WO2011090152A1 - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- WO2011090152A1 WO2011090152A1 PCT/JP2011/051054 JP2011051054W WO2011090152A1 WO 2011090152 A1 WO2011090152 A1 WO 2011090152A1 JP 2011051054 W JP2011051054 W JP 2011051054W WO 2011090152 A1 WO2011090152 A1 WO 2011090152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- film
- semiconductor device
- variable resistance
- metal
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 31
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 30
- 239000011229 interlayer Substances 0.000 claims abstract description 24
- 238000005530 etching Methods 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 230000008859 change Effects 0.000 claims description 56
- 239000002184 metal Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000010410 layer Substances 0.000 claims description 26
- 230000004888 barrier function Effects 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 239000006227 byproduct Substances 0.000 abstract description 5
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 10
- 230000015654 memory Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000007795 chemical reaction product Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910000480 nickel oxide Inorganic materials 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- -1 Silicon Oxide Nitride Chemical class 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5228—Resistive arrangements or effects of, or between, wiring layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/063—Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a structure of a nonvolatile resistance change element and a manufacturing method thereof.
- Non-volatile memories which are currently the mainstream in the market, are semiconductor transistors due to the charge stored inside the insulating film placed above the channel, as represented by flash memory and SONOS (Silicon Oxide Nitride Oxide Silicon) memory. This is realized by using a technique for changing the threshold voltage. Miniaturization is indispensable for promoting the increase in capacity, but it has become difficult even to miniaturize a single semiconductor transistor having no charge storage function. In view of this, a transistor has only a switching function for selecting a memory cell to be read and written, and a memory element is separated as in a DRAM, and studies are being made to continue miniaturization and increase in capacity.
- SONOS Silicon Oxide Nitride Oxide Silicon
- variable resistance element When continuously miniaturizing the information storage function, it is conceivable to use a resistance change element using an electronic element whose electrical resistance can be switched between two or more values by some electrical stimulation as a storage element.
- a capacitor capacitor
- electrical resistance generally has a finite value even if it is miniaturized, and it is considered that it is advantageous to continue miniaturization if there is a principle and material that changes the resistance value.
- Such an operation of the variable resistance element is a switch that switches between a low-resistance on state and a high-resistance off state. For example, as shown in FIG. 3, a switch that interconnects the first wiring 31 and the second wiring 32 It is also possible in principle to be applied to the switching device 33 or the wiring configuration in the LSI.
- MIM type metal / metal oxide / metal
- FIG. 4 is a schematic diagram of a cross section of the MIM type resistance change element, in which a resistance change element film 42 made of a metal oxide is interposed between the upper electrode 41 and the lower electrode 43.
- a resistance change element film 42 made of a metal oxide is interposed between the upper electrode 41 and the lower electrode 43.
- NiO nickel oxide
- FIG. 5 shows the current-voltage characteristics of this MIM type resistance change element.
- This element maintains the high-resistance off-state or low-resistance on-state characteristics in a nonvolatile manner even when the power is turned off, but the resistance state can be switched by applying a predetermined voltage / current stimulus as needed. it can.
- FIG. 5 shows an example of current-voltage characteristics in the on state and the off state. When a voltage equal to or higher than Vt1 is applied to a high-resistance off-state element, it changes to a low-resistance on-state, and the electrical characteristics shown in FIG. Next, when Vt2 or more is applied to the on-state element of FIG.
- FIG. 5B the state changes to a high-resistance off state, and the electrical characteristics of FIG. 5A are restored.
- An operation of repeatedly switching between FIG. 5A and FIG. 5B is possible, and this characteristic can be used as a nonvolatile switch or a nonvolatile memory cell for circuit switching.
- FIG. 7 shows the electrode area dependency of the resistance value in the low resistance state of the parallel plate type element using NiO as the current path resistance change material as in Non-Patent Document 1 and sandwiched between the electrodes.
- FIG. 7 shows that the resistance value in the low resistance state hardly depends on the electrode area, and clearly shows that the low resistance state is carried by a locally formed current path.
- the damage 52 formed mainly on the side wall of the by-product 51 at the time of etching or on the side wall at the time of device processing is mainly used.
