WO2011091489A1 - Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de co2 a partir de matérias primas contendo carbono - Google Patents

Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de co2 a partir de matérias primas contendo carbono Download PDF

Info

Publication number
WO2011091489A1
WO2011091489A1 PCT/BR2010/000339 BR2010000339W WO2011091489A1 WO 2011091489 A1 WO2011091489 A1 WO 2011091489A1 BR 2010000339 W BR2010000339 W BR 2010000339W WO 2011091489 A1 WO2011091489 A1 WO 2011091489A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
carbon
oxygen
gasification
gas flow
Prior art date
Application number
PCT/BR2010/000339
Other languages
English (en)
French (fr)
Other versions
WO2011091489A8 (pt
Inventor
Raymond François GUYOMARC'H
Ammar Bensakhria
Original Assignee
See - Soluções, Energia E Meio Ambiente Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012550270A priority Critical patent/JP2013518150A/ja
Priority to US13/576,640 priority patent/US9284854B2/en
Application filed by See - Soluções, Energia E Meio Ambiente Ltda. filed Critical See - Soluções, Energia E Meio Ambiente Ltda.
Priority to EP10844317.7A priority patent/EP2540806B1/en
Priority to CN2010800654689A priority patent/CN102918138A/zh
Priority to BR112012019104-7A priority patent/BR112012019104B1/pt
Priority to RU2012137275/05A priority patent/RU2553289C2/ru
Publication of WO2011091489A1 publication Critical patent/WO2011091489A1/pt
Publication of WO2011091489A8 publication Critical patent/WO2011091489A8/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1681Integration of gasification processes with another plant or parts within the plant with biological plants, e.g. involving bacteria, algae, fungi
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1815Recycle loops, e.g. gas, solids, heating medium, water for carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99011Combustion process using synthetic gas as a fuel, i.e. a mixture of CO and H2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process of producing convertible thermodynamic energy (in electricity, etc.) from carbon-containing raw material. It also refers to a system for executing such a process.
  • the field of the invention is the production of electricity from carbon-containing raw material, and more particularly from coal and / or dry biomass.
  • This process consists, in its most generic version, of using the heat from the combustion of biomass to heat a fluid that is then used in a cogeneration system such as, for example, a turbo alternator.
  • the most commonly used combustion method is carried out under an oxidizing atmosphere, that is, where the fuel of said carbon-containing raw material is the surrounding air.
  • the overall yield of these thermal generators is approximately 85% of the PCI (lower calorific value) of the carbon-containing material used, and the maintenance needs related to the quality and moisture content of the carbon raw material.
  • the systems of this type generate a combustion gas (smoke) more or less loaded with dust, VOC (Volatile Organic Compounds), NOx pollutants complex molecules (methane, carbon monoxide, dioxins, PCBs, etc.) and on the C0 2 combustion of carbon contained in said carbon-containing raw material. At least 15% of the PCI of said carbon raw material is dispersed by smoke and non-combustible products.
  • the PCI of said carbon raw material varies, depending on plant and / or animal biomass, from 2 to 5.2 kWh / kg depending on relative humidity (ie, a global heat transfer rate of 1.7 to 4.4 kWh / kg); or in the case of fossil carbon: from 6 to 8 kWh / kg as a function of its carbon concentration (ie a transferred overall thermal efficiency of 5,1 to 6,8 kWh / kg).
  • the CO 2 rate contained in the fumes of the above systems is 10 to 18% per Nm 3 of fumes and their concentration for eventual storage and / or sequestration necessitates complex and costly processes.
  • An object of the present invention is to remedy the above drawbacks.
  • Another object of the present invention is to provide a process and system for producing electricity from carbon-containing biomass.
  • said carbon biomass whether fossil or not (coal and / or plant and / or animal biomass and / or waste / waste) containing sufficient carbon for its exploitation, it may contain molecular hydrogen.
  • the carbon-containing raw material contains hydrogen has no essential influence on the object of the invention: the production of electricity or its efficiency.
  • a material consisting essentially of carbon is considered without excluding plant and / or animal biomass and / or carbon residues. These materials should be conditioned and dried.
  • the preparation of these carbon materials consists of a mincing / grinding (which optimizes the yield of pyrolytic reactions) and drying if necessary.
  • the invention enables the above objectives to be achieved by a process of producing electricity from carbon raw material (MPC) and more particularly from carbon biomass (BC), the process of which comprises at least one iteration of the following steps, constituting a treatment cycle:
  • gasification a gasification in a first reactor, called "gasification", of carbon feedstock with a high temperature CO 2 containing gasification gas stream, which gasification provides a first gas flow containing essentially carbon monoxide (CO) molecules,
  • activation in a third reactor, said "activation", of said reduced state oxygen carriers with a gas flow called “activation” containing oxygen elements, said oxidation providing oxide state oxygen carriers and a gas flow depleted oxygen activation at high temperature.
  • the process according to the invention makes it possible to value the energy of carbon-containing raw material in a higher yield than current processes and systems.
  • Oxygen carriers may contain NiO, Fe 2 0 3 , MgO, CaO, etc.
  • the process according to the invention allows the generation of electricity from carbon-containing raw material without combustion of the biomass. Indeed, the energy contained in biomass is recovered through a biomass gasification, a gas flow of C0 2 (thermochemical conversion reaction of C0 2 on a carbon molecule in two Element CO carbon monoxide molecules).
  • the process according to the invention may include, prior to the recovery step, a transfer of part of the thermal energy generated during gasification to the depleted oxygen activation gas stream.
  • the activation gas flow is preheated thanks to the thermal energy by the process according to the invention from MPC, ie without external energy input.
  • the thermal energy valorisation of the high temperature depleted oxygen activation gas flow may further comprise a step of transferring at least a portion of the thermal energy of said oxygen depleted activation gas flow to a fluid, said electricity generation, supplied to a converter device for electricity production.
  • the process according to the invention may comprise a recovery of the residual thermal energy of said depleted oxygen activating gas stream, at least a portion of said residual thermal energy being transferred to the gasification gas stream used in the treatment cycle.
  • the process according to the invention allows the residual energy to be efficiently handled to preheat the gasification gas flow, which avoids the use of an external energy source.
  • the process according to the invention may advantageously comprise a step of raising the carbon-containing raw material in temperature prior to gasification by transferring at least a portion of the thermal energy of the second high temperature gas stream to said raw material.
  • the thermal energy of this second gas flow is thus equally valued in the process according to the invention.
  • the process according to the invention may further comprise a recycling loop (loop), a part of the C0 2 in the second gaseous stream to provide the said gas flow gasification.
  • a recycling loop loop
  • the process according to the invention allows to recycle a portion of this stream of C0 2 into a new treatment cycle.
  • the impact of the process of the invention on the environment is limited.
  • the procedure according to the invention may comprise prior to the activation step of the oxygen carriers, a preheating of the activation gas flow with the residual energy of the electricity generating fluid.
  • it may advantageously comprise supplying a portion of the second gas stream to a microalgae-containing bioreactor, after cooling of said portion of said second gas stream, said micro-algae. performing a photosynthesis of algae C0 2 present in said second part of said gas flow providing said bio-reactor, on the one hand a gaseous flow of oxygen and other carbon - containing biomass.
  • the process of the invention has no impact on the environment.
  • the process according to the invention produces at least a part of the raw material containing carbonated carbon in the system.
  • a gaseous oxygen flow is generated by the microalgae.
  • gaseous oxygen flow may be valued in the process according to the invention, for example for the generation of electricity or thermal energy for any of the process steps according to the invention.
  • the process according to the invention may comprise recovering at least a portion of the oxygen flow generated by the microalgae, and injecting at least a portion of said oxygen flow into the gasification reactor to complete the gasification of matter. carbon-containing cousin.
  • the process according to the invention may comprise recovering and treating the carbon-containing biomass supplied by the bioreactor in view of gasification of said biomass in the gasification reactor.
  • a system for producing electricity from carbon-containing raw material comprising:
  • a carbon-containing raw material gasification reactor with a high temperature CO2-containing gasification gas stream the reactor providing a first gas flow containing carbon monoxide (CO) molecules
  • a reduced state oxygen carrier activation reactor with a gaseous flow containing oxygen elements, said reactor providing oxidized state oxygen carriers and a surplus of thermal energy
  • a device for generating electricity from at least a portion of said thermal surplus of said activation a device for generating electricity from at least a portion of said thermal surplus of said activation.
  • the system according to the invention may advantageously comprise mechanical means of transporting the oxygen carriers from the oxidation reactor to the activation reactor and / or from the activation reactor to the oxidation reactor.
  • the system according to the invention may comprise a loop recycling loop of a part of CO 2 present in the second gas stream used as gasification gas stream.
  • the electricity generating device may comprise a turbo alternator or any equivalent device.
  • the system according to the invention may comprise a microalgae-containing bioreactor to which part of CO 2 is supplied.
  • This second gas stream performing the aforementioned micro-algae photosynthesis said C0 2 by supplying said reactor, a part of a gaseous flow of oxygen and another part containing biomass carbon.
  • Fig. 1 is a schematic representation of a first embodiment of a system according to the invention.
  • Figure 2 is a schematic representation of a second embodiment of a system according to the invention.
  • Figure 1 is a schematic representation of a first embodiment of the system according to the invention.
  • System 100 comprises a gasification reactor 102, an oxidation reactor 104, and an oxygen carrier activation reactor 106.
  • the gasification reactor is composed of two communicating and concomitant parts:
  • SAS feed chamber
  • the dry carbon-containing materials noted C in the figures are preheated by contact, convection and osmosis by a hot CO 2 gas stream.
  • this gaseous stream of C0 2 is produced and preheated by the system 100.
  • This gaseous stream of C0 2 through the dry material containing carbon C by transferring them to their heat capacity.
  • carbon-containing materials absorb the sensitive heat of C0 2 .
  • Said carbon-containing raw materials are introduced in certain sequences.
  • the dried carbon-containing raw materials C then gravity flows into converter 110 through tubular grids (not shown) which reduce their velocity.
  • a gaseous stream mainly consisting gasification FGG C0 2 reactive at high temperature is introduced into the gasification reactor 102.
  • the C0 2 is reactive at a temperature equal to or higher than 900/1000 ° C. It is injected into the backcurrent gasification reactor of the flow of carbon-containing matter after circulating in the deceleration grid tubes.
