WO2011087108A1 - 成形性と形状凍結性に優れた冷延鋼板およびその製造方法 - Google Patents

成形性と形状凍結性に優れた冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2011087108A1
WO2011087108A1 PCT/JP2011/050587 JP2011050587W WO2011087108A1 WO 2011087108 A1 WO2011087108 A1 WO 2011087108A1 JP 2011050587 W JP2011050587 W JP 2011050587W WO 2011087108 A1 WO2011087108 A1 WO 2011087108A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
rolling
steel sheet
ferrite
less
Prior art date
Application number
PCT/JP2011/050587
Other languages
English (en)
French (fr)
Inventor
太郎 木津
重宏 ▲高▼城
耕一郎 藤田
英子 安原
和浩 花澤
正敏 熊谷
健司 田原
秀晴 古賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020127019804A priority Critical patent/KR101464845B1/ko
Priority to CN201180006233.7A priority patent/CN102712982B/zh
Priority to MX2012008180A priority patent/MX348493B/es
Publication of WO2011087108A1 publication Critical patent/WO2011087108A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to a cold-rolled steel sheet having excellent formability and shape freezing property, and a method for producing the same, which is optimal as a member of a large flat plate-shaped component in the fields of electric machinery, automobiles, building materials, and the like.
  • embossing or beading can be applied to increase the height of the embossing or bead or bend the end of the steel plate. In this case, new problems such as cracks and distortion associated with press working will occur. For this reason, there is an increasing demand for steel sheets having excellent formability and shape freezing properties.
  • Patent Document 1 discloses a technique for suppressing the spring back of a steel plate during bending by setting the ratio of the ⁇ 100 ⁇ plane and the ⁇ 111 ⁇ plane to 1.0 or more. It is disclosed.
  • the average X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 100> orientation groups The average value (B) of the X-ray random intensity ratio of the three crystal orientations of (554) ⁇ 225>, ⁇ 111 ⁇ ⁇ 112> and ⁇ 111 ⁇ ⁇ 110>, with the value (A) being 4.0 or more 3.0 or more, 1.0 ⁇ (A) / (B) ⁇ 4.0, in addition, at least one of the r values in the rolling direction and the direction perpendicular thereto is 0.7 or less, Furthermore, a technique for achieving both workability and shape freezing property by setting the average value of r values to 0.8 or more is disclosed.
  • each of the steel sheets described in Patent Documents 1 and 2 has a certain shape freezing property at the time of bending, but has a sufficient shape in the case of processing requiring high ductility such as overhang processing. There is a problem that the freezing property cannot be obtained. In the case of processing with a larger overhang height such as embossing and bead processing, there still remains a problem such as constriction.
  • An object of the present invention is to provide a cold-rolled steel sheet having improved formability and shape freezing property by optimizing the components of the steel sheet and the structure of the steel sheet, and a method for producing the same.
  • the present invention has been made based on such findings, and the gist of the present invention is as follows. 1. In mass%, C: 0.0010 to 0.0030%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02 to 0.10%, N: 0.0010 to 0.0050% and Nb: 0.010 to 0.035%, and Al content and N content are as follows (1) The balance of the formula is satisfied, and the balance is a cold-rolled steel plate composed of Fe and inevitable impurities, and the cold-rolled steel plate has a structure mainly composed of ferrite grains having an average grain size of 8 to 20 ⁇ m, ⁇ 211 ⁇ A cold-rolled steel sheet excellent in formability and shape-freezing property, wherein the area ratio of ferrite grains within 15 ° from the surface of the steel sheet is 50% or more of the structure. [% Al] / [% N] ⁇ 10 (1) However, [% M] represents the content of M element (mas
  • the steel slab having the composition described in the above 1 or 2 is subjected to hot rolling at a finishing temperature of 870 to 950 ° C., wound in a range of 450 to 630 ° C., then pickled, and a reduction ratio of 80%.
  • the soaking temperature is heated from 600 ° C. to a soaking temperature of 730 to 850 ° C. at a speed v 1 satisfying the relationship of the following expression (2).
  • a method for producing a cold-rolled steel sheet having excellent formability and shape freezing property wherein the steel sheet is held in the region for 30 to 200 s and then cooled to 600 ° C. at a speed v 2 of 3 ° C./s or more.
  • [% M] represents the content of M element (mass%).