- the probability of adhesion increases because the vapor pressure of the reaction product is low.
- the upper and lower electrodes are short-circuited by-products 51, if the electric resistance of the by-product 51 is small, to thereby no longer naturally functioning as variable resistance element by excessive current path indicated by i 1, higher than the on-state Even in the case of resistance, the resistance in the off state is lowered.
- the additional current path indicated by i 2 even if the damage 52 is introduced characteristic of the variable resistance element deteriorate.
- the high resistance state of the element needs to realize a stable high resistance state 1000 times or more that of the memory element, and suppression of the generation of an extra current path is extremely important.
- the present invention is an invention made in the above situation, and provides an element structure that suppresses a high operating rate and a characteristic variation between elements, which is particularly useful for realizing a switching element, and more specifically, a manufacturing process thereof.
- the main problem is to propose an element structure that suppresses variation in characteristics between elements in a nonvolatile variable resistance element and a manufacturing process thereof.
- a nonvolatile resistance change element including a conventional metal oxide layer
- the upper and lower electrodes are short-circuited by a metallic reaction product generated, An element that does not function as a resistance change element may occur.
- a main object of the present invention is to provide a semiconductor device having an element structure that does not deteriorate the function of the resistance change element even when a reaction product of a metal oxide contained in the resistance change material adheres to the sidewall of the MlM type element. It is to provide a structure and manufacturing process.
- the first aspect of the present invention is: A semiconductor device comprising a resistance change element between a first wiring and a second wiring disposed above and below an interlayer insulating film on a semiconductor substrate,
- the variable resistance element is An upper electrode electrically connected to the second wiring;
- a lower electrode electrically connected to the first wiring;
- a resistance change element film made of a metal oxide interposed between the upper and lower electrodes;
- Have The second wiring includes a plug;
- the plug has a metal layer constituting the second wiring embedded in an upper electrode of the variable resistance element on the outermost surface and the bottom surface, and embedded in the inner side of the upper electrode,
- the present invention relates to a semiconductor device in which the upper electrode on the bottom surface of the plug is in contact with an upper surface separated from a side surface of the variable resistance element film.
- the upper electrode of the variable resistance element extends from the outermost surface of the plug to the outermost surface of the second wiring, and the metal layer constituting the second wiring Are preferably a barrier metal and a copper film.
- an insulating film different from the interlayer insulating film between the first and second wires is provided on the variable resistance element film, and the plug penetrates the insulating film and changes the resistance. It is preferable to be in contact with the upper surface of the element film.
- the metal used for the upper electrode and the lower electrode preferably contains at least one of Ru, Pt, Ni, Ti, Ta, W, Mo, and Zr.
- the metal oxide constituting the variable resistance element film includes at least one metal oxide of Ni, Ti, Ta, W, Zr, and Hf.
- the method for manufacturing a semiconductor device of the present invention includes a step of forming a first wiring on a semiconductor substrate, Forming a laminated film of at least a lower electrode film of a resistance change element and a metal oxide to be a resistance change element film on the first wiring; Patterning the laminated film into a predetermined shape; Forming an interlayer insulating film on the entire surface; Forming a wiring groove for forming a second wiring in the interlayer insulating film, and a plug pilot hole exposing an upper surface separated from a side surface of the resistance change element film at a bottom of the wiring groove; Forming a metal film to be an upper electrode of the variable resistance element into a film thickness that does not embed the plug pilot hole; Forming a metal layer serving as a second wiring on a metal film serving as an upper electrode of the variable resistance element; Planarizing the metal film to be the upper electrode of the variable resistance element and the metal layer to be the second wiring until the surface of the interlayer insulating film is exposed; Have
- the upper electrode on the variable resistance element film made of a metal oxide film is embedded as a part of the upper layer wiring at the same time as the plug is formed, so that the side region of the upper electrode becomes the variable resistance element film (metal oxide film).
- a structure that does not directly contact the side surface of the lower electrode, and even if the by-product adheres to the side wall portion during processing of the resistance change element film (metal oxide) and the lower electrode, the upper and lower electrodes can be formed.
