WO2011091488A1 - Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema - Google Patents

Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema Download PDF

Info

Publication number
WO2011091488A1
WO2011091488A1 PCT/BR2010/000338 BR2010000338W WO2011091488A1 WO 2011091488 A1 WO2011091488 A1 WO 2011091488A1 BR 2010000338 W BR2010000338 W BR 2010000338W WO 2011091488 A1 WO2011091488 A1 WO 2011091488A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
reactor
heat treatment
gas flow
thermal
Prior art date
Application number
PCT/BR2010/000338
Other languages
English (en)
French (fr)
Other versions
WO2011091488A8 (pt
Inventor
Raymond François GUYOMARC'H
Original Assignee
See - Soluções, Energia E Meio Ambiente Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012550269A priority Critical patent/JP2013518149A/ja
Priority to US13/576,636 priority patent/US20120298921A1/en
Priority to US13/576,636 priority patent/US9505997B2/en
Application filed by See - Soluções, Energia E Meio Ambiente Ltda. filed Critical See - Soluções, Energia E Meio Ambiente Ltda.
Priority to BR112012019105-5A priority patent/BR112012019105B1/pt
Priority to RU2012137276/05A priority patent/RU2553892C2/ru
Priority to ES10844316T priority patent/ES2727429T3/es
Priority to CN2010800654180A priority patent/CN102844412A/zh
Priority to EP10844316.9A priority patent/EP2532728B1/en
Publication of WO2011091488A1 publication Critical patent/WO2011091488A1/pt
Publication of WO2011091488A8 publication Critical patent/WO2011091488A8/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/80Other features with arrangements for preheating the blast or the water vapour
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1815Recycle loops, e.g. gas, solids, heating medium, water for carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention comprises a thermal energy supply process of a raw material heat treatment system. It also comprises a system performing such a process and a raw material heat treatment plant including such a system.
  • the thermal treatment of wet materials requires, on the one hand, a treatment gas flow, also called heat carrier gas, and on the other, the thermal energy required to perform the treatment, and this thermal energy is transferred to the raw material. to be treated, thanks to the gaseous flow of treatment.
  • a treatment gas flow also called heat carrier gas
  • the most widely used treatment gas streams are hot air, incomplete flue gases, water vapor or any heat-carrying gas having no purpose other than to transport and diffuse their thermal capacity to the medium to be treated.
  • the carbon dioxide, C0 2 has been the subject of important developments as heat carrier gas for the heat treatment of materials containing carbon due to its properties such as neutrality and chemical stability with most methods of treatment, and the particular interactions which it naturally develops with carbon-containing materials, particularly when carbon-containing materials are wet, under the specific conditions of these interactions: temperature, pressure, degree of water vapor saturation, etc.
  • thermal energy required for the treatment of raw materials is provided by means commonly called “thermal media”. These heat treatment processes and systems are dependent on an external supply of thermal energy.
  • - is a continuous external supply of thermal energy required for treatment
  • - is a continuous external supply of oxygen necessary for oxyfuel.
  • An object of the present invention is to avoid the drawbacks cited.
  • Another object of the present invention is to propose a process and a supply system of a less energy consuming raw material heat treatment system.
  • Another object of the present invention is to propose a process and supply system of a heat treatment system making it possible to free such system to maintain a continuous external supply.
  • an object of the present invention is to propose a process and a supply system of a heat treatment system reducing the negative impacts of such a system on the environment.
  • the invention provides the objectives cited by a thermal energy supply process of a raw material heat treatment system, such process comprising at least one iteration of the following steps:
  • oxidation in a second said oxidized state oxygen (MeO) oxidation reactor of said carbon monoxide (CO) and dihydrogen (H 2 ) molecules present in said first gas stream said oxidation providing a second flow gas at a high temperature comprising CO 2 and water vapor (H 2 O g ) and reduced oxygen carriers (Me),
  • gasification gas stream means a gas stream of C0 2 used for gasification of material dry matter
  • treatment gas flow means a gas flow used by the heat treatment system to heat treat the raw materials
  • Charged treatment gas stream means the treatment gas stream at the outlet of the treatment system obtained after treatment of a feedstock feedstock.
  • the process according to the invention does not require a continuous input of thermal and / or electrical energy from an external energy source.
  • the only external energy consumed by the process according to the invention is the punctual thermal and / or electrical energy required at the start of the gasification step at the beginning of the process.
  • the process according to the invention allows sufficient energy to be supplied for carrying out the whole process steps.
  • the heat of the second gas stream is sufficient to supply the thermal energy heat treatment system.
  • the energy available in the thermal capacity of the second gas flow and the thermal energy provided by the activation of the oxygen carriers is sufficient to raise the gasification gas flow to the gasification temperature.
  • any energy required to raise the temperature of said gasification gas stream may be obtained eventually with the thermal complementation provided by an oxygen supply (0 2 ) in the gasification reactor.
  • This input is then limited to the additional thermal requirement, each 0 2 molecule oxidizes two hydrogen (H 2 ) molecules and / or C atoms to make two H 2 O and / or two CO (or one depending on the composition carbon-containing raw material) thus generating the thermal energy useful for the reactions of the process according to the invention.
  • a new gasification step is thus achievable and therefore a new iteration of the process steps.
  • the gaseous flow treatment utilized by the processing system may comprise at least in part the second gaseous stream containing C0 2 (released at least in part of the water vapor it contains.
  • the supplying at least a part of the thermal energy to the heat treatment system may comprise supplying at least a part of the second gaseous flow to the raw material heat treatment system.
  • the second gas flow then constitutes the means of transporting the thermal energy to the heat treatment system.
  • the process according to the invention provides the heat treatment system not only in heat energy but also in gaseous treatment flow.
  • the process according to the invention may comprise a step of reducing the temperature of said portion of the second gas flow supplied to the heat treatment system prior to its use as a treatment gas flow.
  • the temperature reduction may be accomplished by heat exchange or by mixing with a cold CO 2 -containing gas stream.
  • the process according to the invention may comprise a step of adjusting the CO 2 concentration of the second gas stream prior to its use as a treatment gas stream in the heat treatment system. Regulation of the CO 2 concentration of the second gas stream may be achieved by mixing with the latter a quantity of pure, cold ( ⁇ 20X) and dry CO 2 in the desired proportion.
  • the process according to the invention may comprise a closed loop recycling of at least part of the CO 2 present in the heat treatment gas stream charged at the outlet of the heat treatment system to constitute at least in part the gasification gas stream, said recycling loop comprising a steam C0 2 separation step the water present in said gas stream laden treatment.
  • Such recycling allows to use at least in part the same CO 2 gas stream at the same time as both gasification gas flow and treatment gas flow and regulation of said treatment gas flow.
  • gaseous C0 2 stream may advantageously be supplied by gasification.
  • supplying at least a portion of the thermal energy to the treatment system may comprise a transfer of thermal energy to a heat treatment gas stream.
  • heat transfer may be performed by exchangers which are known to those skilled in the art.
  • the process according to the invention may comprise a closed loop recycling of at least at least a part of CO 2 of the second gas stream to constitute said gasification gas stream.
  • Recycling may comprise a vapor of the C0 2 separation step the water present in the second gas flow, for systems that are known to the field experts.
  • the activation of the reduced oxygen carriers may comprise an oxidation of said reduced oxygen carriers by preheated atmospheric air.
  • the preheating of the atmospheric air may advantageously comprise a transfer of thermal energy from the heat treatment gas stream charged at the outlet of the heat treatment system to said atmospheric air after heat treatment.
  • the preheating of the atmospheric air may advantageously comprise a transfer of thermal energy after the second gas flow at the outlet of the second reactor to said atmospheric air.
  • the transfer of thermal energy from the thermal treatment gas flow loaded into the system output to said atmospheric air realizes a separation of C0 2 vapor water present in said gas stream heat treatment carried .
  • the transfer of thermal energy from the second gas stream to said atmospheric air accomplishes a separation of C0 2 vapor water present in said second gaseous stream
  • a thermal energy supply system of a raw material heat treatment system comprising:
  • a first dry carbon-containing raw material gasification reactor with a gasification gas stream comprising high temperature C 2 and addition of oxygen (0 2 ) allowing eventual useful thermal complementation to the gasification reactions, said reactor providing a first gaseous stream containing C0 2 molecules of carbon monoxide (CO), dihydrogen (H 2) and possibly water vapor (H 2 g)
  • a second oxidized oxygen carrier (MeO) oxidation reactor of said carbon monoxide (CO) and dihydrogen (H2) molecules present in said first gas flow said second reactor providing a second gas flow high temperature containing C0 2 and water vapor (H 2 g) and oxygen carriers in reduced state (Me).
  • the system may further comprise mechanical means of transporting oxygen carriers from the second reactor to the third reactor and / or from the third reactor to the second reactor.
  • the system according to the invention may contain a recycling loop in closed circuit at least a portion of the C0 2 present in the second gaseous stream as the gaseous stream gasification, said recycling circuit comprising separating means of C0 2 water vapor.
  • the recycling circuit connects at least indirectly the second reactor, the thermal treatment system, the means of separation of C0 2 from the water vapor, the means to raise in temperature the gasification gas flow and the first reactor.
  • a raw material heat treatment system comprising a power supply system according to the invention is proposed.
  • a raw material heat treatment plant containing a raw material heat treatment system and an energy supply system of said heat treatment system according to the invention.
  • Figure 1 is a schematic representation of a first version of an installation according to the invention.
  • Figure 2 is a schematic representation of a second version of an installation according to the invention.
