WO2011090236A1 - 방열 코팅제 및 이를 이용한 방열판 - Google Patents

방열 코팅제 및 이를 이용한 방열판 Download PDF

Info

Publication number
WO2011090236A1
WO2011090236A1 PCT/KR2010/003052 KR2010003052W WO2011090236A1 WO 2011090236 A1 WO2011090236 A1 WO 2011090236A1 KR 2010003052 W KR2010003052 W KR 2010003052W WO 2011090236 A1 WO2011090236 A1 WO 2011090236A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
heat
binder
organic
silane
Prior art date
Application number
PCT/KR2010/003052
Other languages
English (en)
French (fr)
Inventor
박효열
안명상
강동준
정대영
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to CN201080030905.3A priority Critical patent/CN102471637B/zh
Priority to EP10844032.2A priority patent/EP2527414B1/en
Publication of WO2011090236A1 publication Critical patent/WO2011090236A1/ko
Priority to US13/313,191 priority patent/US8535808B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • Y10T428/31518Next to glass or quartz
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • Y10T428/31522Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31525Next to glass or quartz
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Definitions

  • the present invention relates to a heat dissipation coating agent and a heat dissipation plate for coating the surface of the heat dissipation plate of the electrical and electronic parts with high emissivity to achieve efficient heat dissipation in the electrical and electronic parts by radiation and convection.
  • the biggest cause of failure of electrical and electronic components is the heat generation phenomenon. Many parts generate heat while performing part-specific functions, and the heat causes many failures.
  • the most common method used to remove the generated heat is to install a fan or a heat sink with a large surface area at the end of the heat transfer.
  • Aluminum which is most commonly used as a heat sink, has a high thermal conductivity, so heat transfer from a heat source to a surface is performed well, but heat is not emitted from the surface because the emissivity of aluminum is 30% or less.
  • LED has been spotlighted as a new light source with low energy and high efficiency due to the breakthrough in recent years, but the first problem to be solved in order to use the LED in high power lighting equipment is the heat dissipation problem.
  • the luminous efficiency is increasing, the heat generation amount of the LED chip is still considerable. If the heat dissipation countermeasures are not taken, the temperature of the LED chip becomes too high, resulting in deterioration of the chip itself or the packaging resin, thereby decreasing luminous efficiency and the life of the chip.
  • Development of technology to spread the heat of the chip to the outside is essential for high efficiency and long life.
  • the heat generated from the current LED has a structure in which heat is released through the heat sink on the back side.
  • Korean Patent Office Publication No. 10-0910917 heat radiation device of LED module for lighting equipment
  • Registration No. 10-0670918 LED lamp with heat dissipation structure
  • Registration No. 10-0899977 LED lighting, etc.
  • Heat dissipation device registration number 10-0910054” LED heat dissipation device
  • Published Patent Publication No. 10-2009-0108222 LED lighting device of a multiple heat dissipation structure "and the like.
  • a heat dissipation structure is formed so that most of the heat dissipation structures are adjacent to a heat sink or an LED at the back of the LED, and a heat dissipation design focused on the design of the shape, the coupling form, and the arrangement thereof is made, and the material is mostly aluminum.
  • the material is mostly aluminum.
  • aluminum has high thermal conductivity, heat transfer from the heat source to the surface is well achieved, but since the emissivity of aluminum is 30% or less, the heat dissipation on the surface is highly dependent on the convection of air. The problem of heat radiation will occur.
  • the present invention is to solve the above problems, while using the heat sink structure of the existing electrical and electronic components as it is, by coating a high emissivity material with a high emissivity on the surface of the heat sink is effective on the heat sink surface by radiation with conventional convection
  • An object of the present invention is to provide a heat dissipation coating agent for heat dissipation and a heat dissipation plate using the same.
  • the heat dissipating coating agent characterized in that the coating is formed on the surface of the heat sink of the electrical and electronic components made of infrared emitter powder and a binder, and a heat sink having a heat dissipation coating layer formed on the surface to the technical gist.
  • a primer treatment between the heat sink and the heat dissipation coating layer it is preferable to form a primer treatment between the heat sink and the heat dissipation coating layer, and a protective layer is further formed on the surface of the heat dissipation coating layer.
  • the infrared emitter powder jade, cerite, cordierite, germanium, iron oxide, mica, manganese dioxide, silicon carbide, macsumite, carbon, copper oxide, cobalt oxide, nickel oxide, antimony pentoxide (Sb 2 O 5 ), It is preferable to use any one of tin oxide (SnO 2 ) and chromium oxide (Cr 2 O 3 ) or a mixture of two or more thereof.
  • any one of a silane binder, an organic binder, a silicone compound binder, an inorganic binder, an organic / inorganic hybrid binder, and a glass frit it is preferable to use any one of a silane binder, an organic binder, a silicone compound binder, an inorganic binder, an organic / inorganic hybrid binder, and a glass frit.
  • the silane binder includes a silane having four alkoxy groups, wherein the silane having four alkoxy groups is tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxy It is preferable to use one or more of the group consisting of a silane and tetra-n-butoxysilane, and the silane binder is a functional organic alkoxy silane, which is an acrylic group, a methacryl group, an allyl group, an alkyl group, a vinyl group.
  • Silanes having at least one of an amine group and an epoxy functional group wherein the functional alkoxy silane is methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxy Silane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n- Siltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyl
  • the organic binder is at least one functional group of a vinyl group, an acrylic group, an ester group, a urethane group, an epoxy group, an amino group, an imide group, and a thermosetting organic functional group capable of thermal polymerization at both ends of the carbon chain or the side chain of the chain. It is one type selected from the group consisting of an organic polymer containing at least one functional group and an organic polymer containing the above, and a vinyl group, an allyl group, an acryl group, a methacrylate group and a photocurable organic functional group capable of photopolymerization,
  • the organic polymer preferably contains one in which some hydrogen of the hydrocarbon group is substituted with fluorine.
  • the silicon compound binder is an organic-inorganic hybrid material, which is based on siloxane (-Si-O-), and has a linear, branched or cyclic hydrocarbon group at any one of four bonding sites of a silicon atom.
  • the hydrocarbon group is an alkyl group, a ketone group, an acrylic group, a methacryl group, an allyl group, an alkoxy group, an aromatic group, an amino group, an ether group, an ester group, a nitro group, a hydroxyl group, a cyclobutene group, a carboxyl group, an alkyd group, and a urethane. It is preferable to have a group, a vinyl group, a nitrile group, hydrogen or an epoxy functional group having single or two or more, or those in which some hydrogen of the said hydrocarbon group is substituted by fluorine.
  • the inorganic binder is preferably used by adding a material containing at least one ion of Li + , Na + , K + , Mg 2+ , Pb 2+ , Ca 2+ to the water-dispersed colloidal silica
  • the material containing at least one ion of Li + , Na + , K + , Mg 2+ , Pb 2+ , Ca 2+ includes hydroxides LiOH, NaOH, KOH, Mg (OH) 2 , Pb (OH ) 2, preferably in the Ca (OH) 2.
  • the organic-inorganic hybrid binder is preferably used by mixing 0.1 to 150 parts by weight of silane or 0.1 to 150 parts by weight of organic resin with respect to 100 parts by weight of colloidal inorganic particles.