- variation between elements is realizable.
- the element region of the upper electrode can be defined inside the element region of the resistance change element film (metal oxide), even when etching damage is formed on the side wall when the resistance change element film (metal oxide) is processed. Since there is a distance from the upper electrode, it is possible to avoid the influence from the etching damage, and it can be expected that the characteristic variation in the fine element is reduced.
- the upper electrode is formed at the same time as the wiring plug, the height of the variable resistance element region can be reduced by the thickness of the upper electrode, which is effective for miniaturization and higher integration.
- Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Sectional drawing which showed typically the structure of the semiconductor device which concerns on the Example of a body invention Process sectional drawing which showed the structure of the semiconductor device based on the Example of this invention typically Diagram showing a switch that interconnects two wires Basic cross-sectional schematic diagram of MIM type resistance change element Basic resistance change characteristics of MIM type resistance change element using Ni oxide as the resistance change material Schematic diagram of local current path responsible for on-
- FIG. 1 is a schematic sectional view of a semiconductor device according to the present invention.
- a semiconductor substrate (not shown) has a structure in which a lower electrode 8, a resistance change element film 9, and a hard mask 10 are formed on a first underlying wiring via a barrier layer 7.
- the uppermost portion of the resistance change element film 9 made of the metal oxide has a structure in contact with the upper electrode formed in the plug of the second wiring, and the resistance change element film 9 made of the metal oxide and the lower portion A structure in which the side surface of the electrode 8 is not in direct contact with the side surface of the upper electrode 17 is realized.
- 1 shows a structure in which the plug 6 of the first wiring and the plug 20 of the second wiring are overlapped, it is only shown for convenience of explanation, and it is not necessary to overlap.
- the wiring direction of the first wiring and the second wiring is the same direction, the present invention is not limited to this, and the first wiring and the second wiring may cross each other.
- FIGS. 2A to 2H are schematic cross-sectional views showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention in the order of steps.
- an interlayer insulating film 1 (for example, a silicon oxide film having a film thickness of 300 nm) is deposited on a semiconductor substrate (silicon substrate) (not shown), and then an etching stopper film is formed on the interlayer insulating film 1.
- first wiring groove and a plug pilot hole are deposited in this order, and then lithography (including photoresist formation, dry etching, and photoresist removal) are used to form a first wiring groove and a plug pilot hole, and a dual damascene wiring process is used to form a first wiring 5 (for example, Cu) and plug through the barrier metal 4 in the wiring groove and the pilot hole.
- a state in which 6 (for example, Cu) is simultaneously formed is defined as an initial state.
- a barrier layer 7 for example, TaN, 5 nm to 2 nm
- a lower electrode 8 for example, Ru, 5 nm to 50 nm
- the variable resistance element film 9 made of a metal oxide is formed by a CVD method or a sputtering method.
- the thickness of the resistance change element film 9 is 5 nm to 100 nm, and oxides of Ni, Ti, Ta, Zr, Hf, W, and Cu are considered as resistance change materials.
- the metal oxide has a single layer structure, a laminated structure, a laminated structure, or the like.
- a hard mask 10 having a thickness of 30 to 150 nm is grown on the resistance change element film 9.
- the growth method is generally performed by a CVD method or a sputtering method.
- a silicon oxide film and a silicon nitride film are used, and a single layer film or a stacked structure is preferable.
- variable resistance element film 9, the lower electrode 8, and the barrier layer 7 is performed in this order using the hard mask 10 as an etching mask.
- the dry etching conditions for the resistance change element film 9 are etching conditions such that the side surface of the resistance change element film 9 (for example, NiO) is perpendicular to the silicon substrate surface (for example, pressure: about 0.13 to about 6). 0.7 Pa (1 mTorr to 50 mTorr), etching gas: BCl 3 / Cl 2 / Ar mixed gas, or CH 3 OH / Ar mixed gas, source power: 300 W to 1000 W, bias power: 50 W to 900 W, Vpp: 400 to 800 V) It is preferable to perform using.
- the variable resistance element film may have a laminated structure of TiO and Ta 2 O 5 layers in addition to NiO.