  • These tubular grilles have, as it were, a role of heat exchanger with carbon-containing materials, adding a great thermal complement useful for conversion with a flow retarding role for the raw materials in the gasification reactor.
  • the C0 2 is introduced dry matter containing carbon C , which at this stage has reached a temperature of 900/1000 °.
  • the reaction of the encounter is the conversion of CO 2 to CO, thus into energy. It is this energy that fully transfers the energy potential of carbon C-containing matter to the following reactive sectors in system 100.
  • a first PFG gas stream composed essentially of CO is obtained at a temperature above 900 ° C.
  • This first PFG gas flow is therefore eminently energetic and reactive. It allows the transfer of potential energy from carbon-containing raw materials to oxidation reactor 104. It is then introduced into oxidation reactor 104 where it will oxidize on contact with oxidized or active MeO oxygen-carrying materials.
  • the active oxygen carriers MeO are introduced into the oxidation reactor 104 at the top of that reactor 104 and flow through tubular grids (not shown) that slow down this flow.
  • the first gas flow from the gasification reactor 102 and composed essentially of CO is at a temperature above 900 °. It is introduced into the oxidation reactor 104 at the bottom of that reactor 104 countercurrent to the flow of MeO oxygen carriers.
  • the encounter of MeO (or active) oxide oxygen carriers with the first gas flow causes:
  • the oxidation reactor 104 is so exothermic 77.4 kJ per mol equivalent of C0 2 which will be deducted from 172 kJ to be supplied to the reaction takes place in the gasification reactor 102 seconds the reaction II described above.
  • This oxidation reactor provides DFG one second gaseous stream essentially consisting of C0 2 and high temperature oxygen Me carriers in reduced state (disabled).
  • Oxidation reactor 104 is maintained at the correct temperature level (equal to or less than 1,000 ° C) thanks to the second gaseous flow DFG1 (part of the second recycled gaseous flow DFG, after said second flow DFG has changed its thermal capacity to the stroke of the different thermal exchanges that cool it at the output of this oxidation reactor 104) that regulates the temperature of said oxidation reactor 104, capturing the thermal excess in benefit of its useful thermal capacity for a new iteration.
  • This second DFG gas stream exiting oxidation reactor 104 passes through the feed chamber 108 of dry carbon-containing materials. It is this second gas flow DFG which is therefore used to preheat the dry carbon-containing raw material C by exchanging its sensitive heat (by contact, convection or osmosis) with said dry raw material C.
  • the second gas stream DFG is cooled to the inlet temperature of the dry carbon-containing raw material to which the bulk of its thermal capacity has been transferred. It is extracted from this chamber 108 by mechanical means (extractors / fans, not shown) that keep the entire system depressed.
  • Reduced oxygen Me carriers are introduced into the activation reactor 106.
  • the transfer of the oxygen carriers from the oxidation reactor 104 to the activation reactor 106 is by mechanical means or by gravity, depending on the reactor configuration.
  • the deactivated oxygen carriers Me are still at a high temperature, about 800 ° C and are eminently reactive. They flow to the reactor of gravity activation 106 through the network of tubular grids (not shown) that slow down this flow.
  • the tubular networks play the role of heat exchanger, in which the DFG1 gas stream (part of the second recycled DFG gas stream) circulates where it acquires its FGG gasification gas flow thermal capacity.
  • the Me are reactivated by oxygen from an FA activation gaseous stream, which in the present example is from the countercurrent circulating atmospheric air.
  • Oxidation of Me oxygen carriers upon contact with air is exothermic, the energy supplied is 244.30 kJ / mol Me, ie 488.60 kJ for the two moles of Ni according to the reference option of the carriers of Me. oxygen from the chain reaction description.
  • This reactor provides at the output a very hot FAA depleted oxygen activation gas flow at temperatures less than or equal to 1100 ° C and MeO activated oxygen carriers at the same temperature.
  • MeO-reactivated oxygen carriers are transferred to oxidation reactor 104 by mechanical means or by gravity, depending on the configuration of the reactors.
  • the very hot oxygen depleted activation gas stream FAA obtained at the output of the activation reactor 106 is directed through a exchanger 112 via gasification reactor 102 to a tubular network acting as the exchanger and deceleration grids in said reactor. Gasification 102. This path allows the maintenance of the high temperature useful for the C0 2 to C conversion reaction without overloading the thermal capacity of the FAA-depleted oxygen-depleted oxygen gas stream.
  • the oxygen depleted and overheated FAA gas flow is transferred to the exchanger 112 where it exchanges the bulk of its heat with an FGE electricity generating fluid.
  • This electricity generation fluid is then supplied to a turbocharger 114 in which thermal energy transforms into electricity.
  • the electricity generation fluid FGE contains a residual thermal energy.
  • this FGE fluid is injected into another heat exchanger 116 in which the residual energy of the FGE electricity generation fluid is transferred to the FA activation gas stream which will be used in a subsequent treatment cycle for the activation of the oxygen carriers in the activation reactor 106.
  • the FA activation gas flow used in the next treatment cycle is preheated thanks to the thermal energy supplied directly by the system according to the invention without requiring an external power source.
  • the FGE electricity generation fluid is again injected into the first heat exchanger 112 to begin a new cycle.
  • the electricity generation fluid FGE circulates in a closed loop 118 interconnecting the first heat exchanger 112, the turbo alternator 114 and the second heat exchanger 1116.
  • a portion DFG1 of the second cooled DFG gas stream extracted from the gasification reactor feed chamber 108 is recycled and used as gasification gas flow for the next cycle.
  • the other DFG2 part of the second gas stream is stored or discarded in the atmosphere.
  • the FAA oxygen poor gas flow leaving the first thermal exchanger 12 after yielding most of its thermal energy with the electricity generation fluid FGE contains a residual energy which is transferred to the gas flow DFG1 on a thermal exchanger 120.
  • This DFG1 flow then passes through the tubular network (playing the role of MeO flow deceleration tubular grids and heat exchanger) located in the oxidation reactor 104 to obtain a portion of its thermal capacity and at the same time regulating the reactor temperature.
  • oxidation rate 104 below 1000 ° C. It is thanks to this transfer of a portion of thermal energy from oxidation reactor 104 that the second gaseous flow DFG yields a portion of its thermal capacity prior to its introduction into the supply chamber 108 of gasification reactor 102. At the outlet of said reactor Oxidation 104 thus yields an FGG gasification gaseous stream comprising recycling the DFG1 part of the second DFG gas stream.
  • the FGG gasification gas flow obtained from the oxidation reactor 104 outlet is then injected into the tubular grid (which plays the role of heat exchanger) of the activation reactor 106. There it acquires all the useful capacity for the conversion of CO2 over the carbon-containing materials, always keeping the activation reactor temperature below 1000 ° C, absorbing the excess energy released. At the output of the activation reactor 106, the obtained FGG gasification gas flow is injected into the converter 10 to perform the next cycle.
  • the second DFG gas stream composed essentially of
  • C0 2 generated by the oxidation reaction in oxidation reactor 104 is composed of 2 moles whose thermal capacity is 101,331 kJ, to which the 77.40 kJ of exothermic reaction energy should be added, ie 178,731 kJ to which it is necessary to remove the Cp (Thermal capacity of coal at 1000 ° C) coal at 1000 ° C and cp mol C0 2 and recycled to gasification energy conversion, namely:
  • the thermal energy 236.67 C0 2 per mole of converted consumed by all of the reactions should be provided at system startup. Then the system is thermally autonomous except for carbon supply.
  • the system according to the invention enables the production / recovery / recycling of the energies necessary to raise the carbon-containing raw material and the different gas flows in temperature and to carry out the different reactions, reducing the initial thermal demand of 236.67 kJ 57.939 kJ per mole of converted C0 2 (per one mole of carbon used for electricity generation) during the following cycles.
  • the second DFG gas stream composed essentially of
  • C0 2 is therefore almost pure (may contain dust particles will retain a classic filter). It is separated into two volumes by a set of records at the feed chamber 108 outlet of the oxidation reactor 102. At least 50% is recycled into the system to constitute the gasification gas flow for the next treatment cycle.
  • the remaining DFG2 volume is captured "without any process” to be stored or recycled in various applications. It should be noted that for each cycle this volume corresponds to the carbons contained in the chemical formulation of the carbon matter introduced into the gasification reactor. The chain reactions, conversions and energy transfer on these carbons only produces pure C0 2, without any further process and / or system is useful. This step actually eliminates completely all current procedures for C0 2 uptake, which are very costly.
  • the solution regarding the negative environmental impact (from traditional installations of electricity production from carbon-containing materials) is provided at this stage of the process according to the invention the thermal balance is unbalanced, with a deficit of 57.939 kJ per C0 2 mol per one mole of converted carbon;
  • the reaction chain has the oxidation energy of the 2 moles of Me generated in the activation reactor 106 to be transferred to the FGE fluid for conversion to electricity.
  • thermal deficit in the oxidation reactor 57 939 kJ per mole of converted by a C0 2 moles of carbon, ie, a total of:
  • the electricity conversion efficiency of a current installation is a maximum of 35% of PCI, this performance taking into account all the degradations from combustion to turbo alternator through the various exchangers.
  • the system according to the invention also exchanges the heat of the reactions to the water vapor (FGE electricity generating fluid) which is introduced into the alternator the turbine for conversion to electricity.
  • FGE electricity generating fluid water vapor
  • the overall efficiency of the generator is 85%, ie a residual heat of 335 kJ / mol C available in the evaporator.
  • the process according to the invention performs thermochemical reactions that do not degrade available energy.
  • the same mol C0 2 is not diluted, and is in a proportion equal to or greater than 98% and the output volume can be captured directly. This moles of C0 2 can be picked up to be stored and / or recycled.
  • Figure 2 is a schematic representation of a second embodiment of a system according to the invention.
  • System 200 shown in Figure 2 comprises all elements of system 100 shown in Figure 1.
  • System 200 further comprises a microalgae-containing bioreactor.
  • the DFG2 part of the second cooled gaseous flow obtained at the outlet of the feed chamber 108 of the gasification reactor 102 is injected into the bioreactor 202.
  • carbon dioxide C0 2 is used in a photo. -synthesis performed by microalgae. Photosynthesis produces BC carbon biomass on the one hand and F0 2 oxygen gas flow on the other by separating the carbon element ⁇ C> from the dioxigen molecule ⁇ 0 2 >.
  • the BC carbon biomass obtained is supplied to a conditioned biomass system 204 which can be:
  • Oxygen gas flow F 2 may be supplied to the system according to the invention for example at the level of the gasification reactor 102 to complement the gasification of carbon matter in reactor 102.
  • the production of carbon-containing biomass in this second embodiment stimulates the thermal efficiency in the reference evaporator by "delivering" the 394 kJ (from element C recycled in biomass);
  • the carbon is oxidized by the 0 2 molecule and so again generates one C0 2 which is recycled in the same way. There is no atmospheric rejection or need for debugging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