  • the steel plate component is limited to the above range in the present invention.
  • the% display showing the component in steel shall express the mass% unless there is particular notice.
  • C 0.0010 to 0.0030%
  • C introduction of shear strain into the grains can be promoted during cold rolling, and an increase in r value can be suppressed.
  • the grain growth of ferrite can be controlled and the grain size and texture can be optimized. In order to acquire such an effect, C needs to be 0.0010% or more.
  • C is added in excess of 0.0030%, when C is present as a carbide, YP is increased and uniform elongation is decreased.
  • C is present as solid solution C, it is caused by age hardening.
  • C needs to be 0.0030% or less. Preferably it is 0.0020% or less.
  • Si 0.05% or less If Si is added in a large amount exceeding 0.05%, the steel sheet becomes hard and the workability deteriorates, or the plating property decreases due to the generation of Si oxide during annealing. End up. In addition, when hot rolling is performed, the temperature at which the structure transforms from austenite to ferrite increases, so that it is difficult to finish the rolling in the austenite region. Therefore, Si needs to be 0.05% or less.
  • Mn 0.1 to 0.5% Mn needs to be added in an amount of 0.1% or more in order to detoxify harmful steel S as MnS.
  • addition of a large amount exceeding 0.5% suppresses workability deterioration due to hardening of the steel sheet and recrystallization of ferrite grains during annealing, so Mn needs to be 0.5% or less. .
  • P 0.05% or less P needs to be 0.05% or less because it segregates at the grain boundaries of the steel sheet and deteriorates ductility and toughness. Preferably it is 0.03% or less.
  • S 0.02% or less S significantly reduces the ductility in hot working, thereby inducing hot cracking and significantly deteriorating the surface properties. Furthermore, S not only contributes to the improvement of the strength of the steel sheet, but also reduces the ductility by forming coarse MnS as an impurity element. Therefore, it is desirable to reduce the amount of S as much as possible, but it is acceptable if it is 0.02% or less.
  • Al acts as a precipitation site for NbC by forming a nitride during the temperature rise in the annealing process after cold rolling, it controls the grain growth of ferrite and optimizes the grain size and texture of the steel sheet can do. Moreover, the age hardening by the solid solution N can be suppressed by forming nitride. In order to obtain these effects, Al needs to be 0.02% or more. On the other hand, a large amount of Al exceeding 0.10% promotes precipitation of nitride, and preferential precipitation of ferrite grains around ⁇ 111 ⁇ is suppressed. Furthermore, since the temperature at which the steel transforms from austenite to ferrite increases during hot rolling, it is difficult to finish the rolling in the austenite region. Therefore, Al needs to be 0.10% or less.
  • N acts as a precipitation site for NbC by forming Al and nitride during the temperature rise in the annealing process after cold rolling, and controls the grain growth of ferrite and optimizes the grain size and texture Can do. Therefore, N needs to be 0.0010% or more.
  • N when it adds more than 0.0050%, there exists a possibility that a surface flaw may arise with a slab crack during hot rolling.
  • N when it exists as solid solution N after annealing, age hardening will be caused. Therefore, N needs to be 0.0050% or less.
  • Nb 0.010 to 0.035%
  • Nb can control the grain growth of ferrite and optimize the grain size and texture by forming carbide during soaking in the annealing process after cold rolling. Furthermore, in hot rolling, it exists as solute Nb, and by suppressing recrystallization of austenite, it promotes ferrite transformation from unrecrystallized austenite in cooling after finish rolling, and is advantageous for lowering r value Can develop a rich texture. In order to obtain such an effect, Nb needs to be added by 0.010% or more.
  • Nb needs to be 0.035% or less.
  • a particularly preferable Nb amount is in the range of 0.012 to 0.030%.
  • B 0.0003 to 0.0015% is further contained for the purpose of reducing the r value and improving the shape freezing property of the steel sheet. Can do.
  • B 0.0003 to 0.0015%
  • B exists as a solid solution B in hot rolling, and suppresses recrystallization of austenite, thereby promoting ferrite transformation from unrecrystallized austenite at the time of cooling after finish rolling, which is advantageous for lowering the r value.
  • B In order to obtain such an effect, B must be added in an amount of 0.0003% or more.