- the material of the resistance change element film made of metal oxide has a low vapor pressure of the etching reaction product, the etching reaction product adheres to the side surface of the resistance change element film 9 or etching damage occurs. There is.
- the dry etching conditions for the lower electrode 8 are etching conditions such that the side surface of the lower electrode 8 (for example, Ru) is perpendicular to the silicon substrate surface (for example, pressure: about 0.67 to about 4 Pa).
- etching gas O 2 / Cl 2 mixed gas
- source power 500 W to 1500 W
- bias power 50 W to 300 W
- Ru Pt, Ni, Ti, TiN, Ta, W, Mo, and Zr can be considered as the lower electrode material.
- the vapor pressure of the etching reaction product is low in the lower electrode material, the etching reaction product may adhere to the side surface of the lower electrode 8 or etching damage may occur.
- the barrier layer 7 is etched to form a variable resistance element structure having the hard mask 10 or less, the variable resistance element film 9, the lower electrode 8, and the barrier layer 7.
- an interlayer insulating film 12 for example, a silicon oxide film, a film thickness of 300 to 500 nm
- the interlayer insulating film is planarized using CMP.
- an etching stopper film 13 for example, a SiN film, a film thickness of 50 nm
- an interlayer insulating film 14 for example, a silicon oxide film, a film thickness of 300 nm
- a wiring groove 15 for the second wiring and a pilot hole 16 for the plug are formed.
- an upper electrode 17 (for example, Ru, 5 nm to 50 nm) is formed on the side walls and bottom of the wiring groove 15 and the plug hole 16 by CVD or sputtering. Subsequently, the barrier metal 18 is formed.
- the second wiring 19 for example, Cu
- the plug 20 for example, Cu
- Cu is inserted into the wiring groove 15 and the prepared hole 16 through the upper electrode 17 and the barrier metal 18 by using a dual damascene wiring process.
- Cu is formed at the same time, and then an insulating barrier film 21 (for example, a SiN film) is deposited on the interlayer insulating film 14 including the second wiring 19 as shown in FIG. 1 to form a multilayer wiring.
- the embodiment by burying the upper electrode 17 integrally with the barrier metal 18 in the second wiring 19, it is possible to realize a structure in which the resistance change element film 9 and the side surface of the upper electrode 17 are not in direct contact. For example, even when a reaction product adheres to the side wall surface of the resistance change element film during etching of the resistance change element film 9, it is possible to prevent a short circuit of the element between the upper and lower electrodes and to improve the reliability of the element. be able to.
- the upper electrode 17 is integrated with at least the plug of the second wiring 19, the element size can be reduced only by reducing the thickness of the variable resistance element film 9 and the lower electrode 8.
- FIG. 9 shows a schematic diagram of a memory cell array using resistance change elements.
- the first wiring group 63 and the second wiring group 64 are word lines and bit lines, respectively.
- the variable resistance element positioned at the coordinates (BLn, WLn) is selected, and data can be read out.
- writing and erasing are performed in the on state by applying a voltage of Vt1 or more (here, WL n + 1 ) to the variable resistance element in the off state.
- Vt1 or more here, WL n + 1
- the resistance change element here, WL n-1
- Vt1 and Vt2 are not applied simultaneously, but are applied separately.
