WO2011089984A1 - 酸化物蒸着材と蒸着薄膜並びに太陽電池 - Google Patents

酸化物蒸着材と蒸着薄膜並びに太陽電池 Download PDF

Info

Publication number
WO2011089984A1
WO2011089984A1 PCT/JP2011/050589 JP2011050589W WO2011089984A1 WO 2011089984 A1 WO2011089984 A1 WO 2011089984A1 JP 2011050589 W JP2011050589 W JP 2011050589W WO 2011089984 A1 WO2011089984 A1 WO 2011089984A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
oxide
sintered body
thin film
vapor deposition
Prior art date
Application number
PCT/JP2011/050589
Other languages
English (en)
French (fr)
Inventor
阿部 能之
理一郎 和気
正和 ▲桑▼原
健太郎 曽我部
梓 大城
久貴 矢田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201180007032.9A priority Critical patent/CN102712995B/zh
Priority to KR1020177024840A priority patent/KR101805548B1/ko
Priority to DE112011100332.3T priority patent/DE112011100332B4/de
Priority to US13/520,640 priority patent/US8941002B2/en
Priority to KR1020177024839A priority patent/KR20170104654A/ko
Priority to KR1020127018871A priority patent/KR101789548B1/ko
Publication of WO2011089984A1 publication Critical patent/WO2011089984A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to an oxide vapor deposition material used when manufacturing a transparent conductive film and a high refractive index optical film by various vacuum vapor deposition methods such as an electron beam vapor deposition method, an ion plating method and a high density plasma assisted vapor deposition method.
  • the present invention relates to a transparent conductive film, an optical film, and the like manufactured using this oxide vapor deposition material, and a solar cell using the transparent conductive film as an electrode, and particularly contains indium oxide as a main component and contains cerium.
  • the present invention relates to an improvement of an oxide vapor deposition material constituted by a sintered body that has not been subjected to surface grinding after sintering, and a vapor deposition thin film and a solar cell manufactured using the oxide vapor deposition material.
  • the transparent conductive film has high conductivity and high light transmittance in the visible light region. And taking advantage of this characteristic, the transparent conductive film is used for electrodes of solar cells, liquid crystal display elements, other various light receiving elements, etc., and further, utilizing the reflection / absorption characteristic in the near infrared region, it can be used for automobiles and buildings. It is also used as a heat-reflective film used for window glass, various antistatic films, and a transparent heating element for anti-fogging such as a frozen showcase.
  • the transparent conductive film generally has tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, aluminum, gallium, indium, zinc oxide (ZnO) containing tin as a dopant, tin, tungsten or titanium as a dopant.
  • Indium oxide (In 2 O 3 ) and the like are widely used.
  • an indium oxide film containing tin as a dopant, that is, an In 2 O 3 —Sn-based film is called an ITO (Indium tin oxide) film, and since a low-resistance transparent conductive film can be easily obtained, it has been industrially used so far. Widely used.
  • coating the coating liquid for transparent conductive layer formation, etc. are generally used.
  • the vacuum vapor deposition method and the sputtering method are effective methods when using a material having a low vapor pressure or when precise film thickness control is required, and because the operation is very simple, Is useful. Further, when the vacuum deposition method and the sputtering method are compared, the vacuum deposition method is superior in mass productivity because it can form a film at a higher speed.
  • a solid or liquid as an evaporation source is heated to be decomposed once into gas molecules and atoms, and then again on the substrate surface. It is a method of condensing as a thin film.
  • the heating method for the evaporation source is generally a resistance heating method (RH method) or an electron beam heating method (EB method or electron beam evaporation method), but there are also a method using a laser beam, a high frequency induction heating method, and the like. .
  • flash vapor deposition arc plasma vapor deposition, reactive vapor deposition, and the like are also known, and these methods are included in the vacuum vapor deposition.
  • the electron beam evaporation method has been used historically.
  • an ITO oxide vapor deposition material also referred to as an ITO tablet or ITO pellet
  • an O 2 gas as a reaction gas
  • a thermoelectron generating filament mainly W
  • the thermal electrons emitted from the line are accelerated by an electric field and irradiated onto the ITO oxide vapor deposition material, the irradiated portion becomes locally high in temperature and evaporated to be deposited on the substrate.
  • a low-resistance film can be formed on a low-temperature substrate by generating plasma using a thermionic emitter or RF discharge and activating evaporates and reactive gases (such as O 2 gas) with this plasma.
  • An activated reactive vapor deposition method (ARE method) that can be used is also a useful method for forming an ITO film.
  • ARE method activated reactive vapor deposition method
  • HDPE method high-density plasma-assisted vapor deposition method
  • arc discharge using a plasma generator (plasma gun) is used, but arc discharge is maintained between a cathode built in the plasma gun and a crucible (anode) of an evaporation source.
  • Electrons emitted from the cathode are guided (guided) by a magnetic field and are concentrated and irradiated on the local area of the ITO oxide deposition material charged in the crucible.
  • the evaporated material is evaporated and deposited on the substrate from the portion where the electron beam is irradiated and locally heated. Since the evaporated vapor and the introduced O 2 gas are activated in the plasma, an ITO film having good electrical characteristics can be produced.
  • IP method ion plating method
  • the transparent conductive film is indispensable for the front electrode that is exposed to light.
  • the above-described ITO film or aluminum-doped oxide is used.
  • a zinc (AZO) film or a zinc oxide (GZO) film doped with gallium has been used.
  • the ITO film, the AZO film, and the GZO film described above are materials having low resistance and high transmittance in the visible region, but have low transmittance in the near infrared region. This is because these materials have a high carrier concentration and thus absorb and reflect near-infrared light.
  • high-efficiency solar cells have been developed that use a transparent conductive film with high conductivity in the visible region to the near-infrared region and a high conductivity for the front electrode, and also effectively use the energy of near-infrared light.
  • a transparent conductive film As such a transparent conductive film, a crystalline transparent conductive film (crystalline In—W—O) made of indium oxide containing tungsten is introduced in Patent Document 1 (Japanese Patent Laid-Open No. 2004-43851). Yes. In addition, the present inventors have clarified that a crystalline transparent conductive film made of cerium-containing indium oxide has the same characteristics as the above crystalline In—W—O film. It has been found that it exhibits outer permeability and conductivity. On the other hand, the above-described thin film mainly composed of indium oxide, tin oxide, and zinc oxide is also used as an optical film.
  • These thin films are high refractive index materials having a refractive index in the visible range of 1.9 to 2.1, and silicon oxide films and metal fluorides having a refractive index in the visible range of 1.3 to 1.5.
  • a low refractive index film such as a film to form a laminated body
  • the light interference effect can be exhibited. That is, by precisely controlling each film thickness of the laminate, it is possible to have an antireflection effect and a reflection enhancement effect in a specific wavelength region.
  • the higher the refractive index of the high refractive index film the more effective a strong interference effect can be obtained.
  • Patent Document 2 Japanese Patent Laid-Open No.
  • Patent Document 3 Japanese Patent No. 3445891
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-290458 disclose a cerium-containing indium oxide sputter target material (In-Ce-O) and the sputter target material. The technique regarding the transparent conductive film obtained by sputtering method is introduced.
  • Patent Document 3 since an indium oxide-based transparent conductive film containing cerium has poor reactivity with Ag, a transparent conductive film having high permeability and excellent heat resistance is formed by stacking with an Ag-based ultrathin film. It is introduced that it can be realized, and Patent Document 4 introduces that a film excellent in etching property can be obtained.
  • oxides used for this vacuum deposition As the vapor deposition material, a sintered body having a small size (for example, a cylindrical shape having a diameter of 10 to 50 mm and a height of about 10 to 50 mm) is used, so there is a limit to the amount of film that can be formed with one oxide vapor deposition material. there were. Then, when the consumption amount of the oxide vapor deposition material increases and the remaining amount decreases, the film formation is interrupted, the vacuum film formation chamber is introduced into the atmosphere and replaced with an unused oxide vapor deposition material, and the film is formed.
  • a sintered body having a small size for example, a cylindrical shape having a diameter of 10 to 50 mm and a height of about 10 to 50 mm
  • Non-patent document 1 describes an example of the continuous supply method.
  • this continuous supply method columnar oxide vapor deposition materials are continuously stored inside a cylindrical hearth, and the oxide vapor deposition materials are sequentially extruded while maintaining the height of the sublimation surface constant. It comes to be supplied. And, it has become possible to realize mass production of thin films such as transparent conductive films and optical films by the vacuum deposition method by the continuous supply method of the oxide deposition material.
  • an indium oxide film containing cerium is usually manufactured by a sputtering method as introduced in Patent Documents 3 and 4, but in recent years, various vacuum deposition methods advantageous for productivity have been used. Strong demand for manufacturing.
  • this oxide vapor deposition material has so far been manufactured as a sputtering target sintered body. Technology has been diverted.
  • the sintered body after firing has a surface composition different from that of the inside, so that the surface is ground by grinding and finished into a tablet (oxide vapor deposition material) of a predetermined shape.
  • the sintered body of indium oxide containing cerium is composed of a mixture of two phases separated into a crystalline phase of indium oxide in which cerium is dissolved and a crystalline phase of cerium oxide.
  • the ITO sintered body is composed of a crystalline phase of indium oxide in which tin is solid-dissolved and a crystalline phase of a tin indium oxide compound, and the tin oxide phase does not remain.
  • oxide vapor deposition materials obtained from sintered bodies having different compositions on the surface and inside since the fluctuation of the thin film composition at the initial stage of film formation is large, the film part formed at the initial stage is used. Can not do it. For this reason, there were problems such as a small amount of thin film production from one tablet.
  • the present invention has been made paying attention to such problems, and the problem is that an oxide tablet for vapor deposition containing indium oxide as a main component and containing cerium and having the same composition from the surface to the inside ( It is to provide an oxide vapor deposition material.
  • the oxide vapor deposition material according to the present invention is composed of a sintered body containing indium oxide as a main component and containing cerium and not subjected to surface grinding after sintering, and is 5 ⁇ m from the surface of the sintered body.
  • the vapor deposition thin film according to the present invention containing indium oxide as a main component and containing cerium is formed by the electron beam vapor deposition method, the ion plating method or the high density plasma assist vapor deposition method using the oxide vapor deposition material as a raw material.
  • the average value of the cerium content in the formed thin film is 0.001 to 0.538 in Ce / In atomic ratio.
  • the solar cell according to the present invention is characterized by using the vapor-deposited thin film as an electrode.
  • the oxide vapor deposition material according to the present invention is composed of a sintered body containing indium oxide as a main component and containing cerium and not subjected to surface grinding after sintering, and is 5 ⁇ m from the surface of the sintered body.
  • the manufacturing cost is greatly reduced, and it becomes possible to provide an oxide tablet for vapor deposition (oxide vapor deposition material) at a low cost, and since it has substantially the same composition from the surface to the inside of the tablet, the use of the tablet It can be used for the production of thin films from the beginning, and has the effect of increasing the amount of thin film production per tablet.
  • the average value of the cerium content in the thin film formed using the oxide vapor deposition material of the present invention is 0.004 to 0.056 in Ce / In atomic ratio, and the specific resistance is 3.5 ⁇ . According to the deposited thin film composed of the conductive transparent crystal film of 10 ⁇ 4 ⁇ cm or less, it has high transmittance in the visible to near-infrared region and high conductivity.
  • the average value of the cerium content in the thin film formed using the oxide vapor deposition material of the present invention is 0.090 to 0.538 in Ce / In atomic ratio, and the refractive index at a wavelength of 550 nm.
  • the deposited thin film composed of a transparent film having a high refractive index having a refractive index of 2.15 or more an effect that can be applied as an optical film application such as an antireflection film by combining with a low refractive index film to form a laminate. Also have.
  • FIG. 1 is an explanatory view showing a schematic configuration of a silicon-based solar cell using a transparent conductive film according to the present invention as an electrode layer.
  • FIG. 2 is an explanatory view showing a schematic configuration of a compound thin film solar cell using an electrode layer constituted by a transparent conductive film according to the present invention on the glass substrate side.
  • FIG. 3 is an explanatory view showing a schematic configuration of a compound thin film solar cell in which an electrode layer constituted by a transparent conductive film according to the present invention is used on the side opposite to a glass substrate.
  • the oxide vapor deposition material (oxide tablet for vapor deposition) of the present invention is composed of a sintered body containing indium oxide as a main component and containing cerium and not subjected to surface grinding after sintering.
  • the cerium content in the surface layer from the surface to a depth of 5 ⁇ m is expressed by the Ce / In atomic ratio (Comp S )
  • the average value of the cerium content in the entire sintered body is Ce / In atomic ratio (Comp A )
  • Comp S / Comp A 0.9 to 1.1, and as described above, the greatest feature is that the surface of the sintered body is manufactured without grinding after firing.
  • the sintered body is fractured to expose the fracture surface, and an EPMA (Electron Probe Micro Analyzer: Electron) in a region corresponding to the fracture surface within 5 ⁇ m from the surface of the sintered body.
  • EPMA Electron Probe Micro Analyzer: Electron
  • a method of measuring by performing composition analysis can be mentioned. That is, point analysis by EPMA is performed on a region corresponding to within 5 ⁇ m from the surface of the sintered body having the fracture surface (a portion within 5 ⁇ m from the outer peripheral edge of the fracture surface of the fracture surface), and the analysis values at 20 to 30 locations are averaged By doing so, the composition of the sintered body surface layer can be determined.
  • the average value of the cerium content in the entire sintered body [Ce / In atomic ratio (Comp A ]] can be obtained by pulverizing the sintered body, stirring the obtained powder, and measuring the Ce / In atomic ratio in the same EPMA analysis as described above.
  • the Comp S / Comp A In order to produce an oxide vapor deposition material of 0.9 to 1.1, the volatilization of the “indium oxide” component from the surface of the sintered body during high-temperature firing when manufacturing a sintered body of indium oxide containing cerium. It can manufacture by employ
  • the oxide vapor deposition material (evaporation oxide tablet) according to the present invention uses indium oxide and cerium oxide powders as raw materials, and these raw materials are mixed and molded to form a green compact.
  • the body When the body is fired at a high temperature, it can be manufactured by adopting the method described below in which the “indium oxide” component is not volatilized from the surface of the sintered body, and reacting and sintering.
  • each powder of indium oxide and cerium oxide is not special, and may be a raw material for an oxide sintered body that has been conventionally used.
  • the average particle size of the powder used is 1.5 ⁇ m or less, preferably 0.1 to 1.1 ⁇ m.
  • a ball mill mixing method is used as a general raw material powder mixing method in manufacturing the oxide sintered body, but it is also effective in manufacturing the sintered body of the present invention.
  • the ball mill is a device for producing a fine mixed powder by grinding and mixing materials by putting a hard ball (ball diameter: 10 to 30 mm) such as ceramic and powder of the material into a container and rotating.
  • Ball mills include steel, stainless steel, nylon, etc. as can bodies, and alumina, magnetic material, natural silica, rubber, urethane, etc. are used as linings.
  • the balls include alumina balls containing alumina as a main component, natural silica, nylon balls with iron core, and zirconia balls.
  • a slurry in which a material to be crushed, such as raw material powder, is mixed with a liquid is fed by a pump and finely pulverized and dispersed by colliding beads.
  • efficiency can be improved by reducing the bead diameter according to the object to be crushed.
  • a bead mill can achieve pulverization and mixing at an acceleration close to 1,000 times that of a ball mill.
  • the bead mill with such a structure is called by various names. For example, sand grinder, aquamizer, attritor, pearl mill, avex mill, ultra visco mill, dyno mill, agitator mill, coball mill, spike mill, SC mill Etc.
  • the jet mill is a method in which high-pressure air or steam injected from a nozzle at around the sonic velocity is collided with an object to be crushed such as raw material powder as an ultra-high speed jet, and pulverized into fine particles by impact between particles. .
  • indium oxide powder and cerium oxide powder are put into a ball mill pot at a desired ratio, and mixed powder is first prepared by dry or wet mixing.
  • content of indium and a cerium becomes Ce / In atomic ratio, Preferably it is 0.001-0.538.
  • it is 0.001-0.538.
  • a slurry is produced by adding water and an organic substance such as a dispersing agent / binder to the mixed powder thus prepared.
  • the viscosity of the slurry is preferably 150 to 5000 cP, more preferably 400 to 3000 cP.
  • the obtained slurry and beads are placed in a bead mill container and processed.
  • the bead material include zirconia and alumina. Zirconia is preferable in terms of wear resistance.
  • the diameter of the beads is preferably 1 to 3 mm from the viewpoint of grinding efficiency.
  • the number of passes may be one, but it is preferably two or more, and a sufficient effect can be obtained by five or less.
  • the treatment time is preferably 10 hours or less, more preferably 4 to 8 hours.
  • the pulverization and mixing of the indium oxide powder and the cerium oxide powder in the slurry is improved.
  • the molding method either a cast molding method or a press molding method can be employed.