A invenção constitui um processo e um sistema de produção de eletricidade a partir da conversão de CO2 sobre matéria prima contendo carbono. Ela compreende etapas realizando a gaseificação da matéria prima contendo carbono por meio de um fluxo gasoso contendo essencialmente CO2, sendo a oxidação do fluxo gasoso obtida após a gaseificação pelos portadores de oxigênio e a oxidação dos portadores de oxigênio desativados obtidos. O processo permite valorizar a energia global gerada pelo conjunto dessas etapas para alimentar um sistema de geração de eletricidade tal como um turbo-alternador. A invenção corresponde igualmente a um sistema para executar tal processo.

Description

Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de C02 a partir de matérias primas contendo carbono
A invenção se refere a um processo de produção de energia termodinâmica conversível (em eletricidade, etc.) a partir de matéria prima contendo carbono. Ela se refere igualmente a um sistema de execução de tal processo.
O campo da invenção é a produção de eletricidade a partir de matéria prima contendo carbono, e mais particularmente a partir de carvão e/ou biomassa seca.
A produção de eletricidade por dupla geração (co-geração) a partir da energia térmica obtida pela queima de matéria prima combustível contendo carbono é um processo conhecido e dominado pelos especialistas da matéria.
Esse processo consiste, na sua versão mais genérica em utilizar o calor da combustão da biomassa para aquecer um fluido que em seguida é utilizado em sistema de co-geração de eletricidade tal como, por exemplo, um turbo alternador.
Entretanto, os processos e sistemas de geração de eletricidade a partir de matéria primas de carbono apresentam o inconveniente de necessitar realizar a combustão do material a fim de transferir o máximo de potencial energético produzido pela citada combustão. Em toda combustão existe um corolário de rendimento: o rendimento da combustão relacionado à qualidade e ao grau de umidade do citado material de carbono e o rendimento térmico global relativo ao gerador térmico, à sua configuração, ao seu rendimento de combustão (e por consequência a incidência da incrustação (depósito de não queimados) ocasionada por uma combustão mais ou menos completa, o que reduz progressiva e mais ou menos rapidamente o rendimento da troca térmica do gerador térmico).
Nos sistemas existentes, o método de combustão mais usado é realizado sob atmosfera oxidante, ou seja, em que o combustível da citada matéria prima contendo carbono é o ar circundante. O rendimento global dos citados geradores térmicos é aproximadamente de 85% do PCI (poder calorífico inferior) do material contendo carbono utilizado, sendo as necessidades de manutenção relativas à qualidade e grau de umidade da citada matéria prima de carbono.
Os sistemas desse tipo geram um gás de combustão (fumaças) mais ou menos carregado de poeiras, COV (Compostos Orgânicos Voláteis), NOx, moléculas complexas poluentes (metano, monóxido de carbono, dioxinas, PCB, etc.) e o C02 relativo à combustão do carbono contido na citada matéria prima contendo carbono. Pelo menos 15% do PCI da citada matéria prima de carbono são dispersados pelas fumaças e produtos incombustíveis. O PCI da citada matéria prima de carbono varia, conforme se trate de biomassa vegetal e/ou animal, de 2 a 5,2 kWh/Kg em função de sua umidade relativa (ou seja, um rendimento térmico global transferido de 1 ,7 a 4,4 kWh/Kg); ou quando se tratar de carbono fóssil: de 6 a 8 kWh/Kg em função de sua concentração em carbono (ou seja, um rendimento térmico global transferido de 5, 1 a 6,8 kWh/Kg). A taxa de C02 contida nas fumaças dos sistemas acima se situa de 10 a 18% por Nm3 de fumaças e sua concentração para uma eventual estocagem ou e/ou sequestro necessita de processos complexos e onerosos.
Nestes últimos anos novos sistemas e processos foram postos em prática para otimizar o rendimento de combustão e as concentrações de C02 nas fumaças: trata-se principalmente de comburentes enriquecidos em oxigénio, chegando até a sistemas de oxicombustão pura. Esses sistemas e processos aumentam sensivelmente o rendimento térmico global e as fumaças são menos prejudiciais ao meio ambiente, porque elas se compõem essencialmente de C02, facilmente capturável. Entretanto, esses sistemas e processos são dependentes de um fornecimento continuo de oxigénio, e, portanto a produção é cara e não é isenta de impacto sobre o meio ambiente.
Um objetivo da presente invenção é o de sanar os inconvenientes retro citados.
Outro objetivo da presente invenção é oferecer um processo e um sistema de produção de eletricidade a partir de biomassa contendo carbono. Conforme a citada biomassa de carbono, seja fóssil ou não (carvão e/ou biomassa vegetal e/ou animal e/ou resíduos/lixo) contendo uma quantidade de carbono suficiente para sua exploração, ela pode conter hidrogénio molecular. Nessa condição, as reações descritas adiante são as mesmas, variando apenas os resultados finais relacionados à diferença de massa molar do carbono e do hidrogénio (1 mol de C= 12 g, um mol de H2 = 2, 016 g). A oxidação deste hidrogénio na cadeia de reações produz vapor d'água que será condensado e recuperado na dita cadeia de reações descrita adiante, assim como o resultante calor latente. O fato de que a matéria prima contendo carbono contenha ou não hidrogénio não tem influência essencial sobre o objeto da invenção: a produção de eletricidade, nem sobre o seu rendimento. Na presente descrição da invenção é considerado, portanto, um material composto essencialmente de carbono (carvão fóssil, carvão vegetal, carvão de pirólise de biomassa orgânica, etc.) sem que isso exclua a biomassa vegetal e/ou animal e/ou resíduos de carbono, devendo esses materiais serem condicionados e secos. O preparo dos citados materiais de carbono consiste em uma picagem/moagem (que otimiza o rendimento das reações pirolíticas) e a sua secagem, se necessário.
A invenção permite atingir os objetivos supracitados por meio de um processo de produção de eletricidade a partir de matéria prima de carbono (MPC) e mais particularmente a partir de biomassa de carbono (BC), cujo processo compreende pelo menos uma iteração das seguintes etapas, constituindo um ciclo de tratamento:
uma gaseificação, em um primeiro reator, dito "de gaseificação", de matéria prima de carbono com um fluxo gasoso de gaseificação contendo C02 em alta temperatura, qual gaseificação fornece um primeiro fluxo gasoso contendo essencialmente moléculas de monóxido de carbono (CO),
oxidação, em um segundo reator, dito "de oxidação" dos citados portadores de oxigénio em estado de óxido, ditas moléculas de monóxido de carbono (CO) presentes no citado primeiro fluxo gasoso, a dita oxidação fornecendo um segundo fluxo gasoso em alta temperatura contendo C02 e portadores de oxigénio em estado reduzido (Me),
ativação, em um terceiro reator, dito "de ativação", dos citados portadores de oxigénio em estado reduzido com um fluxo gasoso dito "de ativação" contendo elementos de oxigénio, a citada oxidação fornecendo portadores de oxigénio em estado de óxido e um fluxo gasoso de ativação empobrecido em oxigénio em alta temperatura.
conversão em eletricidade de ao menos uma parte da energia térmica do citado fluxo gasoso de ativação empobrecido em oxigénio em alta temperatura, por exemplo, por um sistema trocador-térmico gerador de vapor e um turbo alternador, para a conversão do vapor em eletricidade.
O processo segundo a invenção permite valorizar a energia da matéria prima contendo carbono com um rendimento mais elevado que os processos e sistemas atuais.
Os portadores de oxigénio podem conter NiO, Fe203, MgO, CaO, etc.
O processo, segundo a invenção, permite gerar eletricidade a partir de matéria prima contendo carbono sem realizar combustão da biomassa. Com efeito, a energia contida na biomassa é recuperada graças a uma gaseificação da biomassa, a um fluxo gasoso de C02 (reação termoquímica de conversão da molécula de C02 sobre um elemento de carbono em duas moléculas de monóxido de carbono CO).
O processo, segundo a invenção, pode incluir, antes da etapa de valorização, uma transferência de uma parte da energia térmica gerada durante a gaseificação ao fluxo gasoso de ativação empobrecido de oxigénio.
Assim, o fluxo gasoso de ativação é pré-aquecido graças à energia térmica pelo processo segundo a invenção a partir de MPC, ou seja, sem aporte de energia exterior.
Vantajosamente, a valorização da energia térmica do fluxo gasoso de ativação empobrecido de oxigénio em alta temperatura pode adicionalmente compreender uma etapa de transferência de pelo menos uma parte da energia térmica do citado fluxo gasoso de ativação empobrecido em oxigénio a um fluido, dito de geração de eletricidade, fornecido a um dispositivo conversor para produção de eletricidade.