  • B when B is present in a large amount exceeding 0.0015%, since recrystallization of ferrite is suppressed during annealing after cold rolling, it is necessary to increase the annealing temperature, and the texture of the steel sheet is increased. It becomes impossible to control. Therefore, B needs to be 0.0015% or less.
  • the remainder other than the said component of the cold-rolled steel plate of this invention consists of Fe and an unavoidable impurity.
  • the inevitable impurities mean trace elements contained other than the above components as long as the effects and effects of the present invention are not impaired.
  • Average particle size of ferrite 8-20 ⁇ m
  • the steel structure according to the present invention can achieve both low YP and high uniform elongation by mainly comprising a ferrite phase having an average particle size of 8 ⁇ m or more.
  • the average grain size of ferrite needs to be 20 ⁇ m or less.
  • the structure other than the ferrite phase is a cementite phase, a bainite phase, or the like.
  • the main component of the ferrite phase is that the ferrite occupies a range of 90% or more in terms of the area ratio of the steel sheet structure. It is that. Preferably it is 95% or more, More preferably, it is 100%.
  • the area ratio of the ferrite grains within 15 ° from ⁇ 211 ⁇ 50% or more
  • the r value is changed to the rolling direction, rolling.
  • the area ratio of the ferrite grains within 15 ° from ⁇ 211 ⁇ is set to 50% or more.
  • it is 60% or more.
  • the ferrite grain within 15 ° from ⁇ 211 ⁇ in the present invention refers to a ferrite grain within 15 ° from ⁇ 211 ⁇ obtained using an EBSD (Electron Backscatter Diffraction) device with respect to the steel sheet surface. Means.
  • EBSD Electro Backscatter Diffraction
  • any of the conventionally known melting methods such as a normal converter method and an electric furnace method can be applied.
  • the molten steel is cast after being cast into a slab, or after being cooled or heated, hot-rolled to finish a hot-rolled sheet, and then wound. Then, after pickling, cold rolling and annealing are performed.
  • Finishing temperature during hot rolling 870-950 ° C If the steel sheet structure is changed from the austenite phase to the ferrite phase during the finish rolling during hot rolling, the rolling load is drastically reduced and it becomes difficult to control the rolling mill load. In this case, there is a risk that the steel sheet is broken during the threading. In addition, if the ferrite phase is passed through from the beginning of the above finish rolling, such a risk can be avoided, but the rolling temperature decreases, the structure of the hot rolled sheet becomes non-recrystallized ferrite, and the load during cold rolling This causes a problem of increasing. Therefore, it is important to finish the above finish rolling in the austenite phase, and it is necessary to finish it at 870 ° C. or higher.
  • finish temperature of the finish rolling exceeds 950 ° C.
  • recrystallization in the austenite region is promoted, and ferrite transformation from unrecrystallized austenite is suppressed in cooling after finish rolling.
  • the value will rise. Therefore, it is necessary to finish the above finish rolling at 950 ° C. or less.
  • a preferred temperature range is 880 to 920 ° C.
  • the cooling rate from hot rolling to winding of the steel sheet is not particularly limited, but a cooling rate equal to or higher than air cooling is desirable. However, rapid cooling at 100 ° C./s or more may be performed as necessary.
  • Winding temperature 450 °C ⁇ 630 °C If the coiling temperature after hot rolling is low, the steel sheet becomes hard due to the generation of acicular ferrite, and the load during subsequent cold rolling becomes high, making actual operation difficult. Therefore, the winding temperature needs to be 450 ° C. or higher. On the other hand, when the coiling temperature exceeds 630 ° C., AlN and NbC are precipitated during cooling of the hot rolled coil, and the ferrite grain size and texture are controlled by carbonitride precipitation control in the annealing process after cold rolling. It becomes impossible to control.
  • the winding temperature needs to be 630 ° C. or lower.
  • the rolling reduction needs to be 80% or less.
  • the lower limit is not particularly limited, but when the rolling reduction is small, it is necessary to bring the thickness of the hot-rolled sheet closer to the predetermined product thickness, so productivity in hot rolling and pickling is increased. It will decline. Therefore, the rolling reduction is preferably 50% or more.
  • Heating rate from 600 ° C. to soaking temperature v 1 (° C./s): [% Al] / [% N]) / 10 ⁇ ([% Al] / [% N])
  • the heating rate v 1 from 600 ° C. to the soaking temperature is small, precipitation of AlN is promoted, and AlN is precipitated not only around ⁇ 111 ⁇ but also around ⁇ 211 ⁇ . Therefore, it becomes impossible to control ferrite recrystallization in the soaking temperature range.