  • colloidal inorganic particles using any one or a mixture of silica, alumina, magnesium oxide, titania, zirconia, tin oxide, zinc oxide, barium titanate, zirconium titanate and strontium titanate. desirable.
  • the present invention while using the heat sink structure of the existing electrical and electronic components as it is, by coating a high radiation rate heat-dissipating coating on the surface of the heat sink of the electrical and electronic components to increase the emissivity of the heat sink and convection by the existing heat sink Together with radiation, the heat is released well, thereby increasing the emission efficiency.
  • the present invention is to coat the surface of the heat dissipation plate of the electrical and electronic components with a high emissivity heat dissipation coating so that the heat is well released to the surface by the heat radiation phenomenon, in particular the aluminum heat sink of the electrical and electronic components or aluminum heat sink of the LED light source It is coated on the surface to ensure efficient heat dissipation.
  • the heat dissipation plate of the electric and electronic parts is not limited to attaching and forming the heat dissipation plate itself having a heat dissipation structure separately to the electric and electronic parts, and become a surface of the electric and electronic parts that can release heat from the electric and electronic parts. It is a concept that includes a structure, which will be apparent to those skilled in the art.
  • the heat dissipating coating agent is composed of an infrared emitter powder and a binder is coated on the surface of the heat sink, such as electrical and electronic components, the infrared emitter powder, jade, cerite, cordierite, germanium, iron oxide, mica, manganese dioxide, silicon carbide, macsumite , Any one of carbon, copper oxide, cobalt oxide, nickel oxide, antimony pentoxide (Sb 2 O 5 ), tin oxide (SnO 2 ), and chromium oxide (Cr 2 O 3 ) or a mixture of two or more thereof may be used.
  • the binder may be any one of a silane binder, an organic binder, a silicone compound binder, an inorganic binder, an organic / inorganic hybrid binder, and glass frit.
  • the primer is made between the heat sink and the heat dissipation coating layer to improve the adhesion of the heat dissipation coating layer.
  • a silane, an organic resin, a silicone compound, an inorganic binder, an organic / inorganic hybrid binder, and glass frit are used as the primer.
  • a protective layer is further formed on the surface of the heat dissipation coating layer in order to protect the heat dissipation coating layer and smooth the surface, and the protective layer is a silane, an organic resin, a silicon compound, an inorganic binder, an organic / inorganic hybrid binder, and glass frit. It is made of either material.
  • the silane binder includes a silane having four alkoxy groups, but the silane having four alkoxy groups includes tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra at least one of the group consisting of -n-butoxysilane, and the silane binder is a functional organic alkoxy silane, which is one of an acryl group, methacryl group, allyl group, alkyl group, vinyl group, amine group and epoxy functional group.
  • the functional alkoxy silane includes methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxy Silane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrime Cysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxys
  • the organic binder is at least one functional group of a vinyl group, an acrylic group, an ester group, a urethane group, an epoxy group, an amino group, an imide group, and a thermosetting organic functional group capable of thermal polymerization at both ends of the carbon chain or the side chain of the chain.
  • One or more organic polymers containing at least one selected from the group consisting of organic polymers containing at least one functional group and a vinyl group, an allyl group, an acryl group, a methacrylate group, and a photocurable organic functional group are used.
  • the organic polymer is one in which some hydrogen of the hydrocarbon group is substituted with fluorine.
  • the silicon compound binder is an organic-inorganic hybrid material, which is based on siloxane (-Si-O-), and has a linear, branched or cyclic hydrocarbon group at any one of four bonding sites of a silicon atom.
  • the hydrocarbon group is an alkyl group, a ketone group, an acrylic group, a methacryl group, an allyl group, an alkoxy group, an aromatic group, an amino group, an ether group, an ester group, a nitro group, a hydroxyl group, a cyclobutene group, a carboxyl group, an alkyd group, and a urethane.
  • a group, a vinyl group, a nitrile group, a hydrogen or an epoxy functional group is used alone or in combination of two or more, or some hydrogen of the hydrocarbon group is substituted with fluorine.
  • the inorganic binder a material containing at least one ion of Li + , Na + , K + , Mg 2+ , Pb 2+ , Ca 2+ in the water-dispersed colloidal silica, which is a hydroxide LiOH, NaOH, KOH, Mg (OH) 2 , Pb (OH) 2 , Ca (OH) 2 are used.
  • the organic-inorganic hybrid binder is used by mixing 0.1 to 150 parts by weight of silane or 0.1 to 150 parts by weight of organic resin with respect to 100 parts by weight of colloidal inorganic particles, the colloidal inorganic particles, silica, alumina, magnesium oxide, titania Zirconia, tin oxide, zinc oxide, barium titanate, zirconium titanate and strontium titanate, or mixtures thereof.
  • the glass frit binder (glass frit) is made of a powder or flakes by melting and cooling the glass composition at a high temperature, it is widely used for the protective coating or sealing, etc., the melting temperature also varies depending on the composition.
  • the glass frit is present in the form of a solid at room temperature, but when the temperature is increased, the glass becomes a liquid, and thus the glass frit is allowed to be used as a binder.
  • the heat dissipation surface of the 40W LED used for lighting is coated with the heat dissipation coating agent, uncoated, and anodized the heat sink surface. It was investigated to what extent the temperature of the PCB substrate falls.
  • the heat-dissipating coating agent used here was an infrared emitter powder (jade: 20-30%, SiC: 50-70%, cordierite: 10-20%, tin oxide: 1-3%, manganese dioxide in 100 parts by weight of the silicone compound binder). : 1-5%) 150 parts by weight and 50 parts by weight of toluene to reduce the viscosity was mixed by a ball mill for 2 hours. The surface of the heat sink was coated by a dipping method using the prepared heat dissipation coating agent.
  • the effect of lowering the temperature of the PCB substrate inside the LED was greatest. This is because heat is better released from the surface by radiation by the heat dissipating coating together with heat dissipation by air convection in the aluminum heat sink.
  • the heat dissipation surface of the 40W LED used for lighting is coated with the heat dissipation coating agent, uncoated, and anodized the heat sink surface. It was investigated to what extent the temperature of the PCB substrate falls.
  • the heat-dissipating coating agent used here was 100 parts by weight of epoxy organic binder (base material: 100%, curing agent: 30%) and infrared emitter powder (jade: 20-30%, SiC: 50-70%, cordierite: 10-20 %, Cerite: 1 to 3%, carbon: 1 to 3%, manganese dioxide: 1 to 5%) 150 parts by weight, and 50 parts by weight of toluene to reduce the viscosity were mixed by a ball mill for 2 hours.
  • the surface of the heat sink was coated by a dipping method using the prepared heat dissipation coating agent.
  • the present invention can be used for a heat dissipation coating agent and a heat dissipation plate using the same for high efficiency emissivity coating on the surface of the heat dissipation plate of the electrical and electronic components to promote efficient heat dissipation in the electrical and electronic components by radiation and convection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 전기전자부품의 방열판의 표면에서의 효율적인 방열을 도모하기 위한 방열 코팅제 및 이를 이용한 방열판에 관한 것으로, 특히 적외선 방사체 분말과 바인더로 이루어져 전기전자부품의 방열판 표면에 코팅되는 것을 특징으로 하는 방열 코팅제 및 이를 이용하여 표면에 방열 코팅층이 형성된 방열판을 기술적 요지로 한다. 이에 의해 전기전자부품의 방열판 표면에 고방사율의 방열 코팅제를 코팅하여 방열판의 방사율을 높여 기존의 방열판에 의한 대류와 함께 복사에 의해서도 열이 잘 방출되도록 하는 효과가 있으며, 특히 전기전자부품 중 LED 광원의 방열판 표면에 코팅되어 고방사에 의한 열의 방출이 효율적으로 이루어지도록 하여, 고출력 LED 광원의 실용화에 기여할 것으로 기대된다.