  • the obtained slurry is injected into a casting mold to produce a molded body.
  • the time from bead mill treatment to casting is preferably within 10 hours. It is because it can prevent that the slurry obtained by doing in this way shows thixotropic property.
  • binders such as polyvinyl alcohol, are added to the obtained slurry, moisture adjustment is performed as needed, and it is dried with a spray dryer etc. and granulated.
  • the obtained granulated powder is filled into a mold having a predetermined size, and then 100 to 1000 kg / cm using a press. 2 A uniaxial pressure molding is performed at a pressure of 1 to obtain a molded body.
  • the thickness of the molded body at this time is preferably set to a thickness capable of obtaining a sintered body having a predetermined size in consideration of shrinkage caused by the subsequent firing step. If the molded body produced from the above-mentioned mixed powder is used, the oxide sintered body of the present invention can be obtained by either the hot press method or the atmospheric pressure sintering method, but it is manufactured by the atmospheric pressure sintering method with low manufacturing cost. It is more preferable.
  • the oxide sintered body of the invention is obtained by employing a method in which the “indium oxide” component is not volatilized from the surface of the sintered body using the atmospheric pressure sintering method, the following is obtained.
  • the obtained molded body is heated at a temperature of 300 to 500 ° C. for about 5 to 20 hours to perform a binder removal treatment.
  • sintering is performed by raising the temperature, but the rate of temperature rise is 150 ° C./hour or less, preferably 100 ° C./hour or less, more preferably 80 ° C./hour or less in order to effectively release the internal bubble defects to the outside. Less than hours.
  • the sintering temperature is 1150 to 1350 ° C., preferably 1200 to 1250 ° C., and the sintering time is 1 to 20 hours, preferably 2 to 5 hours.
  • the above binder removal process to sintering process have a furnace internal volume of 0.1 m. 3 It is important that oxygen is introduced into the furnace at a rate of 5 liters / minute or more per unit.
  • the reason for introducing oxygen in the sintering step is to obtain a sintered body having the same composition from the surface to the inside by preventing volatilization of surface components from the surface of the sintered body during the sintering process. . That is, the sintered body easily dissociates oxygen at 1150 ° C.
  • the surface component (particularly indium oxide) of the oxide sintered body is likely to volatilize when proceeding to an excessive reduction state.
  • the reason why the upper limit of the sintering temperature is 1350 ° C. is that when firing at a high temperature exceeding 1350 ° C., even if the oxygen is introduced in the sintering process, the dissociation of oxygen from the sintered body becomes severe and the reduced state This is because the surface component of the oxide sintered body volatilizes due to excessive progress.
  • an indium oxide powder containing cerium having the same composition as the target oxide sintered body hereinafter referred to as “atmosphere adjusting powder”).
  • a green compact (this green compact is hereinafter referred to as “atmosphere adjusting green compact”) is preferably disposed around the sintered body. Sintering with the metal oxide component volatilized from the atmosphere adjusting powder (or atmosphere adjusting green compact) by arranging the atmosphere adjusting powder (or atmosphere adjusting green compact) around the sintered body Since the furnace is filled, volatilization of the metal oxide from the surface of the sintered body can be suppressed as much as possible, and a sintered body having the same composition from the surface to the inside can be manufactured.
  • the atmosphere adjusting powder or the atmosphere adjusting green compact is preferably an indium oxide powder containing cerium having the same composition as the target oxide sintered body.
  • the sintering step is performed while introducing oxygen at a sintering temperature of 1150 to 1350 ° C., and the atmosphere adjusting powder or the atmosphere adjusting green compact is disposed around the sintered body. It is important to do. When these conditions are satisfied, an indium oxide sintered body containing cerium having the same composition on the surface and inside of the sintered body can be obtained without performing surface grinding after the sintering. After sintering, the temperature is lowered to room temperature at 10 ° C./min and can be taken out from the furnace at room temperature. However, the sintering is performed in an atmosphere containing an appropriate amount of oxygen at a temperature of 950 to 1100 ° C. during the temperature lowering.
  • the oxide vapor deposition material (deposition oxide tablet) can be used without grinding or other processing after sintering. Can be used as is. At that time, taking into account the shrinkage rate of sintering, an oxide vapor deposition material (vapor deposition) having an optimum size after sintering is used by using a molded body whose size is adjusted in advance so as to have a predetermined size after firing. Oxide tablets).
  • the average value Ce / In atomic ratio of the cerium content in the entire sintered body (Comp) A ) Is preferably 0.001 to 0.538.
  • the average value is less than 0.001, the effect of increasing the carrier concentration and mobility in the thin film formed using this oxide vapor deposition material (deposition oxide tablet) is small. May not be able to get.
  • the average value exceeds 0.538, the amount of cerium in the oxide vapor deposition material (deposition oxide tablet) is too large, and a sintered body having practical strength cannot be obtained.
  • the oxide deposition material of the present invention (deposition oxide tablet). Therefore, there is an advantage that the thin film characteristics are not changed.
  • oxide vapor deposition material oxide tablet for vapor deposition
  • tin, tungsten, molybdenum, zinc, cadmium, niobium etc. are contained as elements other than indium, cerium, and oxygen, for example. However, it is allowed on condition that the characteristics of the present invention are not impaired.
  • metals such as aluminum, titanium, silicon, germanium, and zirconium have extremely high vapor pressures of these oxides compared to indium oxide and cerium oxide. It becomes difficult to evaporate with cerium oxide. For this reason, it must remain in the oxide vapor deposition material to increase the concentration, and ultimately it should not be contained because it adversely affects the evaporation of indium oxide and cerium oxide.
  • the deposited thin film according to the present invention is mainly composed of indium oxide formed by the electron beam deposition method, the ion plating method or the high-density plasma assisted deposition method using the above-described oxide deposition material of the present invention as a raw material. It is composed of a thin film as a component and containing cerium. And it is preferable to be comprised with the crystal film whose average value of cerium content in the formed thin film is 0.004-0.056 by Ce / In atomic ratio. By using a crystalline film, high mobility can be exhibited when cerium is substituted and dissolved in the indium sites of indium oxide. The crystal film can be obtained by heating the substrate being formed to 180 ° C.
  • the hole mobility is 80 cm. 2 / V ⁇ s or more
  • carrier concentration is 3.3 ⁇ 10 20 cm -3
  • the specific resistance is 3.5 ⁇ 10 -4
  • a transparent conductive film of ⁇ cm or less can be realized.
  • the deposited thin film (transparent conductive film) according to the present invention has a low carrier concentration, the average transmittance of the thin film itself at a wavelength of 800 to 1200 nm is very high at 80% or more.
  • the average value of the cerium content in the formed thin film is 0.090 to 0.538 in Ce / In atomic ratio, and the refractive index at a wavelength of 550 nm is 2.15 or higher.
  • a transparent film may be used.
  • the refractive index in the visible region can be increased.
  • a low refractive index film such as a silicon oxide film or a metal fluoride film showing a refractive index in the visible range of 1.3 to 1.5 and a laminate. It becomes possible to exhibit the light interference effect.
  • the deposited thin film may be a crystalline film or an amorphous film, or may be a film in which crystals and amorphous are mixed.
  • the vapor deposition thin film of the present invention includes, for example, tin, tungsten, molybdenum, zinc, cadmium, etc. as elements other than indium, cerium, and oxygen, as in the case of the oxide vapor deposition material (deposition oxide tablet for vapor deposition) described above. Even if it is included, it is allowed on the condition that the characteristics of the present invention are not impaired.
  • the solar cell according to the present invention is a photoelectric conversion element using the vapor-deposited thin film (which may be referred to as a transparent conductive film hereinafter) as an electrode.
  • the structure of the solar cell element is not particularly limited, and includes a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, and the like. Can be mentioned.
  • Solar cells are broadly classified according to the type of semiconductor.
  • Solar cells using silicon-based semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon, CuInSe-based, Cu (In, Ga) Se-based, and Ag (In , Ga) Se-based, CuInS-based, Cu (In, Ga) S-based, Ag (In, Ga) S-based, and their solid solutions, compound thin films using thin films of compound semiconductors such as GaAs-based and CdTe-based Type solar cells, and dye-sensitized solar cells using organic dyes (also called Gretzel cell solar cells), but the solar cells according to the present invention are included in any case, and the transparent conductive material described above High efficiency can be realized by using the film as an electrode.
  • a transparent conductive film is indispensable for the electrode on which sunlight is incident (light receiving portion side, front side).
  • the conductive film By using the conductive film, high conversion efficiency characteristics can be exhibited.
  • a PN junction type solar cell element uses, for example, a monocrystalline or polycrystalline silicon substrate having a thickness of about 0.2 to 0.5 mm and a size of about 180 mm square.
  • a PN junction in which a P layer containing a large amount of P-type impurities such as boron and an N layer containing a large amount of N-type impurities such as phosphorus are in contact with each other is formed inside the silicon substrate.
  • a transparent substrate such as a glass plate, a resin plate, or a resin film is also used instead of the silicon substrate.
  • a transparent substrate is preferable.
  • amorphous or polycrystalline silicon is laminated, and is roughly classified as a thin film silicon solar cell.
  • Amorphous silicon is a PIN junction in which an insulating layer (I layer) is interposed between PN junctions. That is, as shown in FIG. 1, on the glass substrate 1, a front side (light receiving part side) transparent electrode film 2, a p-type amorphous silicon film or a hydrogenated amorphous silicon carbide film 3, and amorphous silicon containing no impurities.
  • the film 4, the n-type amorphous silicon film 5, the back side transparent electrode film (contact improvement layer) 6, and the back side metal electrode, that is, the back side electrode 7 are laminated.
  • the p-type amorphous silicon film or hydrogenated amorphous silicon carbide film 3, the amorphous silicon film 4 containing no impurities, and the n-type amorphous silicon film 5 are usually formed by plasma CVD.
  • These amorphous silicon film and hydrogenated amorphous silicon film may contain germanium, carbon, nitrogen, tin or the like in order to control the light absorption wavelength.
  • the thin film solar cell using a silicon thin film has a photoelectric conversion layer including a silicon thin film formed of an amorphous silicon thin film, a film formed of a microcrystalline silicon thin film, an amorphous silicon thin film, and a microcrystalline silicon. It is classified into those composed of a thin film (tandem thin film photoelectric conversion layer). And if the transparent conductive film of this invention is used as an electrode, the solar cell which concerns on this invention will include all those structures. In addition, the transparent conductive film of the present invention is also used as an electrode for those having a hybrid photoelectric conversion layer in which a photoelectric conversion layer of a single crystal silicon plate or a polycrystalline silicon plate and the thin film photoelectric conversion layer are laminated.
  • a solar cell using a compound thin film is usually composed of a heterojunction of a compound semiconductor thin film (n-type semiconductor intermediate layer) having a wide band gap and a compound semiconductor (p-type semiconductor light absorbing layer) having a narrow band gap.
  • the general structure is: front electrode (transparent conductive film) / window layer / intermediate layer / light absorption layer / back electrode (metal or transparent conductive film). Specifically, as shown in FIG.
  • a transparent electrode film 11 made of a transparent conductive film of the present invention on a glass substrate 12, a transparent electrode film 11 made of a transparent conductive film of the present invention, a window layer 10 made of a ZnO thin film, a semiconductor intermediate layer 9, A p-type semiconductor light absorption layer 8 and a back electrode 7 made of an Au film are laminated. Also, in FIG. 3, on the glass substrate 12, the lower electrode, ie, the back electrode 13, the p-type semiconductor light absorbing layer 8, the semiconductor intermediate layer 9, the window layer 10, and the transparent conductive material of the present invention. A transparent electrode film 11 made of a film is laminated. In any structure, the transparent electrode film 11 side is the incident direction of sunlight.
  • the substrate is not particularly limited depending on the material such as glass, resin, metal, ceramic, etc., and may be transparent or non-transparent, but a transparent substrate is preferable.
  • a resin those having various shapes such as a plate shape and a film can be used.
  • metals examples include stainless steel and aluminum
  • ceramics include alumina, zinc oxide, carbon, silicon nitride, and silicon carbide.
  • oxides other than alumina and zinc oxide oxides selected from Ga, Y, In, La, Si, Ti, Ge, Zr, Sn, Nb or Ta may be used. Examples of these oxides include Ga.
  • these glass, resin, and ceramic substrates are referred to as non-metallic substrates. It is desirable that the surface of the substrate is provided with a mountain-shaped unevenness on at least one side, and is roughened by etching or the like so as to easily reflect incident sunlight.
  • a conductive electrode material such as Mo, Ag, Au, Al, Ti, Pd, Ni, or an alloy thereof is used, and any one of Mo, Ag, Au, or Al is preferable.
  • the thickness is 0.5 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • the forming means is not particularly limited, and for example, a direct current magnetron sputtering method, a vacuum deposition method, a CVD method, or the like can be used.
  • the p-type semiconductor constituting the light absorption layer 8 is CuInSe. 2 , CuInS 2 , CuGaSe 2 , CuGaS 2 , AgInSe 2 , AgInS 2 , AgGaSe 2 , AgGaS 2 . These solid solutions and CdTe can also be used.
  • the conditions required to obtain higher energy conversion efficiency are the optimal optical design to obtain more photocurrent, high quality heterojunction without carrier recombination at the interface or especially the absorbing layer and It is to make a thin film.
  • the thickness is 1 to 5 ⁇ m, preferably 2 to 3 ⁇ m.
  • the forming means is not particularly limited, and for example, a vacuum deposition method, a CVD method, or the like can be used.
  • the high quality hetero interface is closely related to the combination of the intermediate layer / absorbing layer, such as CdS / CdTe and CdS / CuInSe.
  • a semiconductor having a wider band gap for example, CdS, CdZnS, or the like is used as a semiconductor thin film constituting the intermediate layer 9.
  • These semiconductor thin films can improve sensitivity of short wavelengths in sunlight.
  • the thickness is 10 to 200 nm, preferably 30 to 100 nm.
  • a method for forming the intermediate layer 9 is not particularly limited, but in the case of a CdS thin film, CdI is obtained by a solution deposition method.
  • the window layer 10 is composed of a thin film having a conductivity similar to that of a CdS thin film, such as a ZnO or (Zn, Mg) O thin film, and is usually 50 to 300 nm, preferably 100 to 200 nm thick.
  • the window layer 10 is not particularly limited by a means for forming the window layer 10, but is formed by a direct current magnetron sputtering method using a target such as ZnO and Ar as a sputtering gas.
  • the solar cell according to the present invention uses the transparent conductive film of the present invention as an electrode on the side (front surface and / or back surface) on which the sunlight enters in a compound thin film solar cell. Can realize high conversion efficiency because of its lower resistance and higher transmittance than conventional transparent conductive films.
  • a bus bar electrode and a finger electrode are formed on the light receiving surface (front surface) side and the back surface side by a screen printing method using a silver paste, respectively.
  • the electrode surface is solder coated over almost the entire surface to facilitate its protection and connection tab attachment.
  • a transparent protective material such as a glass plate, a resin plate, or a resin film is provided on the light receiving surface side.
  • the thickness of the transparent conductive film according to the present invention constituting the electrode is not particularly limited, and is preferably 150 to 1500 nm, particularly preferably 200 to 900 nm, although it depends on the composition of the material. .
  • the transparent conductive film of the present invention has a low resistance and a high transmittance of sunlight including visible light to near infrared light having a wavelength of 380 nm to 1200 nm, so that the light energy of sunlight is converted into electric energy very effectively. can do.
  • the deposited thin film (transparent conductive film) according to the present invention is used as a transparent electrode of a light detection element, a touch panel, a flat panel display (LCD, PDP, EL, etc.), and a light emitting device (LED, LD, etc.).
  • a light detection element it includes a structure in which a glass electrode, a transparent electrode on the light incident side, a light detection material layer such as infrared rays, and a back electrode are laminated.
  • the photo-sensitive material layer for detecting infrared rays is a type using a semiconductor material based on Ge or InGeAs [photodiode (PD) or avalanche photodiode (APD)], sulfide of an alkaline earth metal element
  • PD photodiode
  • APD avalanche photodiode
  • an APD using a laminate of amorphous silicon germanium and amorphous silicon is also known, and any of them can be used. Examples of the present invention will be specifically described below.
  • Example 1 Preparation of oxide vapor deposition material In with an average particle size of 0.8 ⁇ m 2 O 3 Powder and CeO with an average particle size of 1 ⁇ m 2 Powder is used as raw material powder.
  • 2 O 3 Powder and CeO 2 The powder was prepared at a ratio such that the Ce / In atomic ratio was 0.008, and the mixture was placed in a resin pot and mixed by a wet ball mill. At this time, hard ZrO 2 A ball was used and the mixing time was 20 hours. After mixing, the slurry was taken out, and a polyvinyl alcohol binder was added to the resulting slurry, which was dried with a spray dryer or the like and granulated.