O processo segundo a invenção, por outro lado, pode compreender uma recuperação da energia térmica residual do citado fluxo gasoso de ativação empobrecido de oxigénio, pelo menos uma parte da dita energia térmica residual sendo transferida para o fluxo gasoso de gaseificação utilizado no ciclo de tratamento seguinte.
Assim, o processo segundo a invenção permite valorizar a energia residual para pré aquecer o fluxo gasoso de gaseificação, o que evita recorrer a uma fonte de energia exterior.
O processo segundo a invenção pode, vantajosamente, compreender uma etapa de elevação de em temperatura da matéria prima contendo carbono antes da gaseificação pela transferência de ao menos uma parte da energia térmica do segundo fluxo gasoso em alta temperatura à citada matéria prima.
A energia térmica desse segundo fluxo gasoso é, assim, igualmente valorizada no processo segundo a invenção.
O processo segundo a invenção pode adicionalmente compreender uma reciclagem em circuito fechado (loop), de uma parte do C02 do segundo fluxo gasoso para propiciar o citado fluxo gasoso de gaseificação.
O processo segundo a invenção permite reciclar uma parte desse fluxo de C02 para um novo ciclo de tratamento. Assim, o impacto do processo da invenção sobre o meio ambiente é limitado.
Vantajosamente o procedimento segundo a invenção, pode compreender antes da etapa de ativação dos portadores de oxigénio, um pré- aquecimento do fluxo gasoso de ativação com a energia residual do fluído de geração de eletricidade.
Segundo uma versão particular do processo segundo a invenção, o mesmo pode, vantajosamente compreender o fornecimento de uma parte do segundo fluxo gasoso a um bio-reator contendo micro-algas, após refrigeração da citada parte do dito segundo fluxo gasoso, as citadas micro-algas realizando uma fotossíntese do C02 presente na citada parte do dito segundo fluxo gasoso, fornecendo o citado bio- reator, por um lado um fluxo gasoso de oxigénio, e por outro biomassa contendo carbono.
Nesta versão, o processo da invenção não acarreta qualquer impacto sobre o meio ambiente. Por outro lado, nesta versão particular, o processo segundo a invenção produz pelo menos uma parte da matéria prima contendo carbono gaseificada no sistema.
Ainda nesta versão do processo, segundo a invenção, é gerado pelas micro-algas um fluxo gasoso de oxigénio. Esse fluxo gasoso de oxigénio pode ser valorizado no processo segundo a invenção, por exemplo, para a geração de eletricidade ou energia térmica para qualquer uma das etapas do processo segundo a invenção.
Por exemplo, o processo segundo a invenção pode compreender a recuperação de pelo menos uma parte do fluxo de oxigénio gerado pelas micro-algas, e uma injeção de ao menos uma parte do dito fluxo de oxigénio no reator de gaseificação para completar a gaseificação da matéria prima contendo carbono.
Por outro lado, o processo segundo a invenção pode compreender a recuperação e um tratamento da biomassa contendo carbono fornecida pelo bio-reator, em vista da gaseificação da citada biomassa no reator de gaseificação.
Segundo um outro aspecto da invenção, é proposto um sistema de produção de eletricidade a partir de matéria prima contendo carbono compreendendo:
um reator de gaseificação de matéria prima contendo carbono com um fluxo gasoso de gaseificação contendo C02 em alta temperatura, fornecendo o reator um primeiro fluxo gasoso contendo moléculas de monóxido de carbono (CO),
- um reator de oxidação por portadores de oxigénio em estado de oxido, as citadas moléculas de monóxido de carbono (CO) presentes no primeiro fluxo gasoso, fornecendo o reator um segundo fluxo gasoso em alta temperatura contendo C02 e portadores de oxigénio em estado reduzido,
um reator de ativação dos portadores de oxigénio em estado reduzido com um fluxo gasoso contendo elementos de oxigénio, o citado reator fornecendo portadores de oxigénio em estado oxidado e um excedente de energia térmica
um dispositivo de geração de eletricidade a partir de pelo menos uma parte do citado excedente térmico da citada ativação.
O sistema segundo a invenção pode vantajosamente compreender meios mecânicos de transporte dos portadores de oxigénio do reator de oxidação ao reator de ativação e/ou do reator de ativação ao reator de oxidação.
Por outro lado, o sistema segundo a invenção pode compreender um circuito de reciclagem em loop de uma parte do C02 presente no segundo fluxo gasoso utilizado como fluxo gasoso de gaseificação.
O dispositivo de geração de eletricidade pode compreender um turbo alternador ou qualquer dispositivo equivalente.
Vantajosamente, o sistema segundo a invenção pode compreender um bio-reator contendo micro-algas ao qual é fornecida uma parte do C02 presente no segundo fluxo gasoso, realizando as citadas micro-algas a fotossíntese do dito C02, fornecendo o dito reator, de uma parte um fluxo gasoso de oxigénio e de outra parte, biomassa contendo carbono.
Outras vantagens e características aparecerão ao examinar a descrição detalhada de um modo de realização não limitativo, e das figuras anexas:
A figura 1 que é uma representação esquemática de um primeiro modo de realização de um sistema segundo a invenção; e
- A figura 2 que é uma representação esquemática de um segundo modo de realização de um sistema segundo a invenção.
Nas figuras, os elementos que aparecem em todas elas conservam a mesma referência.
A figura 1 é uma representação esquemática de um primeiro modo de realização do sistema segundo a invenção.
O sistema 100 compreende um reator de gaseificação 102, um reator de oxidação 104 e um reator de ativação de portadores de oxigénio 106.
O reator de gaseificação é composto de duas partes comunicantes entre elas e concomitantes:
uma câmara de alimentação (sas) 108 de matérias contendo carbono secas, compreendendo uma válvula de alimentação mecanizada (não representada) sob controle de C02 para impedir qualquer entrada de ar e garantir a estanqueidade do sistema, e
um conversor 1 10 (de do) C02 sobre a matéria prima contendo carbono propriamente dita.
Na câmara de alimentação 108, as matérias contendo carbono secas anotadas C nas figuras, são pré-aquecidas por contato, convecção e osmose por um fluxo gasoso de C02 quente. Veremos adiante que este fluxo gasoso de C02 é produzido e pré-aquecido pelo sistema 100. Esse fluxo gasoso de C02 atravessa as matérias contendo carbono secas C lhes transferindo sua capacidade térmica. No curso de sua introdução neste setor, pelo viés de uma válvula de alimentação mecanizada, cuja estanqueidade ao ar é assegurada pelo C02 injetado sob pressão, as matérias contendo carbono absorvem o calor sensível do C02. As ditas matérias primas contendo carbono são introduzidas por sequências determinadas.
As matérias primas contendo carbono secas C em seguida escoam por gravidade no conversor 110 através de grelhas tubulares (não representadas) que reduzem sua velocidade.
Um fluxo gasoso de gaseificação FGG composto essencialmente de C02 reativo a alta temperatura é introduzido no reator de gaseificação 102. O C02 reativo está a uma temperatura igual ou superior a 900/1000° C. Ele é injetado no reator de gaseificação em contracorrente do escoamento das matérias contendo carbono C, após haver circulado nos tubos das grelhas de desaceleração. Essas grelhas tubulares têm por assim dizer, um papel de trocador de calor com as matérias contendo carbono, adicionando um grande complemento térmico, útil à conversão, com um papel de retardador do escoamento para as matérias primas no reator de gaseificação.
O C02 introduzido encontra a matéria contendo carbono seca C que, nessa etapa, atingiu uma temperatura próxima de 900/1000°. A reação do encontro é a conversão do C02 em CO, portanto, em energia. É essa energia que transfere integralmente o potencial energético das matérias contendo carbono C para os setores reativos seguintes no sistema 100.
A reação de conversão (I) do C02 em CO é endotérmica segundo as reações:
C02 - ½ 02 = CO + O + 283 kJ/mol
C + ½ 02 (de C02) = CO - 111 kJ/mol
Seja um déficit térmico de 172 kJ por mol de C02 convertido em CO por C. As duas moléculas de CO obtidas têm cada uma um poder calorífico de 283 kJ/mol, ou seja, um total de 566 kJ, enquanto que o poder calorífico de C (matéria contendo carbono contendo energia primária da reação) é de 394 kJ/mol. Nessas condições, o objetivo principal é, portanto, de fornecer os 172 kJ da reação de conversão, pelos meios não imputáveis a esse potencial de energia nem por meios térmicos externos introduzindo uma outra energia que comprometeria esse rendimento. Veremos na sequência da descrição como o sistema segundo a invenção atinge esse objetivo.