Description

방열 코팅제 및 이를 이용한 방열판
본 발명은 전기전자부품의 방열판의 표면에 방사율이 높은 고방사율 재료를 코팅하여 대류와 함께 복사에 의하여 전기전자부품에서의 효율적인 방열을 도모하기 위한 방열 코팅제 및 이를 이용한 방열판에 관한 것이다.
열의 발생에 의하여 그 자신 혹은 주변의 부품에 나쁜 영향을 끼쳐서 성능이 떨어지거나 수명이 줄어드는 현상이 자주 발생하게 된다. 이러한 현상을 개선하기 위하여 일반적으로 물과 같은 용매를 이용한 수냉식에 의하여 표면의 열을 강제로 떨어뜨리거나 표면적을 넓게 하여 공기의 대류현상에 의하여 자연 냉각을 시키고 있다. 수냉식의 경우 냉각효과가 매우 우수하지만 물을 순환시키는 부대 장비와 물을 저장하는 설비 등 많은 장치가 필요하여 비용이 많이 소요되고 장치의 규모가 커지는 단점이 있게 된다. 반면에 공랭식의 경우 냉각효과가 매우 낮아서 급속한 냉각이 되지 않게 된다.
한편, 전기전자부품의 가장 큰 고장원인은 부품에서 생기는 발열현상이다. 많은 수의 부품에서 부품 고유의 기능을 수행하면서 열이 발생하게 되고 그 열이 고장의 원인이 되는 경우가 많이 발생하고 있다. 발생된 열을 빼내기 위하여 사용되고 있는 가장 일반적인 방법은 팬을 설치하거나 열이 전달되는 말단에 표면적이 넓은 방열판을 설치하는 것이다. 방열판으로 가장 많이 사용되고 있는 알루미늄은 열전도율이 높으므로 발열원으로부터 표면으로까지의 열전달은 잘 이루어지지만 알루미늄의 방사율이 30% 이하이므로 표면에서 열이 잘 방출되지 못하는 단점이 있다.
이러한 전기전자부품 중 LED는 최근 수년간의 획기적인 발전으로 저에너지 고효율의 새로운 광원으로 각광을 받고 있으나, LED를 고출력의 조명 기기에 사용하기 위하여 해결해야 할 우선문제는 방열문제이다. 발광 효율은 높아지고 있지만 아직 LED 칩의 발열량은 상당한 수준으로, 방열 대책을 마련하지 않으면 LED 칩의 온도가 너무 높아져 칩 자체 또는 패키징 수지가 열화하게 되어 발광 효율과 칩의 수명이 떨어지게 된다. LED의 가장 큰 특징인 고효율과 장수명을 위해서 칩의 열을 외부로 확산시키기 위한 기술 개발이 필수적이다.
현재 LED에서 발생된 열은 배면의 방열판을 통하여 열이 방출되는 구조로 되어 있다. 종래기술로써, 대한민국특허청 등록특허공보 등록번호 10-0910917호 "조명기구용 엘이디 모듈의 방열장치", 등록번호 10-0670918호 "방열 구조를 구비한 LED 램프", 등록번호 10-0899977호 "엘이디조명등의 방열장치", 등록번호 10-0910054호 "LED 방열장치", 공개특허공보 공개번호 10-2009-0108222호 "다중 방열 구조의 LED 조명장치" 등이 있다.
이러한 종래의 기술은 대부분이 LED 배면의 방열판 또는 LED와 인접되도록 방열구조물을 형성하여 이들의 형태나 결합형태, 배치 등의 디자인에 치중된 방열설계가 이루어지고 있으며, 재료는 대부분 알루미늄을 사용하고 있다. 그러나, 알루미늄은 열전도율이 높으므로 발열원으로부터 표면으로까지의 열전달은 잘 이루어지지만 알루미늄의 방사율이 30% 이하이므로 표면에서의 방열은 공기의 대류에 크게 의존하고 있어, 고출력 조명기기에 LED를 사용할 경우 여전히 방열의 문제가 발생하게 된다.
본 발명은 상기 문제점을 해결하기 위한 것으로, 기존의 전기전자부품의 방열판 구조를 그대로 이용하면서, 방열판의 표면에 방사율이 높은 고방사율 재료를 코팅하여 기존의 대류와 함께 복사에 의한 방열판 표면에서의 효율적인 방열을 도모하기 위한 방열 코팅제 및 이를 이용한 방열판의 제공을 그 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은, 적외선 방사체 분말과 바인더로 이루어져 전기전자부품의 방열판 표면에 코팅되는 것을 특징으로 하는 방열 코팅제 및 이를 이용하여 표면에 방열 코팅층이 형성된 방열판을 기술적 요지로 한다.
*또한, 상기 방열판과 방열 코팅층 사이에는 프라이머 처리를 하여 형성시키며, 또한, 상기 방열 코팅층 표면에는 보호층이 더 형성되는 것이 바람직하다.
또한, 상기 적외선 방사체 분말은, 옥, 세르사이트, 코디에라이트, 게르마늄, 산화철, 운모, 이산화망간, 실리콘카바이드, 맥섬석, 카본, 산화구리, 산화코발트, 산화니켈, 오산화안티몬(Sb2O5), 산화주석(SnO2), 산화크롬(Cr2O3) 중 어느 하나 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것이 바람직하다.
또한, 상기 바인더는, 실란 바인더, 유기 바인더, 실리콘 화합물 바인더, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit) 중 어느 하나를 사용하는 것이 바람직하다.
여기에서, 상기 실란 바인더는, 4개의 알콕시기를 가지는 실란을 포함하되, 상기 4개의 알콕시기를 가지는 실란은 테트라메톡시실란, 테트라에톡시실란, 테트라-n-프로폭시실란, 테트라-i-프로폭시실란, 테트라-n-부톡시실란으로 이루어진 군 중 하나 이상을 포함하여 사용하는 것이 바람직하며, 또한, 상기 실란 바인더는, 기능성 유기 알콕시 실란으로써 아크릴기, 메타크릴기, 알릴기, 알킬기, 비닐기, 아민기 및 에폭시 작용기 중 하나 이상을 지니는 실란을 포함하되, 기능성 알콕시 실란이 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, i-프로필트리메톡시실란, i-프로필트리에톡시실란, n-부틸트리메톡시실란, n-부틸트리에톡시실란, n-펜틸트리메톡시실란, n-헥실트리메톡시실란, n-헵틸트리메톡시실란, n-옥틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 시클로헥실트리메톡시실란, 시클로헥실트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 3,3,3-트리플루오로프로필트리메톡시실란, 3,3,3-트리플루오로프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 2-히드록시에틸트리메톡시실란, 2-히드록시에틸트리에톡시실란, 2-히드록시프로필트리메톡시실란, 2-히드록시프로필트리에톡시실란, 3-히드록시프로필트리메톡시실란, 3-히드록시프로필트리에톡시실란, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 3-이소시아네이트프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 3-(메트)아크릴옥시프로필트리메톡시실란, 3-(메트)아크릴옥시프로필트리에톡시실란, 3-우레이도프로필트리메톡시실란, 3-우레이도프로필트리에톡시실란 및 이들의 혼합물로 이루어진 트리알콕시실란류와 디메틸디메톡시실란, 디메틸디에톡시실란, 디에틸디메톡시실란, 디에틸디에톡시실란, 디-n-프로필디메톡시실란, 디-n-프로필디에톡시실란, 디-i-프로필디메톡시실란, 디-i-프로필디에톡시실란, 디-n-부틸디메톡시실란, 디-n-부틸디에톡시실란, 디-n-펜틸디메톡시실란, 디-n-펜틸디에톡시실란, 디-n-헥실디메톡시실란, 디-n-헵틸디메톡시실란, 디-n-헵틸디에톡시실란, 디-n-옥틸디메톡시실란, 디-n-옥틸디에톡시실란, 디-n-시클로헥실디메톡시실란, 디-n-시클로헥실디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 및 이들의 혼합물로 이루어진 디알콕시실란류;로 이루어진 군 및 이의 혼합물 군에서 선택된 1종을 사용하는 것이 바람직하다.