  • the sintered body for analysis is selected from the obtained sintered body, the analytical sintered body is broken to expose the fracture surface, and the area corresponding to the fracture surface within 5 ⁇ m from the sintered body surface was analyzed by EPMA (Electron Probe Micro Analyzer: Electron Beam Microanalyzer), and the cerium content in the surface layer from the sintered body surface to a depth of 5 ⁇ m [Ce / In atomic ratio (Comp S ]]. That is, 30 EPMA point analyzes were performed on the cross-sectional area of the sintered body within 5 ⁇ m from the surface, and the average value was calculated as the Ce / In atomic ratio (Comp) within the surface layer within 5 ⁇ m. S ). EPMA was measured under an acceleration voltage of 30 kV.
  • the above-mentioned sintered body for analysis is pulverized, the obtained powder is stirred, the composition analysis is similarly performed by EPMA, the Ce / In atomic ratio at 30 locations is measured, the average value is calculated, The average Ce / In atomic ratio of the whole body (Comp A ). And Comp indicating the ratio of composition deviation in the surface layer S / Comp A The value was calculated. The results are shown in Table 1b below, and it was found that the composition deviation was extremely small.
  • the sintered body (oxide vapor deposition material) after sintering including the above-described sintered body for analysis maintained substantially the same shape and dimensions as the molded body.
  • the density was calculated by measuring the volume and weight of the obtained sintered body (oxide vapor deposition material), it was 5.2 to 5.4 g / cm. 3 Met. Furthermore, when the average value of 100 crystal grain sizes in the sintered body was determined from observation of the fracture surface of the sintered body (oxide vapor deposition material) with a scanning electron microscope, it was found to be 2 to 7 ⁇ m. . Further, the specific resistance was calculated by measuring the surface resistance of the sintered body (oxide vapor deposition material) with respect to the electron beam irradiated surface using a four-end needle method resistivity meter, and it was 1 k ⁇ cm or less.
  • a magnetic field deflection type electron beam vapor deposition apparatus was used for producing the vapor deposition thin film (transparent conductive film).
  • the vacuum pumping system is composed of a low vacuum pumping system using a rotary pump and a high vacuum pumping system using a cryopump. -5 It is possible to exhaust to Pa.
  • the electron beam is generated by heating the filament, accelerated by the electric field applied between the cathode and anode, bent in the magnetic field of a permanent magnet, and then irradiated to the oxide vapor deposition material installed in the tungsten crucible.
  • the intensity of the electron beam can be adjusted by changing the voltage applied to the filament.
  • the irradiation position of the beam can be changed by changing the acceleration voltage between the cathode and the anode.
  • Film formation was performed under the following conditions. Ar gas and O in the vacuum chamber 2 Gas is introduced and the pressure is 1.5 ⁇ 10 -2 Held at Pa. At this time, Ar gas introduced into the vacuum chamber and O 2 Regarding the mixing ratio of gas, O 2 The amount of gas introduced is adjusted in steps of 1% to produce a plurality of vapor-deposited thin films (transparent conductive films) corresponding to each condition, and the following characteristics of the vapor-deposited thin films (transparent conductive films) with the smallest specific resistance Evaluated.
  • the columnar oxide deposition material (deposition oxide tablet) of Example 1 was placed upright on a tungsten crucible, and the center of the circular surface of the oxide deposition material was irradiated with an electron beam.
  • a 200 nm thick transparent conductive film was formed on a Corning 7059 glass substrate.
  • the set voltage of the electron gun was 9 kV, the current value was 150 mA, and the substrate was heated to 200 ° C.
  • the characteristics of the obtained deposited thin film (transparent conductive film) were evaluated by the following procedure.
  • the surface resistance of the obtained vapor-deposited thin film (transparent conductive film) was measured with a four-end needle method resistivity meter Loresta EP (manufactured by Dia Instruments Co., Ltd., MCP-T360 type), and the film thickness was measured with a contact-type surface roughness meter (Tencor).
  • the specific resistance was calculated from the measurement of the difference in level between the undeposited part and the non-deposited part.
  • the following evaluation was performed about the vapor deposition thin film (transparent conductive film) [Hereinafter, it may be abbreviated as a film
  • the transmittance of the membrane itself was calculated at x100 (%).
  • the average transmittance of the film itself in the visible region was measured at a wavelength of 400 to 800 nm, and the average transmittance of the film itself in the near infrared region was measured at a wavelength of 800 to 1200 nm.
  • the crystallinity of the film was evaluated by X-ray diffraction measurement.
  • X'Pert PROMPD manufactured by PANalytical
  • X-ray diffractometer was used as the X-ray diffractometer, and measurement was performed at a voltage of 45 kV and a current of 40 mA using CuK ⁇ rays in a wide range measurement.
  • membrane was evaluated from the presence or absence of an X-ray diffraction peak.
  • the film composition (Ce / In atomic ratio) was measured by ICP emission analysis, and further, using a Hall effect measuring device (ResiTest, manufactured by Toyo Technica), a deposited thin film (transparent) by Van der Pauw method. The carrier concentration and the hole mobility at room temperature of the conductive film) were measured.
  • the oxide vapor deposition material (evaporation oxide tablet) according to Example 1 has a Ce / In atomic ratio (Comp) in the surface layer as shown in Table 1b.
  • Such a sintered tablet for vapor deposition is stable with no change in film composition and characteristics from the initial stage of use of the surface layer of the sintered body, surface polishing of the sintered body is performed after sintering. It can use as a sintered compact tablet for vapor deposition. That is, since the surface layer of the sintered body can be used as it is without being ground, it has the advantage that the manufacturing cost of the sintered body tablet for vapor deposition is reduced. Furthermore, when the film is continuously formed for a long time while the tablet is continuously supplied, the film can be continuously formed even when the tablet is replaced, which is very advantageous in terms of productivity of the deposited thin film (transparent conductive film).
  • the obtained deposited thin film has a very high hole mobility, low resistance, and high transmittance in the visible region (91%). It is a membrane. Furthermore, since the carrier concentration is low, the transmittance in the near infrared region is as high as 85%. Such a deposited thin film (transparent conductive film) can be said to be very useful as a transparent electrode of a solar cell.
  • An oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 1 was produced under the same conditions as in Example 1 except that the “atmosphere adjusting powder” in Example 1 was not used.
  • the vapor deposition thin film (transparent conductive film) similar to Example 1 was formed using the oxide vapor deposition material (deposition oxide tablet) concerning the comparative example 1, and the same evaluation was performed. .
  • Tables 1a to 1b and 2a to 2b The sintered body (oxide vapor deposition material) after sintering maintained substantially the same shape and dimensions as the molded body, as in Example 1.
  • the density was calculated by measuring the volume and weight of the obtained sintered body (oxide vapor deposition material), it was 5.0 to 5.2 g / cm. 3 Met.
  • the oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 1 has a Ce / In atomic ratio (Comp) in the surface layer as shown in Table 1b.
  • S Is “0.0093”
  • the average value Ce / In atomic ratio of the entire sintered body (Comp A ) was “0.0081”
  • the average composition of the whole tablet was almost the same as the target composition, but the composition of the tablet surface had a smaller amount of indium than the entire average composition.
  • the composition of the vapor deposition thin film (transparent conductive film) obtained using the vapor deposition oxide tablet according to Comparative Example 1 is different from the initial stage of the film formation after 1 hour, and the “specific resistance” “ It is confirmed that the electrical characteristics such as “carrier concentration” and “hole mobility” are similarly different.
  • a sintered compact tablet for vapor deposition is used, a film having different characteristics is formed at the initial stage of use using the surface layer of the sintered body, and therefore cannot be used for manufacturing the film. .
  • Example 2 a vapor deposition thin film (transparent conductive film) similar to that of Example 1 was formed using the oxide vapor deposition material (vapor deposition oxide tablet) according to Comparative Example 2, and the same evaluation was performed. These results are shown in Tables 1a to 1b and 2a to 2b.
  • the sintered body (oxide vapor deposition material) after sintering maintained substantially the same shape and dimensions as the molded body, as in Example 1. When the density was calculated by measuring the volume and weight of the obtained sintered body (oxide vapor deposition material), it was 4.9 to 5.1 g / cm. 3 Met.
  • the oxide vapor deposition material (evaporation oxide tablet) according to Comparative Example 2 has a Ce / In atomic ratio (Comp) in the surface layer as shown in Table 1b.
  • S Is “0.0111”
  • the average value Ce / In atomic ratio of the entire sintered body (Comp A ) was “0.0082”
  • the average composition of the entire tablet was almost the same as the target composition, but the composition of the tablet surface had a smaller amount of indium than the entire average composition.
  • a sintered compact tablet for vapor deposition is used, a film having different characteristics is formed at the initial stage of use using the surface layer of the sintered body, and therefore cannot be used for manufacturing the film. .
  • the density of the sintered body is 6.4 g / cm. 3
  • the specific resistance was 0.8 m ⁇ cm, and the crystal grain size was 10 to 15 ⁇ m.
  • Table 1b the result of having measured and evaluated the composition of the sintered compact surface and the whole average composition similarly to Example 1 was shown in Table 1b.
  • Table 1b the Ce / In atomic ratio in the surface layer (Comp S ) Is “0.0145”, the average value Ce / In atomic ratio of the entire sintered body (Comp A ) was “0.0078”, and the average composition of the entire sintered body was almost the same as the charged composition, but the composition of the surface of the sintered body had a smaller amount of indium than the entire average composition.
  • Example 2 In which is raw material 2 O 3 Powder and CeO 2
  • the Ce / In atomic ratio is 0.001 (Example 2), 0.002 (Example 3), 0.004 (Example 4), 0.051 (Example 5), Sintered bodies (deposited oxide tablets) were produced under the same conditions as in Example 1 except that the proportions were 0.061 (Example 6) and 0.110 (Example 7).
  • both were Comp. S / Comp A 0.9 to 1.1, and the composition on the surface of the sintered body was almost the same as the average composition of the entire sintered body, and was almost the same as the charged composition.
  • Such a sintered tablet for vapor deposition is stable with no change in film composition and characteristics from the initial stage of use of the surface layer of the sintered body, surface polishing of the sintered body is performed after sintering. It can use as a sintered compact tablet for vapor deposition. That is, since the surface layer of the sintered body can be used as it is without being ground, it has the advantage that the manufacturing cost of the sintered body tablet for vapor deposition is reduced. Furthermore, when the film is continuously formed for a long time while the tablet is continuously supplied, the film can be continuously formed even when the tablet is replaced, which is very advantageous in terms of productivity of the deposited thin film (transparent conductive film).
  • Such a deposited thin film can be said to be very useful as a transparent electrode of a solar cell.
  • Example 8 In 2 O 3 Powder and CeO 2 Sintered body under the same conditions as in Example 1 except that the Ce / In atomic ratio is 0.346 when the powder is prepared and the sintering temperature is 1350 ° C. for 2 hours. (Oxide tablet for vapor deposition) was produced. When the density was calculated by measuring the volume and weight of the obtained sintered body (oxide vapor deposition material), it was 5.2 to 5.4 g / cm. 3 Met.
  • the refractive index at a wavelength of 550 nm was measured for the deposited thin film at that time using an ellipsometer. Further, the transmittance of the film itself in the visible range was also determined in the same manner as in Example 1. The results are shown in Tables 3a to 3b below. From the data shown in Tables 3a to 3b, the composition of the deposited thin film (the former is “initial film” and the latter is “film after 1 hour”) at the beginning and after 1 hour of using the oxide tablet for vapor deposition, and The optical characteristics (refractive index and transmittance) were almost the same.
  • each deposited thin film was an amorphous film. Since such a sintered tablet for vapor deposition is stable with no change in film composition and characteristics from the initial stage of use of the surface layer of the sintered body, surface polishing of the sintered body is performed after sintering. It can use as a sintered compact tablet for vapor deposition. That is, since the surface layer of the sintered body can be used as it is without being ground, it has the advantage that the manufacturing cost of the sintered body tablet for vapor deposition is reduced.
  • the film when the film is continuously formed for a long time while the tablet is continuously supplied, the film can be continuously formed even when the tablet is replaced, which is very advantageous in terms of productivity of the deposited thin film (transparent conductive film).
  • the refractive index of the obtained deposited thin film at a wavelength of 550 nm is “2.42” as shown in Tables 3a to 3b, and a conventional indium oxide-based thin film (for example, an ITO film is 1.9 to 2. Compared to 1), the value is high.
  • an optical component that exhibits a light interference effect by forming a laminate in combination with a low refractive index film such as a silicon oxide film or a metal fluoride film having a refractive index in the visible range of 1.3 to 1.5 (for example, it is very advantageous when manufacturing an antireflection film or the like.
  • An oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 4 was produced under the same conditions as in Example 8 except that the “atmosphere adjusting powder” in Example 8 was not used. While performing the same evaluation, the vapor deposition thin film similar to Example 8 was formed using the oxide vapor deposition material (deposition oxide tablet) which concerns on the comparative example 4, and the same evaluation was performed.
  • the sintered body (oxide vapor deposition material) after sintering maintained substantially the same shape and dimensions as the molded body, as in Example 8.
  • the density was calculated by measuring the volume and weight of the sintered body (oxide vapor deposition material), it was 5.0 to 5.1 g / cm. 3 Met.
  • the oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 4 has a Ce / In atomic ratio (Comp) in the surface layer as shown in Table 1b.
  • Example 5 An oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 5 was produced under the same conditions as in Example 8 except that oxygen was not introduced during firing of the molded body, and the same evaluation as in Example 8 was performed. In addition, a vapor deposition thin film similar to that of Example 8 was formed using the oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 5, and the same evaluation was performed. These results are shown in Tables 1a to 1b and 3a to 3b. The sintered body (oxide vapor deposition material) after sintering maintained substantially the same shape and dimensions as the molded body, as in Example 8.
  • the oxide vapor deposition material (deposition oxide tablet) according to Comparative Example 5 has a Ce / In atomic ratio (Comp) in the surface layer as shown in Table 1b.
  • S Is “0.5788”
  • the average value Ce / In atomic ratio of the entire sintered body (Comp A ) was “0.3463”
  • the average composition of the whole tablet was almost the same as the target composition, but the composition of the tablet surface had a smaller amount of indium than the whole average composition.
  • the composition of the vapor deposition thin film obtained using the vapor deposition oxide tablet according to Comparative Example 5 is different between the initial stage of film formation and after 1 hour, and the optical characteristics (refractive index) are also different. Is confirmed. When such a sintered compact tablet for vapor deposition is used, a film having different characteristics is formed at the initial stage of use using the surface layer of the sintered body, and therefore cannot be used for manufacturing the film. .
  • the density of the sintered body is 6.1 g / cm. 3
  • the specific resistance was 1.0 m ⁇ cm and the crystal grain size was 10 to 15 ⁇ m.
  • Table 1a to Table 1b show the results of measuring and evaluating the composition of the sintered body surface and the overall average composition in the same manner as in Example 8. Then, as shown in Table 1b, the Ce / In atomic ratio in the surface layer (Comp S ) Is “0.5404”, the average value Ce / In atomic ratio of the entire sintered body (Comp A ) was “0.3464”, and the average composition of the entire sintered body was almost the same as the charged composition, but the composition of the surface of the sintered body had a smaller amount of indium than the entire average composition.
  • Example 9 In which is raw material 2 O 3 Powder and CeO 2 When preparing the powder, except that the Ce / In atomic ratio was 0.090 (Example 9), 0.142 (Example 10), and 0.538 (Example 11).
  • a sintered body (deposition oxide tablet) was prepared under the same conditions as in Example 8.
  • each deposited thin film was an amorphous film. Since such a sintered tablet for vapor deposition is stable with no change in film composition and characteristics from the initial stage of use of the surface layer of the sintered body, surface polishing of the sintered body is performed after sintering. It can use as a sintered compact tablet for vapor deposition.
  • the surface layer of the sintered body can be used as it is without being ground, it has the advantage that the manufacturing cost of the sintered body tablet for vapor deposition is reduced. Furthermore, when the film is continuously formed for a long time while the tablet is continuously supplied, the film can be continuously formed even when the tablet is replaced, which is very advantageous in terms of productivity of the deposited thin film (transparent conductive film).
  • the refractive index of the vapor-deposited thin films according to Examples 9 to 11 is “2.15 to 2.52”, which is a conventional indium oxide thin film. (For example, ITO film has a higher value than 1.9 to 2.1).
  • an optical component that exhibits a light interference effect by forming a laminate in combination with a low refractive index film such as a silicon oxide film or a metal fluoride film having a refractive index in the visible range of 1.3 to 1.5 (for example, it is very advantageous when manufacturing an antireflection film or the like.
  • the oxide tablet for vapor deposition (oxide vapor deposition material) according to the present invention composed of a sintered body having a surface composition substantially the same as the internal composition is used as it is as a vapor deposition material without subjecting the sintered body to surface grinding. Therefore, it is possible to reduce the manufacturing cost, and since it can be used for the production of thin films from the initial use of the tablet, the amount of thin film production per tablet can be increased. Therefore, vapor deposition for forming transparent electrodes for various solar cells.
  • the present invention has industrial applicability to be used as an oxide tablet for vapor deposition when an antireflection film or the like is formed in combination with an oxide tablet for use or a low refractive index film.