Na saída do reator de gaseificação 102, se obtém um primeiro fluxo gasoso PFG composto essencialmente de CO a uma temperatura superior a 900°C. Esse primeiro fluxo gasoso PFG é, portanto eminentemente energético e reativo. Ele permite a transferência da energia potencial das matérias primas contendo carbono ao reator de oxidação 104. Ela é introduzida, portanto no reator de oxidação 104 onde vai se oxidar em contato com os materiais portadores de oxigénio MeO em estado oxidado ou ativo.
Os portadores de oxigénio ativos MeO são introduzidos no reator de oxidação 104 ao nível de uma parte superior desse reator 104 e escoam através de grelhas tubulares (não representadas) que desaceleram esse escoamento.
O primeiro fluxo gasoso proveniente do reator de gaseificação 102 e composto essencialmente de CO está a uma temperatura superior a 900°. Ele é introduzido no reator de oxidação 104 ao nível de uma parte inferior desse reator 104 em contracorrente ao escoamento dos portadores de oxigénio MeO. O encontro dos portadores de oxigénio em estado de oxido MeO (ou ativos) com o primeiro fluxo gasoso provoca:
a oxidação das moléculas de monóxido de carbono CO em dióxido de carbono C02. Essa reação é exotérmica e libera 283 kJ/mol; e
a redução dos portadores de oxigénio ativos MeO. Essa reação é endotérmica e absorve 244,3 kJ/mol.
A reação global (II) é, portanto exotérmica:
2MeO - 2 ½ 02 + 2 CO + 2 ½ 02 = 2C02 + 2 Me
+488,60 kJ - 566 kJ = - 77,4 kJ
O reator de oxidação 104 é, portanto exotérmico de 77,4 kJ por equivalente mol de C02, que virão em dedução dos 172 kJ a serem fornecidos à reação que tem lugar dentro do reator de gaseificação 102 segundo a reação II descrita acima.
Esse reator de oxidação fornece um segundo fluxo gasoso DFG composto essencialmente de C02 a alta temperatura e de portadores de oxigénio Me em estado reduzido (desativados).
O reator de oxidação 104 é mantido a um nível de temperatura correta (igual ou inferior a 1.000° C) graças ao segundo fluxo gasoso DFG1 (parte do segundo fluxo gasoso DFG reciclado, depois que o citado segundo fluxo DFG trocou sua capacidade térmica ao curso das diferentes trocas térmicas que o refrigeram na saída desse reator de oxidação 104) que regula a temperatura do dito reator de oxidação 104, captando o excesso térmico em beneficio de sua capacidade térmica útil a uma nova iteração.
Esse segundo fluxo gasoso DFG saindo do reator de oxidação 104 atravessa a câmara de alimentação 108 de matérias contendo carbono secas. É esse segundo fluxo gasoso DFG que é, portanto utilizado para pré-aquecer a matéria prima contendo carbono seca C, trocando seu calor sensível (por contato, convecção ou osmose) com a dita matéria prima seca C.
Na saída da câmara de alimentação 108, o segundo fluxo gasoso DFG é refrigerado à temperatura de admissão da matéria prima contendo carbono seca C à qual foi transferido o essencial de sua capacidade térmica. Ele é extraído dessa câmara 108 por meios mecânicos (extratores/ventiladores, não representados) que mantêm todo sistema em depressão
Os portadores de oxigénio Me em estado reduzido são introduzidos no reator de ativação 106. A transferência dos portadores de oxigénio do reator de oxidação 104 ao reator de ativação 106 é realizada por meios mecânicos ou por gravidade, conforme a configuração dos reatores.
Os portadores de oxigénio desativados Me estão ainda à alta temperatura, cerca de 800°C e são eminentemente reativos. Eles escoam ao reator de ativação 106 por gravidade através da rede de grelhas tubulares (não representadas) que desaceleram esse escoamento. As redes tubulares fazem o papel de trocador térmico, no qual circula o fluxo gasoso DFG1 (parte do segundo fluxo gasoso DFG reciclado) onde ele adquire sua capacidade térmica de fluxo gasoso de gaseificação FGG.
No reator 106, os Me são reativados pelo oxigénio de um fluxo gasoso de ativação FA, que no presente exemplo é do ar atmosférico que circula a contracorrente.
A oxidação dos portadores de oxigénio Me ao contato com o ar é exotérmica, a energia fornecida é de 244,30 kJ/mol de Me, ou seja, 488,60 kJ para os dois mols de Ni segundo a opção de referência dos portadores de oxigénio da descrição da reação em cadeia.
Esse reator fornece na saída um fluxo gasoso de ativação empobrecido em oxigénio muito quente FAA a temperaturas inferiores ou iguais a 1100°C e de portadores de oxigénio ativados MeO a mesma temperatura.
Os portadores de oxigénio reativados em MeO são transferidos ao reator de oxidação 104 por meios mecânicos ou por gravidade, conforme a configuração dos reatores.
O fluxo gasoso de ativação empobrecido em oxigénio e muito quente FAA obtido na saída do reator de ativação 106 é dirigido através de um trocador 112 via reator de gaseificação 102 para uma rede tubular fazendo o papel de trocador e de grelhas de desaceleração no dito reator de gaseificação 102. Esse trajeto permite a manutenção da alta temperatura útil à reação de conversão de C02 sobre C, sem sobrecarregar a capacidade térmica do fluxo gasoso empobrecido em oxigénio e superaquecido FAA.
Na saída do reator de gaseificação 102, o fluxo gasoso empobrecido em oxigénio e superaquecido FAA é transferido no trocador 112 no qual ele troca o essencial do seu calor com um fluido de geração de eletricidade FGE.
Esse fluido de geração de eletricidade em seguida é fornecido a um turbo-alternador 114 no qual a energia térmica se transforma em eletricidade.
Na saída do turbo-alternador 114 o fluido de geração de eletricidade FGE contem uma energia térmica residual. Na saída do turbo-alternador 114 esse fluido FGE é injetado em outro trocador térmico 116 no qual a energia residual do fluido de geração de eletricidade FGE é transferida ao fluxo gasoso de ativação FA que será utilizado em um ciclo de tratamento seguinte para a ativação dos portadores de oxigénio no reator de ativação 106. Assim, o fluxo gasoso de ativação FA utilizado no ciclo de tratamento seguinte é pré-aquecido graças à energia térmica fornecida diretamente pelo sistema segundo a invenção sem necessitar uma fonte de energia externa.
Na saída desse segundo trocador, o fluido de geração de eletricidade FGE é novamente injetado no primeiro trocador térmico 112 para começar um novo ciclo.
Assim, o fluido de geração de eletricidade FGE circula num circuito fechado 118 interligando o primeiro trocador térmico 112, o turbo-alternador 114 e o segundo trocador térmico 1 16.
Uma parte DFG1 do segundo fluxo gasoso DFG resfriado extraído da câmara de alimentação 108 do reator de gaseificação é reciclado e utilizado como fluxo gasoso de gaseificação para o ciclo seguinte. A outra parte DFG2 do segundo fluxo gasoso é estocada ou rejeitada na atmosfera.
Entretanto, esse fluxo DFG1 é frio e deve ser aquecido para ser utilizado como fluxo gasoso de gaseificação.
O fluxo gasoso pobre de oxigénio FAA saindo do primeiro trocador térmicol 12 após ter cedido à maior parte de sua energia térmica com o fluido de geração de eletricidade FGE contem uma energia residual a qual é transferida ao fluxo gasoso DFG1 num trocador térmico 120.
Esse fluxo DFG1 transita em seguida na rede tubular (fazendo o papel de grelhas tubulares de desaceleração de escoamento dos MeO e de trocador térmico) situada no reator de oxidação 104 para obter uma parte da sua capacidade térmica e ao mesmo tempo regulando a temperatura do reator de oxidação 104 a valores inferiores a 1000°C. É graças a essa transferência de uma parte de energia térmica do reator de oxidação 104 que o segundo fluxo gasoso DFG cede uma parte de sua capacidade térmica antes da sua introdução na câmara de alimentação 108 do reator de gaseificação 102. Na saída do dito reator de oxidação 104 obtém-se, portanto um fluxo gasoso de gaseificação FGG composto pela reciclagem da parte DFG1 do segundo fluxo gasoso DFG. O fluxo gasoso de gaseificação FGG obtido na saída do reator de oxidação 104 é em seguida injetado na rede de grelhas tubulares (que faz papel de trocador térmico) do reator de ativação 106. Ali ele adquire toda a capacidade útil à conversão do C02 sobre as matérias contendo carbono, sempre mantendo a temperatura do reator de ativação abaixo de 1000°C, absorvendo o excesso de energia liberado. Na saída do reator de ativação 106, o fluxo gasoso de gaseificação FGG obtido é injetado no conversor 1 10 para realizar o ciclo seguinte.
O segundo fluxo gasoso DFG composto essencialmente de
C02 gerado pela reação de oxidação no reator de oxidação 104 é composto de 2 mols cuja capacidade térmica é de 101 ,331 kJ, aos quais se deve acrescentar os 77,40 kJ da energia exotérmica da reação, ou seja: 178,731 kJ aos quais é necessário retirar a Cp (Capacidade térmica do carvão a 1000°C) do carvão a 1000°C e a Cp do mol de C02 de gaseificação reciclada e a energia de conversão, ou seja:
- Capacidade térmica do carvão a 1000°C - 14 kJ/mol (um mol de C por um mol de