  • Figure 1 is a schematic representation of a preferred embodiment of an installation according to the invention.
  • Plant 100 comprises a thermal energy supply system 102 of a heat treatment plant 104,
  • Supply system 102 comprises a gasification reactor 106, an oxidation reactor 108 and an oxygen carrier activation reactor 10.
  • the gasification reactor 106 comprises a feeding chamber (not shown) of material containing carbon MPCS C0 2 under control. That supply chamber is controlled by C0 2 to prevent any air from entering the gasification reactor 106 and ensure that the sealing gasification reactor. It contains a feed mouth (not shown) and a mechanism for introducing (not shown) carbon-containing materials MPCS into the gasification reactor.
  • the gasification reactor 106 is supplied on the one hand, with dry raw material containing carbon MPCS 12 and another part with a gas flow gasification FGG compound of C0 2 at a temperature exceeding 1000 ° C.
  • a thermal complement may be generated at the center of the gasification reaction by introducing oxygen (O2) into the FGG gasification gas stream. .
  • oxygen O2
  • Each mol of the introduced oxygen oxidizes then two moles of H 2 and / or two moles of C, which generates thermal energy corresponding to the core of the gasification reactor.
  • This eventual complement allows to control the thermal regulation of the reactions in said gasification reactor and to increase the yield of the reactions in order to increase the final production of the energies and reactions of the process according to the invention.
  • the dry carbon-containing raw materials MPCS are subjected to the FGG gasification gas stream which carries the carbon-containing raw materials at a high temperature around 1,000 / 1100 ° C. At this temperature, the interaction of C0 2 with the dry carbon containing raw material is integral. The thermal reaction is violent and instantaneous. The C carbons that make up the MPCS raw material react with the molecular oxygen O of the same MPCS carbon-containing raw material to form CO carbon monoxides according to the reaction.
  • the residual carbons of the dry carbon-containing raw material MPCS are brought to the reactive CO 2 inlet temperature. They are eminently oxide reducers at that temperature and react with C0 2 according to the following reaction, called “equilibria” BOUDOUART "to .000 ° C.
  • the gas assembly called the first PFG gas stream, leaving gasification reactor 06 is at a temperature of 900 ° C. It is composed of:
  • the excess of C0 2 is the thermal vector that can be used, in addition to the "reactive C0 2 ", because of the need to provide thermal gasification energy and that endothermic (BOUDOUART reaction).
  • This first PFG gas flow is at or above 900 ° C at the gasification reactor outlet 106.
  • the first PFG gas stream is then introduced into the oxidation reactor 108.
  • This oxidation reactor 108 is supplied, on the one hand by the first PFG gas flow and on the other by MeO-labeled oxidized or activated oxygen carriers.
  • Carriers of activated oxygen MeO oxidize the carbon monoxide molecules CO and dihydrogen H 2 present in the first PFG gas flow, according to the following reactions:
  • This oxidation is performed by reducing the oxygen carrying activated oxygen carriers MeO Me disabled exchanging its oxygen with the gaseous CO and H 2 molecules. In fact, these molecules are eminently oxidizing and combustible at the outlet temperature of gasification reactor 1 which is greater than 900 ° C.
  • the gaseous assembly called the second gaseous flow
  • the second DFG gas stream at the oxidation reactor outlet 108 is at a temperature> 900 ° C. It is therefore warmer than necessary for most of the heat treatment operations for which it is produced. In addition, it contains about 34% water vapor (this rate is relative to the chemical composition of the MPCS put into operation in the gasification reactor). It is convenient to temper this gas flow before its introduction into the treatment zone. of the heat treatment system 104 by a cold and dry CO 2 input from a conditioned C 2 reservoir 114.
  • the cold and dry C0 2 is mixed with the second gaseous stream DFG by a mixing device 1 6 in the desired proportions to obtain a gaseous stream FGT treatment under the conditions of said treatment.
  • the gaseous flow treatment FGT compound of C0 2 and water vapor has a temperature equal to or lower than 200 ° C in this example.
  • This treatment gas flow is supplied to the raw material heat treatment system 104.
  • the heat treatment system 104 provides at the outlet a charged FGTC treatment gas stream composed of the FGT treatment gas stream and water vapor from the treated raw material. Given the continuous energy production and its corollary at C0 2 an equivalent part of the FGT treatment gas flow should be eliminated. It is at the outlet of the heat treatment system 04 that this GGF treatment gas flow equivalence is removed. This C0 2 can thus be released into the atmosphere without harming the environment as it is the result of renewable material; moreover, the principal of the generated energy to the process / system according to the invention is produced without generating or expel harmful C0 2. This CO2 can also be recycled in other applications after dehumidification and / or as in a microalgae culture facility that will produce "raw material" biomass.
  • the recycled FGTC charged treatment gas stream is supplied to an absorption refrigerant system 11 as well as an atmospheric air flow FA.
  • the refrigerant system performs a heat exchange. between the charged treatment gas flow FGTC and the atmospheric air flow FA. This heat exchange transfers the heat from the FGTC charged heat treatment gas stream to the FA atmospheric air flow. This heat exchange allows sufficient cooling of the FGTC charged heat treatment gas stream to condense water vapor and separate C0 2 from water vapor.
  • the refrigerant system supplies liquid water ⁇ 20 , a preheated air flow FAP, relative to the temperature corresponding to the heat treatment stage; be 30 ° C the final treatment temperature, which for drying wood can be up to 130 ° C and above (greater than 300 ° C if it is a high temperature treatment process) and an annotated recycled C0 2 flow FC0 2 .
  • Preheated FAP air flow is supplied to the deactivated oxygen carrier activation reactor 110.
  • This reactor 110 also receives the deactivated (or reduced state) oxygen carriers Me supplied by the oxidation reactor 108. These deactivated oxygen carriers Me are brought into contact with the preheated FAP atmospheric air flow.
  • the oxygen molecules 0 2 present in the preheated atmospheric airflow oxidizes (activates) deactivated oxygen carriers according to the following reaction:
  • Oxygen carriers are activated and capable of being supplied to oxidation reactor 108 to serve in a new oxidation.
  • Activation reactor 0 provides MeO activated oxygen carriers which will be supplied to oxidation reactor 108 and an FAA oxygen-poor hot air flow. This FAA oxygen poor air flow is still hot and can be used by means of a heat exchanger (not shown) for conditioning the FGT treatment gas flow and / or preheating the annotated recycled C0 2 flow FC0 2 prior to its introduction into the activation reactor E1 exchanger 110.
  • a first heat exchanger E1 which is supplied with a portion of the annotated C0 2 flow FC0 2 (cold or preheated by the FAA flow on an unrepresented exchanger). Said C0 2 is heated to a temperature of 1,000 ° C or above in an E1 heat exchanger. The C0 2 gas stream obtained at the output of this first heat exchanger E1 is used as the gaseous flow FGG gasification.
  • the other part of the cold ( ⁇ 20 ° C) FCO2 flow of CO 2 is used to feed the conditioned CO 2 reservoir 14.
  • the thermal surplus created in the activation reactor 1 10 is also exploited by a second heat exchanger which allows a FGG cogeneration gas stream to be raised in temperature, serving the generation of thermodynamic energy in the form of high pressure and high water vapor. temperature for cogeneration of mechanical energy and / or electricity in a system 120 which may contain a turbo alternator.
  • the supply system contains a mechanical device 130 which allows the oxygen carriers of the oxidation reactor 108 to be transported to the activation reactor 10, and vice versa.
  • Figure 2 is a schematic representation of a second version of an installation according to the invention.
  • the installation 200 shown in figure 2 contains all the elements of the installation 100 shown in figure 1.
  • Plant 200 contains a bioreactor 202 containing micro gas.
  • a portion of the C0 2 present in the gaseous flow treatment is carried FGTC cooled and injected into the bioreactor 202.
  • the bioreactor 202 algae culture, carbon dioxide C0 2 is used in a photosynthesis by microalgae. Photosynthesis produces on one part BC carbon-containing biomass and on the other part a gas flow of oxygen F0 2 by separation of the carbon element 'C' from the dioxide molecule '0 2 '.
  • the BC carbon biomass obtained is supplied to a biomass conditioning system 204 which can be:
  • Oxygen gas flow F0 2 can be supplied to the system according to the invention, for example at the level of the gasification reactor 102 to complement the gasification of carbon-containing matter in reactor 102.
  • the process autonomy is achieved by releasing the process. from external sources of oxygen (such as thermal media).
  • carbon dioxide production in this second embodiment stimulates overall yield.
  • the useful thermal input for generating these reactions over 1 kg is 4,223.38 kj.
  • an injection of 0 2 with an FGG gasification gas flow can be performed at its reactive phase entry into the gasification reactor 06.
  • the calorific value of 55,84 moles of CO is:
  • the oxidation of CO and H 2 present in the first gas flow PFG from oxidation reactor 106 is exothermic from:
  • NiO Ni NiO enabled state and disabled state
  • 70.523 mol MeO oxidize 55.84 moles of CO and H 2 14.683 moles.
  • the reduction of 70.523 moles MeO by 70.523 moles Me, taking the NiO Ni example is endothermic of:
  • the second gas flow DFG leaving the oxidation reactor is composed of the resulting C0 2 from the reaction + eventually the term "over" carrier C0 2 + the water vapor generated by the oxidation of H 2 , ie: 2.457 kg C0 2 reaction outbound (55.84 moles, 1, 252 Nm3) +
  • This second DFG gas flow is at a temperature> 900 ° C and contains an important thermal energy: 3,573.083 kj of thermal capacity + 2,228,951 kj of enthalpy of the 29,762 moles (H 2 O g ) that will be condensed in H 2 0 net, that is: 5,802.034 kj
  • This thermal energy is used in a thermal exchanger system 16 to generate the FGT treatment gas flow.
  • Said FGT treatment gas flow comprises essentially:
  • Said FGT treatment gas flow will then be brought to the temperature required for raw material treatment (useful temperature: 30 to> 300 ° C and more for high temperature treatments) and its residual moisture will be minimal.
  • the heat treatment system of the raw materials may be a system of:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A invenção corresponde a um processo de abastecimento de energia térmica para um sistema de tratamento de matéria prima. Corresponde igualmente a um sistema operando esse processo e uma instalação operando tal sistema. O processo compreende etapas de gaseificação de matéria prima contendo carbono seca (MPCS) em um primeiro reator por um fluxo gasoso de gaseificação contendo CO2, de oxidação dos gases de gaseificação por portadores de oxigênio em um segundo reator e uma ativação dos portadores de oxigênio utilizados durante a oxidação em um terceiro reator.