또한, 상기 유기 바인더는, 탄소사슬의 양 말단 또는 사슬의 측쇄에 열중합이 가능한 비닐기, 아크릴기, 에스테르기, 우레탄기, 에폭시기, 아미노기, 이미드기 및 열경화가 가능한 유기 관능기를 적어도 1관능기 이상을 함유하는 유기고분자, 그리고 광중합이 가능한 비닐기, 알릴기, 아크릴기, 메타아크릴레이트기 및 광경화가 가능한 유기 관능기를 적어도 1관능기 이상을 함유하는 유기고분자로 이루어진 군에서 선택된 1종이며, 상기 유기고분자는 탄화수소기의 일부 수소가 불소로 치환된 것을 포함하는 것이 바람직하다.
또한, 상기 실리콘 화합물 바인더는 유기-무기 혼성물질로서, 실록산(-Si-O-)을 기본으로 하면서, 실리콘 원자의 4개 결합부위 중 어느 하나에 직쇄, 측쇄 또는 고리형의 탄화수소기를 가지는 물질이며, 상기 탄화수소기는 알킬기, 케톤기, 아크릴기, 메타크릴기, 알릴기, 알콕시기, 방향족기, 아미노기, 에테르기, 에스테르기, 니트로기, 하이드록시기, 사이클로부텐기, 카르복실기, 알키드기, 우레탄기, 비닐기, 니트릴기, 수소 또는 에폭시 작용기를 단독 또는 2종 이상을 가지거나, 상기 탄화수소기의 일부 수소가 불소로 치환된 것을 포함하는 것이 바람직하다.
또한, 상기 무기바인더는, 수 분산된 콜로이드 실리카에 Li+, Na+, K+, Mg2+, Pb2+, Ca2+ 중 하나 이상의 이온을 포함하는 물질을 첨가하여 사용하는 것이 바람직하며, 여기에서, 상기 Li+, Na+, K+, Mg2+, Pb2+, Ca2+ 중 하나 이상의 이온을 포함하는 물질은 수산화물인 LiOH, NaOH, KOH, Mg(OH)2, Pb(OH)2, Ca(OH)2인 것이 바람직하다.
또한, 상기 유무기하이브리드 바인더는, 콜로이드 무기입자 100중량부에 대해 실란 0.1~150중량부 또는 유기수지 0.1~150중량부를 혼합하여 사용하는 것이 바람직하다.
또한, 상기 콜로이드 무기입자는, 실리카, 알루미나, 산화마그네슘, 티타니아, 지르코니아, 산화주석, 산화아연, 바륨타이타네이트, 지르코늄타이타네이트 및 스트론튬타이타네이트 중 어느 하나 또는 이들의 혼합물을 사용하는 것이 바람직하다.
상기 과제 해결 수단에 의해 본 발명은, 기존의 전기전자부품의 방열판 구조를 그대로 이용하면서, 전기전자부품의 방열판 표면에 고방사율의 방열 코팅제를 코팅하여 방열판의 방사율을 높여 기존의 방열판에 의한 대류와 함께 복사에 의해서도 열이 잘 방출되도록 하여 방출 효율을 높이는 효과가 있다.
특히, 전기전자부품 중 LED 광원의 방열판 표면에 코팅되어 고방사에 의한 열의 방출이 효율적으로 이루어지도록 하여, 고출력 LED 광원의 실용화에 기여할 것으로 기대된다.
본 발명은 전기전자부품의 방열판의 표면에 방사율이 높은 고방사율의 방열 코팅제를 코팅하여 열의 복사 현상에 의하여 열이 표면으로 잘 방출되도록 하는 것으로서, 특히 전기전자부품의 알루미늄 방열판 또는 LED 광원의 알루미늄 방열판 표면에 코팅되어 열의 효율적인 방출이 이루어지도록 하는 것이다. 여기서, 상기 전기전자부품의 방열판이란 전기전자부품에 따로이 방열구조를 가지는 방열판 자체를 부착하여 형성시키는 것에만 한정하는 것이 아니라, 전기전자부품에서 열을 방출할 수 있는 전기전자부품의 표면 자체가 되는 구조를 포함하는 개념이며, 이는 당업자에게는 자명한 정도일 것이다.
상기 방열 코팅제는 적외선 방사체 분말과 바인더로 이루어져 전기전자부품 등의 방열판 표면에 코팅되는 것으로서, 상기 적외선 방사체 분말은, 옥, 세르사이트, 코디에라이트, 게르마늄, 산화철, 운모, 이산화망간, 실리콘카바이드, 맥섬석, 카본, 산화구리, 산화코발트, 산화니켈, 오산화안티몬(Sb2O5), 산화주석(SnO2), 산화크롬(Cr2O3) 중 어느 하나 또는 이들을 둘 이상 혼합한 혼합물을 사용한다. 그리고, 상기 바인더로는 실란 바인더, 유기 바인더, 실리콘 화합물 바인더, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit) 중 어느 하나를 사용한다.
또한, 상기 방열판과 방열 코팅층 사이에는 프라이머 처리가 이루어지도록 하여 방열 코팅층의 접착력을 향상시킨다. 상기 프라이머로서는, 실란, 유기수지, 실리콘 화합물, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit)을 사용한다.
또한, 상기 방열 코팅층 표면에는 방열 코팅층을 보호하고 표면을 매끄럽게 하기 위하여 보호층이 더 형성되며, 상기 보호층은 실란, 유기수지, 실리콘 화합물, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit) 중 어느 하나의 재료로 이루어진다.
상기 실란 바인더는, 4개의 알콕시기를 가지는 실란을 포함하되, 상기 4개의 알콕시기를 가지는 실란은 테트라메톡시실란, 테트라에톡시실란, 테트라-n-프로폭시실란, 테트라-i-프로폭시실란, 테트라-n-부톡시실란으로 이루어진 군 중 하나 이상을 포함하여 사용하며, 상기 실란 바인더는, 기능성 유기 알콕시 실란으로써 아크릴기, 메타크릴기, 알릴기, 알킬기, 비닐기, 아민기 및 에폭시 작용기 중 하나 이상을 지니는 실란을 포함하되, 기능성 알콕시 실란이 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, i-프로필트리메톡시실란, i-프로필트리에톡시실란, n-부틸트리메톡시실란, n-부틸트리에톡시실란, n-펜틸트리메톡시실란, n-헥실트리메톡시실란, n-헵틸트리메톡시실란, n-옥틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 시클로헥실트리메톡시실란, 시클로헥실트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 3,3,3-트리플루오로프로필트리메톡시실란, 3,3,3-트리플루오로프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 2-히드록시에틸트리메톡시실란, 2-히드록시에틸트리에톡시실란, 2-히드록시프로필트리메톡시실란, 2-히드록시프로필트리에톡시실란, 3-히드록시프로필트리메톡시실란, 3-히드록시프로필트리에톡시실란, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 