C02), e
- Entalpia do mol de C02 de gaseificação reciclado = 50,67 kJ/mol
Energia de conversão = 172 kJ/mol de C02, ou seja, um total:
14 + 50,67 + 172 kJ - 236,67 kJ por mol de C02 convertido por um mol de carbono
(energia necessária à gaseificação)
Nesta etapa de recuperação das energias do processo o déficit térmico é reduzido a: 178,731 kJ - 236,67 = 57,939 kJ por mol de C02 convertido por um mol de carbono. Esse déficit térmico de 57,939 kJ por mol de C02 é retirado da energia térmica fornecida ao reator de ativação 106 antes do processo de produção de energia termodinâmica e a conversão em eletricidade.
A energia térmica de 236,67 por mol de C02 convertida, consumida pelo conjunto das reações deve ser fornecida na partida do sistema. Em seguida, o sistema é autónomo termicamente exceção feita ao fornecimento de carbono.
Com efeito, como acabamos de descrever, o sistema segundo a invenção possibilita a produção/recuperação/reciclagem das energias necessárias para elevar em temperatura a matéria prima contendo carbono e os diferentes fluxos gasosos e para realizar as diferentes reações, reduzindo a demanda térmica inicial de 236,67 kJ a 57,939 kJ por mol de C02 convertido (por um mol de carbono utilizado para a geração de eletricidade) no decorrer dos ciclos seguintes.
Nesta etapa do processo, segundo a invenção, 100% da energia do mol de carbono (MPC - Matéria Prima contendo carbono) é transferida à cadeia de reação para produzir eletricidade (ou energia termodinâmica/vapor d'água) e o
C02 produzido pela sua oxidação completa é puro e capturável sem outra forma de processo e o C02 de conversão é reciclado.
O segundo fluxo gasoso DFG composto essencialmente de
C02 é portanto quase puro (pode conter partículas de poeira que um filtro clássico reterá). Ele é separado em dois volumes por um jogo de registros na saída da câmara de alimentação 108 do reator de oxidação 102. Pelo menos 50% é reciclado no sistema para constituir o fluxo gasoso de gaseificação para o ciclo de tratamento seguinte.
O volume restante DFG2 é captado "sem qualquer processo" para ser estocado ou reciclado em várias aplicações. Deve-se notar que para cada ciclo, esse volume corresponde aos carbonos contidos na formulação química da matéria de carbono introduzida rio reator de gaseificação. A cadeia de reações, das conversões e das transferências de energia, sobre esses carbonos produz somente C02 puro, sem que nenhum outro processo e/ou sistema seja útil. Essa etapa de fato elimina completamente todos os procedimentos atuais visando à captação de C02, que são muito onerosos.
Nesta etapa do processo segundo a invenção, a solução referente ao impacto negativo ambiental (de instalações tradicionais de produção de eletricidade a partir de materiais contendo carbono) é provida nesta etapa do processo segundo a invenção o balanço térmico é desequilibrado, deficitário de 57,939 kJ por mol de C02 convertido por um mol de carbono; nesta etapa do processo segundo a invenção, a cadeia das reações dispõe da energia de oxidação dos 2 mols de Me gerada no reator de ativação 106 a transferir ao fluido FGE para conversão em eletricidade.
Em conclusão, o balanço térmico é o seguinte:
a oxidação dos 2 mols de Me = 2 mols de MeO = 488,60 kJ menos
o déficit térmico no reator de oxidação = 57, 939 kJ por mol de C02 convertido por um mol de carbono, ou seja, um total de :
- 488,60 kJ - 57,939 = 430,661 kJ por mol de carbono,
A compensação dos ditos 57,939 kJ do déficit térmico das reações do processo, segundo a invenção, é assegurado por:
- transferência térmica dos ditos 57,939 kJ do déficit térmico do fluxo de ar superaquecido FAA à reação de gaseificação por um trocador térmico situado no reator de gaseificação 102, e/ou
- uma reciclagem complementar de C02 (1 , 15 mol de C02 útil ao aporte de 57,939 kJ) cuja função será de portador de calor da dita energia que lhe toma da na energia fornecida ao reator de ativação 106.
Isso permite a seguinte relação: em um sistema atual, a combustão de carvão (matérias primas contendo carbono) degrada o potencial de energia (principalmente pelas perdas térmicas nas fumaças) sendo esse rebaixamento definido pelo rendimento de combustão, sendo o residual de energia ele próprio rebaixado pelas perdas relacionadas às trocas no gerador. O conjunto desses rebaixamentos nos dá um rendimento global sobre PCS (se houver recuperação de energia de condensação do vapor d'água contido nas fumaças) ou sobre PCI (dado mais comum). Para um gerador térmico eficiente esse rendimento global é próximo de 85% sobre PCI.
O rendimento de conversão em eletricidade de uma instalação atual é no máximo de 35% do PCI, esse rendimento levando em conta o conjunto das degradações, da combustão até o turbo-alternador passando pelos diversos trocadores.
O sistema segundo a invenção também troca o calor das reações a para o vapor d'água (fluido de geração de eletricidade FGE) que é introduzido no alternador a turbina para conversão em eletricidade. Se tomarmos como ponto de referência o evaporador, incluído nos dois processos o sistema convencional por combustão e o sistema segundo a invenção é a neste ponto que se define o rendimento real da conversão em eletricidade.
Para os dois processos reserva-se o mesmo potencial térmico para os carbonos introduzidos (MPCS) ou seja, um de PCI 394 kJ/mol de C.
Nos processos de combustão o rendimento global no gerador é de 85%, ou seja, um residual térmico de 335 kJ/mol de C disponível no evaporador. Nesses sistemas o rendimento de conversão em eletricidade é de 35% do PCI, ou seja: 394 x 0.35 = 138 kJelet/mol de C; se fizermos a relação na base definida no evaporador, o rendimento real de conversão em eletricidade da energia disponível desse processo é portanto: 138 x 100/335 = 41 %.
O processo segundo a invenção realiza reações termoquímicas que não degradam a energia disponível. No mesmo ponto de referência, nos teremos então 430,661 kJ por mol de carbono posto em reação como definido antes ; a conversão em eletricidade é então de 430,661 x 41 % = 176,571 kJelet, ou seja, um ganho de 38,571 kJelet 27,95% de eletricidade a mais "pela mesma quantidade de carbono introduzido".
Os dois processos utilizam um mol de carbono que gera um mol de C02.
Em um sistema convencional esse mol de C02 é diluído nas fumaças (em uma proporção de 14 a 18% de C02 por Nm3) e sua captação necessita meios importantes.
No sistema e processo segundo a invenção, esse mesmo mol de C02 não é diluído, e está em uma proporção igual ou superior a 98% do volume de saída e pode ser captado diretamente. Esse mol de C02 pode ser captado para ser estocado e/ou reciclado.
A figura 2 é uma representação esquemática de um segundo modo de montagem de um sistema segundo a invenção.
O sistema 200 representado pela figura 2 compreende todos os elementos do sistema 100 representado na figura 1.
O sistema 200 compreende alem disso um bio-reator contendo microalgas.
A parte DFG2 do segundo fluxo gasoso resfriado obtido na saída da câmara de alimentação 108 do reator de gaseificação 102 é injetado no bio- reator 202. No bio-reator 202 de cultura de algas, o dióxido de carbono C02 é utilizado em uma foto-síntese realizada pelas micro-algas. A foto-síntese produz, de uma parte, biomassa de carbono BC e de outra parte um fluxo gasoso de oxigénio F02 por separação do elemento carbono < C > da molécula de dioxigênio < 02 >. A biomassa de carbono BC obtida é fornecida a um sistema condicionado de biomassa 204 que pode ser:
um sistema de extração de óleos essenciais, de micro-algas de alto teor de lipídios e em moléculas alimentício-farmacêuticas usadas na farmacopéia e/ou hidrocarbonetos. Ao final dessa extração restam cerca de 30% da biomassa sob a forma de carvão que pode ser reconduzida ao gaseificador 102,
ou, por exemplo, um sistema de secagem para ser condicionado antes de ser introduzido no reator de gaseificação 102.
O fluxo gasoso de oxigénio F02 pode ser fornecido ao sistema segundo a invenção por exemplo ao nível do reator de gaseificação 102 para complementar a gaseificação da matéria de carbono no reator 102.
Vantajosamente a produção de biomassa contendo carbono nesse segundo modo de realização, vem estimular o rendimento térmico no evaporador de referência, "entregando" os 394 kJ (do elemento C reciclado em biomassa); a conversão em eletricidade é então de 430,661 + 394 = 824,661 x 41 % = 338, 1 1 1 kJ elétricos, ou seja um coeficiente multiplicador de produção de eletricidade "pelo mesmo mol de carbono introduzido" de 2,45.
Nesse exemplo o carbono é oxidado pela molécula de 02 e gera assim novamente um C02 que é reciclado da mesma forma. Não há rejeição atmosférica nem necessidade de depuração.
Seguramente, a invenção não é limitada aos exemplos que foram descritos.