- the decoders 61 and 62 are shown as simple switches, they are actually switched by transistors.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
半導体基板上に層間絶縁膜を介して上下に配置された第1配線と第2配線との間に抵抗変化素子を備えた半導体装置であって、
前記抵抗変化素子は、
前記第2配線に電気的に接続された上部電極と、
前記第1配線に電気的に接続された下部電極と、
前記上下電極間に介在する、金属酸化物からなる抵抗変化素子膜と、
を有し、
前記第2配線はプラグを備え、
前記プラグは、最外側面及び最底面に前記抵抗変化素子の上部電極が被覆埋設されており、前記上部電極の内側に埋設された前記第2配線を構成する金属層とを有し、
前記抵抗変化素子膜の側面から離間した上面に、前記プラグ底面の前記上部電極が接している半導体装置に関する。
前記第1配線上に、少なくとも抵抗変化素子の下部電極膜と抵抗変化素子膜となる金属酸化物との積層膜を形成する工程と、
前記積層膜を所定の形状にパターニングする工程と、
全面に層間絶縁膜を形成する工程と、
前記層間絶縁膜に第2配線を形成する配線溝と、該配線溝底に前記抵抗変化素子膜の側面から離間された上面を露出するプラグ下穴を形成する工程と、
抵抗変化素子の上部電極となる金属膜を前記プラグ下穴を埋設しない膜厚に成膜する工程と、
前記抵抗変化素子の上部電極となる金属膜上に第2配線となる金属層を成膜する工程と、
前記抵抗変化素子の上部電極となる金属膜および第2配線となる金属層を前記層間絶縁膜表面が露出するまで平坦化する工程と、
を有する。
2 エッチングストッパ膜(SiN)
3 層間絶縁膜
4 バリアメタル
5 第1配線(Cu)
6 プラグ(Cu)
7 バリア層
8 下部電極(Ru)
9 抵抗変化層(NiO)
10 ハードマスク
11 フォトレジスト
12 層間絶縁膜
13 エッチングストッパ膜(SiN)
14 層間絶縁膜
15 第2配線用配線溝
16 プラグ用下穴
17 上部電極(Ru)
18 バリアメタル
19 第2配線(Cu)
20 プラグ(Cu)
21 バリア膜(SiN)
31 第1配線
32 第2配線
33 スイッチ素子
41 MIM型素子における上部の第1の電極
42 金属酸化物からなる抵抗変化材料
43 MIM型素子における下部の第2の電極
44 MIM型抵抗変化素子におけるオン状態を担う電流経路
Claims (10)
- 半導体基板上に層間絶縁膜を介して上下に配置された第1配線と第2配線との間に抵抗変化素子を備えた半導体装置であって、
前記抵抗変化素子は、
前記第2配線に電気的に接続された上部電極と、
前記第1配線に電気的に接続された下部電極と、
前記上下電極間に介在する、金属酸化物からなる抵抗変化素子膜と、
を有し、
前記第2配線はプラグを備え、
前記プラグは、最外側面及び最底面に前記抵抗変化素子の上部電極が被覆埋設されており、前記上部電極の内側に埋設された前記第2配線を構成する金属層とを有し、
前記抵抗変化素子膜の側面から離間した上面に、前記プラグ底面の前記上部電極が接している半導体装置。 - 前記抵抗変化素子の上部電極は、前記プラグの最外側面から前記第2配線の最外側面まで延在している請求項1に記載の半導体装置。
- 前記第2配線を構成する金属層がバリアメタルと銅膜である請求項1記載の半導体装置。
- 前記抵抗変化素子膜上に、前記第1及び第2配線間の層間絶縁膜とは異なる絶縁膜を有し、前記プラグは、該絶縁膜を貫通して前記抵抗変化素子膜上面に接している請求項1記載の半導体装置。
- 前記第1配線は、金属層としてバリアメタルと銅膜とを有し、前記抵抗変化素子の下部電極は、前記第1配線の銅膜上に形成されたバリア層を介して接触している請求項1に記載の半導体装置。
- 前記上部電極および下部電極が、Ru、Pt、Ni、Ti、Ta、W、Mo、Zrのうち少なくとも1つの金属を含む請求項1に記載の半導体装置。
- 前記抵抗変化素子膜を構成する金属酸化物が、Ni、Ti、Ta、W、Zr、Hfのうち少なくとも1種の金属酸化物を含む請求項1に記載の半導体装置。
- 半導体基板上に第1配線を形成する工程と、
前記第1配線上に、少なくとも抵抗変化素子の下部電極膜と抵抗変化素子膜となる金属酸化物との積層膜を形成する工程と、
前記積層膜を所定の形状にパターニングする工程と、
全面に層間絶縁膜を形成する工程と、
前記層間絶縁膜に第2配線を形成する配線溝と、該配線溝底に前記抵抗変化素子膜の側面から離間された上面を露出するプラグ下穴を形成する工程と、
抵抗変化素子の上部電極となる金属膜を前記プラグ下穴を埋設しない膜厚に成膜する工程と、
前記抵抗変化素子の上部電極となる金属膜上に第2配線となる金属層を成膜する工程と、
前記抵抗変化素子の上部電極となる金属膜および第2配線となる金属層を前記層間絶縁膜表面が露出するまで平坦化する工程と、
を有する半導体装置の製造方法。 - 前記第2配線を構成する金属層がバリアメタルと銅膜である請求項8記載の半導体装置の製造方法。
- 前記第1配線は、下層層間絶縁膜中に形成された配線溝内にダマシン法で埋設された銅配線であり、該第1配線上にバリア層を形成した後、前記抵抗変化素子の下部電極膜と抵抗変化素子膜となる金属酸化物、さらにハードマスク層を形成し、ハードマスク層を所定形状にパターニングした後、ハードマスク層をマスクに前記金属酸化物、下部電極膜、バリア層をエッチングして抵抗変化素子構造を形成する請求項8記載の半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/574,405 US8946668B2 (en) | 2010-01-21 | 2011-01-21 | Semiconductor device and method of manufacturing the same |
JP2011550966A JPWO2011090152A1 (ja) | 2010-01-21 | 2011-01-21 | 半導体装置及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-010715 | 2010-01-21 | ||
JP2010010715 | 2010-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011090152A1 true WO2011090152A1 (ja) | 2011-07-28 |
Family