3-이소시아네이트프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 3-(메트)아크릴옥시프로필트리메톡시실란, 3-(메트)아크릴옥시프로필트리에톡시실란, 3-우레이도프로필트리메톡시실란, 3-우레이도프로필트리에톡시실란 및 이들의 혼합물로 이루어진 트리알콕시실란류와 디메틸디메톡시실란, 디메틸디에톡시실란, 디에틸디메톡시실란, 디에틸디에톡시실란, 디-n-프로필디메톡시실란, 디-n-프로필디에톡시실란, 디-i-프로필디메톡시실란, 디-i-프로필디에톡시실란, 디-n-부틸디메톡시실란, 디-n-부틸디에톡시실란, 디-n-펜틸디메톡시실란, 디-n-펜틸디에톡시실란, 디-n-헥실디메톡시실란, 디-n-헵틸디메톡시실란, 디-n-헵틸디에톡시실란, 디-n-옥틸디메톡시실란, 디-n-옥틸디에톡시실란, 디-n-시클로헥실디메톡시실란, 디-n-시클로헥실디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 및 이들의 혼합물로 이루어진 디알콕시실란류;로 이루어진 군 및 이의 혼합물 군에서 선택된 1종을 사용한다.
또한, 상기 유기 바인더는, 탄소사슬의 양 말단 또는 사슬의 측쇄에 열중합이 가능한 비닐기, 아크릴기, 에스테르기, 우레탄기, 에폭시기, 아미노기, 이미드기 및 열경화가 가능한 유기 관능기를 적어도 1관능기 이상을 함유하는 유기고분자, 그리고 광중합이 가능한 비닐기, 알릴기, 아크릴기, 메타아크릴레이트기 및 광경화가 가능한 유기 관능기를 적어도 1관능기 이상을 함유하는 유기고분자로 이루어진 군에서 선택된 1종을 사용하며, 상기 유기고분자는 탄화수소기의 일부 수소가 불소로 치환된 것을 사용한다.
또한, 상기 실리콘 화합물 바인더는 유기-무기 혼성물질로서, 실록산(-Si-O-)을 기본으로 하면서, 실리콘 원자의 4개 결합부위 중 어느 하나에 직쇄, 측쇄 또는 고리형의 탄화수소기를 가지는 물질이며, 상기 탄화수소기는 알킬기, 케톤기, 아크릴기, 메타크릴기, 알릴기, 알콕시기, 방향족기, 아미노기, 에테르기, 에스테르기, 니트로기, 하이드록시기, 사이클로부텐기, 카르복실기, 알키드기, 우레탄기, 비닐기, 니트릴기, 수소 또는 에폭시 작용기를 단독 또는 2종 이상을 가지거나, 상기 탄화수소기의 일부 수소가 불소로 치환된 것을 사용한다.
또한, 상기 무기바인더는, 수 분산된 콜로이드 실리카에 Li+, Na+, K+, Mg2+, Pb2+, Ca2+ 중 하나 이상의 이온을 포함하는 물질을 사용하며, 이는 수산화물인 LiOH, NaOH, KOH, Mg(OH)2, Pb(OH)2, Ca(OH)2을 사용한다.
또한, 상기 유무기하이브리드 바인더는, 콜로이드 무기입자 100중량부에 대해 실란 0.1~150중량부 또는 유기수지 0.1~150중량부를 혼합하여 사용하며, 상기 콜로이드 무기입자는, 실리카, 알루미나, 산화마그네슘, 티타니아, 지르코니아, 산화주석, 산화아연, 바륨타이타네이트, 지르코늄타이타네이트 및 스트론튬타이타네이트 중 어느 하나 또는 이들의 혼합물을 사용한다.
또한, 상기 글래스 프릿(glass frit) 바인더는 유리조성을 고온에서 녹인 뒤 냉각시켜서 분말 혹은 조각의 형태로 만든 것으로서, 보호코팅이나 씰링 등의 용도로 광범위하게 사용되고 있으며, 용융 온도도 조성에 따라서 다르게 나타난다. 상기 글래스 프릿은 상온에서 고상의 형태로 존재하지만 온도를 올리면 액상으로 되어 바인더로서 사용이 가능하게 되므로, 액상에서 접착을 시킨 뒤 다시 냉각을 시키게 되면 고상의 형태로 접착이 되게 된다.
이하에서는 본 발명의 바람직한 실시예에 대해 설명하고자 한다.
<실시예 1>
방열 코팅제의 방열효과를 조사하기 위하여 조명용으로 사용되는 40W LED의 알루미늄 방열판에 방열 코팅제를 코팅한 것과 코팅하지 않은 것 그리고 방열판 표면을 아노다이징 한 것 등 방열판 표면을 3가지의 다른 형태로 하여 LED 내부의 PCB 기판의 온도가 어느 정도 떨어지는 가를 조사하였다.
여기에 사용된 방열 코팅제는 실리콘 화합물 바인더 100 중량부에 적외선 방사체 분말(옥:20~30%, SiC:50-70%, 코디에라이트:10~20%, 산화주석:1~3%, 이산화망간:1~5%) 150 중량부 그리고 점도를 떨어뜨리기 위한 톨루엔 50 중량부를 섞어서 2시간 동안 볼밀로써 혼합하여 만들었다. 제조된 방열 코팅제를 사용하여 디핑방법으로 방열판 표면을 코팅하였다.
LED의 PCB 상단의 온도 측정의 결과는 다음과 같이 나타났다.
- 시료 1 : 알루미늄 방열판에 어떠한 표면처리도 하지 않은 것 : 77℃
- 시료 2 : 알루미늄 방열판에 아노다이징 처리한 것(두께 : 15㎛) : 76.2℃
- 시료 3 : 알루미늄 방열판에 방열 코팅제 처리한 것(두께 : 15㎛) 코팅 : 71.1℃
알루미늄 방열판에 본 발명에 따른 방열 코팅제를 이용하여 방열 코팅층을 형성하였을 경우 LED 내부의 PCB 기판의 온도를 떨어뜨리는 효과가 가장 크게 나타났다. 이는 알루미늄 방열판에서의 공기의 대류에 의한 방열과 함께 상기 방열 코팅제에 의한 복사에 의하여 표면에서 열이 더욱 잘 방출되기 때문이다.
<실시예 2>
방열 코팅제의 방열효과를 조사하기 위하여 조명용으로 사용되는 40W LED의 알루미늄 방열판에 방열 코팅제를 코팅한 것과 코팅하지 않은 것 그리고 방열판 표면을 아노다이징 한 것 등 방열판 표면을 3가지의 다른 형태로 하여 LED 내부의 PCB 기판의 온도가 어느 정도 떨어지는 가를 조사하였다.
여기에 사용된 방열 코팅제는 에폭시 유기 바인더 100 중량부(주재:100%, 경화제:30%)에 적외선 방사체 분말(옥:20~30%, SiC:50-70%, 코디에라이트:10~20%, 세르사이트:1~3%, 카본:1~3%, 이산화망간:1~5%) 150 중량부 그리고 점도를 떨어뜨리기 위한 톨루엔 50 중량부를 섞어서 2시간 동안 볼밀로써 혼합하여 만들었다. 제조된 방열 코팅제를 사용하여 디핑방법으로 방열판 표면을 코팅하였다.
LED의 PCB 상단의 온도 측정의 결과는 다음과 같이 나타났다.
- 시료 1 : 알루미늄 방열판에 어떠한 표면처리도 하지 않은 것 : 77℃
- 시료 2 : 알루미늄 방열판에 아노다이징 처리한 것(두께 : 15㎛) : 76.2℃
- 시료 3 : 알루미늄 방열판에 방열 코팅제 처리한 것(두께 : 15㎛) 코팅 : 71.0℃
알루미늄 방열판에 방열 코팅을 하였을 경우 LED 내부의 PCB 기판의 온도를 떨어뜨리는 효과가 가장 크게 나타났다. 이는 알루미늄 방열판에서의 공기의 대류에 의한 방열과 함께 상기 방열 코팅제에 의한 복사에 의하여 표면에서 열이 더욱 잘 방출되기 때문이다.
본 발명은 전기전자부품의 방열판의 표면에 방사율이 높은 고방사율 재료를 코팅하여 대류와 함께 복사에 의하여 전기전자부품에서의 효율적인 방열을 도모하기 위한 방열 코팅제 및 이를 이용한 방열판에 이용 가능한 것이다.