Abstract

 蒸着用酸化物タブレット(酸化物蒸着材)と、これを用いて製造される蒸着薄膜並びに太陽電池を提供することを目的とし、上記タブレットは、酸化インジウムを主成分としセリウムを含み焼結後の表面研削加工がされていない焼結体により構成されており、焼結体表面から5μmの深さまでの表面層におけるセリウム含有量をCe/In原子数比(Comp)とし、焼結体全体におけるセリウム含有量の平均値をCe/In原子数比(Comp)とした場合、Comp/Comp=0.9~1.1であることを特徴とする。

Description

酸化物蒸着材と蒸着薄膜並びに太陽電池
 本発明は、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法にて透明導電膜や高屈折率光学膜を製造する際に使用される酸化物蒸着材と、この酸化物蒸着材を用いて製造される透明導電膜や光学膜等の蒸着薄膜および上記透明導電膜を電極に用いた太陽電池に係り、特に、酸化インジウムを主成分としかつセリウムを含むと共に焼結後の表面研削加工がされていない焼結体により構成される酸化物蒸着材の改良と、この酸化物蒸着材を用いて製造される蒸着薄膜並びに太陽電池に関するものである。
 透明導電膜は、高い導電性と可視光領域での高い光透過率を有する。そして、この特性を生かし、上記透明導電膜は、太陽電池、液晶表示素子、その他各種受光素子の電極等に利用され、更に、近赤外線領域での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いられる熱線反射膜や、各種の帯電防止膜、冷凍ショーケース等の防曇用透明発熱体としても利用されている。
 また、上記透明導電膜には、一般に、アンチモンやフッ素をドーパントとして含む酸化錫(SnO)、アルミニウム、ガリウム、インジウム、スズをドーパントとして含む酸化亜鉛(ZnO)、スズ、タングステン、チタンをドーパントとして含む酸化インジウム(In)等が広範に利用されている。特に、錫をドーパントとして含む酸化インジウム膜、すなわちIn−Sn系膜はITO(Indium tin oxide)膜と称され、低抵抗の透明導電膜が容易に得られることからこれまで工業的に幅広く用いられてきた。
 そして、これ等透明導電膜の製造方法としては、真空蒸着法、スパッタリング法、透明導電層形成用塗液を塗布する方法等が一般に用いられている。その中でも真空蒸着法やスパッタリング法は、蒸気圧の低い材料を使用する際や精密な膜厚制御を必要とする際に有効な手法であり、かつ、操作が非常に簡便であるため工業的には有用である。また、真空蒸着法とスパッタリング法を比較すると、真空蒸着法の方が高速に成膜することができるため量産性に優れている。
 ところで、真空蒸着法は、一般に、10−3~10−2Pa程度の真空中で、蒸発源である固体または液体を加熱して一度気体分子や原子に分解させた後、再び基板表面上に薄膜として凝縮させる方法である。また、上記蒸発源の加熱方式は、抵抗加熱法(RH法)、電子ビーム加熱法(EB法、電子ビーム蒸着法)が一般的であるが、レーザー光による方法や高周波誘導加熱法等もある。更に、フラッシュ蒸着法、アークプラズマ蒸着法、反応性蒸着法等も知られており、これ等の方法は真空蒸着法に含まれる。
 そして、上記ITOのような酸化物膜を堆積させる場合、歴史的には、上記電子ビーム蒸着法がよく利用されてきた。すなわち、蒸発源にITOの酸化物蒸着材(ITOタブレットあるいはITOペレットとも呼ぶ)を用い、成膜室(チャンバー)に反応ガスであるOガスを導入し、熱電子発生用フィラメント(主にW線)から飛び出した熱電子を電界で加速させてITOの酸化物蒸着材に照射すると、照射された部分は局所的に高温になり、蒸発して基板に堆積される。また、熱電子エミッタやRF放電を用いてプラズマを発生させ、このプラズマで蒸発物や反応ガス(Oガス等)を活性化させることにより、低温基板上で低抵抗の膜を作製することができる活性化反応性蒸着法(ARE法)もITO成膜には有用な方法である。更に、最近ではプラズマガンを用いた高密度プラズマアシスト蒸着法(HDPE法)もITO成膜に有効な手法であることが明らかとなり、工業的に広範に用いられはじめてきた(「真空」、Vol.44,No.4,2001年,p.435−439:非特許文献1参照)。この方法では、プラズマ発生装置(プラズマガン)を用いたアーク放電を利用するが、プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子が磁場により案内(ガイド)されて、坩堝に仕込まれたITOの酸化物蒸着材の局部に集中して照射される。この電子ビームが照射されて局所的に高温となった部分から、蒸発物が蒸発して基板に堆積される。気化した蒸発物や導入したOガスは、このプラズマ内で活性化されるため、良好な電気特性を持つITO膜を作製することができる。また、これ等の各種真空蒸着法の別の分類法として、蒸発物や反応ガスのイオン化を伴うものは総称してイオンプレーティング法(IP法)と呼ばれ、低抵抗で高光透過率のITO膜を得る方法として有効である(「透明導電膜の技術」、オーム社、1999年刊,p.205−211:非特許文献2参照)。
 そして、上記透明導電膜が適用される何れのタイプの太陽電池でも、光が当たる表側の電極には上記透明導電膜が不可欠であり、従来は、上述したITO膜や、アルミニウムがドーピングされた酸化亜鉛(AZO)膜、あるいは、ガリウムがドーピングされた酸化亜鉛(GZO)膜が利用されてきた。そして、これ等の透明導電膜には、低抵抗であることや、可視光の光透過率が高いこと等の特性が求められている。また、これ等の透明導電膜の製造方法としては、上述したイオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法が用いられている。
 ところで、上述したITO膜、AZO膜、GZO膜は、低抵抗で可視域の透過率が高い材料であるが、近赤外域の透過率は低い。これ等の材料は、キャリア濃度が高いため近赤外光の吸収・反射が生じてしまうからである。しかし、近年、可視域~近赤外域の透過率が高くて高い導電性を有する透明導電膜を表側の電極に用い、近赤外光のエネルギーも有効に利用した高効率の太陽電池の開発が急がれている。そして、このような透明導電膜として、タングステンを含有した酸化インジウムから成る結晶性の透明導電膜(結晶性In−W−O)が特許文献1(特開2004−43851号公報)に紹介されている。また、本発明者等は、セリウムを含有した酸化インジウムから成る結晶性の透明導電膜も上記結晶性In−W−O膜と同様の特徴を有することを明らかにしており、より優れた近赤外域透過性と導電性を発揮することを見出している。
 一方、上述した酸化インジウム、酸化スズ、酸化亜鉛を主成分とする薄膜は、光学膜としても利用されている。これ等の薄膜は、可視域における屈折率が1.9~2.1を示す高屈折率材料であり、可視域における屈折率が1.3~1.5を示す酸化シリコン膜や金属フッ化物膜等の低屈折率膜と組み合わせて積層体とすることにより、光の干渉効果を発揮させることができる。すなわち、積層体の各膜厚を精密に制御することにより、特定波長領域の反射防止効果や反射増強効果を持たせることができる。この用途の場合、高屈折率膜の屈折率は高い程、強い干渉効果を容易に得ることができるので有用である。
 そして、特許文献2(特開2005−242264号公報)には、セリウムを含有する酸化インジウム膜が、上述の酸化スズや酸化亜鉛膜等より高い屈折率を有することが示され、光学膜として利用されている例が紹介されている。更に、特許文献3(特許第3445891号公報)や特許文献4(特開2005−290458号公報)にはセリウムを含有した酸化インジウムのスパッタターゲット材(In−Ce−O)と、このスパッタターゲット材からスパッタリング法で得られる透明導電膜に関する技術が紹介されている。すなわち、特許文献3では、セリウムを含む酸化インジウム系の透明導電膜はAgとの反応性が乏しいことから、Ag系極薄膜と積層することにより高透過性で耐熱性に優れた透明導電膜を実現できることが紹介され、特許文献4では、エッチング性に優れた膜を得られることが紹介されている。
 ところで、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法にて上述した透明導電膜や光学膜等の薄膜を製造する場合、この真空蒸着法に用いられる酸化物蒸着材は、小さいサイズ(例えば直径が10~50mmで高さが10~50mm程度の円柱形状)の焼結体が使われるため、一つの酸化物蒸着材で成膜できる膜量には限界があった。そして、酸化物蒸着材の消耗量が多くなり残量が少なくなると、成膜を中断し、真空中の成膜室を大気導入して未使用の酸化物蒸着材に交換し、かつ、成膜室を再び真空引きする必要があり、生産性を悪くする要因となっていた。
 また、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法にて透明導電膜や光学膜等の薄膜を量産する場合に必要不可欠な技術として、上記酸化物蒸着材の連続供給法が挙げられ、その一例が、非特許文献1に記載されている。この連続供給法では、円筒形状のハースの内側に円柱形状の酸化物蒸着材が連なって収納されており、昇華面の高さが一定に維持されたまま酸化物蒸着材が順次押し出されて連続供給されるようになっている。そして、酸化物蒸着材の連続供給法により、真空蒸着法による透明導電膜や光学膜等の薄膜の大量生産が実現できるようになった。
 ところで、セリウムを含有する酸化インジウム膜については、通常、特許文献3や特許文献4で紹介されているようにスパッタリング法により製造されているが、近年、生産性に有利な各種の真空蒸着法で製造する要望が強い。
 しかし、真空蒸着法によりセリウムを含有する酸化インジウム膜を安定して成膜するための酸化物蒸着材に関する技術が乏しいことから、この酸化物蒸着材については、これまでスパッタリングターゲット焼結体の製造技術が転用されてきた。
 但し、スパッタリングターゲットの転用技術による方法では、焼成後における焼結体は表面の組成が内部と異なるため、研削加工して表面を削り取り、所定の形状のタブレット(酸化物蒸着材)に仕上げている。これによって表面から内部まで均一組成のタブレットを得ることができるが、製造コストが高い等の課題があった。更に、転用技術による方法では、得られる焼結体の密度が高密度となり、焼結時の収縮が大きいため、焼結後に所望の寸法にすることが難しいという問題も存在した。従って、焼結体表面の組成ズレと焼結時における収縮の問題があるため、予め大きめの焼結体を作製し、研削加工して表面を削り取り、組成ズレの無い、所望寸法の焼結体を得ているが、そもそも得られる焼結体の密度が高くなるため、熱応力により蒸着中にタブレットが割れる等の問題が存在した。
 他方、予め焼結収縮の割合を考慮した焼結法を実施することで、焼成後に上記研削加工等を行わずに所定の形状とすることができる。例えば、ITOタブレットの製造方法を適用することにより、焼成後の研削加工なしで所望の寸法を有するタブレット(酸化物蒸着材)を得ることは可能となる。しかし、このような方法で製造されたセリウムを含む酸化インジウムの焼結体でも表面と内部で組成が異なる。セリウムを含む酸化インジウムの焼結体においては、セリウムが固溶した酸化インジウムの結晶相と酸化セリウムの結晶相に分離した2相の混合物で構成されているため、焼結体製造時における高温時の焼結体表面では蒸気圧の高い酸化インジウム相が揮発し易いからである。これに対し、上記ITOの焼結体においては、スズが固溶した酸化インジウムの結晶相とインジウム酸スズ化合物の結晶相で構成されて酸化スズ相が残存しないことから上記問題は起こり難い。そして、表面と内部で組成が異なる焼結体から得た酸化物蒸着材を用いて成膜を行うと、成膜初期における薄膜組成の変動が大きいため、初期に成膜された膜部分は利用することができない。このため、一つのタブレットからの薄膜の生産量が少ない等の課題があった。
 本発明はこのような問題点に着目してなされたもので、その課題とするところは、酸化インジウムを主成分としかつセリウムを含むと共に表面から内部まで同一の組成を有する蒸着用酸化物タブレット(酸化物蒸着材)を提供することにある。
 そこで、上記課題を解決するため本発明者等が鋭意研究を継続した結果、セリウムを含む酸化インジウムの焼結体を製造する際、高温焼成時における焼結体表面からの酸化インジウム成分の揮発が防止される手法を採用することで、酸化インジウムを主成分としかつセリウムを含むと共に表面から内部まで同一の組成を有する蒸着用酸化物タブレット(酸化物蒸着材)が得られることを発見するに至った。本発明はこのような技術的発見により完成されている。
 すなわち、本発明に係る酸化物蒸着材は、酸化インジウムを主成分とし、かつ、セリウムを含むと共に、焼結後の表面研削加工がされていない焼結体により構成され、焼結体表面から5μmの深さまでの表面層におけるセリウム含有量をCe/In原子数比(Comp)とし、焼結体全体におけるセリウム含有量の平均値をCe/In原子数比(Comp)とした場合、Comp/Comp=0.9~1.1であることを特徴とする。
 また、酸化インジウムを主成分とし、かつ、セリウムを含む本発明に係る蒸着薄膜は、上記酸化物蒸着材を原料として用い、電子ビーム蒸着法、イオンプレーティング法若しくは高密度プラズマアシスト蒸着法により成膜され、かつ、成膜された薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.001~0.538であることを特徴とし、
 本発明に係る太陽電池は、上記蒸着薄膜を電極として用いていることを特徴とする。
 そして、本発明に係る酸化物蒸着材は、酸化インジウムを主成分とし、かつ、セリウムを含むと共に、焼結後の表面研削加工がされていない焼結体により構成され、焼結体表面から5μmの深さまでの表面層におけるセリウム含有量をCe/In原子数比(Comp)とし、焼結体全体におけるセリウム含有量の平均値をCe/In原子数比(Comp)とした場合、Comp/Comp=0.9~1.1であることから、焼結体表面の組成が内部と略同一であるため、焼成後に研削加工を行わなくとも蒸着材としてそのまま使用することができる。
 従って、製造コストが大幅に削減されて蒸着用酸化物タブレット(酸化物蒸着材)を安価に提供することが可能となり、かつ、タブレットの表面から内部まで略同一の組成を有するため、タブレットの使用初期から薄膜の製造に利用することができ、タブレット1個当たりの薄膜生産量を増大させることが可能となる効果を有する。
 また、本発明の酸化物蒸着材を用いて成膜されかつ薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.004~0.056、かつ、比抵抗が3.5×10−4Ωcm以下である導電性の透明結晶膜により構成された蒸着薄膜によれば、可視~近赤外域において高透過率を有しかつ高い導電性を有するため、太陽電池の表面側電極として適用できる効果を有している。
 更に、本発明の酸化物蒸着材を用いて成膜されかつ薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.090~0.538であり、かつ、波長550nmにおける屈折率が2.15以上である高屈折率性の透明膜により構成された蒸着薄膜によれば、低屈折率膜と組み合わせて積層体とすることにより、反射防止膜等の光学膜用途として適用できる効果も有している。
 第1図は、本発明に係る透明導電膜を電極層として用いたシリコン系太陽電池の概略構成を示す説明図。
 第2図は、本発明に係る透明導電膜により構成される電極層をガラス基板側に用いた化合物薄膜系太陽電池の概略構成を示す説明図。
 第3図は、本発明に係る透明導電膜により構成される電極層をガラス基板とは反対側に用いた化合物薄膜系太陽電池の概略構成を示す説明図。
 以下、本発明の実施の形態について詳細に説明する。
(1)酸化物蒸着材(蒸着用酸化物タブレット)
 本発明の酸化物蒸着材(蒸着用酸化物タブレット)は、酸化インジウムを主成分としかつセリウムを含むと共に焼結後の表面研削加工がされていない焼結体により構成されており、焼結体表面から5μmの深さまでの表面層におけるセリウム含有量をCe/In原子数比(Comp)とし、焼結体全体におけるセリウム含有量の平均値をCe/In原子数比(Comp)とした場合、Comp/Comp=0.9~1.1であることを特徴とし、かつ、上述したように焼成後に焼結体表面を研削加工せずに製造されることを最大の特徴としている。
 焼結体表面層におけるCe/In原子数比(Comp)の測定法としては、例えば、焼結体を破断してその破断面を露出させ、この破断面に対して、焼結体表面から5μm以内に相当する領域のEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)組成分析を行うことで測定する方法が挙げられる。すなわち、上記破断面の焼結体表面から5μm以内に相当する領域(破断面の断面外周縁部から5μm以内の部位)に対してEPMAによる点分析を行い、20~30箇所の分析値を平均することで焼結体表層の組成を決定することができる。
 また、上記焼結体全体におけるセリウム含有量の平均値[Ce/In原子数比(Comp)]については、焼結体を粉砕し、得られた粉末を攪拌し、上述した同様のEPMA分析にてCe/In原子数比を測定し求めることができる。
 尚、焼成後において焼結体表面を研削加工することなしに、Comp/Comp=0.9~1.1の酸化物蒸着材を製造するには、セリウムを含む酸化インジウムの焼結体を製造する際、高温焼成時における焼結体表面からの「酸化インジウム」成分の揮発が防止される後述の手法を採用することで製造することができる。すなわち、本発明に係る酸化物蒸着材(蒸着用酸化物タブレット)は、酸化インジウム、酸化セリウムの各粉末を原料とし、これ等原料を混合し成型して圧粉体を形成すると共に、圧粉体の高温焼成の際、焼結体表面から「酸化インジウム」成分が揮発されない後述の手法を採用し、反応・焼結させて製造することができる。尚、酸化インジウムと酸化セリウムの各粉末は、特別なものではなく、従来から用いられている酸化物焼結体用の原料でよい。また、使用する粉末の平均粒径は1.5μm以下であり、好ましくは0.1~1.1μmである。