ID=44306952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051054 WO2011090152A1 (ja) | 2010-01-21 | 2011-01-21 | 半導体装置及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8946668B2 (ja) |
JP (1) | JPWO2011090152A1 (ja) |
WO (1) | WO2011090152A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013219359A (ja) * | 2012-04-09 | 2013-10-24 | Freescale Semiconductor Inc | ReRAMデバイス及びその製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9431604B2 (en) * | 2012-12-14 | 2016-08-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Resistive random access memory (RRAM) and method of making |
US8853095B1 (en) * | 2013-05-30 | 2014-10-07 | International Business Machines Corporation | Hybrid hard mask for damascene and dual damascene |
US9548449B2 (en) * | 2013-06-25 | 2017-01-17 | Intel Corporation | Conductive oxide random access memory (CORAM) cell and method of fabricating same |
KR102100743B1 (ko) * | 2013-06-28 | 2020-04-14 | 인텔 코포레이션 | 선택적 에피택셜 성장에 의한 vlsi 호환가능 핀 구조들 집적화 및 그 상에 디바이스들 제조 |
CN104465986B (zh) * | 2013-09-17 | 2017-12-05 | 华邦电子股份有限公司 | 电阻式存储器及其制造方法 |
US10003022B2 (en) | 2014-03-04 | 2018-06-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | RRAM cell structure with conductive etch-stop layer |
US9595670B1 (en) * | 2014-07-21 | 2017-03-14 | Crossbar, Inc. | Resistive random access memory (RRAM) cell and method for forming the RRAM cell |
US10510954B2 (en) * | 2017-11-28 | 2019-12-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Phase change random access memory device |
US10410966B2 (en) * | 2017-12-19 | 2019-09-10 | International Business Machines Corporation | BEOL embedded high density vertical resistor structure |
CN112259682A (zh) * | 2019-07-22 | 2021-01-22 | 华邦电子股份有限公司 | 存储器装置及其制造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008235637A (ja) * | 2007-03-22 | 2008-10-02 | Matsushita Electric Ind Co Ltd | 不揮発性半導体記憶装置およびその製造方法 |
JP2008305888A (ja) * | 2007-06-06 | 2008-12-18 | Panasonic Corp | 不揮発性記憶装置およびその製造方法 |
WO2009081595A1 (ja) * | 2007-12-26 | 2009-07-02 | Panasonic Corporation | 不揮発性半導体記憶装置およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5135798B2 (ja) * | 2004-12-27 | 2013-02-06 | 日本電気株式会社 | スイッチング素子、スイッチング素子の駆動方法、書き換え可能な論理集積回路、およびメモリ素子 |
JP2007027537A (ja) * | 2005-07-20 | 2007-02-01 | Sharp Corp | 可変抵抗素子を備えた半導体記憶装置 |
JP5218053B2 (ja) * | 2006-06-26 | 2013-06-26 | 日本電気株式会社 | スイッチング素子、半導体装置、書き換え可能な論理集積回路、およびメモリ素子 |
US7772581B2 (en) * | 2006-09-11 | 2010-08-10 | Macronix International Co., Ltd. | Memory device having wide area phase change element and small electrode contact area |
JP2009177073A (ja) | 2008-01-28 | 2009-08-06 | Renesas Technology Corp | 半導体装置および半導体装置の製造方法 |
JP2009260052A (ja) | 2008-04-17 | 2009-11-05 | Panasonic Corp | 不揮発性半導体記憶装置とその製造方法および半導体装置 |
-
2011
- 2011-01-21 US US13/574,405 patent/US8946668B2/en not_active Expired - Fee Related
- 2011-01-21 WO PCT/JP2011/051054 patent/WO2011090152A1/ja active Application Filing