Description

Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico e instalação operando tal sistema.
A invenção compreende um processo de abastecimento de energia térmica de um sistema de tratamento térmico de matéria prima. Compreende igualmente um sistema executando tal processo e uma instalação de tratamento térmico de matéria prima incluindo tal sistema
O tratamento térmico de matérias primas e /ou de produtos manufaturados úmidos e/ou secos, para sua secagem /desidratação e/ou obtenção de características específicas, é perfeitamente conhecido e codificado pelos diferentes atores da indústria.
O tratamento térmico de matérias úmidas necessita, de uma parte, de um fluxo gasoso de tratamento, também chamado de gás portador de calor, e de outra parte, a energia térmica necessária à realização do tratamento, estando essa energia térmica transferida para a matéria prima a ser tratada, graças ao fluxo gasoso de tratamento.
Os fluxos gasosos de tratamento mais utilizados são o ar quente, gases de combustão incompleta, vapor d'água ou todo gás portador de calor não tendo outro objetivo que não seja o de transportar e difundir sua capacidade térmica ao meio a ser tratado. O dióxido de carbono, C02, foi objeto de desenvolvimentos importantes como gás portador de calor para o tratamento térmico de matérias contendo carbono devido a suas propriedades tais como a neutralidade e estabilidade química com a maior parte dos meios de tratamento, e as interações particulares que ele desenvolve naturalmente com as matérias contendo carbono, mais particularmente quando as matérias contendo carbono estão úmidas, nas condições especificas dessas interações: temperatura, pressão, grau de saturação de vapor d'água, etc.
A energia térmica necessária ao tratamento das matérias primas é fornecida por meios geralmente chamados "meios térmicos". Esses processos e sistemas de tratamento térmico são dependentes de um fornecimento externo de energias térmicas
Nos últimos anos, numerosos processos de tratamento térmico de matéria prima foram desenvolvidos para gerar simultaneamente o gás portador de calor C02, e o calor necessário ao tratamento a partir de matérias contendo carbono secas realizando uma oxicombustão das mesmas. Tal oxicombustão produz por sua vez um fluxo gasoso de C02 e a energia térmica necessária à realização do tratamento térmico.
Todavia, esses processos e sistemas são novamente dependentes de um fornecimento continuo de oxigénio.
Em resumo, os processos e sistemas atuais são dependentes:
-seja de um aporte externo continuo de energia térmica necessário ao tratamento, -seja de um aporte externo contínuo de oxigénio necessário à oxicombustão.
Esses processos e sistemas, entretanto, são altamentes demandantes de energia e têm impacto negativos sobre o meio ambiente.
Um objetivo da presente invenção é o de evitar os inconvenientes citados.
Um outro objetivo da presente invenção é propor um processo e um sistema de abastecimento de um sistema de tratamento térmico de matéria prima menos consumidora de energia.
Um outro objetivo da presente invenção é propor um processo e um sistema de abastecimento de um sistema de tratamento térmico possibilitando tornando livre tal sistema de manter um abastecimento externo contínuo
Finalmente, um objetivo da presente invenção é propor um processo e um sistema de abastecimento de um sistema de tratamento térmico diminuindo os impactos negativos de um tal sistema ao meio ambiente.
A invenção permite obter os objetivos citados por um processo de abastecimento de energia térmica de um sistema de tratamento térmico de matéria prima, tal processo compreendendo pelo menos uma iteração das etapas seguintes:
uma gaseificação em um primeiro reator, dito de gaseificação, de matéria prima contendo carbono seca com um fluxo gasoso de gaseificação contendo C02 a alta temperatura e de oxigénio 02, a dita gaseificação fornecendo um primeiro fluxo gasoso compreendendo C02, moléculas de monóxido de carbono (CO) e de dihidrogênio (H2) bem como eventualmente vapor d'água (H2Og)
oxidação em um segundo reator dito de oxidação por portadores de oxigénio em estado oxidado (MeO), das ditas moléculas de monóxido de carbono (CO) e de dihidrogênio (H2) presentes no dito primeiro fluxo gasoso, a dita oxidação fornecendo um segundo fluxo gasoso a aita temperatura compreendendo C02 e vapor d'água (H2Og) e os portadores de oxigénio em estado reduzido (Me),
ativação dentro um terceiro reator dito de ativação dos ditos portadores de oxigénio em estado reduzido com um fluxo gasoso compreendendo elementos de oxigénio, a dita oxidação fornecendo portadores de oxigénio em estado oxidado e um excedente de energia térmica,
fornecimento de uma parte da energia térmica do dito segundo fluxo gasoso e/ou do dito excedente térmico da dita ativação ao dito sistema de tratamento térmico de matéria prima, e
elevação em temperatura do fluxo gasoso de gaseificação com pelo menos uma parte do excedente térmico da ativação dos portadores de oxigénio para elevar o dito fluxo gasoso de gaseificação à temperatura de gaseificação.
Na presente descrição:
fluxo gasoso de gaseificação designa um fluxo gasoso de C02 utilizado para a gaseificação da matéria prima seca,
fluxo gasoso de tratamento designa um fluxo gasoso utilizado pelo sistema de tratamento térmico para realizar o tratamento térmico das matérias primas, e
fluxo gasoso de tratamento carregado designa o fluxo gasoso de tratamento na saída do sistema de tratamento, obtido depois do tratamento de uma carga de matéria prima.
Nessa etapa da descrição, a gaseificação da matéria prima seca que é realizada com um aporte de oxigénio puro, uma vez que o processo segundo a invenção é ainda dependente de uma fonte de 02 necessária as necessidades térmicas de dita gaseificação. Detalharemos mais adiante, como o sistema e o processo segundo a invenção se libertam da sua dependência de um fornecimento externo de oxigénio.
Por outro lado, fora a matéria prima seca, o processo segundo a invenção não necessita de um aporte continuo de energia térmica e/ou elétrica desde uma fonte de energia externa. A única energia externa consumida pelo processo segundo a invenção é a energia térmica e/ou elétrica pontual necessária à partida da etapa de gaseificação, no inicio do processo. Uma vez desencadeada a gaseificação, o processo segundo a invenção permite fornecer energia suficiente para a realização do conjunto das etapas do processo. Assim, como detalharemos mais adiante na descrição, o calor do segundo fluxo gasoso é suficiente para abastecer o sistema de tratamento térmico de energia térmica. A energia disponível na capacidade térmica do segundo fluxo gasoso e a energia térmica fornecida pela ativação dos portadores de oxigénio é suficiente para elevar o fluxo gasoso de gaseificação à temperatura de gaseificação. Toda energia necessária à elevação da temperatura do dito fluxo gasoso de gaseificação, pode ser obtido eventualmente com a complementação térmica fornecida por um aporte de oxigénio (02) no reator de gaseificação. Esse aporte é então limitado à necessidade térmica adicional, cada molécula de 02 oxida duas moléculas de hidrogénio (H2) e /ou átomos de C para fazer dois H20 e/ou dois CO (ou um e outro em função da composição inicial da matéria prima contendo carbono) gerando assim a energia térmica útil às reações do processo segundo a invenção. Uma nova etapa de gaseificação é assim realizável e portanto uma nova iteração das etapas do processo.
Em um primeiro modo de realização particularmente vantajoso, o fluxo gasoso de tratamento utilizado pelo sistema de tratamento pode compreender pelo menos em parte o segundo fluxo gasoso contendo C02 (liberado ao menos em parte do vapor d'água que ele contem. Nesse modo de realização, o fornecimento de ao menos uma parte da energia térmica ao sistema de tratamento térmico pode compreender um fornecimento de ao menos uma parte do segundo fluxo gasoso ao sistema de tratamento térmico de matéria prima. O segundo fluxo gasoso constitui então o meio de transporte da energia térmica ao sistema de tratamento térmico.
Nesse primeiro modo de realização, o processo segundo a invenção fornece o sistema de tratamento térmico não somente em energia térmica mas igualmente em fluxo gasoso de tratamento.
Sempre no primeiro modo de realização, o processo segundo a invenção pode compreender uma etapa de redução da temperatura da dita parte do segundo fluxo gasoso fornecido ao sistema de tratamento térmico antes da sua utilização como fluxo gasoso de tratamento..
A redução da temperatura pode ser realizada por uma troca térmica ou por mistura com um fluxo gasoso contendo C02 frio.
Sempre no primeiro modo de realização, o processo segundo a invenção pode compreender uma etapa de regulação da concentração de C02 do segundo fluxo gasoso antes de sua utilização como fluxo gasoso de tratamento no sistema de tratamento térmico. A regulação da concentração de C02 do segundo fluxo gasoso pode ser realizada por mistura com este último de uma quantidade de C02 puro, frio (< 20X) e seco, na proporção desejada