 まず、上記酸化物焼結体を製造する際の一般的な原料粉末の混合法として、ボールミル混合法が利用されているが、本発明の焼結体を製造する場合にも有効である。ボールミルは、セラミック等の硬質のボール(ボール径10~30mm)と材料の粉を容器に入れて回転させることによって、材料をすりつぶしながら混合して微細な混合粉末を作る装置である。ボールミル(粉砕メディア)は、缶体として、鋼、ステンレス、ナイロン等があり、内張りとして、アルミナ、磁気質、天然ケイ石、ゴム、ウレタン等を用いる。ボールは、アルミナを主成分とするアルミナボール、天然ケイ石、鉄芯入りナイロンボール、ジルコニアボール等がある。湿式と乾式の粉砕方法があり、焼結体を得るための原料粉末の混合・粉砕に広範に利用されている。
 また、ボールミル混合以外の方法としては、ビーズミル法やジェットミル法も有効である。特に、酸化セリウム粉末は硬質材料であるため、大きな平均粒径の原料を用いる場合や、短時間で粉砕混合する必要がある場合は非常に有効である。ビーズミル法とは、ベッセルと呼ばれる容器の中に、ビーズ(粉砕メディア、ビーズ径0.005~3mm)を70~90%充填しておき、ベッセル中央の回転軸を周速7~15m/秒で回転させることによりビーズに運動を与える。ここに、原料粉末等の被粉砕物を液体に混ぜたスラリーをポンプで送り込み、ビーズを衝突させることによって微粉砕・分散させる。ビーズミルの場合、被粉砕物に合わせてビーズ径を小さくすれば効率が上がる。一般的に、ビーズミルはボールミルの1千倍近い加速度で微粉砕と混合を実現することができる。このような仕組みのビーズミルは、様々な名称で呼ばれており、例えば、サンドグラインダー、アクアマイザイー、アトライター、パールミル、アベックスミル、ウルトラビスコミル、ダイノーミル、アジテーターミル、コボールミル、スパイクミル、SCミル等が知られており、本発明においてはいずれも使用できる。また、ジェットミルとは、ノズルから音速前後で噴射される高圧の空気あるいは蒸気を、超高速ジェットとして原料粉末等の被粉砕物に対し衝突させ、粒子同士の衝撃によって微粒子に粉砕する方法である。
 上述したように酸化インジウム粉末と酸化セリウム粉末を所望の割合でボールミル用ポットに投入し、乾式あるいは湿式混合して混合粉末をまず調製する。そして、本発明の酸化物焼結体を得るためには、上記原料粉末の配合割合について、インジウムとセリウムの含有量がCe/In原子数比で、好ましくは0.001~0.538となるように調製する。
 こうして調製された混合粉末に、水および分散材・バインダー等の有機物を加えてスラリーを製造する。スラリーの粘度は150~5000cPが好ましく、より好ましくは400~3000cPである。
 次に、得られたスラリーとビーズとをビーズミルの容器に入れて処理する。ビーズ材としては、ジルコニア、アルミナ等を挙げることができるが、耐摩耗性の点でジルコニアが好ましい。ビーズの直径は、粉砕効率の点から1~3mmが好ましい。パス数は1回でもよいが、2回以上が好ましく、5回以下で十分な効果が得られる。また、処理時間としては、好ましくは10時間以下、更に好ましくは4~8時間である。
 このような処理を行うことによって、スラリー中における酸化インジウム粉末と酸化セリウム粉末の粉砕・混合が良好となる。
 次に、このようにして処理されたスラリーを用いて成形を行う。成形方法としては、鋳込み成形法、プレス成形法のいずれも採用することができる。鋳込み成形を行う場合、得られたスラリーを鋳込み成型用の型に注入して成形体を製造する。ビーズミルの処理から鋳込みまでの時間は10時間以内とするのが好ましい。こうすることにより得られたスラリーがチクソトロピー性を示すことを防ぐことができるからである。また、プレス成形を行う場合、得られたスラリーにポリビニルアルコール等のバインダー等を添加し、必要に応じて水分調節を行ってからスプレードライヤー等で乾燥させて造粒する。得られた造粒粉末を所定の大きさの金型に充填し、その後、プレス機を用いて100~1000kg/cmの圧力で1軸加圧成形を行い成形体とする。このときの成形体の厚みは、この後の焼成工程による収縮を考慮して、所定の大きさの焼結体を得ることができる厚さに設定することが好ましい。
 上述の混合粉末から作製した成形体を用いれば、ホットプレス法でも常圧焼結法でも本発明の酸化物焼結体を得ることができるが、製造コストの低い常圧焼結法で製造することがより好ましい。そして、常圧焼結法を用い、焼結体表面から「酸化インジウム」成分が揮発されない手法を採用して発明の酸化物焼結体を得る場合、以下のようになる。
 まず、得られた成形体に対し300~500℃の温度で5~20時間程度加熱して脱バインダー処理を行う。その後、昇温させて焼結を行うが、昇温速度は、効果的に内部の気泡欠陥を外部へ放出させるため150℃/時間以下、好ましくは100℃/時間以下、更に好ましくは80℃/時間以下とする。焼結温度は、1150~1350℃、好ましくは、1200~1250℃とし、焼結時間は1~20時間、好ましくは2~5時間焼結する。
 上記脱バインダー処理~焼結工程は、炉内容積0.1m当たり5リットル/分以上の割合の酸素を炉に導入して行うことが重要である。上記焼結工程において酸素を導入して行う理由は、焼結工程時における焼結体表面からの表面成分の揮発を防止して表面から内部まで同一の組成を有する焼結体を得るためである。すなわち、焼結体は1150℃以上で酸素を解離し易く、過剰の還元状態に進むと酸化物焼結体の表面成分(特に酸化インジウム)が揮発し易くなるからである。また、焼結温度の上限を1350℃としている理由は、1350℃を超える高温で焼成すると、焼結工程において上記酸素の導入を行なっても焼結体からの酸素の解離が激しくなり、還元状態が進み過ぎて酸化物焼結体の表面成分が揮発してしまうからである。更に、表面から内部まで同一の組成を有する焼結体を得るためには、目的とする酸化物焼結体と同一組成のセリウムを含有する酸化インジウムの粉末(この粉末を以下「雰囲気調整用パウダー」と称する)若しくは圧粉体(この圧粉体を以下「雰囲気調整用圧粉体」と称する)を焼結体周囲に配置することが好ましい。焼結体の周囲に上記雰囲気調整用パウダー(若しくは雰囲気調整用圧粉体)が配置されることにより、雰囲気調整用パウダー(若しくは雰囲気調整用圧粉体)から揮発した金属酸化物成分で焼結炉内は満たされるため、焼結体表面からの金属酸化物の揮発を極力抑制することができ、表面から内部まで同一の組成を有する焼結体を製造することが可能となる。尚、雰囲気調整用パウダー若しくは雰囲気調整用圧粉体は、目的とする酸化物焼結体と同一組成のセリウムを含有する酸化インジウムの粉末であることが好ましい。このように焼結工程は、焼結温度が1150~1350℃の条件で酸素を導入しながら行ない、かつ、焼結体の周囲に上記雰囲気調整用パウダー若しくは雰囲気調整用圧粉体を配置して行なうことが重要である。そして、これ等条件を具備させた場合、焼結後において表面研削加工をすることなく、焼結体の表面と内部において同じ組成のセリウムが含まれる酸化インジウム焼結体を得ることができる。
 そして、焼結後は10℃/分の条件で室温まで降温し、室温にて炉から取り出すことができるが、降温途中の950~1100℃の温度にて適度な酸素量を含む雰囲気下において行なう加熱処理すなわち最適な還元処理を行なうことも有効である。
 このようにして得られた焼結体は焼結体表面と内部の組成が同一であるため、焼結後において研削等による加工を行なわなくても、酸化物蒸着材(蒸着用酸化物タブレット)としてそのまま使用することができる。その際、焼結の収縮率も考慮に入れて、焼成後に所定の寸法となるように予め大きさが調整された成形体を用いることにより、焼結後に最適な寸法の酸化物蒸着材(蒸着用酸化物タブレット)を得ることができる。
 尚、本発明に係る酸化物蒸着材(蒸着用酸化物タブレット)において、焼結体全体におけるセリウム含有量の平均値Ce/In原子数比(Comp)が0.001~0.538であることが好ましい。上記平均値が0.001未満であると、この酸化物蒸着材(蒸着用酸化物タブレット)を用いて成膜された薄膜におけるキャリア濃度や移動度増加の効果が小さいため、低抵抗の蒸着薄膜を得ることができないことがある。また、上記平均値が0.538を超えると、酸化物蒸着材(蒸着用酸化物タブレット)中のセリウム量が多過ぎて実用的な強度を有する焼結体が得られないだけでなく、タブレット自体の必要とする導電性を得ることが難しくなり、電子ビーム蒸着法による安定使用に供することが困難になる場合があるため好ましくない。すなわち、セリウム量が多過ぎると、電子移動の際の中性不純物散乱が大きくなってしまい、移動度が低下して低抵抗の蒸着薄膜が得られない。更に、高い移動度を発揮して低抵抗の蒸着薄膜を得るためのより好ましいセリウムの含有量は、Ce/In原子数比で0.004~0.056である。
 また、本発明に係る酸化物蒸着材(蒸着用酸化物タブレット)については円柱形状を有することが好ましい。このような形状を有する場合、円形上面の安定した昇華が推進されるため、タブレットを連続供給するのに都合が良い。すなわち、一つのタブレットの消費が完了し、次のタブレットに成膜が続く際、本発明の酸化物蒸着材(蒸着用酸化物タブレット)を用いることにより、表面層の組成が内部と同じであるため薄膜特性を変動させない等の利点がある。
 また、本発明に係る酸化物蒸着材(蒸着用酸化物タブレット)については、インジウム、セリウム、酸素以外の他の元素として、例えば、スズ、タングステン、モリブデン、亜鉛、カドミウム、ニオブ等が含まれていても、本発明の特性が損なわれないことを条件に許される。但し、金属イオンの中でも、その酸化物の蒸気圧が酸化インジウムや酸化セリウムの蒸気圧と較べて極めて高い場合には、各種真空蒸着法で蒸発させることが困難となるため含有されない方が好ましい。例えば、アルミニウム、チタン、シリコン、ゲルマニウム、ジルコニウムのような金属は、これ等酸化物の蒸気圧が酸化インジウムや酸化セリウムと較べて極めて高いため、酸化物蒸着材に含ませた場合、酸化インジウムや酸化セリウムと共に蒸発させることが困難となる。このため、酸化物蒸着材に残存して高濃度化し、最終的には酸化インジウムと酸化セリウムの蒸発の妨げになる等の悪影響を及ぼすことから含有させてはならない。
(2)蒸着薄膜
 次に、本発明に係る蒸着薄膜は、上述した本発明の酸化物蒸着材を原料として用い、電子ビーム蒸着法、イオンプレーティング法若しくは高密度プラズマアシスト蒸着法により成膜された酸化インジウムを主成分としかつセリウムを含む薄膜で構成される。
 そして、成膜された薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.004~0.056である結晶膜で構成されることが好ましい。結晶膜とすることでセリウムが酸化インジウムのインジウムサイトに置換固溶されたときに高い移動度を発揮することができる。結晶膜は、成膜中の基板を180℃以上に加熱することで得られるが、非加熱成膜にて得られた薄膜を180℃以上でアニールする方法でも得ることができる。また、Ce/In原子数比で0.004~0.056の範囲とすることで、ホール移動度が80cm/V・s以上、キャリア濃度が3.3×1020cm−3以下で、比抵抗が3.5×10−4Ωcm以下の透明導電膜を実現することができる。また、本発明に係る蒸着薄膜(透明導電膜)は、キャリア濃度が低いため、波長800~1200nmにおける薄膜自体の平均透過率が80%以上と非常に高い。
 また、成膜された薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.090~0.538で、かつ、波長550nmにおける屈折率が2.15以上である高屈折率性の透明膜により構成されてもよい。Ce/In原子数比で0.090以上とすることで可視域の屈折率を高めることができる。そして、上記透明膜の屈折率を2.15以上と高めることで、可視域における屈折率が1.3~1.5を示す酸化シリコン膜や金属フッ化物膜等の低屈折率膜と積層体を形成することにより光の干渉効果を発揮することが可能となる。すなわち、積層体の各膜厚を精密に制御することにより特定の波長領域の反射防止効果や反射増強効果を持たせることができる。この場合、上記蒸着薄膜は結晶膜でも非晶質膜でもよく、結晶と非晶質が混在した膜でもよい。
 また、本発明の蒸着薄膜は、上述した酸化物蒸着材(蒸着用酸化物タブレット)と同様、インジウム、セリウム、酸素以外の他の元素として、例えば、スズ、タングステン、モリブデン、亜鉛、カドミウム等が含まれていても、本発明の特性が損なわれないことを条件に許される。
(3)太陽電池
 本発明に係る太陽電池は、上記蒸着薄膜(上述したように、以下、透明導電膜と称する場合がある)を電極として用いていることを特徴とする光電変換素子である。太陽電池素子の構造は特に限定されず、p型半導体とn型半導体を積層したPN接合型、p型半導体とn型半導体の間に絶縁層(I層)を介在させたPIN接合型等が挙げられる。
 また、太陽電池は、半導体の種類によって大別され、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系半導体を用いた太陽電池、CuInSe系やCu(In,Ga)Se系、Ag(In,Ga)Se系、CuInS系、Cu(In,Ga)S系、Ag(In,Ga)S系やこれらの固溶体、GaAs系、CdTe系等で代表される化合物半導体の薄膜を用いた化合物薄膜系太陽電池、および、有機色素を用いた色素増感型太陽電池(グレッツェルセル型太陽電池とも呼ばれる)に分類されるが、本発明に係る太陽電池は何れの場合も含まれ、上述した透明導電膜を電極として用いることで高効率を実現できる。特に、アモルファスシリコンを用いた太陽電池や化合物薄膜系太陽電池では、太陽光が入射する側(受光部側、表側)の電極には透明導電膜が必要不可欠であり、本発明の蒸着薄膜(透明導電膜)を用いることで高い変換効率の特性を発揮することができる。
 上記シリコン系の太陽電池について概説すると、PN接合型の太陽電池素子は、例えば厚み0.2~0.5mm程度、大きさ180mm角程度の単結晶や多結晶のシリコン基板が用いられ、素子のシリコン基板内部にはボロン等のP型不純物を多く含んだP層と、リン等のN型不純物を多く含んだN層が接したPN接合が形成される。
 また、上記シリコン基板の代わりに、ガラス板、樹脂板、樹脂フィルム等の透明基板も使用される。本発明においては、透明基板であることが好ましい。この場合、基板に本発明の透明導電膜を電極として形成した後、アモルファスあるいは多結晶のシリコンが積層されて、薄膜シリコン系太陽電池として大別される。
 アモルファスシリコンでは、PN接合の間に絶縁層(I層)が介在したPIN接合とされる。すなわち、第1図に示すように、ガラス基板1の上に、表側(受光部側)透明電極膜2と、p型アモルファスシリコン膜または水素化アモルファスシリコンカーバイド膜3と、不純物を含まないアモルファスシリコン膜4と、n型アモルファスシリコン膜5と、裏側透明電極膜(接触改善層)6と、裏側金属電極すなわち裏面電極7が積層された構造を有している。尚、上記p型アモルファスシリコン膜または水素化アモルファスシリコンカーバイド膜3、不純物を含まないアモルファスシリコン膜4、および、n型アモルファスシリコン膜5は、通常、プラズマCVD法によって形成される。これ等のアモルファスシリコン膜と水素化アモルファスシリコン膜には、光吸収波長を制御するためにゲルマニウム、炭素、窒素、スズ等が含まれていてもよい。
 尚、シリコン薄膜を用いた薄膜太陽電池は、シリコン薄膜を含む光電変換層が、アモルファスシリコン系薄膜で構成されたもの、微結晶シリコン系薄膜で構成されたもの、アモルファスシリコン系薄膜と微結晶シリコン系薄膜で構成されたもの(タンデム型薄膜系光電変換層)に分類される。そして、本発明の透明導電膜が電極として用いられていれば、本発明に係る太陽電池はそれら全ての構造が含まれる。その他、単結晶シリコン板あるいは多結晶シリコン板の光電変換層と、上記薄膜系光電変換層が積層されたハイブリッド型の光電変換層を有するものも、本発明の透明導電膜が電極として用いられていれば、本発明に係る太陽電池に含まれる。
 次に、上記化合物薄膜系太陽電池について説明する。化合物薄膜を用いた太陽電池は、通常は広いバンドギャップを持つ化合物半導体薄膜(n型半導体の中間層)と狭いバンドギャップを持つ化合物半導体(p型半導体の光吸収層)のヘテロ結合で構成されている。一般的な構造は、表面電極(透明導電膜)/窓層/中間層/光吸収層/裏面電極(金属または透明導電膜)となる。
 具体的には、第2図に示すように、ガラス基板12の上に、本発明の透明導電膜から成る透明電極膜11と、ZnO薄膜から成る窓層10と、半導体の中間層9と、p型半導体の光吸収層8と、Au膜から成る裏面電極7が積層されている。また、第3図には、ガラス基板12の上に、下部電極すなわち裏面電極13と、p型半導体の光吸収層8と、半導体の中間層9と、窓層10と、本発明の透明導電膜から成る透明電極膜11が積層されている。いずれの構造も、透明電極膜11側が太陽光線の入射方向となっている。