Claims

Reivindicações
1. Processo de produção de eletricidade a partir de matéria prima contendo carbono (C), dito processo sendo caracterizado pelo fato de compreender pelo menos uma iteração das etapas seguintes constituindo um ciclo de tratamento:
uma gaseificação em um primeiro reator (102), dito de gaseificação de matéria prima contendo carbono seca (C) com um fluxo gasoso de gaseificação (FGG) compreendendo C02 a alta temperatura, dita gaseificação fornecendo um primeiro fluxo gasoso (PFG) compreendendo essencialmente moléculas de monóxido de carbono (CO);
oxidação em um segundo reator (104) dito de oxidação por portadores de oxigénio no estado de óxido (MeO) das ditas moléculas de monóxido de carbono (CO) presentes no dito primeiro fluxo gasoso (PFG), a dita oxidação fornecendo um segundo fluxo gasoso (DFG) em alta temperatura contendo C02 e portadores de oxigénio em estado reduzido (Me);
ativação em um terceiro reator (106) dito de ativação, dos ditos portadores de oxigénio em estado reduzido (Me) com um fluxo gasoso (FA) dito de ativação, compreendendo elementos de oxigénio (O), a dita oxidação fornecendo portadores de oxigénio em estado de oxido (MeO) e um fluxo gasoso de ativação pobre em oxigénio a alta temperatura (FAA); e
conversão em eletricidade de pelo menos uma parte da energia térmica do dito fluxo gasoso de ativação empobrecido de oxigénio a alta temperatura (FAA).
2 . Processo, segundo a reivindicação 1 , caracterizado pelo fato de que, antes da etapa de valorização, uma parte da energia térmica gerada quando da gaseificação é transferida ao fluxo gasoso de ativação pobre de oxigénio (FAA).
3. Processo, segundo qualquer uma das reivindicações 1 ou
2, caracterizado pelo fato de que a valorização compreende uma etapa de transferência de pelo menos uma parte da energia térmica do dito fluxo gasoso de ativação pobre de oxigénio (FAA) a um fluido (FGE) dito de geração de eletricidade fornecido a um dispositivo conversor para a produção de eletricidade.
4. Processo, segundo qualquer uma das reivindicações 1 a
3, caracterizado pelo fato de compreender além disso uma recuperação de energia térmica residual do dito fluxo gasoso de ativação pobre de oxigénio (FAA) pelo menos uma parte da dita energia térmica residual sendo transferida ao fluxo gasoso de gaseificação (FGG) utilizado no ciclo de tratamento seguinte.
5. Processo, segundo qualquer uma das reivindicações 1 a
4, caracterizado pelo fato de compreender uma etapa de elevação de temperatura da matéria prima contendo carbono (C) antes da gaseificação pela transferência de pelo menos uma parte da energia térmica do segundo fluxo gasoso (DFG) a alta temperatura à dita matéria prima contendo carbono (C).
6. Processo, segundo qualquer uma das reivindicações 1 a 5, caracterizado pelo fato de compreender uma reciclagem em circuito fechado de uma parte (DFG1 ) do C02 do segundo fluxo gasoso (DFG) para constituir o dito fluxo gasoso de gaseificação (FGG).
7. Processo, segundo qualquer uma das reivindicações de 3 a 6, caracterizado pelo fato de compreender, antes da etapa de ativação, um pré- aquecimento do fluxo gasoso de ativação (FA) com a energia residual do fluido de geração de eletricidade (FGE).
8. Processo, segundo qualquer uma das reivindicações 6 ou 7, caracterizado pelo fato de compreender o fornecimento de uma parte (DFG2) do segundo fluxo gasoso (DFG) a um bio-reator (202) contendo micro-algas, após refrigeração da dita parte (DFG2) do dito segundo fluxo gasoso (DFG), realizando as ditas micro-algas uma fotossíntese do C02 presente na dita parte (DFG2) do dito segundo fluxo gasoso (DFG), fornecendo o dito bio-reator (202) de uma parte um fluxo gasoso de oxigénio (F02) e de outra parte de biomassa de carbono (BC).
9. Processo, segundo a reivindicação 8, caracterizado pelo fato de compreender uma recuperação e um tratamento da biomassa de carbono (BC) fornecida pelo bio-reator (202) em vista da gaseificação da dita biomassa (BC) no reator de gaseificação (102).
10. Processo, segundo qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de compreender a recuperação de pelo menos uma parte do fluxo gasoso de oxigénio (F02) gerado pelas microalgas e uma injeção de pelo menos uma parte do dito fluxo de oxigénio (F02) no reator de gaseificação (102) para complementar a gaseificação da matéria prima contendo carbono (C).
1 1. Sistema (100, 200) de produção de eletricidade a partir de matéria prima de carbono seca (C), caracterizado pelo fato de que o dito sistema compreende:
- um reator (102) de gaseificação de matéria prima contendo carbono (C) com um fluxo, gasoso de gaseificação (FGG) compreendendo C02 a alta temperatura, o dito reator (102) fornecendo um primeiro fluxo gasoso (PFG) compreendendo moléculas de monóxido de carbono (CO),
um reator (104) de oxidação por portadores de oxigénio em estado de óxido (MeO) das ditas moléculas de monóxido de carbono (CO) presente no dito primeiro fluxo gasoso (PFC), o dito reator de oxidação fornecendo um segundo fluxo gasoso (DFG) a alta temperatura compreendendo C02 e portadores de oxigénio em estado reduzido (Me), um reator (106) de ativação dos ditos portadores de oxigénio em estado reduzido (Me) com um fluxo gasoso (FA) compreendendo elementos de oxigénio (O), o dito reator (106) fornecendo portadores de oxigénio em estado de óxido (MeO) e um excedente de energia térmica,
um dispositivo (1 14) de geração de eletricidade a partir de pelo menos uma parte do dito excedente térmico da dita ativação.
12. Sistema, segundo a reivindicação 1 1 , caracterizado por conter meios mecânicos de transporte dos portadores de oxigénio do reator de oxidação ao reator de ativação e/ou do reator de ativação ao reator de oxidação.
13. Sistema, segundo qualquer uma das reivindicações 1 1 ou 12, caracterizado por compreender um circuito de reciclagem em circuito fechado de uma parte (DFG1 ) do C02 presente no segundo fluxo gasoso (DFG) como o fluxo gasoso de gaseificação (FGG).
14. Sistema, segundo qualquer uma das reivindicações de 1 1 a 13, caracterizado pelo fato do dispositivo de geração de eletricidade conter um turbo-alternador (1 14).
15. Sistema, segundo qualquer uma das reivindicações de 1 1 a 14, caracterizado por compreender um bio-reator (202) contendo microalgas ao qual é fornecida uma parte (DFG2) do C02 presente no segundo fluxo gasoso (DFG) as ditas microalgas realizando a fotossíntese do dito C02, fornecendo o dito bio-reator (202) de uma parte um fluxo gasoso de oxigénio (F02) e de outra parte, biomassa de carbono (BC).
PCT/BR2010/000339 2010-02-01 2010-10-08 Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de co2 a partir de matérias primas contendo carbono WO2011091489A1 (pt)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012550270A JP2013518150A (ja) 2010-02-01 2010-08-08 炭素を含有する原材料からco2変換により熱力学的エネルギー源を生成する方法およびシステム
US13/576,640 US9284854B2 (en) 2010-02-01 2010-08-08 Method and system for producing a source of thermodynamic energy by CO2 conversion from carbon-containing raw materials
EP10844317.7A EP2540806B1 (en) 2010-02-01 2010-10-08 Method and system for producing a source of thermodynamic energy by co2 conversion from carbon-containing raw materials
CN2010800654689A CN102918138A (zh) 2010-02-01 2010-10-08 由含碳原料进行co2转换用来产生热力学能源的方法和系统
BR112012019104-7A BR112012019104B1 (pt) 2010-02-01 2010-10-08 Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de co2 a partir de matérias primas contendo carbono
RU2012137275/05A RU2553289C2 (ru) 2010-02-01 2010-10-08 Способ и система для получения источника энергии в термодинамическом цикле конверсией со2 из сырьевых материалов, содержащих углерод

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000377A FR2955918B1 (fr) 2010-02-01 2010-02-01 Procede et systeme de production d'une source d'energie thermodynamique par la conversion de co2 sur des matieres premieres carbonees
FR10/00377 2010-02-01

Publications (2)

Publication Number Publication Date
WO2011091489A1 true WO2011091489A1 (pt) 2011-08-04
WO2011091489A8 WO2011091489A8 (pt) 2012-02-16

Family

ID=43086792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000339 WO2011091489A1 (pt) 2010-02-01 2010-10-08 Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de co2 a partir de matérias primas contendo carbono

Country Status (9)

Country Link
US (1) US9284854B2 (pt)
EP (1) EP2540806B1 (pt)
JP (1) JP2013518150A (pt)
CN (1) CN102918138A (pt)
BR (1) BR112012019104B1 (pt)
FR (1) FR2955918B1 (pt)
PT (1) PT2540806T (pt)
RU (1) RU2553289C2 (pt)
WO (1) WO2011091489A1 (pt)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985517B1 (fr) * 2012-01-11 2018-05-18 Ifp Energies Now Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
FR2994980B1 (fr) 2012-09-05 2014-11-14 Commissariat Energie Atomique Procede de gazeification de charge de matiere carbonee, a rendement ameliore.
CN103486578B (zh) * 2013-09-16 2015-12-09 云南天安化工有限公司 一种液氮洗尾气催化燃烧的装置及方法
US9470111B2 (en) * 2014-02-14 2016-10-18 Serdar Firkan Air independent propulsion and power generation system based on exothermic reaction sourced thermal cycle
JP6300646B2 (ja) * 2014-06-03 2018-03-28 三菱日立パワーシステムズ株式会社 ケミカルルーピング燃焼システム
CN106398768B (zh) * 2016-11-04 2021-10-08 河南农业大学 一种化学链燃烧制备合成气的装置和方法
CN112303629A (zh) * 2020-09-23 2021-02-02 广西大学 一种生活垃圾焚烧资源化综合利用产藻方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068789A1 (en) * 2000-03-15 2001-09-20 Cowi Rådgivende Ingeniører As A method and a system for decomposition of moist fuel or other carbonaceous materials
US20080078122A1 (en) * 2006-10-02 2008-04-03 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
US20080134579A1 (en) * 2006-12-11 2008-06-12 Parag Prakash Kulkarni Unmixed Fuel Processors and Methods for Using the Same
US20100132633A1 (en) * 2009-06-29 2010-06-03 General Electric Company Biomass gasification reactor