Claims (17)

  1. 적외선 방사체 분말과 바인더로 이루어져 전기전자부품의 방열판 표면에 코팅되는 것을 특징으로 하는 방열 코팅제.
  2. 제 1항에 있어서, 상기 적외선 방사체 분말은, 옥, 세르사이트, 코디에라이트, 게르마늄, 산화철, 운모, 이산화망간, 실리콘카바이드, 맥섬석, 카본, 산화구리, 산화코발트, 산화니켈, 오산화안티몬(Sb2O5), 산화주석(SnO2), 산화크롬(Cr2O3) 중 어느 하나 또는 이들을 둘 이상 혼합한 혼합물인 것을 특징으로 하는 방열 코팅제.
  3. 제 2항에 있어서, 상기 바인더는, 실란 바인더, 유기 바인더, 실리콘 화합물 바인더, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit) 중 어느 하나를 사용하는 것을 특징으로 하는 방열 코팅제.
  4. 제 3항에 있어서, 상기 실란 바인더는, 4개의 알콕시기를 가지는 실란을 포함하되, 상기 4개의 알콕시기를 가지는 실란은 테트라메톡시실란, 테트라에톡시실란, 테트라-n-프로폭시실란, 테트라-i-프로폭시실란, 테트라-n-부톡시실란으로 이루어진 군 중 하나 이상을 포함하는 것을 특징으로 하는 방열 코팅제.
  5. 제 3항에 있어서, 상기 실란 바인더는, 기능성 유기 알콕시 실란으로써 아크릴기, 메타크릴기, 알릴기, 알킬기, 비닐기, 아민기 및 에폭시 작용기 중 하나 이상을 지니는 실란을 포함하되, 기능성 알콕시 실란이 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, i-프로필트리메톡시실란, i-프로필트리에톡시실란, n-부틸트리메톡시실란, n-부틸트리에톡시실란, n-펜틸트리메톡시실란, n-헥실트리메톡시실란, n-헵틸트리메톡시실란, n-옥틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 시클로헥실트리메톡시실란, 시클로헥실트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 3,3,3-트리플루오로프로필트리메톡시실란, 3,3,3-트리플루오로프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 2-히드록시에틸트리메톡시실란, 2-히드록시에틸트리에톡시실란, 2-히드록시프로필트리메톡시실란, 2-히드록시프로필트리에톡시실란, 3-히드록시프로필트리메톡시실란, 3-히드록시프로필트리에톡시실란, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 3-이소시아네이트프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 3-(메트)아크릴옥시프로필트리메톡시실란, 3-(메트)아크릴옥시프로필트리에톡시실란, 3-우레이도프로필트리메톡시실란, 3-우레이도프로필트리에톡시실란 및 이들의 혼합물로 이루어진 트리알콕시실란류와 디메틸디메톡시실란, 디메틸디에톡시실란, 디에틸디메톡시실란, 디에틸디에톡시실란, 디-n-프로필디메톡시실란, 디-n-프로필디에톡시실란, 디-i-프로필디메톡시실란, 디-i-프로필디에톡시실란, 디-n-부틸디메톡시실란, 디-n-부틸디에톡시실란, 디-n-펜틸디메톡시실란, 디-n-펜틸디에톡시실란, 디-n-헥실디메톡시실란, 디-n-헵틸디메톡시실란, 디-n-헵틸디에톡시실란, 디-n-옥틸디메톡시실란, 디-n-옥틸디에톡시실란, 디-n-시클로헥실디메톡시실란, 디-n-시클로헥실디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 및 이들의 혼합물로 이루어진 디알콕시실란류;로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것을 특징으로 하는 방열 코팅제.
  6. 제 3항에 있어서, 상기 유기 바인더는, 탄소사슬의 양 말단 또는 사슬의 측쇄에 열중합이 가능한 비닐기, 아크릴기, 에스테르기, 우레탄기, 에폭시기, 아미노기, 이미드기 및 열경화가 가능한 유기 관능기를 적어도 1관능기 이상을 함유하는 유기고분자, 그리고 광중합이 가능한 비닐기, 알릴기, 아크릴기, 메타아크릴레이트기 및 광경화가 가능한 유기 관능기를 적어도 1관능기 이상을 함유하는 유기고분자로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 방열 코팅제.
  7. 제 6항에 있어서, 상기 유기고분자는 탄화수소기의 일부 수소가 불소로 치환된 것을 포함하는 것을 특징으로 하는 방열 코팅제.
  8. 제 3항에 있어서, 상기 실리콘 화합물 바인더는 유기-무기 혼성물질로서, 실록산(-Si-O-)을 기본으로 하면서, 실리콘 원자의 4개 결합부위 중 어느 하나에 직쇄, 측쇄 또는 고리형의 탄화수소기를 가지는 물질이며, 상기 탄화수소기는 알킬기, 케톤기, 아크릴기, 메타크릴기, 알릴기, 알콕시기, 방향족기, 아미노기, 에테르기, 에스테르기, 니트로기, 하이드록시기, 사이클로부텐기, 카르복실기, 알키드기, 우레탄기, 비닐기, 니트릴기, 수소 또는 에폭시 작용기를 단독 또는 2종 이상을 가지거나, 상기 탄화수소기의 일부 수소가 불소로 치환된 것을 포함하는 것을 특징으로 하는 방열 코팅제.
  9. 제 3항에 있어서, 상기 무기바인더는, 수 분산된 콜로이드 실리카에 Li+, Na+, K+, Mg2+, Pb2+, Ca2+ 중 하나 이상의 이온을 포함하는 물질을 첨가하여 형성된 것을 특징으로 하는 방열 코팅제.
  10. 제 9항에 있어서, 상기 Li+, Na+, K+, Mg2+, Pb2+, Ca2+ 중 하나 이상의 이온을 포함하는 물질은 수산화물인 LiOH, NaOH, KOH, Mg(OH)2, Pb(OH)2, Ca(OH)2인 것을 특징으로 하는 방열 코팅제.
  11. 제 3항에 있어서, 상기 유무기하이브리드 바인더는, 콜로이드 무기입자 100중량부에 대해 실란 0.1~150중량부 또는 유기수지 0.1~150중량부를 혼합하여 형성되는 것을 특징으로 하는 방열 코팅제.
  12. 제 11항에 있어서, 상기 콜로이드 무기입자는, 실리카, 알루미나, 산화마그네슘, 티타니아, 지르코니아, 산화주석, 산화아연, 바륨타이타네이트, 지르코늄타이타네이트 및 스트론튬타이타네이트 중 어느 하나 또는 이들의 혼합물을 사용하는 것을 특징으로 하는 방열 코팅제.
  13. 전기전자부품의 방열판에 있어서,
    상기 방열판 표면에 적외선 방사체 분말과 바인더로 이루어진 방열 코팅층이 형성된 것을 특징으로 하는 방열판.
  14. 제 13항에 있어서, 상기 방열판과 방열 코팅층 사이에는 프라이머 처리가 이루어지는 것을 특징으로 하는 방열판.
  15. 제 14항에 있어서, 상기 프라이머 처리는, 실란, 유기수지, 실리콘 화합물, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit) 중 어느 하나를 사용하여 이루어지는 것을 특징으로 하는 방열판.
  16. 제 13항에 있어서, 상기 방열 코팅층 표면에는 보호층이 더 형성되는 것을 특징으로 하는 방열판.
  17. 제 16항에 있어서, 상기 보호층은,
    실란, 유기수지, 실리콘 화합물, 무기바인더, 유무기하이브리드 바인더, 글래스 프릿(glass frit) 중 어느 하나의 재료로 이루어진 것을 특징으로 하는 방열 코팅제.
PCT/KR2010/003052 2010-01-19 2010-05-14 방열 코팅제 및 이를 이용한 방열판 WO2011090236A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080030905.3A CN102471637B (zh) 2010-01-19 2010-05-14 散热涂布剂及利用此散热涂布剂的散热板
EP10844032.2A EP2527414B1 (en) 2010-01-19 2010-05-14 Heat dissipation coating agent and heat-dissipating plate including same
US13/313,191 US8535808B2 (en) 2010-01-19 2011-12-07 Heat dissipation coating agent and heat-dissipating plate including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100004895A KR101035011B1 (ko) 2010-01-19 2010-01-19 방열 코팅제 및 이를 이용한 방열판
KR10-2010-0004895 2010-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/313,191 Continuation US8535808B2 (en) 2010-01-19 2011-12-07 Heat dissipation coating agent and heat-dissipating plate including same