  • Such precipitation of AlN becomes more prominent as the ratio of the mass of Al to the mass of N, that is, the value of [% Al] / [% N] increases, so v 1 is [% Al] / [% N].
  • V 1 is an average heating temperature from 600 ° C. to a soaking temperature.
  • Soaking temperature 730-850 ° C
  • the soaking temperature needs to be 730 ° C. or higher.
  • the soaking temperature is higher than 850 ° C.
  • the amount of Nb and C dissolved increases, so that the precipitation of NbC is suppressed and the grain growth of ferrite proceeds, making it impossible to control the texture.
  • the soaking temperature needs to be 850 ° C. or lower. Preferably it is 830 degrees C or less.
  • Soaking time 30-200s If the soaking time after heating is short, recrystallization will not be completed, so the YP of the steel sheet will increase, the uniform elongation will decrease, and the workability will deteriorate significantly, so the soaking time needs to be 30 s or more. is there. On the other hand, if the soaking time is longer than 200 s, the ferrite grains grow and the texture cannot be controlled. Therefore, the soaking time during heating needs to be 200 s or less. Preferably, it is 150 s or less.
  • the cooling rate v 2 from the soaking temperature to 600 ° C. is required to be 3 ° C. / s or higher.
  • the upper limit is not particularly defined, but the excessively high cooling rate v 2 is disadvantageous in terms of cost because, for example, a special cooling facility is required.
  • v 2 is the average cooling temperature of from the soaking temperature to 600 ° C..
  • the cooling rate in the region lower than 600 ° C. is not particularly limited. Moreover, you may perform the plating by a hot dip at 480 degreeC vicinity as needed. Furthermore, after plating, the plating may be reheated to 500 ° C. or higher, and a thermal history such as holding the temperature during cooling may be passed. Furthermore, temper rolling with a reduction ratio of about 0.5 to 2% may be performed as necessary. Moreover, when plating is not performed in the middle of annealing, electrogalvanization may be performed in order to improve corrosion resistance. Furthermore, a film can be applied on a cold-rolled steel sheet or a plated steel sheet by chemical conversion treatment or the like.
  • the heating rate v 1 is an average heating rate from 600 ° C. to the soaking temperature
  • the cooling rate v 2 is an average cooling rate from the soaking temperature to 600 ° C. Also, 600 ° C. or less, and then cooled to room temperature v 2.
  • temper rolling with a rolling reduction of 1.0% was performed, and the structure and mechanical properties were investigated.
  • Table 1 the result of having investigated the structure
  • the heat-treated sample was temper-rolled at a reduction ratio of 1%, and then a JIS No. 5 tensile test piece was taken from each of the rolling direction (L direction), the rolling 45 ° direction (D direction), and the rolling perpendicular direction (C direction).
  • the average particle diameter of the ferrite was determined by a cutting method. That is, the average section length in the rolling direction and the sheet thickness direction of each test steel is obtained, and the average section length in the rolling direction is X, the average section length in the sheet thickness direction is Y, and 2 / (1 / X + 1). / Y), the average particle diameter of the ferrite of each specimen was obtained.
  • the area ratio of the ferrite was obtained from the tissue image by image processing.
  • the texture was measured using EBSD.
  • the orientation in the whole plate thickness direction of the test steel was measured, and the area ratio of ferrite grains having ⁇ 211 ⁇ within 15 ° from the steel plate surface was determined.
  • tensile properties For tensile properties, a JIS No. 5 tensile test piece was cut out from the rolling direction, a tensile test (based on JIS Z 2241) was performed at a tensile speed of 10 mm / min, and values of YP and uniform elongation were measured.
  • the r value was measured by cutting a JIS No. 5 tensile specimen from each direction of the rolling direction (L direction), the rolling 45 ° direction (D direction), and the direction perpendicular to the rolling direction (C direction) with a pre-strain of 15%.