Sempre nesse primeiro modo de realização, o processo segundo a invenção pode compreender uma reciclagem, em circuito fechado de pelo menos uma parte do C02 presente no fluxo gasoso de tratamento térmico carregado na saída do sistema de tratamento térmico, para constituir pelo menos em parte o fluxo gasoso de gaseificação, a dita reciclagem em circuito fechado compreendendo uma etapa de separação do C02 do vapor d'água presente no dito fluxo gasoso de tratamento carregado.
Tal reciclagem permite utilizar, pelo menos em parte, um mesmo fluxo gasoso de C02 ao mesmo tempo tanto como fluxo gasoso de gaseificação como fluxo gasoso de tratamento e de regulação do dito fluxo gasoso de tratamento.
Veremos na sequência da descrição que esse fluxo gasoso de C02 pode, de maneira vantajosa, ser fornecido pela gaseificação.
Em um segundo modo de realização, o fornecimento de pelo menos uma parte da energia térmica ao sistema de tratamento pode compreender uma transferência de energia térmica para um fluxo gasoso de tratamento térmico. Nesse caso , a transferência térmica pode ser realizada por trocadores que são conhecidos dos especialistas da matéria.
Sempre nesse segundo modo de realização, o processo segundo a invenção pode compreender uma reciclagem, em circuito fechado, de pelo menos uma parte do C02 do segundo fluxo gasoso para constituir o dito fluxo gasoso de gaseificação.
A reciclagem pode compreender uma etapa de separação do C02 do vapor d'água presente no segundo fluxo gasoso, por sistemas que são conhecidos dos especialistas da matéria.
Vantajosamente a ativação dos portadores de oxigénio em estado reduzido pode compreender uma oxidação dos ditos portadores em estado reduzido por ar atmosférico pré-aquecido.
No caso do primeiro modo de realização, o pré- aquecimento do ar atmosférico pode vantajosamente compreender uma transferência de energia térmica desde o fluxo gasoso de tratamento térmico carregado na saída do sistema de tratamento térmico para o dito ar atmosférico após o tratamento térmico.
No caso do segundo modo de realização, o pré- aquecimento do ar atmosférico pode vantajosamente compreender uma transferência de energia térmica após o segundo fluxo gasoso na saída do segundo reator para o dito ar atmosférico.
No caso do primeiro modo de realização, a transferência de energia térmica desde o fluxo gasoso de tratamento térmico carregado na saída do sistema para o dito ar atmosférico realiza uma separação do C02 do vapor d'água presente no dito fluxo gasoso de tratamento térmico carregado.
No caso do segundo modo de realização, a transferência de energia térmica desde o segundo fluxo gasoso para o dito ar atmosférico realiza uma separação do C02 do vapor d'água presente no dito segundo fluxo gasoso
Segundo um outro aspecto da invenção, é proposto um sistema de abastecimento em energia térmica de um sistema de tratamento térmico de matérias primas, compreendendo:
- um primeiro reator de gaseificação de matéria prima contendo carbono seca, com um fluxo gasoso de gaseificação compreendendo C02 a alta temperatura e adição de oxigénio (02) permitindo uma eventual complementação térmica útil às reações de gaseificação, o dito reator fornecendo um primeiro fluxo gasoso contendo C02, moléculas de monóxido de carbono (CO), dihidrogênio (H2) e eventualmente vapor d'água (H2Og)
- um segundo reator de oxidação por portadores de oxigénio em estado oxidado ((MeO), das ditas moléculas de monóxido de carbono (CO) e de dihidrogênio (H2) presentes no dito primeiro fluxo gasoso, o dito segundo reator fornecendo um segundo fluxo gasoso a alta temperatura contendo C02 e vapor d'água (H2Og) e portadores de oxigénio em estado reduzido (Me).
- um terceiro reator de ativação dos ditos portadores de oxigénio em estado reduzido com um fluxo gasoso contendo elementos de oxigénio, o dito reator fornecendo W
6 portadores de oxigénio em estado oxidado e um excedente de energia térmica.
- meios para fornecer ao menos uma parte da energia térmica do dito segundo fluxo gasoso e/ou do dito excedente térmico da dita ativação ao dito sistema de tratamento térmico de matéria prima; e
- meios para elevar de temperatura do dito fluxo gasoso de gaseificação com pelo menos uma parte do excedente térmico de ativação dos portadores de oxigénio para levar o dito fluxo gasoso de gaseificação à temperatura de gaseificação.
O sistema pode, por outro lado, compreender meios mecânicos de transporte dos portadores de oxigénio do segundo reator ao terceiro reator e/ou do terceiro reator ao segundo reator.
Vantajosamente, o sistema segundo a invenção pode conter um circuito de reciclagem em circuito fechado de ao menos uma parte do C02 presente no segundo fluxo gasoso como sendo o fluxo gasoso de gaseificação, o dito circuito de reciclagem contendo meios de separação do C02 do vapor d'água.
Em uma versão particularmente vantajosa do sistema segundo a invenção, o circuito de reciclagem liga, pelo menos indiretamente, o segundo reator, o sistema de tratamento térmico, os meios de separação do C02 do vapor d'água, os meios para elevar em temperatura o fluxo gasoso de gaseificação e o primeiro reator.
Segundo ainda outro aspecto da invenção, é proposto um sistema de tratamento térmico de matéria prima integrando um sistema de abastecimento de energia segundo a invenção.
Segundo ainda outro aspecto da invenção é proposta uma instalação de tratamento térmico de matéria prima contendo um sistema de tratamento térmico de matéria prima e um sistema de abastecimento de energia do dito sistema de tratamento térmico segundo a invenção.
Outras vantagens e características aparecerão pelo exame da descrição detalhada de um modo de realização não limitativo, e das figuras anexas. a figura 1 é uma representação esquemática de uma primeira versão de uma instalação segundo a invenção, e
- a figura 2 é uma representação esquemática de uma segunda versão de uma instalação segundo a invenção.
A figura 1 é uma representação esquemática de uma versão preferencial de uma instalação segundo a invenção .
A instalação 100 compreende um sistema de abastecimento 102 de energia térmica de uma instalação de tratamento térmico 104,
O sistema de abastecimento 102 compreende um reator de gaseificação 106, um reator de oxidação 108 e um reator de ativação de portadores de oxigénio 10. O reator de gaseificação 106 comporta uma câmara de alimentação (não representada) de matéria contendo carbono MPCS sob controle de C02. Essa câmara de alimentação é controlada por C02 para impedir qualquer entrada de ar no reator de gaseificação 106 e garantir a estanqueidade desse reator de gaseificação. Ele contém uma boca de alimentação (não representada) e um mecanismo de introdução (não representado) das matérias contendo carbono MPCS no reator de gaseificação.
O reator de gaseificação 106 é abastecido, de uma parte, com matéria prima contendo carbono seca MPCS 12 e de outra parte com um fluxo gasoso de gaseificação FGG composto de C02 a uma temperatura igual ou superior a 1000°C. Eventualmente um complemento térmico pode ser gerado no centro da reação de gaseificação pela introdução de oxigénio (O2) no fluxo gasoso de gaseificação FGG. . Cada mol deste oxigénio introduzido oxida então dois mols de H2 e/ou dois mols de C, o que gera a energia térmica correspondente no núcleo do reator de gaseificação. Esse complemento eventual permite controlar a regulação térmica das reações no dito reator de gaseificação e aumentar o rendimento das reações no intuito de aumentar a produção final das energias e reações do processo segundo a invenção.
No reator de gaseificação 106, as matérias primas contendo carbono secas MPCS são submetidas ao fluxo gasoso de gaseificação FGG que porta as matérias primas contendo carbono a uma temperatura elevada situada ao redor dos 1.000/1100° C. A essa temperatura, a interação do C02 com a matéria prima contendo carbono seca é integral. A reação térmica é violenta e instantânea. Os carbonos C que compõem a matéria prima MPCS reagem com o oxigénio molecular O dessa mesma matéria prima contendo carbono MPCS para formar monóxidos de carbono CO segundo a reação
C + O→ CO
Os carbonos residuais da matéria prima contendo carbono seca MPCS são levados à temperatura de entrada do C02 reativo. Eles são eminentemente oxido-redutores a essa temperatura e reagem com o C02 segundo a reação seguinte, dita "equilíbrios de "BOUDOUART" a .000° C.
1C + 1 C02 = 2CO
O conjunto gasoso, chamado de primeiro fluxo gasoso PFG, saindo do reator de gaseificação 06 está a uma temperatura a 900°C. Ele é composto de:
- CO produzidos pela pirólise das Matérias Primas contendo Carbono Secas (MPCS) e pela conversão do "C02 reativo" em CO (sobre os carbonos residuais à temperatura optimal de sua propriedade oxido-redutora).
H2 liberados durante a decomposição molecular das Matérias Primas contendo Carbono Secas (MPCS) criadas pela pirólise gerada pelo "C02 reativo" à temperatura de 1.000/1.100° C,