 尚、基板としては、上記ガラス、樹脂、金属、セラミック等その材質によって特に限定されず、透明でも非透明でもよいが、透明基板が好ましい。樹脂の場合、板状、フィルム等様々な形状のものが使用でき、例えば150℃以下の低融点のものであってもよい。金属の場合、ステンレス鋼、アルミニウム等が挙げられ、セラミックとしては、アルミナ、酸化亜鉛、カーボン、窒化珪素、炭化珪素等を挙げることができる。アルミナ、酸化亜鉛以外の酸化物として、Ga,Y,In,La,Si,Ti,Ge,Zr,Sn,NbまたはTaから選ばれる酸化物を含んだものでもよい。これ等の酸化物としては、例えば、Ga,Y,In,La,SiO,TiO,GeO,ZrO,SnO,Nb,Ta等を挙げることができる。本発明においては、これ等ガラス、樹脂、セラミック製の基板を非金属基板と称する。基板表面は、少なくとも一方に山型の凹凸を設けること、エッチング等で粗面化することにより、入射する太陽光線を反射し易くしておくことが望ましい。
 また、上記裏面電極13としては、Mo、Ag、Au、Al、Ti、Pd、Ni、これ等の合金等導電性電極材料が使用され、Mo、Ag、AuまたはAlのいずれかが好ましい。通常、0.5~5μm、好ましくは1~3μmの厚さとされる。その形成手段は、特に限定されないが、例えば、直流マグネトロンスパッタ法、真空蒸着法やCVD法等が利用できる。
 また、上記光吸収層8を構成するp型半導体としては、CuInSe、CuInS、CuGaSe、CuGaS、AgInSe、AgInS、AgGaSe、AgGaSおよびこれ等の固溶体やCdTeが利用可能である。より高いエネルギー変換効率を得るために必要とされる条件は、より多くの光電流を得るための光学的な最適設計と、界面または特に吸収層においてキャリアの再結合のない高品質なヘテロ接合および薄膜を作ることである。通常、1~5μm、好ましくは2~3μmの厚さとされる。その形成手段としては特に限定されないが、例えば、真空蒸着法やCVD法等が利用できる。また、高品質なヘテロ界面は中間層/吸収層の組み合わせと関係が深く、CdS/CdTe系やCdS/CuInSe系、CdS/Cu(In,Ga)Se系、CdS/Ag(In,Ga)Se系等において有用なヘテロ接合が得られる。
 また、太陽電池を高効率化するには、より広いバンドギャップをもつ半導体、例えば、中間層9を構成する半導体薄膜としてCdSやCdZnS等が用いられる。これ等半導体薄膜によって、太陽光における短波長の感度向上を図ることができる。通常、10~200nm、好ましくは30~100nmの厚さとされる。上記中間層9の形成手段としては特に限定されないが、CdS薄膜の場合、溶液析出法で、CdI、NHCl、NHおよびチオ尿素の混合溶液を用いて形成される。更に、中間層9であるCdSや(Cd,Zn)Sの入射光側には、これ等の薄膜よりもバンドギャップの大きな半導体を窓層10として配置することができる。これにより、再現性の高い高性能な太陽電池となる。上記窓層10は、例えばZnOや(Zn,Mg)O薄膜等その導電率がCdS薄膜と同程度の薄膜で構成され、通常、50~300nm、好ましくは100~200nmの厚さとされる。また、窓層10の形成手段としては特に限定されないが、ZnO等のターゲットとスパッタガスとしてArを用いた直流マグネトロンスパッタ法等により形成される。
 本発明に係る太陽電池は、化合物薄膜系太陽電池においてその太陽光が入射する側(表面および/または裏面)の電極に本発明の透明導電膜を用いたものであり、本発明の透明導電膜は従来の透明導電膜よりも低抵抗で透過率が高いため高い変換効率を実現できる。
 ところで、上述したいずれの型の太陽電池素子でも、その受光面(表面)側および裏面側には、銀ペーストを用いたスクリーンプリント法等によりバスバー電極とフィンガー電極がそれぞれ形成され、かつ、これ等電極表面は、その保護と接続タブを取り付け易くするため、そのほぼ全面に亘りハンダコートされる。尚、太陽電池素子がシリコン基板の場合、受光面側に、ガラス板、樹脂板、樹脂フィルム等の透明な保護材が設けられる。
 また、上記電極を構成する本発明に係る透明導電膜の厚さについては、特に制限されることはなく、材料の組成等にもよるが、150~1500nm、特に200~900nmであることが望ましい。そして、本発明の透明導電膜は、低抵抗であり、波長380nm~1200nmの可視光線から近赤外線までを含む太陽光の透過率が高いため、太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。
 尚、本発明に係る蒸着薄膜(透明導電膜)は、太陽電池以外に、光検出素子、タッチパネル、フラットパネルディスプレイ(LCD、PDP、EL等)、発光デバイス(LED、LD等)の透明電極としても有用である。例えば、光検出素子の場合、ガラス電極、光入射側の透明電極、赤外線等の光検知材料層、裏面電極を積層させた構造を含んでいる。赤外線を検出するための上記光検知材料層には、GeやInGeAsをベースとする半導体材料を用いたタイプ[フォトダイオード(PD)やアバランシェフォトダイオード(APD)]、アルカリ土類金属元素の硫化物あるいはセレン化物に、Eu、Ce、Mn、Cuの中から選ばれる1種類以上の元素と、Sm、Bi、Pbの中から選ばれる1種類以上の元素を添加した材料等を用いるタイプがある。この他に、非晶質珪素ゲルマニウムと非晶質珪素との積層体を用いたAPDも知られており、いずれも使用できる。
 以下、本発明の実施例について具体的に説明する。
[実施例1]
 酸化物蒸着材の作製
 平均粒径が0.8μmのIn粉末、および、平均粒径が1μmのCeO粉末を原料粉末とし、これ等のIn粉末とCeO粉末をCe/Inの原子数比が0.008となるような割合で調合し、かつ、樹脂製ポットに入れて湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を20時間とした。
 混合後、スラリーを取り出し、得られたスラリーにポリビニルアルコールのバインダーを添加し、スプレードライヤー等で乾燥させて造粒した。
 この造粒物を用い1ton/cmの圧力で1軸加圧成形を行い、直径30mm、厚み40mmの円柱形状成形体を複数個作製した。
 次に、得られた複数個の成形体を以下のようにして焼結した。
 まず、In粉末とCeO粉末をCe/Inの原子数比が0.008となるような割合で混合した混合粉(雰囲気調整用パウダー)を焼結炉内の底に敷き詰め、この雰囲気調整用パウダー上に成形体を配置した。
 そして、焼結炉内の大気中、300℃の温度で10時間程度加熱して成形体の脱バインダー処理を行った後、炉内容積0.1m当たり5リットル/分の割合で酸素を導入する雰囲気下において1℃/分の速度で昇温し、1250℃で2時間焼結した(常圧焼結法)。
 尚、焼結条件を以下の表1aにまとめて示す。また、焼結後における冷却の際も、酸素を導入しながら1000℃までを10℃/分で降温した。
 得られた焼結体から分析用焼結体を選出し、この分析用焼結体を破断してその破断面を露出させ、かつ、この破断面の焼結体表面から5μm以内に相当する領域に対しEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)による組成分析を行なって、焼結体表面から5μmの深さまでの表面層におけるセリウム含有量[Ce/In原子数比(Comp)]とした。すなわち、表面から5μm以内の焼結体断面領域に対し30箇所のEPMA点分析を実施し、その平均値を表層5μm以内のCe/In原子数比(Comp)とした。EPMAの測定条件は加速電圧30kVで行った。
 次に、上記分析用焼結体を粉砕し、得られた粉末を攪拌し、同様にEPMAによる組成分析を行い、30箇所のCe/In原子数比を測定して平均値を算出し、焼結体全体の平均のCe/In原子数比(Comp)とした。そして、表面層における組成ズレの割合を示すComp/Comp値を算出した。
 この結果を以下の表1bに示すが、組成ズレは極めて小さいことが分かった。
 尚、上記分析用焼結体も含め、焼結後の焼結体(酸化物蒸着材)は成形体と略同一の形状、寸法を維持していた。
 また、得られた焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ5.2~5.4g/cmであった。更に、焼結体(酸化物蒸着材)の破断面の走査型電子顕微鏡による観察から上記焼結体中における100個の結晶粒径の平均値を求めたところ、何れも2~7μmであった。また、焼結体(酸化物蒸着材)の電子ビーム照射面に対し、四端針法抵抗率計で表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[蒸着薄膜(透明導電膜)の作製と膜特性評価、成膜評価]
(1)蒸着薄膜(透明導電膜)の作製には磁場偏向型電子ビーム蒸着装置を用いた。
 真空排気系はロータリーポンプによる低真空排気系とクライオポンプによる高真空排気系から構成されており、5×10−5Paまで排気することが可能である。電子ビームはフィラメントの加熱により発生し、カソード−アノード間に印加された電界によって加速され、永久磁石の磁場中で曲げられた後、タングステン製の坩堝内に設置された酸化物蒸着材に照射される。電子ビームの強度はフィラメントへの印加電圧を変化させることで調整できる。また、カソード−アノード間の加速電圧を変化させるとビームの照射位置を変化させることができる。
 成膜は以下の条件で実施した。
 真空室内にArガスとOガスを導入して圧力を1.5×10−2Paに保持した。この際、真空室内に導入するArガスとOガスの混合割合について、Oガス導入量を1%刻みで調整しながら変化させ、各条件に対応した複数の蒸着薄膜(透明導電膜)を製造し、かつ、最も比抵抗が小さかった蒸着薄膜(透明導電膜)について下記特性を評価した。
 すなわち、実施例1の円柱状酸化物蒸着材(蒸着用酸化物タブレット)をタングステン製坩堝に立てて配置し、酸化物蒸着材の円形面中央部に電子ビームを照射し、厚み1.1mmのコーニング7059ガラス基板上に膜厚200nmの透明導電膜を形成した。電子銃の設定電圧は9kV、電流値は150mAとし、基板は200℃に加熱した、
(2)得られた蒸着薄膜(透明導電膜)の特性は以下の手順で評価した。
 得られた蒸着薄膜(透明導電膜)の表面抵抗を四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で測定し、その膜厚は接触式表面粗さ計(テンコール社製)を用いて未成膜部分と成膜部分の段差測定から評価し、比抵抗を算出した。そして、最も比抵抗が小さかった蒸着薄膜(透明導電膜)[以下、膜と略称する場合がある]について下記評価を行なった。
 まず、分光光度計(日立製作所社製、U−4000)でガラス基板を含めた膜(膜L付ガラス基板B)の透過率[TL+B(%)]を測定し、同様の方法で測定したガラス基板のみ(ガラス基板B)の透過率[(T(%)]から、[TL+B÷T]×100(%)で膜自体の透過率を算出した。尚、可視域における膜自体の平均透過率は波長400~800nmにおいて測定し、近赤外域における膜自体の平均透過率は波長800~1200nmにおいて測定した。
 次に、膜の結晶性はX線回折測定で評価した。すなわち、X線回折装置はX‘PertPROMPD(PANalytical社製)を用い、測定条件は広域測定でCuKα線を用い、電圧45kV、電流40mAで測定を行った。そして、X線回折ピークの有無から膜の結晶性を評価した。また、膜の組成(Ce/Inの原子数比)についてはICP発光分析法で測定し、更に、ホール効果測定装置(東陽テクニカ社製 ResiTest)を用いて、Van der Pauw法により蒸着薄膜(透明導電膜)の室温におけるキャリア濃度、ホール移動度をそれぞれ測定した。
 そして、実施例1に係る酸化物蒸着材(蒸着用酸化物タブレット)の使用開始(電子銃による電子線照射の開始)から20分以内に製造した膜(「初期の膜」と称する)と、使用開始から1時間ほど継続使用した後に製造した膜(「1時間後の膜」と称する)について上述の膜評価を実施した。その結果を表2a~表2bに示す。
(3)実施例1に係る酸化物蒸着材(蒸着用酸化物タブレット)は、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.0083」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.0079」であることから、酸化物蒸着材の表面から内部まで略同一の組成[Comp/Comp=1.05]を有することが確認される。
 また、表2a~表2bに示すように「初期の膜」の組成が「Ce/In原子数比=0.0083」、「1時間後の膜」の組成が「Ce/In原子数比=0.0082」であり、実施例1に係る蒸着用酸化物タブレットを用いて得られる蒸着薄膜(透明導電膜)の組成は成膜初期と1時間後においてほとんど変化が無いことも確認され、かつ、「比抵抗」「キャリア濃度」「ホール移動度」「透過率」においても同様であることが確認される。
 このような蒸着用焼結体タブレットは、焼結体の表面層を利用する使用初期から膜組成や特性の変動がなく安定しているため、焼結後において焼結体の表面研磨加工を行なわずに蒸着用焼結体タブレットとして使用することができる。すなわち、焼結体の表面層を研削加工することなくそのまま蒸着材として使うことができるので、蒸着用焼結体タブレットの製造コストも安価になる等の利点がある。更に、タブレットを連続供給しながら長時間連続成膜するときにはタブレット交換時にも連続的に成膜することができるので、蒸着薄膜(透明導電膜)の生産性の面でも非常に有利である。
 また、得られた蒸着薄膜(透明導電膜)は、表2a~表2bに示すようにホール移動度が非常に高く低抵抗であり、かつ、可視域での透過率も高い(91%)結晶膜である。更に、キャリア濃度が低いため近赤外域での透過率も85%と非常に高い。
 このような蒸着薄膜(透明導電膜)は太陽電池の透明電極として非常に有用といえる。
[比較例1]
 実施例1の「雰囲気調整用パウダー」を使用しなかった以外は実施例1と同じ条件で比較例1に係る酸化物蒸着材(蒸着用酸化物タブレット)を製造し、かつ、実施例1と同様の評価を行なうと共に、比較例1に係る酸化物蒸着材(蒸着用酸化物タブレット)を用いて実施例1と同様の蒸着薄膜(透明導電膜)を成膜しかつ同様の評価を行なった。
 これ等の結果を上記表1a~表1bと表2a~表2bに示す。
 尚、焼結後の焼結体(酸化物蒸着材)は、実施例1と同様、成形体と略同一の形状、寸法を維持していた。得られた焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ5.0~5.2g/cmであった。
 まず、比較例1に係る酸化物蒸着材(蒸着用酸化物タブレット)は、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.0093」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.0081」であり、タブレット全体の平均組成が目的の組成とほぼ同等であったが、タブレット表面の組成が全体の平均組成と比べてインジウム量が少なめであった。
 また、表2a~表2bに示すように「初期の膜」の組成が「Ce/In原子数比=0.0090」、「1時間後の膜」の組成が「Ce/In原子数比=0.0084」であり、比較例1に係る蒸着用酸化物タブレットを用いて得られる蒸着薄膜(透明導電膜)の組成は成膜初期と1時間後において相違し、かつ、「比抵抗」「キャリア濃度」「ホール移動度」等の電気特性においても同様に相違することが確認される。
 このような蒸着用焼結体タブレットを用いた場合、焼結体の表面層を利用する使用初期において、異なった特性の膜が成膜されてしまうことから、膜の製造に利用することができない。特に、タブレットを連続供給しながら長時間成膜する大量生産の際には、タブレット交換時に膜の特性が異なってしまうので使うことができない。
 膜の製造に利用するには、焼結体の表面を研削加工して組成の異なる表面層を削り取る必要があり、蒸着用焼結体タブレットの製造コストが大幅に増加してしまう。
[比較例2]
 成形体の焼成中に酸素を導入しなかった以外は実施例1と同じ条件で比較例2に係る酸化物蒸着材(蒸着用酸化物タブレット)を製造し、かつ、実施例1と同様の評価をすると共に、比較例2に係る酸化物蒸着材(蒸着用酸化物タブレット)を用いて実施例1と同様の蒸着薄膜(透明導電膜)を成膜しかつ同様の評価を行なった。
 これ等の結果を上記表1a~表1bと表2a~表2bに示す。
 尚、焼結後の焼結体(酸化物蒸着材)は、実施例1と同様、成形体と略同一の形状、寸法を維持していた。得られた焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ4.9~5.1g/cmであった。
 まず、比較例2に係る酸化物蒸着材(蒸着用酸化物タブレット)は、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.0111」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.0082」であり、タブレット全体の平均組成が目的の組成とほぼ同等であったが、タブレット表面の組成が全体の平均組成と比べてインジウム量が少なめであった。
 また、表2a~表2bに示すように「初期の膜」の組成が「Ce/In原子数比=0.0105」、「1時間後の膜」の組成が「Ce/In原子数比=0.0083」であり、比較例2に係る蒸着用酸化物タブレットを用いて得られる蒸着薄膜(透明導電膜)の組成は成膜初期と1時間後において相違し、かつ、「比抵抗」「キャリア濃度」「ホール移動度」等の電気特性においても同様に相違することが確認される。
 このような蒸着用焼結体タブレットを用いた場合、焼結体の表面層を利用する使用初期において、異なった特性の膜が成膜されてしまうことから、膜の製造に利用することができない。特に、タブレットを連続供給しながら長時間成膜する大量生産の際には、タブレット交換時に膜の特性が異なってしまうので使うことができない。
 膜の製造に利用するには、焼結体の表面を研削加工して組成の異なる表面層を削り取る必要があり、蒸着用焼結体タブレットの製造コストが大幅に増加してしまう。
[比較例3]