Publications (1)

Publication Number Publication Date
WO2011090236A1 true WO2011090236A1 (ko) 2011-07-28

Family

ID=44307035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003052 WO2011090236A1 (ko) 2010-01-19 2010-05-14 방열 코팅제 및 이를 이용한 방열판

Country Status (5)

Country Link
US (1) US8535808B2 (ko)
EP (1) EP2527414B1 (ko)
KR (1) KR101035011B1 (ko)
CN (1) CN102471637B (ko)
WO (1) WO2011090236A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401361A (zh) * 2011-11-15 2012-04-04 安徽世林照明股份有限公司 增加led灯铝质散热体热辐射能力的方法
WO2018043777A1 (ko) * 2016-08-29 2018-03-08 이영주 Led 램프 플레이트 구조체

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271965B1 (ko) * 2011-07-13 2013-06-07 주식회사 노루코일코팅 표면 처리용 수지 조성물 및 이에 의해 코팅된 강판
CN203474703U (zh) * 2012-04-13 2014-03-12 普罗旺斯科技(深圳)有限公司 一种散热涂层及散热片
US9859038B2 (en) 2012-08-10 2018-01-02 General Cable Technologies Corporation Surface modified overhead conductor
KR101457181B1 (ko) 2013-01-28 2014-11-03 김정석 열전도율과 방사율이 향상된 세라믹 방열부재 및 그 제조방법
US10957468B2 (en) 2013-02-26 2021-03-23 General Cable Technologies Corporation Coated overhead conductors and methods
CN104074597A (zh) * 2013-03-25 2014-10-01 叶俊德 具有奈米散热涂层的散热装置及散热方法
PL222838B1 (pl) * 2013-04-15 2016-09-30 Inst Tech Materiałów Elektronicznych Sposób obniżenia rezystancji termicznej w elektronicznych przyrządach mocy, zwłaszcza w diodach laserowych
WO2015051370A2 (en) 2013-10-04 2015-04-09 Under Armour, Inc. Article of apparel
KR101524728B1 (ko) * 2013-12-16 2015-06-01 부산대학교 산학협력단 고방열 세라믹 복합체, 이의 제조방법, 및 이의 용도
KR101424089B1 (ko) * 2014-03-14 2014-07-28 주식회사 에코인프라홀딩스 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
KR101483758B1 (ko) 2014-03-17 2015-01-26 주식회사 네브레이코리아 탄소나노튜브를 포함하여 우수한 방열 특성을 가지는 엘이디(led) 조명등기구
JP6364614B2 (ja) * 2014-05-09 2018-08-01 パナソニックIpマネジメント株式会社 高熱放射性樹脂組成物
USD769628S1 (en) 2014-10-07 2016-10-25 Under Armour, Inc. Textile sheet
KR101495052B1 (ko) * 2014-12-11 2015-03-02 한상권 탄소나노튜브를 포함하여 우수한 방열 특성을 가지는 엘이디(led) 조명등기구
USD779216S1 (en) 2015-01-30 2017-02-21 Under Armour, Inc. Woven, knitted or non-woven textile for apparel
WO2017015512A1 (en) 2015-07-21 2017-01-26 General Cable Technologies Corporation Electrical accessories for power transmission systems and methods for preparing such electrical accessories
CN106519832A (zh) * 2016-10-26 2017-03-22 安徽飞达电气科技有限公司 一种耐高温电解电容器外壳涂料及其制备方法
CN106497404A (zh) * 2016-10-26 2017-03-15 安徽飞达电气科技有限公司 一种电容器外壳用水性散热涂料
CN106752695A (zh) * 2016-12-08 2017-05-31 辽宁法库陶瓷工程技术研究中心 用于电子器件的高红外发射率散热吸波涂料及其制备方法
CN106907696A (zh) * 2017-02-27 2017-06-30 苏州科斯曼照明工程有限公司 一种用于地埋灯的散热片
KR101881436B1 (ko) * 2017-10-19 2018-07-24 테크젠정공(주) 탄소나노튜브와 그라핀 혼합체가 코팅된 고용량 방열판 제조방법
CN111548701A (zh) * 2020-04-30 2020-08-18 天津大学 一种可降低热工设备表面散热的涂料及其制备方法
CN111892412B (zh) * 2020-08-14 2022-06-24 北京中科原创节能环保科技有限公司 一种加热炉高辐射率节能辐射体及其制备方法
KR102413669B1 (ko) * 2021-11-10 2022-06-28 한국도시재생기술(주) 나노 크기의 실리카 분산체를 함유한 세라믹 코팅제의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119800A (en) * 1980-02-25 1981-09-19 Mitsubishi Electric Corp Surface treating method of heat radiating body
KR970063698A (ko) * 1996-02-28 1997-09-12 이대원 방열판이 구비된 반도체 리드 프레임
JP2001348542A (ja) * 2000-06-07 2001-12-18 Mochida Shoko Kk 放熱シート及びその製造方法