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1163922A (en) 1915-06-29 1915-12-14 Charles B Hillhouse Method of producing carbon monoxid from carbon dioxid.
US2128262A (en) 1935-09-05 1938-08-30 Semet Solvay Eng Corp Carbon monoxide manufacture
BE437031A (pt) 1938-11-18
US2602809A (en) 1948-07-10 1952-07-08 Kellogg M W Co Treatment of solid carbon containing materials to produce carbon monoxide for the synthesis of organic materials
US2656255A (en) 1949-02-02 1953-10-20 Kellogg M W Co Manufacture of hydrogen
US2772954A (en) 1951-01-29 1956-12-04 Amonia Casale Societa Anonima Gasification method
GB757333A (en) 1952-07-11 1956-09-19 Montedison Spa Improvements in and relating to the production of hydrogen and carbon monoxide synthesis gas
US2864688A (en) 1958-01-28 1958-12-16 United States Steel Corp Two-step method of removing oxygen from iron oxide
US3031287A (en) 1958-06-23 1962-04-24 Homer E Benson Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane
US3201215A (en) 1963-06-07 1965-08-17 Chemical Construction Corp Production of combustible gas
US3442620A (en) 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
US3692506A (en) * 1970-02-13 1972-09-19 Total Energy Corp High btu gas content from coal
US3915840A (en) * 1974-05-24 1975-10-28 Exxon Research Engineering Co Process for improving the octane number of cat cracked naphtha
US4040976A (en) 1976-07-06 1977-08-09 Cities Service Company Process of treating carbonaceous material with carbon dioxide
US4070160A (en) * 1977-05-09 1978-01-24 Phillips Petroleum Company Gasification process with zinc condensation on the carbon source
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
US4272555A (en) 1979-09-21 1981-06-09 Monsanto Company Conversion of carbon-containing materials to carbon monoxide
US4343624A (en) 1979-12-10 1982-08-10 Caterpillar Tractor Co. Rotating fluidized bed hydrogen production system
US4382915A (en) * 1981-10-13 1983-05-10 Phillips Petroleum Company Quenching of ZnO-char gasification
JPS5930702A (ja) 1982-08-13 1984-02-18 Toyo Eng Corp 重質油の熱分解の方法
US4725381A (en) 1984-03-02 1988-02-16 Imperial Chemical Industries Plc Hydrogen streams
US5213587A (en) * 1987-10-02 1993-05-25 Studsvik Ab Refining of raw gas
JPH06319520A (ja) 1993-05-10 1994-11-22 Toshiba Corp 光合成バイオリアクタ
JPH1135950A (ja) * 1996-12-26 1999-02-09 Mitsubishi Heavy Ind Ltd 発電方法及び発電装置
JP3904161B2 (ja) 1997-03-19 2007-04-11 バブコック日立株式会社 水素・一酸化炭素混合ガスの製造方法および製造装置
CA2349608A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Electric generating system by gasification of combustibles
US6444179B1 (en) 1999-10-05 2002-09-03 Ballard Power Systems Inc. Autothermal reformer
JP2002173301A (ja) 2000-12-04 2002-06-21 Sumitomo Precision Prod Co Ltd 水素エネルギー発生システム
US6682714B2 (en) 2001-03-06 2004-01-27 Alchemix Corporation Method for the production of hydrogen gas
US6911058B2 (en) * 2001-07-09 2005-06-28 Calderon Syngas Company Method for producing clean energy from coal
US6648949B1 (en) 2001-11-28 2003-11-18 The United States Of America As Represented By The United States Department Of Energy System for small particle and CO2 removal from flue gas using an improved chimney or stack
US6896854B2 (en) 2002-01-23 2005-05-24 Battelle Energy Alliance, Llc Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion
US20040009378A1 (en) 2002-07-09 2004-01-15 Lightner Gene E. Gasification of lignocellulose for production of electricity from fuel cells
WO2004027220A1 (en) 2002-09-17 2004-04-01 Foster Wheeler Energy Corporation Advanced hybrid coal gasification cycle utilizing a recycled working fluid
WO2004067933A2 (en) 2003-01-21 2004-08-12 Los Angeles Advisory Services Inc. Low emission energy source
WO2005003632A1 (en) * 2003-06-28 2005-01-13 Accentus Plc Combustion of gaseous fuel
US7767191B2 (en) 2003-12-11 2010-08-03 The Ohio State University Combustion looping using composite oxygen carriers
JP2006008872A (ja) 2004-06-25 2006-01-12 National Institute Of Advanced Industrial & Technology 二酸化炭素によるバイオマスのガス化法
US20060130401A1 (en) * 2004-12-16 2006-06-22 Foster Wheeler Energy Corporation Method of co-producing activated carbon in a circulating fluidized bed gasification process
JP4314488B2 (ja) * 2005-07-05 2009-08-19 株式会社Ihi 固体燃料のガス化方法及び該方法を用いたガス化装置
US20090000194A1 (en) 2006-01-12 2009-01-01 Liang-Shih Fan Systems and Methods of Converting Fuel
US7824574B2 (en) 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
US7833296B2 (en) 2006-10-02 2010-11-16 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for power generation
US20080134666A1 (en) * 2006-12-11 2008-06-12 Parag Prakash Kulkarni Systems and Methods Using an Unmixed Fuel Processor
US20090049748A1 (en) * 2007-01-04 2009-02-26 Eric Day Method and system for converting waste into energy
US8236072B2 (en) 2007-02-08 2012-08-07 Arizona Public Service Company System and method for producing substitute natural gas from coal
US8926717B2 (en) * 2007-07-27 2015-01-06 The Trustees Of Columbia University In The City Of New York Methods and systems for producing synthetic fuel
US8951314B2 (en) * 2007-10-26 2015-02-10 General Electric Company Fuel feed system for a gasifier
US20090148927A1 (en) 2007-12-05 2009-06-11 Sequest, Llc Mass Production Of Aquatic Plants
DE102007062413B3 (de) * 2007-12-20 2009-09-10 Conera Process Solutions Gmbh Verfahren und Vorrichtung zur Wiederaufbereitung von CO2-haltigen Abgasen
US7833315B2 (en) * 2008-02-26 2010-11-16 General Electric Company Method and system for reducing mercury emissions in flue gas
RU2373259C1 (ru) * 2008-03-24 2009-11-20 Михаил Рудольфович Предтеченский Способ получения энергии из угля
JP5205568B2 (ja) 2008-03-28 2013-06-05 独立行政法人産業技術総合研究所 ジメチルエーテルの製造方法および製造装置
FR2941689B1 (fr) * 2009-01-30 2011-02-18 Inst Francais Du Petrole Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique
AU2010292313B2 (en) 2009-09-08 2015-08-20 The Ohio State University Research Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068789A1 (en) * 2000-03-15 2001-09-20 Cowi Rådgivende Ingeniører As A method and a system for decomposition of moist fuel or other carbonaceous materials
US20080078122A1 (en) * 2006-10-02 2008-04-03 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
US20080134579A1 (en) * 2006-12-11 2008-06-12 Parag Prakash Kulkarni Unmixed Fuel Processors and Methods for Using the Same
US20100132633A1 (en) * 2009-06-29 2010-06-03 General Electric Company Biomass gasification reactor

Also Published As

Publication number Publication date
US20120299302A1 (en) 2012-11-29
JP2013518150A (ja) 2013-05-20
EP2540806B1 (en) 2020-06-10
BR112012019104B1 (pt) 2018-07-31
BR112012019104A2 (pt) 2018-03-27
US9284854B2 (en) 2016-03-15
EP2540806A4 (en) 2018-01-03
FR2955918B1 (fr) 2012-08-03
RU2553289C2 (ru) 2015-06-10
FR2955918A1 (fr) 2011-08-05
CN102918138A (zh) 2013-02-06
WO2011091489A8 (pt) 2012-02-16
RU2012137275A (ru) 2014-03-10
PT2540806T (pt) 2020-09-16
EP2540806A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2011091489A1 (pt) Processo e sistema de produção de uma fonte de energia termodinâmica pela conversão de co2 a partir de matérias primas contendo carbono
AU2008347043B2 (en) Method and apparatus to facilitate substitute natural gas production
JP5606623B2 (ja) 2個の相互連結炉を介するバイオマス熱分解ガス化方法および装置
AU2010219421B2 (en) Method and apparatus for drying solid feedstock using steam
ES2471982T3 (es) Proceso y equipamiento para la producción de gas de síntesis a partir de biomasa
CN102417831A (zh) 一种生物质气化发电系统
EP2597138A4 (en) METHOD AND DEVICE FOR BIOMASSEPYROLYSIS AT LOW TEMPERATURES AND BIOMASS GASIFICATION AT HIGH TEMPERATURES
JP2010534745A (ja) 発電プロセスとシステム
BRPI0606737B1 (pt) método para reformar material carbonáceo por vapor
CN110312780B (zh) 用于超临界二氧化碳电力循环系统的全蒸汽气化
KR20100099261A (ko) 대체 천연 가스 제조 방법, 가스화 시스템 및 통합 가스화 복합 사이클 동력 발생 플랜트
BR112016009499B1 (pt) dispositivo integrado e método para a produção de gás natural substituto e rede
JP5448961B2 (ja) 石炭ガス化複合発電プラント
WO2011091495A1 (pt) Processo de reciclagem de dióxido de carbono co2
JP4930732B2 (ja) 循環流動層式ガス化方法及び装置
WO2011091488A1 (pt) Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema
US11434142B2 (en) Sodium bicarbonate production
JP6259552B1 (ja) 発電設備併設ガス化システム
TWI314180B (en) Carbon dioxide dense-promoting re-circulation system
JP6234901B2 (ja) 無灰炭の製造方法、および無灰炭の製造装置
CN115011380A (zh) 利用小型氟盐冷却高温堆余热热解垃圾制氢系统及方法
KR20120032275A (ko) 순산소 발전플랜트에서 질소가스를 이용한 증기터빈 발전기술
JP2008308535A (ja) ガス化ガスの浄化方法及び浄化装置
JP2017137452A (ja) ガス化システム及びガス化システムの運転方法
CN105349185A (zh) 一种采用过热蒸汽、纯氧、高温再热热解垃圾及生物质制合成气的装置及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065468.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010844317

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844317

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012550270

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13576640

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012137275

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019104

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019104

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120731