 次に、特開2005−290458号公報(特許文献4)に紹介されたスパッタターゲットの焼結体作製技術に従ってセリウムを含有する酸化インジウム焼結体を製造した。
 まず、平均粒径が1μm以下のIn粉末および平均粒径が1μm以下のCeO粉末を原料粉末とし、Ce/Inの原子数比が0.008となるような割合でIn粉末とCeO粉末を調合し、かつ、樹脂製ポットに入れて湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を20時間とした。混合後、スラリーを取り出し、濾過、乾燥後、造粒した。そして、得られた造粒粉を用い、3t/cmの圧力を加えて冷間静水圧プレスで成形を実施した。
 得られた成形体を、焼結炉に入れて、炉内容積0.1m当たり5リットル/分の割合で酸素を導入して雰囲気を作り、1450℃で8時間焼結した。この際、1000℃までを1℃/分、1000~1450℃を2℃/分で昇温した。その後、酸素導入をとめて、1450~1300℃を5℃/分で降温した。そして、炉内容積0.1m当たり10リットル/分の割合でアルゴンガスを導入する雰囲気で、1300℃を3時間保持した後、放冷した。
 焼成後の焼結体は、直径28mm、厚み36mmの大きさの円柱形状に収縮していた。また、焼結体の密度は6.4g/cm、比抵抗は0.8mΩcmで、結晶粒経は10~15μmであった。更に、焼結体表面の組成と全体の平均組成を実施例1と同様に測定しかつ評価した結果を表1bに示した。
 そして、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.0145」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.0078」であり、焼結体全体の平均組成は仕込み組成とほぼ同等であったが、焼結体表面の組成が全体の平均組成と比べてインジウム量が少なめであった。
 また、実施例1と同様に成膜評価を実施した。その結果を表2a~表2bに示す。
 そして、表2a~表2bに示すように「初期の膜」の組成が「Ce/In原子数比=0.0125」、「1時間後の膜」の組成が「Ce/In原子数比=0.0079」であり、比較例3に係る焼結体タブレットを用いて得られる蒸着薄膜(透明導電膜)の組成は成膜初期と1時間後において相違し、かつ、「比抵抗」「キャリア濃度」「ホール移動度」等の電気特性においても同様に相違することが確認される。
 このような焼結体タブレットを用いた場合、焼結体の表面層を利用する使用初期において異なった特性の膜が成膜されてしまうことから、膜の製造に利用することができない。特に、タブレットを連続供給しながら長時間成膜する大量生産の際には、タブレット交換時に膜の特性が異なってしまうので使うことができない。
 膜の製造に利用するには、焼結体の表面を研削加工して組成の異なる表面層を削り取る必要があり、蒸着用焼結体タブレットの製造コストが大幅に増加してしまう。
[実施例2~7]
 原料であるIn粉末とCeO粉末を調合する際、Ce/Inの原子数比を0.001(実施例2)、0.002(実施例3)、0.004(実施例4)、0.051(実施例5)、0.061(実施例6)、0.110(実施例7)となるような割合で調合した以外は、実施例1と同じ条件で焼結体(蒸着用酸化物タブレット)を作製した。
 そして、焼成後における焼結体表面と焼結体全体の平均の組成を評価したところ、いずれもComp/Comp=0.9~1.1であり、焼結体表面の組成は焼結体全体の平均組成とほぼ同じであり、また仕込み組成とほぼ同等の組成であった。焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ4.9~5.4g/cmであった。
 また、得られた焼結体(蒸着用酸化物タブレット)を用いて製造された膜の特性についても実施例1と同様に評価した。結果を表2a~表2bに示す。
 そして、表2a~表2bに示すように「初期の膜」と「1時間後の膜」の組成、および、「比抵抗」「キャリア濃度」「ホール移動度」等の電気特性はほぼ同じであった。
 このような蒸着用焼結体タブレットは、焼結体の表面層を利用する使用初期から膜組成や特性の変動がなく安定しているため、焼結後において焼結体の表面研磨加工を行なわずに蒸着用焼結体タブレットとして使用することができる。すなわち、焼結体の表面層を研削加工することなくそのまま蒸着材として使うことができるので、蒸着用焼結体タブレットの製造コストも安価になる等の利点がある。更に、タブレットを連続供給しながら長時間連続成膜するときには、タブレット交換時にも連続的に成膜することができるので、蒸着薄膜(透明導電膜)の生産性の面でも非常に有利である。
 次に、実施例1を含め実施例1~7で得られた蒸着薄膜(透明導電膜)の特性を比較すると、酸化インジウムを主成分としCe/In原子数比で0.004~0.056の割合でセリウムを含有する結晶膜(表2a~表2bに記載されたデータから実施例1、4、5の結晶膜)においては、ホール移動度が80cm/V・s以上、キャリア濃度が3.3×1020cm−3以下、比抵抗が3.5×10−4Ωcm以下の透明導電膜を得ることができ、波長800~1200nmにおける膜自体の平均透過率は80%以上と非常に高かった。
 このような蒸着薄膜(透明導電膜)は太陽電池の透明電極として非常に有用といえる。
[実施例8]
 In粉末とCeO粉末を調合する際にCe/Inの原子数比を0.346となるような割合で調合し、焼結温度を1350℃で2時間とした以外は、実施例1と同一条件で焼結体(蒸着用酸化物タブレット)を作製した。得られた焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ5.2~5.4g/cmであった。
 そして、焼成後における焼結体表面と焼結体全体の平均の組成を評価したところ、Comp/Comp=1.03で、焼結体表面の組成は焼結体全体の平均組成とほぼ同じであり、仕込み組成とほぼ同等の組成であった。
 次に、得られた焼結体を蒸着用酸化物タブレットとして用い、かつ、成膜時に基板を加熱しなかった以外は実施例1と同様の方法で成膜試験を実施した。成膜時における酸素量が少ないと蒸着薄膜は着色していたが、酸素量を増加させると透明度が増加した。そして、透明度が最大となる酸素量のときを最適な条件とし、その時の蒸着薄膜についてエリプソメーターを用い波長550nmにおける屈折率を測定した。また、可視域における膜自体の透過率も実施例1と同様に求めた。その結果を以下の表3a~表3bに示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3a~表3bに示されたデータから、蒸着用酸化物タブレットの使用初期と1時間後における蒸着薄膜(前者が「初期の膜」、後者が「1時間後の膜」)の組成、および、光学特性(屈折率、透過率)はほぼ同じであった。また、X線回折測定による結晶性の評価において各蒸着薄膜は何れも非晶質膜であった。
 このような蒸着用焼結体タブレットは、焼結体の表面層を利用する使用初期から膜組成や特性の変動がなく安定しているため、焼結後において焼結体の表面研磨加工を行なわずに蒸着用焼結体タブレットとして使用することができる。すなわち、焼結体の表面層を研削加工することなくそのまま蒸着材として使うことができるので、蒸着用焼結体タブレットの製造コストも安価になる等の利点がある。更に、タブレットを連続供給しながら長時間連続成膜するときには、タブレット交換時にも連続的に成膜することができるので、蒸着薄膜(透明導電膜)の生産性の面でも非常に有利である。
 次に、得られた蒸着薄膜の波長550nmの屈折率は、表3a~表3bに示すように「2.42」であり、従来の酸化インジウム系薄膜(例えばITO膜は1.9~2.1)と較べて高い数値となっている。このため、可視域における屈折率が1.3~1.5を示す酸化シリコン膜や金属フッ化物膜等の低屈折率膜と組み合わせて積層体とし、光の干渉効果を発揮させた光学部品(例えば反射防止膜等)を製造するときに非常に有利である。
[比較例4]
 実施例8の「雰囲気調整用パウダー」を使用しなかった以外は実施例8と同じ条件で比較例4に係る酸化物蒸着材(蒸着用酸化物タブレット)を製造し、かつ、実施例8と同様の評価を行なうと共に、比較例4に係る酸化物蒸着材(蒸着用酸化物タブレット)を用いて実施例8と同様の蒸着薄膜を成膜しかつ同様の評価を行なった。
 これ等の結果を上記表1a~表1bと表3a~表3bに示す。
 尚、焼結後の焼結体(酸化物蒸着材)は、実施例8と同様、成形体と略同一の形状、寸法を維持していた。焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ5.0~5.1g/cmであった。
 まず、比較例4に係る酸化物蒸着材(蒸着用酸化物タブレット)は、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.4086」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.3463」であり、タブレット全体の平均組成が目的の組成とほぼ同等であったが、タブレット表面の組成が全体の平均組成と比べてインジウム量が少なめであった。
 また、表3a~表3bに示すように「初期の膜」の組成が「Ce/In原子数比=0.3938」、「1時間後の膜」の組成が「Ce/In原子数比=0.3485」であり、比較例4に係る蒸着用酸化物タブレットを用いて得られる蒸着薄膜の組成は成膜初期と1時間後において相違し、かつ、光学特性(屈折率)も相違することが確認される。
 このような蒸着用焼結体タブレットを用いた場合、焼結体の表面層を利用する使用初期において、異なった特性の膜が成膜されてしまうことから、膜の製造に利用することができない。特に、タブレットを連続供給しながら長時間成膜する大量生産の際には、タブレット交換時に膜の特性が異なってしまうので使うことができない。
 膜の製造に利用するには、焼結体の表面を研削加工して組成の異なる表面層を削り取る必要があり、蒸着用焼結体タブレットの製造コストが大幅に増加してしまう。
[比較例5]
 成形体の焼成中に酸素を導入しなかった以外は実施例8と同じ条件で比較例5に係る酸化物蒸着材(蒸着用酸化物タブレット)を製造し、かつ、実施例8と同様の評価をすると共に、比較例5に係る酸化物蒸着材(蒸着用酸化物タブレット)を用いて実施例8と同様の蒸着薄膜を成膜しかつ同様の評価を行なった。
 これ等の結果を上記表1a~表1bと表3a~表3bに示す。
 尚、焼結後の焼結体(酸化物蒸着材)は、実施例8と同様、成形体と略同一の形状、寸法を維持していた。また、焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ4.9~5.0g/cmであった。
 まず、比較例5に係る酸化物蒸着材(蒸着用酸化物タブレット)は、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.5788」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.3463」であり、タブレット全体の平均組成が目的の組成とほぼ同等であったが、タブレット表面の組成が全体の平均組成と比べてインジウム量が少なめであった。
 また、表3a~表3bに示すように「初期の膜」の組成が「Ce/In原子数比=0.5342」、「1時間後の膜」の組成が「Ce/In原子数比=0.3467」であり、比較例5に係る蒸着用酸化物タブレットを用いて得られる蒸着薄膜の組成は成膜初期と1時間後において相違し、かつ、光学特性(屈折率)も相違することが確認される。
 このような蒸着用焼結体タブレットを用いた場合、焼結体の表面層を利用する使用初期において、異なった特性の膜が成膜されてしまうことから、膜の製造に利用することができない。特に、タブレットを連続供給しながら長時間成膜する大量生産の際には、タブレット交換時に膜の特性が異なってしまうので使うことができない。
 膜の製造に利用するには、焼結体の表面を研削加工して組成の異なる表面層を削り取る必要があり、蒸着用焼結体タブレットの製造コストが大幅に増加してしまう。
[比較例6]
 次に、比較例3と同様、特開2005−290458号公報(特許文献4)に紹介されたスパッタターゲットの焼結体作製技術に従ってセリウムを含有する酸化インジウム焼結体を製造した。
 まず、平均粒径が1μm以下のIn粉末および平均粒径が1μm以下のCeO粉末を原料粉末とし、Ce/Inの原子数比が0.3460となるような割合でIn粉末とCeO粉末を調合し、かつ、樹脂製ポットに入れて湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を20時間とした。混合後、スラリーを取り出し、濾過、乾燥後、造粒した。そして、得られた造粒粉を用い、3t/cmの圧力を加えて冷間静水圧プレスで成形を実施した。
 得られた成形体を、焼結炉に入れて、炉内容積0.1m当たり5リットル/分の割合で酸素を導入して雰囲気を作り、1450℃で8時間焼結した。この際、1000℃までを1℃/分、1000~1450℃を2℃/分で昇温した。その後、酸素導入をとめて、1450~1300℃を5℃/分で降温した。そして、炉内容積0.1m当たり10リットル/分の割合でアルゴンガスを導入する雰囲気で、1300℃を3時間保持した後、放冷した。
 焼成後の焼結体は、直径27mm、厚み35mmの大きさの円柱形状に収縮していた。また、焼結体の密度は6.1g/cm、比抵抗は1.0mΩcmで、結晶粒経は10~15μmであった。更に、焼結体表面の組成と全体の平均組成を実施例8と同様に測定しかつ評価した結果を表1a~表1bに示した。
 そして、表1bに示すように表面層におけるCe/In原子数比(Comp)が「0.5404」、焼結体全体の平均値Ce/In原子数比(Comp)が「0.3464」であり、焼結体全体の平均組成は仕込み組成とほぼ同等であったが、焼結体表面の組成が全体の平均組成と比べてインジウム量が少なめであった。
 また、実施例8と同様に成膜評価を実施した。その結果を表3a~表3bに示す。
 そして、表3a~表3bに示すように「初期の膜」の組成が「Ce/In原子数比=0.5124」、「1時間後の膜」の組成が「Ce/In原子数比=0.3473」であり、比較例6に係る焼結体タブレットを用いて得られる蒸着薄膜の組成は成膜初期と1時間後において相違し、かつ、光学特性(屈折率)も相違することが確認される。
 このような蒸着用焼結体タブレットを用いた場合、焼結体の表面層を利用する使用初期において、異なった特性の膜が成膜されてしまうことから、膜の製造に利用することができない。特に、タブレットを連続供給しながら長時間成膜する大量生産の際には、タブレット交換時に膜の特性が異なってしまうので使うことができない。
 膜の製造に利用するには、焼結体の表面を研削加工して組成の異なる表面層を削り取る必要があり、蒸着用焼結体タブレットの製造コストが大幅に増加してしまう。
[実施例9~11]
 原料であるIn粉末とCeO粉末を調合する際、Ce/Inの原子数比を0.090(実施例9)、0.142(実施例10)、0.538(実施例11)となるような割合で調合した以外は、実施例8と同じ条件で焼結体(蒸着用酸化物タブレット)を作製した。
 得られた焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ4.9~5.4g/cmであった。そして、焼成後における焼結体表面と焼結体全体の平均の組成を評価したところ、表1a~表1bに示すようにいずれもComp/Comp=0.9~1.1であり、焼結体表面の組成は焼結体全体の平均組成とほぼ同じであり、また仕込み組成とほぼ同等の組成であった。
 また、得られた焼結体(蒸着用酸化物タブレット)を用いて製造された膜の特性についても実施例8と同様に評価した。結果を表3a~表3bに示す。
 表3a~表3bに示されたデータから、蒸着用酸化物タブレットの使用初期と1時間後における蒸着薄膜(前者が「初期の膜」、後者が「1時間後の膜」)の組成、および、光学特性(屈折率、透過率)はほぼ同じであった。また、X線回折測定による結晶性の評価において各蒸着薄膜は何れも非晶質膜であった。
 このような蒸着用焼結体タブレットは、焼結体の表面層を利用する使用初期から膜組成や特性の変動がなく安定しているため、焼結後において焼結体の表面研磨加工を行なわずに蒸着用焼結体タブレットとして使用することができる。すなわち、焼結体の表面層を研削加工することなくそのまま蒸着材として使うことができるので、蒸着用焼結体タブレットの製造コストも安価になる等の利点がある。更に、タブレットを連続供給しながら長時間連続成膜するときには、タブレット交換時にも連続的に成膜することができるので、蒸着薄膜(透明導電膜)の生産性の面でも非常に有利である。
 次に、得られた実施例9~11に係る蒸着薄膜の波長550nmの屈折率は、表3a~表3bに示すように「2.15~2.52」であり、従来の酸化インジウム系薄膜(例えばITO膜は1.9~2.1)と較べて高い数値となっている。このため、可視域における屈折率が1.3~1.5を示す酸化シリコン膜や金属フッ化物膜等の低屈折率膜と組み合わせて積層体とし、光の干渉効果を発揮させた光学部品(例えば反射防止膜等)を製造するときに非常に有利である。
 表面組成が内部組成と略同一の焼結体により構成される本発明に係る蒸着用酸化物タブレット(酸化物蒸着材)は、焼結体の表面研削加工を施さなくとも蒸着材としてそのまま使用することができるため製造コストの削減が図れ、かつ、タブレットの使用初期から薄膜の製造に利用できるためタブレット1個当たりの薄膜生産量を増大できることから、各種太陽電池の透明電極を形成するための蒸着用酸化物タブレットあるいは低屈折率膜と組み合わせて反射防止膜等を構成する場合の蒸着用酸化物タブレットとして利用される産業上の利用可能性を有している。