  • FIG. 1 For steels 1 to 11, the relationship between the area ratio of ferrite grains within 15 ° from ⁇ 211 ⁇ and the r values in the rolling direction, the 45 ° direction of rolling, and the direction perpendicular to the rolling direction is shown in FIGS. In the test steel No. 1 in which the area ratio was 50% or more. Regarding 1-3, 5, 6, 8, and 10, the relationship between the average grain size of ferrite, YP and uniform elongation is shown in FIG. , The area ratio on the plate surface of ferrite grains within 15 ° from ⁇ 211 ⁇ and the relationship of “v 1 / ([% Al] / [% N])” are respectively shown.
  • the test steel No. For steels 1 to 11, when the area ratio of ferrite grains within 15 ° from ⁇ 211 ⁇ is 50% or more, the r value is any of the rolling direction, the rolling 45 ° direction, and the direction perpendicular to the rolling direction. It turns out that it becomes 2.0 or less.
  • FIG. 5 shows a cross section of the press.
  • the punch diameter was 30 mm
  • the punch shoulder radius was 5 mm
  • the die diameter was 45 mm
  • the die shoulder radius was 1 mm.
  • the sample was machined to 100 mm ⁇
  • the wrinkle holding force was 200 kN
  • an overhang of 8 mm was performed.
  • the cross section after pressing is shown in FIG.
  • the evaluation of the shape freezing property was performed by visually checking the twist after the overhang, ⁇ when the twist was not twisted, ⁇ when the twist was slightly twisted, and x when the twist was large. The results are also shown in Table 1. It can be seen that the steel according to the present invention can be press-formed without any shape defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

優れた成形性および形状凍結性を具える冷延鋼板およびその製造方法を提供する。質量%で、C:0.0010~0.0030%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.0010~0.0050%およびNb:0.010~0.035%を含有し、かつAl含有量およびN含有量が以下の(1)式の関係を満たし、残部はFeおよび不可避的不純物の組成からなる冷延鋼板であって、該冷延鋼板が平均粒径:8~20μmのフェライト粒を主体とする組織を有し、{211}から15°以内のフェライト粒の板面における面積率が該組織の50%以上とする。 [%Al]/[%N]≧10 ・・・(1) ただし、[%M]は、M元素の含有量を表す(質量%)。

Description

成形性と形状凍結性に優れた冷延鋼板およびその製造方法
 本発明は、電機、自動車、建材などの分野において、大型の平板形状をした部品の部材として最適な、成形性と形状凍結性に優れた冷延鋼板およびその製造方法に関する。
 地球環境問題におけるCO削減や、低コスト化のための素材使用量削減のため、鋼板を薄肉化して、鋼材使用量を削減したいという要望が大きくなっている。しかし、鋼板を薄肉化すると、部品剛性が低下し、撓んだり、凹んだりなどの問題が発生する。さらに、薄型テレビなどの大型化が進んでいる商品用の鋼板では、一層凹みやすくなるなど、鋼板の薄肉化に伴う問題が大きくなってきている。
 また、鋼板の部品剛性を確保するには、エンボスやビード加工を施して、そのエンボスやビードの高さを大きくしたり、鋼板の端部を曲げたりするなどの方法が考えられるが、その場合には、プレス加工に伴う割れやゆがみなど新たな問題が生じてしまう。そのため、成形性と形状凍結性に優れた鋼板に対する要求はますます大きくなってきている。