H2Og produzido pela oxidação forçada dos H2 úteis ao complemento térmico necessário à pirólise das ditas Matérias Primas contendo Carbono Secas (MPCS).
- Eventualmente C02 excedente do fluxo gasoso de gaseificação FGG.
O excedente de C02 é o vetor térmico que pode ser utilizado, em complemento ao "C02 reativo", pela necessidade de fornecer energia térmica de gaseificação e aquela endotérmica da (reação de BOUDOUART). Esse primeiro fluxo gasoso PFG está a uma temperatura superior ou igual a 900°C na saída do reator de gaseificação 106.
O primeiro fluxo gasoso PFG é em seguida introduzido no reator de oxidação 108. Este reator de oxidação 108 é abastecido, de uma parte pelo primeiro fluxo gasoso PFG e de outra parte por portadores de oxigénio em estado oxidado ou ativado marcados MeO.
Os portadores de oxigénio ativado MeO oxidam as moléculas de monóxido de carbono CO e o dihidrogênio H2 presentes no primeiro fluxo gasoso PFG, segundo as reações seguintes:
CO+MeO→ C02 + Me, e
H2 + MeO -> H20 + Me
Essa oxidação é realizada pela redução dos portadores de oxigénio ativados MeO em portadores de oxigénio desativados Me que trocam seu oxigénio com as moléculas gasosas CO e H2. Com efeito, essas moléculas são eminentemente oxido-redutoras e combustíveis à temperatura de saída do reator 1 de gaseificação 106 que é superior a 900° C.
O conjunto gasoso chamado de segundo fluxo gasoso
DFG, que sai do reator de oxidação 108 compreende:
C02 resultante da reação de oxidação das moléculas de CO,
C02 presente inicialmente no primeiro fluxo gasoso, e
H2Og resultante da reação de oxidação das moléculas de H2.
Esse segundo fluxo gasoso DFG sai do reator de oxidação
108 a uma temperatura igual ou superior a 900° C e servirá como fluxo gasoso de tratamento no sistema de tratamento térmico.
Entretanto, o segundo fluxo gasoso DFG na saída do reator de oxidação 108 está a uma temperatura > a 900° C. Ele está, portanto mais quente que o necessário para a maior parte das operações de tratamento térmico para as quais é produzido. Alem disso, ele contem cerca de 34% de vapor d'água (essa taxa é relativa à composição química dos MPCS colocados em operação no reator de gaseificação). É conveniente temperar esse fluxo gasoso antes da sua introdução na zona de tratamento térmico do sistema de tratamento térmico 104, por um aporte de C02 frio e seco, proveniente de um reservatório de C02 condicionado 114.
O C02 frio e seco é misturado com o segundo fluxo gasoso DFG por um dispositivo de mistura 1 6 nas proporções desejadas para obter um fluxo gasoso de tratamento FGT nas condições do dito tratamento.
O fluxo gasoso de tratamento FGT composto de C02 e de vapor d'água está a uma temperatura igual ou inferior a 200° C no presente exemplo. Esse fluxo gasoso de tratamento é fornecido ao sistema de tratamento térmico 104 de matéria prima.
O sistema de tratamento térmico 104 fornece na saída um fluxo gasoso de tratamento carregado FGTC composto do fluxo gasoso de tratamento FGT e de vapor d'água proveniente da matéria prima tratada. Tendo em conta a produção de energia continua e de seu corolário em C02 uma parte equivalente de fluxo gasoso de tratamento FGT deve ser eliminada. É na saída do sistema de tratamento térmico 04 que é retirada essa equivalência em fluxo gasoso de tratamento FGTC. Esse C02 pode ser assim liberado para atmosfera sem prejudicar o meio ambiente já que ele é resultante de material renovável; alem disso, o principal da energia gerada para o processo/sistema segundo a invenção é produzido sem gerar nem expelir C02 danoso. Este CO2 pode também ser reciclado em outras aplicações após desumidificação e/ou tal como em uma instalação de cultura de micro-algas que produzirá a biomassa "matéria prima".
O fluxo gasoso de tratamento carregado FGTC reciclado, é fornecido a um sistema refrigerante à absorção 1 18 assim como um fluxo de ar atmosférico FA. O sistema refrigerante realiza uma troca térmica. entre o fluxo gasoso de tratamento carregado FGTC e o fluxo de ar atmosférico FA. Essa troca térmica transfere o calor do fluxo gasoso de tratamento térmico carregado FGTC ao fluxo de ar atmosférico FA. Essa troca térmica permite refrigerar suficientemente o fluxo gasoso de tratamento térmico carregado FGTC para condensar o vapor d'água e separar o C02 do vapor d'água. Na saída, o sistema refrigerante fornece água líquida Η20 , um fluxo de ar pré- aquecido FAP, relativamente à temperatura correspondente ao estagio do tratamento térmico; seja de 30°C a temperatura final do tratamento, que para secar madeira pode ir até 130° C e mais (superior a 300° C se for um processo de tratamento a alta temperatura) e um fluxo de C02 reciclado anotado FC02.
O fluxo de ar pré-aquecido FAP é fornecido ao reator 110 de ativação dos portadores de oxigénio desativado. Este reator 110 recebe igualmente os portadores de oxigénio desativados (ou em estado reduzido) Me fornecidos pelo reator de oxidação 108. Esses portadores de oxigénio desativados Me são postos em contato com o fluxo de ar atmosférico pré-aquecido FAP. As moléculas de oxigénio 02 presentes no fluxo de ar atmosférico pré-aquecido FAP oxidam (ativam) os portadores de oxigénio desativados segundo a reação seguinte:
Me + ½ 02 - MeO
Os portadores de oxigénio são ativados e aptos a serem fornecidos ao reator de oxidação 108 para servir em uma nova oxidação.
O reator de ativação 0 fornece na saída portadores de oxigénio ativados MeO que serão fornecidos ao reator de oxidação 108 e um fluxo de ar quente pobre em oxigénio FAA. Esse fluxo de ar pobre de oxigénio FAA ainda é quente e pode ser utilizado por meio de um trocador térmico (não representado) para o condicionamento do fluxo gasoso de tratamento FGT e/ou o pré-aquecimento do fluxo de C02 reciclado anotado FC02, antes de sua introdução no trocador E1 do reator de ativação 110.
A reação de oxidação dos portadores de oxigénio sendo muito exotérmica , é criado um importante excedente de energia térmica no reator de ativação 1 0, que corresponde a mais de 85% do potencial de energia intrínseco dos MPCS utilizados.
Esse excedente térmico é explorado por um primeiro trocador térmico E1 ao qual é fornecida uma parte do fluxo de C02 anotado FC02 (frio ou pré-aquecido pelo fluxo FAA em um trocador não representado). O dito C02 é aquecido a uma temperatura igual ou superior a 1.000°C em um trocador térmico E1. O fluxo gasoso de C02 obtido na saída desse primeiro trocador térmico E1 é utilizado como fluxo gasoso de gaseificação FGG.
A outra parte do fluxo de C02 frio (< 20° C) FCO2 é utilizado para alimentar o reservatório 1 14 de C02 condicionado.
O excedente térmico criado no reator de ativação 1 10 é igualmente explorado por um segundo trocador térmico que permite elevar em temperatura um fluxo gasoso de co-geração FGG servindo à geração de energia termodinâmica sob a forma de vapor d'água a alta pressão e alta temperatura para co- geração de energia mecânica e/ou de eletricidade em um sistema 120 podendo conter um turbo-alternador.
O sistema de abastecimento contem, por outro lado, um dispositivo mecânico 130 que permite transportar os portadores de oxigénio do reator de oxidação 108 ao reator de ativação 10, e vice-versa.
A figura 2 é uma representação esquemática de uma segunda versão de uma instalação segundo a invenção
A instalação 200 representada na figura 2 contem todos os elementos da instalação 100 representada na figura 1.
A instalação 200 contém, por outro lado, um bio-reator 202 contendo microa!gas.
Uma parte do C02 presente no fluxo gasoso de tratamento carregado FGTC é refrigerada e injetada no bio-reator 202. No bio-reator 202 de cultura de algas, o dióxido de carbono C02 é utilizado em uma fotossíntese realizada pelas microalgas. A fotossíntese produz de uma parte a biomassa contendo carbono BC, e de outra parte um fluxo gasoso de oxigénio F02 por separação do elemento carbono «C» da molécula de dioxigênio «02 ».
A biomassa carbonada BC obtida é fornecida a um sistema de condicionamento de biomassa 204 que pode ser:
um sistema de extração de óleos essenciais, de microalgas de alto teor de lipídios e de moléculas alimentício-farmacêuticas utilizadas na farmacopéia e/ou de hidrocarbonetos para refino . Ao fim desta extração restam cerca de 30% da biomassa sob forma de carvão, que pode ser restituída ao gaseificador 106,
ou por exemplo um sistema de secagem para ser condicionado antes de ser introduzido no reator de gaseificação 106
O fluxo gasoso de oxigénio F02 pode ser fornecido ao sistema segundo a invenção, por exemplo, ao nível do reator de gaseificação 102 para complementar a gaseificação da matéria contendo carbono no reator 102. Assim, é obtida a autonomia do processo, libertando-se das fontes externas de oxigénio (como meios térmicos).
Vantajosamente, a produção de biomassa carbonada nesse segundo modo de realização, vem estimular o rendimento global.