KR100563919B1 (ko) * 2001-07-25 2006-03-23 가부시키가이샤 고베 세이코쇼 방열성이 우수한 전자기기 부재용 도장체
KR100764340B1 (ko) * 2005-03-31 2007-10-05 가부시키가이샤 고베 세이코쇼 방열성이 우수한 도장금속재

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204021A (en) * 1978-12-26 1980-05-20 Ferro Corporation Article of manufacture having composite layer affording abrasion resistant and release properties
US6794030B1 (en) * 1999-11-30 2004-09-21 3M Innovative Properties Company Heat conductive sheet and method of producing the sheet
TWI224384B (en) * 2002-01-22 2004-11-21 Shinetsu Chemical Co Heat-dissipating member, manufacturing method and installation method
KR100593689B1 (ko) * 2005-12-27 2006-06-28 한국전기연구원 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된나노입자무기물과 경화성수지로 된 유무기하이브리드재료의 제조방법 및 그 재료

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119800A (en) * 1980-02-25 1981-09-19 Mitsubishi Electric Corp Surface treating method of heat radiating body
KR970063698A (ko) * 1996-02-28 1997-09-12 이대원 방열판이 구비된 반도체 리드 프레임
JP2001348542A (ja) * 2000-06-07 2001-12-18 Mochida Shoko Kk 放熱シート及びその製造方法
KR100563919B1 (ko) * 2001-07-25 2006-03-23 가부시키가이샤 고베 세이코쇼 방열성이 우수한 전자기기 부재용 도장체
KR100764340B1 (ko) * 2005-03-31 2007-10-05 가부시키가이샤 고베 세이코쇼 방열성이 우수한 도장금속재

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527414A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401361A (zh) * 2011-11-15 2012-04-04 安徽世林照明股份有限公司 增加led灯铝质散热体热辐射能力的方法
WO2018043777A1 (ko) * 2016-08-29 2018-03-08 이영주 Led 램프 플레이트 구조체

Also Published As

Publication number Publication date
CN102471637B (zh) 2015-01-28
CN102471637A (zh) 2012-05-23
US8535808B2 (en) 2013-09-17
KR101035011B1 (ko) 2011-05-17
EP2527414A1 (en) 2012-11-28
EP2527414B1 (en) 2018-07-04
EP2527414A4 (en) 2017-03-01
US20120077040A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
KR101035011B1 (ko) 방열 코팅제 및 이를 이용한 방열판
KR101243944B1 (ko) 분산성이 개선된 방열 코팅용 습식복합소재 및 이를 이용한 방열 코팅용 습식복합코팅막
KR100989254B1 (ko) 실온 경화형 열전도성 실리콘 고무 조성물
CN109181312B (zh) 一种磁场下垂直定向的氮化硼与有机硅复合导热薄膜材料及其制备方法
JP5105740B2 (ja) 表面改質コランダム及び樹脂組成物
WO2012148218A2 (ko) 수평열전 테이프 및 그 제조방법
WO2015093825A1 (ko) 고방열 세라믹 복합체, 이의 제조방법, 및 이의 용도
JP2009152536A (ja) 高効率放熱電子機器基板およびそれを含んだ電子制御機器、コンピュータシステム、家庭電化製品および産業機器製品
KR101072298B1 (ko) 방열 코팅층이 형성된 진공펌프
KR20200098778A (ko) 전기자동차 배터리 패키징용 방열패드의 제조방법
CN114752221B (zh) 一种绝缘高导热柔性硅胶垫片及其制备方法
KR102285579B1 (ko) 방열 도료 조성물 및 이를 적용한 led 등기구
KR101063916B1 (ko) 방열 코팅층이 형성된 변압기
KR101084687B1 (ko) 유·무기 하이브리드형 액상 방열 코팅 조성물 및 상기 조성물을 이용한 도막층이 형성된 전자부품
KR101072294B1 (ko) 방열 코팅층이 형성된 전동기
JP2011068792A (ja) 被覆蛍光体、波長変換部材、led発光装置
KR101410058B1 (ko) 우수한 방열특성을 가진, 친환경적인 방열수지 조성물 및 이를 이용한 강판
KR101072293B1 (ko) 방열 코팅층이 형성된 반도체 부품
KR20140059514A (ko) 투명 방열 코팅제 제조방법
KR101727975B1 (ko) Led효율을 극대화하기 위한 열전도성 접착소재 기술개발
TW201906932A (zh) 固體有機矽材料、使用其而成之積層體及發光元件
JP2004363310A (ja) Cpu用放熱器
JP2008031405A (ja) 熱伝導性樹脂組成物の製造方法
WO2011034272A1 (ko) 적외선 방사층이 코팅된 그릴이 구비된 조리기
US20220389229A1 (en) Method For Producing Surface-Coated Hexagonal Boron Nitride Particle And Surface-Coated Hexagonal Boron Nitride Particle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030905.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010844032

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE