Link
US (1) US8771455B2 (ja)
EP (1) EP2532702A4 (ja)
JP (1) JP5709268B2 (ja)
KR (1) KR20120129921A (ja)
CN (1) CN102884110B (ja)
WO (1) WO2011092955A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015352A1 (ja) * 2011-07-26 2013-01-31 国立大学法人新潟大学 微粒子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220355523A1 (en) * 2019-06-25 2022-11-10 Dow Global Technologies Llc Methods of making uv reflective particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221987A (ja) * 1984-04-18 1985-11-06 関西日本電気株式会社 電界発光灯の製造方法
JP2001500172A (ja) 1996-07-19 2001-01-09 イー インク コーポレイション 電子的にアドレス指定可能なマイクロカプセル化されたインクおよびそのディスプレイ
JP2005342559A (ja) * 2004-05-31 2005-12-15 Hitachi Metals Ltd 定量切断チップの製造方法及びこれを用いた金属球の製造方法
JP2007112888A (ja) * 2005-10-20 2007-05-10 Yasuhara Chemical Co Ltd 表面が滑らかな、球から楕円球形状である重合物微粒子
JP2008050592A (ja) * 2006-07-28 2008-03-06 Kyodo Printing Co Ltd 粉体一体化樹脂粒子及びその造粒方法、並びに粒子含有成形体及び粒子含有シート材並びにこれらの成形方法
JP2010001370A (ja) * 2008-06-19 2010-01-07 Asahi Kasei Home Products Kk 結晶性乳酸系ポリエステルフィルムからペレットの製造方法およびその製造方法により得られるペレット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190956A (en) * 1981-05-20 1982-11-24 Sanyo Electric Co Ltd Production of toner
US4948692A (en) * 1986-03-31 1990-08-14 Seiko Epson Corporation Combination toner and printer utilizing same
US5385801A (en) * 1990-07-12 1995-01-31 Minolta Camera Kabushiki Kaisha Method of developing electrostatic latent image
US5500175A (en) * 1994-11-02 1996-03-19 Bradt; Rexford H. Process of producing heat-softenable, hopper-feedable plastic pellets containing folded reinforcing fibers
US5627218A (en) * 1995-03-20 1997-05-06 Bradt; Rexford H. Compartmented thermoplastic pellets
DE19614174A1 (de) * 1996-04-10 1997-11-06 Simons Druck & Vertrieb Gmbh Verfahren zur Herstellung von mehrschichtigen Mikropartikeln
US6669986B1 (en) * 1999-06-25 2003-12-30 Sumika Color Company, Limited Process for manufacturing multilayer pellets and use of the multilayer pellets
JP2002122893A (ja) * 2000-10-18 2002-04-26 Fujitsu Ltd 表示デバイス用2色ボールの製造方法
JP3931958B2 (ja) * 2001-01-29 2007-06-20 東洋製罐株式会社 ラミネート材の製造方法及び製造装置
AU2003235818A1 (en) 2002-05-02 2003-11-17 Teijin Dupont Films Japan Limited Laminated film for optical use
JP2004077994A (ja) * 2002-08-21 2004-03-11 Fujitsu Ltd 回転粒子の製造方法
US7541091B2 (en) * 2004-05-18 2009-06-02 M & G Usa Corporation Compartmentalized resin pellets for oxygen scavenging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221987A (ja) * 1984-04-18 1985-11-06 関西日本電気株式会社 電界発光灯の製造方法
JP2001500172A (ja) 1996-07-19 2001-01-09 イー インク コーポレイション 電子的にアドレス指定可能なマイクロカプセル化されたインクおよびそのディスプレイ
JP2005342559A (ja) * 2004-05-31 2005-12-15 Hitachi Metals Ltd 定量切断チップの製造方法及びこれを用いた金属球の製造方法
JP2007112888A (ja) * 2005-10-20 2007-05-10 Yasuhara Chemical Co Ltd 表面が滑らかな、球から楕円球形状である重合物微粒子
JP2008050592A (ja) * 2006-07-28 2008-03-06 Kyodo Printing Co Ltd 粉体一体化樹脂粒子及びその造粒方法、並びに粒子含有成形体及び粒子含有シート材並びにこれらの成形方法
JP2010001370A (ja) * 2008-06-19 2010-01-07 Asahi Kasei Home Products Kk 結晶性乳酸系ポリエステルフィルムからペレットの製造方法およびその製造方法により得られるペレット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532702A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015352A1 (ja) * 2011-07-26 2013-01-31 国立大学法人新潟大学 微粒子の製造方法

Also Published As

Publication number Publication date
EP2532702A4 (en) 2014-11-05
CN102884110B (zh) 2014-04-30
JPWO2011092955A1 (ja) 2013-05-30
JP5709268B2 (ja) 2015-04-30
CN102884110A (zh) 2013-01-16
US20130009331A1 (en) 2013-01-10
US8771455B2 (en) 2014-07-08
EP2532702A1 (en) 2012-12-12
KR20120129921A (ko) 2012-11-28

Similar Documents

Publication Publication Date Title
CN103409801B (zh) 一种高强度交联型聚合物光子晶体膜的制备方法
JPS62259051A (ja) 起電表示粒子および製造法
KR20130038455A (ko) 균일한 입도를 갖는 디스플레이용 마이크로캡슐 제조 방법
US8147783B2 (en) Nickel hydroxide powder and method for producing same
Shen et al. Fabrication of robust crystal balls from the electrospray of soft polymer spheres/silica dispersion
CN103374141A (zh) 一种基于微流控芯片制备蜂窝状聚合物微球的方法
JP5709268B2 (ja) 異質表面を有する複合微粒子の製造方法
Zhang et al. Injectable granular hydrogels as colloidal assembly microreactors for customized structural colored objects
CN103359746A (zh) 一种双层中空二氧化硅纳米球及其制备方法
JPH0460696B2 (ja)
CN104262672B (zh) 一种离子型凝胶光子晶体的制备方法
CN101670255A (zh) 超浓乳液法制备功能化磁性高分子微球的方法
KR20110104470A (ko) 표시 성능을 향상시킨 이색 입자
CN104031210A (zh) 季铵盐表面改性的单分散聚苯乙烯微球乳液的制备方法
JP5935189B2 (ja) 微粒子の製造方法
CN104307445B (zh) 一种交互聚合的多壳液晶微胶囊的制造方法
CN104226213A (zh) 一种含苯乙烯的多壳液晶微胶囊的制造方法
CN111941681A (zh) 一种生产聚苯乙烯均球的装置和方法
Kim et al. Microfluidic approaches for designing multifunctional polymeric microparticles from simple emulsions to complex particles
CN100475479C (zh) 非密堆积胶体晶体薄膜的热压制备方法
JP4385886B2 (ja) 微小流路構造体を用いた固体状粒子の製造方法
JP2012006766A (ja) シリカ中空球状粒子の製造方法
CN212445911U (zh) 一种生产聚苯乙烯均球的装置
KR101356851B1 (ko) 파우더 형태의 액정 캡슐 제조방법
CN108715646A (zh) 一种制备大量均一非球形Janus粒子的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065834.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011551702

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022035

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010844709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13575649

Country of ref document: US