Vamos agora descrever o balanço energético do processo segundo a invenção colocado em operação na instalação 100 representada na figura 1 , tomando o exemplo de uma carga de um kg de biomassa como matéria prima contendo carbono seca MPCS. A composição química média de um kg de biomassa é a seguinte :
- C « 50%%: ou seja, por 1 kg de MCPS-. 0,500 kg ou seja 41 ,67 moles
Portanto o poder calorífico é
41,67 x 394 kj/mol - 16.417,98 kj
- 02 « 44 % :ou seja por 1 kg de MCPS : 0,440 kg ou seja 13,75 mols de 02 e portanto 27,50 "O" e
- Hz w 6% ou seja por 1 kg de MCPS : 0,060 kg ou seja 29,76 mols
Portanto o poder calorífico é
29,76 x 242 kj/mol = 7.20 ,92 kj
Ou seja um potencial energético intrínseco de
16.417,98 + 7.201 ,92 = 23.619,90 kj
Na saída do reator de gaseificação
Observando essa composição, a gaseificação "endógena" desta MCPS no reator de gaseificação 106 gerará:
- 27,50 mols de CO.
- 4,17 mols de C, e
- 29,76 mols de H2
Ou seja, para 1 kg de (MCPS/biomassa) 0,830 kg sob forma gasosa e 0,170 kg sob forma de carbono sólido, isto é, de carvão de biomassa.
Esses 14,17 mols de carbono, a uma temperatura > 1.000°C vão reagir com outro tanto de mols de C02 e reduzi-las para formar 28,34 mols de CO.
A reação termo-química C02 + C = 2CO é endotérmica segundo as reações
C02 - ½ 02 = CO + O + 283 kj/mol
C + ½ 02 (de C02) = CO - 111 kj/mol
Ou seja, um déficit térmico de 172 kj/mol de C02
"convertido" por essa reação.
Seja ao final, uma composição para o primeiro fluxo gasoso de:
- 55,84 mols de CO, logo a energia térmica útil para compensar a necessidade endotérmica é de:
- 14,17 mols de C02 x 172 kj/mol = 2.437,24 kj +
a capacidade térmica das MCPS e do C02 reativo útil para a gaseificação e à conversão = 1.786,14 kj.
- 29,76 mols de H2.
Seja uma necessidade energética para a gaseificação de : 2.437,24 + 1.786,14 kj = 4.223,38 kj
A interação molecular nesse meio pirolítico é considerada atérmica. A exotermia da oxidação dos C pelo oxigénio da composição molecular compensa a endotermia de craqueamento das moléculas do sistema. Essa reação deve ser computada para o fluido térmico e da troca térmica geral que fornece a energia útil, em calor sensível para atingir a temperatura da dita pirólise. É também papel do fluido térmico de fornecer a energia de compensação endotérmica (e o oxigénio) da reação dos carbonos que não encontram esse oxigénio na composição molecular de seu meio. O balanço global das reações nesse reator de gaseificação é endotérmica
O aporte térmico útil à geração dessas reações sobre 1 kg (MCPS/biomassa) é de 4.223,38 kj.
Se o dito fluxo gasoso FGG é composto apenas de 14,17 mols de C02 úteis à reação de conversão, durante seu trânsito no reator de ativação 110 ele está a uma temperatura superior a 1.000°C, ou seja, uma capacidade térmica recuperada de somente : 574,344 kj. Falta portanto 4.233,38 - 574,344 = 3.649,036 kj de capacidade térmica para as reações no reator de gaseificação 106.
Como veremos na sequência da demonstração, a energia é disponível (gerada pela cadeia de reações) para fornecer essa capacidade térmica . Isso induz, ao contrario, a transportar essa energia: da fonte ao reator de gaseificação 102, e para isso é necessário um complemento de C02 reciclado (um aporte externo é então útil à partida do processo).
Para gerar essa energia térmica, pode ser realizada uma injeção de 02 com um fluxo gasoso de gaseificação FGG, na sua entrada em fase reativa no reator de gaseificação 06.
No meio pirolítíco segundo a invenção, a 1.000/1.100° C é o hidrogénio molecular que reage inicialmente com o oxigénio disponível, o processo segundo a invenção (nesse caso em pauta) dispõe de 29,762 mols de H2, logo o poder calorífico total é de : 7.202,404 kj.
Se for essa a opção escolhida, 15,079 mols de hidrogénio são então necessários para produzir a capacidade térmica faltante. Cada mol de 02 injetado reagirá com dois mols de hidrogénio para produzir dois mols de H20, 7,54 mols de 02 são então necessários para compensar a falta de capacidade térmica necessária a essa reação. Restarão 14,683 mols de H2 que reagirão com os CO para obter a sequência das reações no reator de oxidação 08.
Na saída do reator de oxidação
O poder calorífico de 14,683 mols de H2 é de :
14,683 x 242 kj/mol = 3,553,286 kj e
O poder calorífico de 55,84 mols de CO é de:
55,84 x 283 kj/mol - 15.802,72 kj.
A oxidação dos CO e H2 presentes no primeiro fluxo gasoso PFG provenientes do reator de oxidação 106 é exotérmica de :
15.802.72 + 3.553,286 - 19.356,008 kj
Enquanto por exemplo o portador de oxigénio é o NiO (NiO estado ativado e Ni estado desativado) è necessário 70,523 mols de MeO para oxidar os 55,84 mols de CO e os 14,683 mols de H2. A redução de 70,523 mols MeO em 70,523 mols Me, tomando o exemplo NiO em Ni é endotérmica de:
70,523 mols x 244,30 kj/mol = 17.066,566 kj
Finalmente, o balanço térmico da reação no reator de oxidação é exotérmico e gera: 2.289,442 kj
O segundo fluxo gasoso DFG saindo do reator de oxidação é composto do C02 resultante da reação + eventualmente o C02 "excedente" termo portador + o vapor de água gerado pela oxidação de H2, ou seja: 2,457 kg de C02 saídos da reação (55,84 mols, 1 ,252 Nm3) +
0,536 kg de H2Og saído da reação (29,76 mols, 0,667 Nm3)
ou seja 22% em massa e 53% em volume.
Esse segundo fluxo gasoso DFG está a uma temperatura > 900°C e contém uma energia térmica importante: 3.573,083 kj de capacidade térmica + 2.228,951 kj de entalpia dos 29,762 mols (H2Og) que serão condensados em H20 líquido, ou seja: 5.802,034 kj
Essa energia térmica é utilizada em um sistema trocador térmico 16 para gerar o fluxo gasoso de tratamento FGT. O dito fluxo gasoso de tratamento FGT compreende essencialmente::
a parte do segundo fluxo gasoso DFG que será conservada depois de haver trocado sua capacidade térmica no dito trocador 116, com C02 frio e seco (proveniente da estocagem 114) e que terá sido em parte desumidificado durante a dita troca térmica.
A parte do C02 seco, proveniente da estocagem 114, que terá servido de fonte fria no trocador térmico 116, que será utilizada para temperar o dito fluxo gasoso de tratamento FGT. (segundo a necessidade em desumidificação e resfriamento, o dito C02 seco, proveniente da estocagem 114 pode ser excedente. O excedente é então reintroduzido no sistema refrigerante 118 para ser reciclado).
O dito fluxo gasoso de tratamento FGT será então levado à temperatura requerida para o tratamento das matérias primas (temperatura útil: de 30 a > 300°C e mais para os tratamentos a altas temperaturas) e sua umidade residual será mínima.
A essa etapa do sistema e processo segundo a invenção, o balanço térmico já é positivo de:
> - 4.223,38 kj de aporte térmico às reações do reator de gaseificação para 1 kg ( PCS/biomassa)
> + 2.289,442 kj de exotermia ao reator de oxidação do primeiro fluxo gasoso "combustível"
> + 5.802,034 kj de capacidade térmica disponível pelo segundo fluxo gasoso DFG saindo do reator de oxidação
Ou seja, um total positivo, por kg de MPCS biomassa utilizada de:
2,289,442 kj + 5.802,034 = 8.091 ,476 - 4.223,38 kj = 3.868.096 ki
Na saída do reator de ativacão
A reativação dos Me em MeO é exotérmica : 244,30 kj/mol.
No exemplo, temos 70,523 mols de Me por kg de MPCS de biomassa utilizada. Seja um potencial térmico, gerado nesse reator de ativação, de: +17.228.769 kj/kg de PCSjte biomassa utilizada , É peio o trocador E1 que o C02 de gaseificação vai adquirir sua capacidade térmica (seja: 4.223,38 kj/kg de MPCS, levando em conta o balanço precedente.
O saldo energético final das reações e trocas do sistema/processo segundo a invenção é de:
3.868,096 + 7.228,769 = 21.096,865 kj/kg de MCPS.
Seja ainda 89% do potencial energético da matéria prima.
A totalidade dessa energia é disponível para a aplicação e a produção de energia de funcionamento do sistema e processo segundo a invenção.
É essa energia disponível que vai ser explorada para possibilitar o tratamento das matérias primas em um sistema de tratamento térmico. Uma grande parte dessa energia è excedente, e pode ser usada para a co-geração das energias, úteis às aplicações concernentes, mecânicas e/ou convertidas em eletricidade.
Na presente invenção o sistema de tratamento térmico das matérias primas pode ser um sistema de:
Secagem :
• De toda matéria prima a desumidificar e/ou a desidratar antes de ser utilizada em um processo manufaturado ,
• De toda matéria prima e/ou produto manufaturado devendo ser seco antes de ser utilizada e/ou condicionada,
Tratamento térmico:
• De toda matéria prima sensível (em sua composição) à interação do C02 e devendo ser submetida ao calor difuso da maneira a mais homogénea possível e/ou a temperaturas elevadas (até 1.000/1100° C e mais em função da interação exigida pelo C02 termo-portador, com cinéticas otimizadas) antes da sua utilização em um processo manufaturado,
• De toda matéria prima e/ou produto manufaturado devendo ser tratado termicamente (para todas as modificações/neutralizações termo-químicas e/ou termo-físicas antes da utilização e/ou condicionamento
Seguramente a invenção não é limitada aos exemplos que foram descritos.