Claims (9)

  1.  酸化インジウムを主成分とし、かつ、セリウムを含むと共に、焼結後の表面研削加工がされていない焼結体により構成された酸化物蒸着材において、
     焼結体表面から5μmの深さまでの表面層におけるセリウム含有量をCe/In原子数比(Comp)とし、焼結体全体におけるセリウム含有量の平均値をCe/In原子数比(Comp)とした場合、
     Comp/Comp=0.9~1.1であることを特徴とする酸化物蒸着材。
  2.  上記焼結体全体におけるセリウム含有量の平均値Ce/In原子数比(Comp)が0.001~0.538であることを特徴とする請求の範囲第1項に記載の酸化物蒸着材。
  3.  上記焼結体が円柱形状を有することを特徴とする請求の範囲第1項または第2項に記載の酸化物蒸着材。
  4.  酸化インジウムを主成分とし、かつ、セリウムを含む蒸着薄膜において、
     請求の範囲第1項~第3項のいずれかに記載の酸化物蒸着材を原料として用い、電子ビーム蒸着法、イオンプレーティング法若しくは高密度プラズマアシスト蒸着法により成膜され、かつ、成膜された薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.001~0.538であることを特徴とする蒸着薄膜。
  5.  成膜された薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.004~0.056であり、かつ、比抵抗が3.5×10−4Ωcm以下である導電性の透明結晶膜により構成されることを特徴とする請求の範囲第4項に記載の蒸着薄膜。
  6.  ホール移動度が80cm/V・s以上、キャリア濃度が3.3×1020cm−3以下である導電性の透明結晶膜により構成されることを特徴とする請求の範囲第5項に記載の蒸着薄膜。
  7.  波長800~1200nmにおける薄膜自体の平均透過率が80%以上であることを特徴とする請求の範囲第4項~第6項のいずれかに記載の蒸着薄膜。
  8.  請求の範囲第4項~第7項のいずれかに記載の蒸着薄膜を電極として用いていることを特徴とする太陽電池。
  9.  成膜された薄膜中におけるセリウム含有量の平均値がCe/In原子数比で0.090~0.538であり、かつ、波長550nmにおける屈折率が2.15以上である高屈折率性の透明膜により構成されることを特徴とする請求の範囲第4項に記載の蒸着薄膜。
PCT/JP2011/050589 2010-01-25 2011-01-07 酸化物蒸着材と蒸着薄膜並びに太陽電池 WO2011089984A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180007032.9A CN102712995B (zh) 2010-01-25 2011-01-07 氧化物蒸镀材料、蒸镀薄膜以及太阳能电池
KR1020177024840A KR101805548B1 (ko) 2010-01-25 2011-01-07 산화물 증착재와 증착 박막 및 태양전지
DE112011100332.3T DE112011100332B4 (de) 2010-01-25 2011-01-07 Oxidverdampfungsmaterial, dessen verwendung und solarzelle
US13/520,640 US8941002B2 (en) 2010-01-25 2011-01-07 Oxide evaporation material, vapor-deposited thin film, and solar cell
KR1020177024839A KR20170104654A (ko) 2010-01-25 2011-01-07 산화물 증착재와 증착 박막 및 태양전지
KR1020127018871A KR101789548B1 (ko) 2010-01-25 2011-01-07 산화물 증착재와 증착 박막 및 태양전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-013313 2010-01-25
JP2010013313A JP5381744B2 (ja) 2010-01-25 2010-01-25 酸化物蒸着材と蒸着薄膜並びに太陽電池

Publications (1)

Publication Number Publication Date
WO2011089984A1 true WO2011089984A1 (ja) 2011-07-28

Family

ID=44306787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050589 WO2011089984A1 (ja) 2010-01-25 2011-01-07 酸化物蒸着材と蒸着薄膜並びに太陽電池

Country Status (8)

Country Link
US (1) US8941002B2 (ja)
JP (1) JP5381744B2 (ja)
KR (3) KR20170104654A (ja)
CN (1) CN102712995B (ja)
DE (1) DE112011100332B4 (ja)
MY (1) MY156359A (ja)
TW (1) TWI438287B (ja)
WO (1) WO2011089984A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257372B2 (ja) * 2009-11-30 2013-08-07 住友金属鉱山株式会社 酸化物蒸着材と透明導電膜および太陽電池
WO2014150235A1 (en) * 2013-03-15 2014-09-25 The Trustees Of Dartmouth College Multifunctional nanostructured metal-rich metal oxides
JP2015073057A (ja) * 2013-10-04 2015-04-16 長州産業株式会社 光発電素子
TWI617041B (zh) * 2016-12-02 2018-03-01 財團法人金屬工業研究發展中心 矽基異質接面太陽能電池及其製造方法
JP7114844B2 (ja) 2017-08-18 2022-08-09 エルジー・ケム・リミテッド 基板
CN109599448A (zh) * 2018-12-13 2019-04-09 苏州腾晖光伏技术有限公司 一种异质结太阳电池及其制备方法
US11142820B2 (en) * 2019-01-17 2021-10-12 Seagate Technology Llc High refractive index hydrogenated silicon carbide and process
CN110845229B (zh) * 2019-11-27 2021-04-23 中国科学技术大学 LaBiO3薄膜、LaBiO3陶瓷靶材及其制备方法
CN112707433B (zh) * 2020-12-22 2023-01-31 桂林电子科技大学 稀土铈掺杂氧化镓纳米材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885867A (ja) * 1994-09-16 1996-04-02 Sumitomo Metal Mining Co Ltd Ito焼結体の製造方法
JPH0885866A (ja) * 1994-09-16 1996-04-02 Sumitomo Metal Mining Co Ltd Ito焼結体の製造方法
JPH09176841A (ja) * 1995-12-21 1997-07-08 Toppan Printing Co Ltd スパッタリングターゲット
JP2005290458A (ja) * 2004-03-31 2005-10-20 Idemitsu Kosan Co Ltd 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240928B2 (ja) 2002-07-09 2009-03-18 住友金属鉱山株式会社 酸化物透明導電膜及びその製法
JP2005242264A (ja) 2004-02-27 2005-09-08 Mitsui Chemicals Inc 透明導電性薄膜積層体およびそれを用いたプラズマディスプレイパネル用光学フィルター
JP4802655B2 (ja) * 2005-10-21 2011-10-26 住友金属鉱山株式会社 酸化物焼結体及びそれを用いて得られる酸化物膜、並びにその酸化物膜を含む積層体
JP2007246318A (ja) * 2006-03-15 2007-09-27 Sumitomo Metal Mining Co Ltd 酸化物焼結体、その製造方法、酸化物透明導電膜の製造方法、および酸化物透明導電膜
JP5257372B2 (ja) * 2009-11-30 2013-08-07 住友金属鉱山株式会社 酸化物蒸着材と透明導電膜および太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885867A (ja) * 1994-09-16 1996-04-02 Sumitomo Metal Mining Co Ltd Ito焼結体の製造方法
JPH0885866A (ja) * 1994-09-16 1996-04-02 Sumitomo Metal Mining Co Ltd Ito焼結体の製造方法
JPH09176841A (ja) * 1995-12-21 1997-07-08 Toppan Printing Co Ltd スパッタリングターゲット
JP2005290458A (ja) * 2004-03-31 2005-10-20 Idemitsu Kosan Co Ltd 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法

Also Published As

Publication number Publication date
DE112011100332T5 (de) 2012-11-22
KR20170104655A (ko) 2017-09-15
JP2011149082A (ja) 2011-08-04
DE112011100332B4 (de) 2016-02-11
US8941002B2 (en) 2015-01-27
CN102712995A (zh) 2012-10-03
MY156359A (en) 2016-02-15
TW201142053A (en) 2011-12-01
KR20120112599A (ko) 2012-10-11
KR101805548B1 (ko) 2017-12-07
US20120279564A1 (en) 2012-11-08
KR101789548B1 (ko) 2017-10-26
TWI438287B (zh) 2014-05-21
CN102712995B (zh) 2014-12-10
KR20170104654A (ko) 2017-09-15
JP5381744B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5257372B2 (ja) 酸化物蒸着材と透明導電膜および太陽電池
JP4231967B2 (ja) 酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池
JP5381744B2 (ja) 酸化物蒸着材と蒸着薄膜並びに太陽電池
KR101841314B1 (ko) 산화물 소결체 및 그 제조방법, 스퍼터링 타겟, 산화물 투명 도전막 및 그 제조방법, 그리고 태양 전지
JP2004091265A (ja) 酸化物焼結体
KR20150097478A (ko) 산화아연계 투명 도전막
EP2921467B1 (en) Oxide sinter, sputtering target using same, and oxide film
JP5505642B2 (ja) 酸化物蒸着材
JP2012134434A (ja) 太陽電池用透明電極膜およびそれを用いた太陽電池
KR20150039753A (ko) 산화물 소결체 및 그것을 가공한 테블렛
JP2012025990A (ja) 酸化物蒸着材
JP6160396B2 (ja) 透明導電膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007032.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13520640

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127018871

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011100332

Country of ref document: DE

Ref document number: 1120111003323

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734591

Country of ref document: EP

Kind code of ref document: A1