- 2011-01-21 JP JP2011550966A patent/JPWO2011090152A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008235637A (ja) * | 2007-03-22 | 2008-10-02 | Matsushita Electric Ind Co Ltd | 不揮発性半導体記憶装置およびその製造方法 |
JP2008305888A (ja) * | 2007-06-06 | 2008-12-18 | Panasonic Corp | 不揮発性記憶装置およびその製造方法 |
WO2009081595A1 (ja) * | 2007-12-26 | 2009-07-02 | Panasonic Corporation | 不揮発性半導体記憶装置およびその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013219359A (ja) * | 2012-04-09 | 2013-10-24 | Freescale Semiconductor Inc | ReRAMデバイス及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US8946668B2 (en) | 2015-02-03 |
US20120286231A1 (en) | 2012-11-15 |
JPWO2011090152A1 (ja) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011090152A1 (ja) | 半導体装置及びその製造方法 | |
US10038139B2 (en) | One transistor and one resistive random access memory (RRAM) structure with spacer | |
US9431604B2 (en) | Resistive random access memory (RRAM) and method of making | |
US9466794B2 (en) | Low form voltage resistive random access memory (RRAM) | |
US8963114B2 (en) | One transistor and one resistive (1T1R) random access memory (RRAM) structure with dual spacers | |
US9985203B2 (en) | Resistive random access memory (RRAM) with improved forming voltage characteristics and method for making | |
US7833898B2 (en) | Method for manufacturing resistance RAM device | |
US20130064001A1 (en) | Resistance change nonvolatile memory device, semiconductor device, and method of manufacturing resistance change nonvolatile memory device | |
US20180351099A1 (en) | Step height reduction of memory element | |
US9425238B2 (en) | Semiconductor device and method for fabricating the same | |
US10163980B2 (en) | Resistive memory array and fabricating method thereof | |
US9853215B1 (en) | Resistance switching memory device and method of manufacturing the same | |
JP2008235637A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
US9257486B2 (en) | RRAM array having lateral RRAM cells and vertical conducting structures | |
JP5549126B2 (ja) | 半導体記憶装置及びその製造方法 | |
JP5684104B2 (ja) | メタルブリッジ型記憶装置の製造方法 | |
US8791010B1 (en) | Silver interconnects for stacked non-volatile memory device and method | |
US20140021432A1 (en) | Variable resistance memory device and method for fabricating the same | |
JP2015146343A (ja) | 不揮発性記憶装置およびその製造方法 | |
JP2014216386A (ja) | 抵抗変化素子及びその形成方法 | |
US20230138593A1 (en) | Semiconductor device and method for manufacturing the same | |
CN117042445A (zh) | 存储器件及其制造方法 | |
CN115000120A (zh) | 存储器阵列、半导体芯片与存储器阵列的制造方法 | |
CN116940122A (zh) | 半导体器件及制造存储器器件方法 | |
CN118488714A (zh) | 包括晶体管的半导体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734758 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550966 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13574405 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11734758 Country of ref document: EP Kind code of ref document: A1 |