Claims

Reivindicações
1 . Processo de abastecimento de energia térmica de um sistema de tratamento térmico (104) de matéria prima, o dito processo compreendendo:
- uma gaseificação em um primeiro reator (106) dito de gaseificação de matéria prima contendo carbono seca (MPCS) com um fluxo gasoso de gaseificação (FGG) contendo
C02 a alta temperatura e oxigénio (02), a dita gaseificação fornecendo um primeiro fluxo gasoso (PFG) contendo essencialmente moléculas de monóxido de carbono (CO), de dihidrogênio (H2) e eventualmente de vapor d'água (H2Og).
- oxidação num segundo reator (108) dito de oxidação por portadores de oxigénio em estado oxidado (MeO), das ditas moléculas de monóxido de carbono (CO) e de dihidrogênio (H2) presentes no dito primeiro fluxo gasoso (PFG), fornecendo à dita oxidação um segundo fluxo gasoso (DFG) a alta temperatura, contendo C02 e vapor d' água (H2Og) e portadores de oxigénio em estado reduzido (Me).
- ativação em um terceiro reator (1 0), dito de ativação, dos ditos portadores de oxigénio em estado reduzido com um fluxo gasoso (FAP) contendo elementos de oxigénio, a dita oxidação fornecendo portadores de oxigénio em estado oxidado (MeO) e um excedente de energia térmica,
- fornecimento de uma parte da energia térmica do dito segundo fluxo gasoso (DFG) e/ou do dito excedente térmico da dita ativação ao dito sistema de tratamento térmico (104) de matéria prima, e
- elevação em temperatura do fluxo gasoso de gaseificação (FGG) com ao menos uma parte do excedente térmico da ativação dos portadores de oxigénio para levar o dito fluxo gasoso de gaseificação (FGG) à temperatura de gaseificação.
2. Processo segundo a reivindicação 1 , caracterizado pelo fornecimento de pelo menos uma parte da energia térmica ao sistema de tratamento térmico (104) compreendendo o fornecimento de pelo menos uma parte do segundo fluxo gasoso (DFG) ao sistema de tratamento térmico (104) de matéria prima para uma utilização como fluxo gasoso de tratamento térmico (FGT).
3. Processo segundo a reivindicação 2, caracterizado por compreender uma diminuição da temperatura do dito fornecimento de ao menos uma parte do segundo fluxo gasoso (DFG) antes da utilização como fluxo gasoso de tratamento (FGT)
4. Processo segundo qualquer uma das reivindicações 2 ou 3, caracterizado por compreender uma reciclagem em circuito fechado de ao menos uma parte do C02 presente no fluxo gasoso de tratamento térmico carregado (FGTC) na saída do sistema de tratamento térmico (104). Para constituir pelo menos em parte o dito fluxo gasoso de gaseificação (FGG) a dita reciclagem em circuito fechado compreendendo uma etapa de separação do C02 do vapor d'água (H2Og) presente no dito fluxo gasoso de tratamento carregado (FGTC).
5. Processo segundo a reivindicação 1 , caracterizado pelo fornecimento de pelo menos uma parte da energia térmica ao sistema de tratamento térmico (104) compreendendo uma transferência da energia térmica para um fluxo gasoso de tratamento térmico.
6. Processo segundo a reivindicação 5, caracterizado por compreender uma reciclagem em circuito fechado de ao menos uma parte do C02 do segundo fluxo gasoso (DFG) para constituir o dito fluxo gasoso de gaseificação.
7. Processo segundo qualquer uma das reivindicações precedentes caracterizado em que a ativação dos portadores de oxigénio em estado reduzido (Me) compreende uma oxidação dos ditos portadores de oxigénio em estado reduzido (Me) por ar atmosférico pré-aquecido (FAP),
8. Processo segundo a reivindicação 7, caracterizado em que o pré-aquecimento do ar atmosférico compreende uma transferência de energia térmica após o fluxo gasoso de tratamento térmico carregado (FGTC) na saída do sistema de tratamento térmico para o dito ar atmosférico.
9. Processo segundo as reivindicações 4 e 8, caracterizado em que a transferência de energia térmica depois que o fluxo gasoso de tratamento térmico carregado (FGTC) na saída do sistema de tratamento térmico (104) para o dito ar atmosférico (FA) realiza uma separação do C02 do vapor d'água (H2Og) presente no dito fluxo gasoso de tratamento térmico carregado (FGTC)
10. Sistema (102) de abastecimento de energia térmica de um sistema de tratamento térmico (104) de matéria prima, o dito sistema compreendendo:
-um primeiro reator (106) de gaseificação de matéria prima contendo carbono seca (MPCS) com um fluxo gasoso de gaseificação (FGG) contendo C02 a alta temperatura, o dito reator (106) fornecendo um primeiro fluxo gasoso (PFG) contendo C02, moléculas de monóxido de carbono (CO), de dihidrogênio (H2) e eventualmente de vapor d'água
(H2Og),
- um segundo reator (108) de oxidação por portadores de oxigénio em estado oxidado (MeO) das ditas moléculas de monóxido de carbono (CO) e de dihidrogênio (H2) presente no dito primeiro fluxo gasoso (PFG), fornecendo o dito segundo reator (108) um segundo fluxo gasoso (DFG) a alta temperatura contendo C02 e vapor d'água (H2Og) e portadores de oxigénio em estado reduzido (Me),
- um terceiro reator (110) de ativação dos ditos portadores de oxigénio em estado reduzido (Me) com um fluxo gasoso (FA) contendo elementos de oxigénio, o dito reator ( 0) fornecendo portadores de oxigénio em estado oxidado (MeO) e um excedente de energia térmica, - meios de regulação da temperatura do fluxo gasoso de tratamento (FGT) para fornecer ao menos uma parte da energia térmica do dito segundo fluxo (DFG) e/ou do dito excedente térmico da dita ativação ao dito sistema de tratamento térmico 104 de matéria prima, e
- meios (E1) para elevar a temperatura do dito fluxo gasoso de gaseificação (FGG) com pelo menos uma parte do excedente térmico da ativação dos portadores de oxigénio para levar o dito fluxo gasoso de gaseificação (FGG) à temperatura de gaseificação.
11. Sistema segundo a reivindicação 10, caracterizado por conter meios mecânicos (130) de transporte de portadores de oxigénio do segundo reator (108) ao terceiro reator (110) e/ou do terceiro reator (110) ao segundo reator (108).
12. Sistema segundo qualquer uma das reivindicações 10 ou 11 , caracterizado por compreender um circuito de reciclagem em circuito fechado de ao menos uma parte do C02 presente no segundo fluxo gasoso (DFG) tanto como o fluxo gasoso de gaseificação FGG, o dito circuito de reciclagem contendo meios (118) de separação do C02 do vapor d'água (H2Og).
13. Sistema segundo a reivindicação 12, caracterizado em que o circuito de reciclagem interliga, ao menos indiretamente o segundo reator (108), o sistema de tratamento térmico (104), os meios (118) de separação do C02 do vapor d'água (H2Og), os meios (E1) para elevar em temperatura o fluxo gasoso de gaseificação (FGG) e o primeiro reator (106).
14. Sistema de tratamento térmico de matérias prima integrando um sistema de abastecimento de energia e um fluxo gasoso de tratamento (FGT) segundo qualquer uma das reivindicações 10 a 13.
15. Instalação (100) de tratamento térmico de matéria prima compreendendo um sistema de tratamento térmico (104) de matéria prima e um sistema
(102) de abastecimento de energia do dito sistema de tratamento térmico segundo qualquer uma das reivindicações 10 a 14.
PCT/BR2010/000338 2010-02-01 2010-10-08 Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema WO2011091488A1 (pt)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012550269A JP2013518149A (ja) 2010-02-01 2010-08-08 熱処理システムから熱エネルギーを供給するためのプロセスおよびシステムならびに該システムを作動する設備
US13/576,636 US20120298921A1 (en) 2010-02-01 2010-08-08 Method and system for supplying thermal energy to a thermal processing system from the gasification of dry, carbon-containing raw materials, followed by oxidation, and installation for operating this system
US13/576,636 US9505997B2 (en) 2010-02-01 2010-08-08 Method and system for supplying thermal energy to a thermal processing system from the gasification of dry, carbon-containing raw materials, followed by oxidation, and installation for operating this system
BR112012019105-5A BR112012019105B1 (pt) 2010-02-01 2010-10-08 Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema
RU2012137276/05A RU2553892C2 (ru) 2010-02-01 2010-10-08 Способ и система для подачи тепловой энергии и эксплуатирующая ее установка
ES10844316T ES2727429T3 (es) 2010-02-01 2010-10-08 Método y sistema para suministrar energía térmica a un sistema de procesamiento térmico a partir de la gasificación de materias primas secas que contienen carbono, seguido por oxidación, e instalación para operar este sistema
CN2010800654180A CN102844412A (zh) 2010-02-01 2010-10-08 用于通过气化干燥的含碳原料,接着进行氧化将热能提供给热处理系统的方法和系统及操作所述系统的设备
EP10844316.9A EP2532728B1 (en) 2010-02-01 2010-10-08 Method and system for supplying thermal energy to a thermal processing system from the gasification of dry, carbon-containing raw materials, followed by oxidation, and installation for operating this system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR10/00378 2010-02-01
FR1000378A FR2955866B1 (fr) 2010-02-01 2010-02-01 Procede et systeme d'approvisionnement en energie thermique d'un systeme de traitement thermique et installation mettant en oeuvre un tel systeme

Publications (2)

Publication Number Publication Date
WO2011091488A1 true WO2011091488A1 (pt) 2011-08-04
WO2011091488A8 WO2011091488A8 (pt) 2012-02-09

Family

ID=42831619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000338 WO2011091488A1 (pt) 2010-02-01 2010-10-08 Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema

Country Status (10)

Country Link
US (2) US9505997B2 (pt)
EP (1) EP2532728B1 (pt)
JP (1) JP2013518149A (pt)
CN (1) CN102844412A (pt)
BR (1) BR112012019105B1 (pt)
ES (1) ES2727429T3 (pt)
FR (1) FR2955866B1 (pt)
PT (1) PT2532728T (pt)
RU (1) RU2553892C2 (pt)
WO (1) WO2011091488A1 (pt)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053109B4 (de) * 2011-08-30 2016-10-13 Robert Stöcklinger System zur Erzeugung von Energie und/oder Energieträgern
FR2994980B1 (fr) * 2012-09-05 2014-11-14 Commissariat Energie Atomique Procede de gazeification de charge de matiere carbonee, a rendement ameliore.
RU2683065C1 (ru) * 2018-07-23 2019-03-26 Николай Борисович Болотин Способ управления режимом работы газогенераторной электроустановки и газогенераторная электроустановка
RU2683064C1 (ru) * 2018-07-23 2019-03-26 Николай Борисович Болотин Газогенераторная электроустановка

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068789A1 (en) * 2000-03-15 2001-09-20 Cowi Rådgivende Ingeniører As A method and a system for decomposition of moist fuel or other carbonaceous materials
US20080078122A1 (en) * 2006-10-02 2008-04-03 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
US20080134579A1 (en) * 2006-12-11 2008-06-12 Parag Prakash Kulkarni Unmixed Fuel Processors and Methods for Using the Same
US20100132633A1 (en) * 2009-06-29 2010-06-03 General Electric Company Biomass gasification reactor

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1163922A (en) 1915-06-29 1915-12-14 Charles B Hillhouse Method of producing carbon monoxid from carbon dioxid.
US2128262A (en) 1935-09-05 1938-08-30 Semet Solvay Eng Corp Carbon monoxide manufacture
BE437031A (pt) 1938-11-18
US2602809A (en) 1948-07-10 1952-07-08 Kellogg M W Co Treatment of solid carbon containing materials to produce carbon monoxide for the synthesis of organic materials
US2656255A (en) 1949-02-02 1953-10-20 Kellogg M W Co Manufacture of hydrogen
US2772954A (en) 1951-01-29 1956-12-04 Amonia Casale Societa Anonima Gasification method
GB757333A (en) 1952-07-11 1956-09-19 Montedison Spa Improvements in and relating to the production of hydrogen and carbon monoxide synthesis gas
US2864688A (en) 1958-01-28 1958-12-16 United States Steel Corp Two-step method of removing oxygen from iron oxide
US3031287A (en) * 1958-06-23 1962-04-24 Homer E Benson Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane
US3201215A (en) 1963-06-07 1965-08-17 Chemical Construction Corp Production of combustible gas
US3442620A (en) 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
US3915840A (en) 1974-05-24 1975-10-28 Exxon Research Engineering Co Process for improving the octane number of cat cracked naphtha
US4040976A (en) 1976-07-06 1977-08-09 Cities Service Company Process of treating carbonaceous material with carbon dioxide
US4070160A (en) 1977-05-09 1978-01-24 Phillips Petroleum Company Gasification process with zinc condensation on the carbon source
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
US4272555A (en) 1979-09-21 1981-06-09 Monsanto Company Conversion of carbon-containing materials to carbon monoxide
US4343624A (en) 1979-12-10 1982-08-10 Caterpillar Tractor Co. Rotating fluidized bed hydrogen production system
US4382915A (en) 1981-10-13 1983-05-10 Phillips Petroleum Company Quenching of ZnO-char gasification
JPS5930702A (ja) 1982-08-13 1984-02-18 Toyo Eng Corp 重質油の熱分解の方法
US4725381A (en) 1984-03-02 1988-02-16 Imperial Chemical Industries Plc Hydrogen streams
US5213587A (en) 1987-10-02 1993-05-25 Studsvik Ab Refining of raw gas
JPH06319520A (ja) 1993-05-10 1994-11-22 Toshiba Corp 光合成バイオリアクタ
RU2095397C1 (ru) * 1994-04-19 1997-11-10 Акционерное общество открытого типа "НовосибирскНИИХиммаш" Способ переработки твердого топлива с получением высококалорийного газа или синтез-газа
JP3904161B2 (ja) 1997-03-19 2007-04-11 バブコック日立株式会社 水素・一酸化炭素混合ガスの製造方法および製造装置
RU2115696C1 (ru) * 1997-03-25 1998-07-20 Антон Анатольевич Кобяков Способ переработки твердого углеродсодержащего топлива
CA2349608A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Electric generating system by gasification of combustibles
US6444179B1 (en) 1999-10-05 2002-09-03 Ballard Power Systems Inc. Autothermal reformer
JP2002173301A (ja) 2000-12-04 2002-06-21 Sumitomo Precision Prod Co Ltd 水素エネルギー発生システム
US6682714B2 (en) 2001-03-06 2004-01-27 Alchemix Corporation Method for the production of hydrogen gas
US6648949B1 (en) 2001-11-28 2003-11-18 The United States Of America As Represented By The United States Department Of Energy System for small particle and CO2 removal from flue gas using an improved chimney or stack
US6896854B2 (en) 2002-01-23 2005-05-24 Battelle Energy Alliance, Llc Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion
US20040009378A1 (en) 2002-07-09 2004-01-15 Lightner Gene E. Gasification of lignocellulose for production of electricity from fuel cells
WO2004027220A1 (en) 2002-09-17 2004-04-01 Foster Wheeler Energy Corporation Advanced hybrid coal gasification cycle utilizing a recycled working fluid
WO2004067933A2 (en) 2003-01-21 2004-08-12 Los Angeles Advisory Services Inc. Low emission energy source
CN100504053C (zh) * 2003-01-27 2009-06-24 中国科学院工程热物理研究所 内外燃煤一体化联合循环发电系统及发电方法
US7334371B2 (en) * 2003-04-04 2008-02-26 E.I. Du Pont De Nemours And Company Glass laminates having improved structural integrity against severe stresses for use in external pressure plate glazing applications
WO2004096456A2 (en) * 2003-04-24 2004-11-11 Cato Research Corporation Method to recapture energy from organic waste
WO2005003632A1 (en) 2003-06-28 2005-01-13 Accentus Plc Combustion of gaseous fuel
US7767191B2 (en) * 2003-12-11 2010-08-03 The Ohio State University Combustion looping using composite oxygen carriers
JP2006008872A (ja) 2004-06-25 2006-01-12 National Institute Of Advanced Industrial & Technology 二酸化炭素によるバイオマスのガス化法
US20060130401A1 (en) 2004-12-16 2006-06-22 Foster Wheeler Energy Corporation Method of co-producing activated carbon in a circulating fluidized bed gasification process
JP4314488B2 (ja) 2005-07-05 2009-08-19 株式会社Ihi 固体燃料のガス化方法及び該方法を用いたガス化装置
US20090000194A1 (en) * 2006-01-12 2009-01-01 Liang-Shih Fan Systems and Methods of Converting Fuel
US20110179762A1 (en) * 2006-09-11 2011-07-28 Hyun Yong Kim Gasification reactor and gas turbine cycle in igcc system
US7824574B2 (en) 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
US7833296B2 (en) 2006-10-02 2010-11-16 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for power generation
US20080134666A1 (en) 2006-12-11 2008-06-12 Parag Prakash Kulkarni Systems and Methods Using an Unmixed Fuel Processor
CN1994865B (zh) * 2006-12-12 2011-05-18 华东理工大学 两段气化并耦合热量回收和洗涤于一体的气化装置和应用
US20090049748A1 (en) 2007-01-04 2009-02-26 Eric Day Method and system for converting waste into energy
US8236072B2 (en) 2007-02-08 2012-08-07 Arizona Public Service Company System and method for producing substitute natural gas from coal
US8926717B2 (en) 2007-07-27 2015-01-06 The Trustees Of Columbia University In The City Of New York Methods and systems for producing synthetic fuel
US8951314B2 (en) 2007-10-26 2015-02-10 General Electric Company Fuel feed system for a gasifier
US20090148927A1 (en) 2007-12-05 2009-06-11 Sequest, Llc Mass Production Of Aquatic Plants
US7833315B2 (en) 2008-02-26 2010-11-16 General Electric Company Method and system for reducing mercury emissions in flue gas
JP5205568B2 (ja) 2008-03-28 2013-06-05 独立行政法人産業技術総合研究所 ジメチルエーテルの製造方法および製造装置
KR100887137B1 (ko) * 2008-06-12 2009-03-04 김현영 탄화물 열분해 개질 방법 및 그 장치
FR2941689B1 (fr) 2009-01-30 2011-02-18 Inst Francais Du Petrole Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique
AU2010292313B2 (en) 2009-09-08 2015-08-20 The Ohio State University Research Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US20140158940A1 (en) * 2012-07-24 2014-06-12 Shahram Navaee-Ardeh Production of Synthesis Gas From Biosolid-Containing Sludges Having a High Moisture Content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068789A1 (en) * 2000-03-15 2001-09-20 Cowi Rådgivende Ingeniører As A method and a system for decomposition of moist fuel or other carbonaceous materials
US20080078122A1 (en) * 2006-10-02 2008-04-03 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for hydrogen and oxygen extraction
US20080134579A1 (en) * 2006-12-11 2008-06-12 Parag Prakash Kulkarni Unmixed Fuel Processors and Methods for Using the Same
US20100132633A1 (en) * 2009-06-29 2010-06-03 General Electric Company Biomass gasification reactor

Also Published As

Publication number Publication date
RU2553892C2 (ru) 2015-06-20
US20120298921A1 (en) 2012-11-29
RU2012137276A (ru) 2014-03-10
FR2955866A1 (fr) 2011-08-05
EP2532728A4 (en) 2014-01-01
CN102844412A (zh) 2012-12-26
JP2013518149A (ja) 2013-05-20
PT2532728T (pt) 2019-05-08
US9505997B2 (en) 2016-11-29
BR112012019105A2 (pt) 2018-03-27
EP2532728B1 (en) 2019-01-16
ES2727429T3 (es) 2019-10-16
FR2955866B1 (fr) 2013-03-22
EP2532728A1 (en) 2012-12-12
BR112012019105B1 (pt) 2018-07-31
WO2011091488A8 (pt) 2012-02-09

Similar Documents

Publication Publication Date Title
US8366902B2 (en) Methods and systems for producing syngas
Moneti et al. Influence of the main gasifier parameters on a real system for hydrogen production from biomass
CA2711251A1 (en) Method and apparatus to facilitate substitute natural gas production
ES2511265T3 (es) Reformador activo
BR112016012900B1 (pt) Complexo de usinas para produção de aço e método para operar ocomplexo de usinas
RU2553289C2 (ru) Способ и система для получения источника энергии в термодинамическом цикле конверсией со2 из сырьевых материалов, содержащих углерод
WO2011091488A1 (pt) Processo e sistema de abastecimento de energia térmica de um sistema de tratamento térmico a partir de gaseificação de uma matéria-prima contendo carbono seca e sua posterior oxidação e instalação operando tal sistema
BRPI0720461A2 (pt) Processo e equipamento para produzir gás de síntese a partir de biomassa
BR112016009499B1 (pt) dispositivo integrado e método para a produção de gás natural substituto e rede
WO2011091496A1 (pt) Processo e sistema de produção de hidrogênio a partir de matéria prima contendo carbono.
CN113195689A (zh) 用于处理含碳原料的系统和方法
WO2011091495A1 (pt) Processo de reciclagem de dióxido de carbono co2
JP2011202520A (ja) 石炭ガス化複合発電プラント
KR20170136144A (ko) 복합발전 시스템
JP2011122490A (ja) 石炭ガス化複合発電設備
JP5651440B2 (ja) 石炭ガス化発電プラントの石炭搬送システム
JP3564812B2 (ja) 燃料電池発電設備
KR20110131183A (ko) 가스화를 위한 자가-발전형 파워 통합설비
JP4555319B2 (ja) ガス化ガスの浄化方法及び浄化装置
JP2022067699A (ja) ガス化システムおよびガス化炉の運転方法
KR20240053196A (ko) 시멘트 크링커 생산 공정의 폐열을 이용한 수소 생산 시스템
KR20230167697A (ko) 가연성 폐기물의 가스화 처리 시스템
CN114976160A (zh) 一种基于氢气燃烧的燃料电池发电系统
TWM648818U (zh) 以有機燃料產製純氫的產氫裝置
Guyomarc'h et al. Method for recycling carbon dioxide CO 2

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065418.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844316

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012550269

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13576636

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010844316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012137276

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019105

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019105

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120731