 従来、形状凍結性に優れた鋼板として、例えば、特許文献1には、{100}面と{111}面の比を1.0以上として、曲げ加工時の鋼板のスプリングバックを抑制する技術が開示されている。
 また、成形性と形状凍結性を両立させた鋼板として、例えば特許文献2に開示されているように、{100}〈011〉~{223}〈100〉方位群のX線ランダム強度比の平均値(A)を4.0以上とし、かつ、{554}〈225〉、{111}〈112〉および{111}〈110〉の3つの結晶方位のX線ランダム強度比の平均値(B)を3.0以上とし、さらに1.0≦(A)/(B)≦4.0とし、加えて、圧延方向およびそれと直角方向のr値のうち、少なくとも1つを0.7以下とし、さらにr値の平均値は0.8以上とすることにより加工性と形状凍結性を両立させる技術が開示されている。
国際公開第2000/6791号パンフレット 特開2004−131754号公報
 しかしながら、特許文献1および2に記載の鋼板は、いずれも、曲げ加工時における一定の形状凍結性は有するものの、例えば張出し加工のような高い延性を必要とする加工の場合には、十分な形状凍結性が得られないという問題があり、エンボス加工やビード加工などの、さらに張出し高さが大きい加工の場合には、くびれが生じるなどの問題が残っていた。
 本発明の目的は、鋼板の成分および鋼板の組織の適正化を図ることによって、成形性および形状凍結性を向上させた冷延鋼板およびその製造方法を提供することにある。
 発明者らは、上記の問題を解決するために検討を重ねた結果、以下に述べる知見を得た。
(1)極低炭素鋼におけるフェライト粒径と集合組織を制御するためには、熱間圧延、冷間圧延後の各工程において、昇温途中の未再結晶の段階で、歪みの蓄積が大きく再結晶しやすい{111}周りにAlNを優先的に析出させる必要がある。
(2)また、冷間圧延後の焼鈍過程において、均熱時にAlNを核として析出するNbCにより{111}周りのフェライトの再結晶を抑制する必要がある。
(3)さらに、{211}周りの再結晶を促進させながらフェライトの粒径を制御することが有効である。
 上記した条件を満足することで、低降伏強度(以下、YPという)化、高均一伸び化、および、低r値化を両立することができることが分かった。
 本発明はこのような知見に基づきなされたもので、その要旨構成は以下の通りである。1.質量%で、C:0.0010~0.0030%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.0010~0.0050%およびNb:0.010~0.035%を含有し、かつAl含有量およびN含有量が以下の(1)式の関係を満たし、残部はFeおよび不可避的不純物の組成からなる冷延鋼板であって、該冷延鋼板が平均粒径:8~20μmのフェライト粒を主体とする組織を有し、{211}から15°以内のフェライト粒の板面における面積率が該組織の50%以上であることを特徴とする成形性と形状凍結性に優れた冷延鋼板。
 [%Al]/[%N]≧10 ・・・(1)
 ただし、[%M]は、M元素の含有量を表す(質量%)。
2.前記冷延鋼板が、さらに質量%で、B:0.0003~0.0015%を含有することを特徴とする前記1記載の冷延鋼板。
3.前記1または2に記載の組成からなる鋼のスラブを、仕上げ温度:870~950℃で熱間圧延を終了し、450~630℃の範囲で巻取り、ついで酸洗後、圧下率:80%以下で冷間圧延を施したのち、焼鈍を行うに際し、600℃から730~850℃の均熱温度までを、以下の(2)式の関係を満たす速度vで加熱し、該均熱温度域に30~200s保持した後、3℃/s以上の速度vで600℃まで冷却することを特徴とする成形性と形状凍結性に優れた冷延鋼板の製造方法。
 v(℃/s):([%Al]/[%N])/10~([%Al]/[%N])・・・(2)
 ただし、[%M]は、M元素の含有量を表す(質量%)。
 この発明に従い、極低炭素鋼にNb等を添加した素材を、冷間圧延後の焼鈍において、AlとNの質量比に応じて昇温速度を制御することにより、鋼板の集合組織と粒径が最適化されて、鋼板のYP、均一伸びおよびr値をそれぞれ効果的に制御できる結果、成形性および形状凍結性を効果的に改善することができる。
{211}から15°以内のフェライト粒の板面における面積率と圧延方向、圧延45°方向、圧延直角方向のr値の関係を示す図である。 フェライトの平均粒径とYPの関係を示す図である。 フェライトの平均粒径と均一伸びの関係を示す図である。 「加熱速度v/(Al/N)」の値と{211}から15°以内のフェライト粒の板面における面積率の関係を示す図である。 円筒張出し試験用プレスの断面図である。 プレス後の鋼板の断面図である。
 以下、本発明において、鋼板成分を上記の範囲に限定した理由について具体的に説明する。
 なお、以下において、鋼中の成分を表す%表示は、特に断らない限り質量%を表すものとする。
C:0.0010~0.0030%
 Cは、熱間圧延後に固溶体として存在させることで、冷間圧延時に、粒内への剪断歪の導入を促進させることができ、r値の上昇を抑制することができる。また、冷間圧延後の焼鈍過程における均熱保持時に、Nbと微細な炭化物を形成することで、フェライトの粒成長を制御し、粒径および集合組織を最適化することができる。このような効果を得るためには、Cは0.0010%以上とする必要がある。一方、0.0030%を超えてCが添加された場合、Cが炭化物として存在する場合にはYPの上昇および均一伸びの低下を招く、また、固溶Cとして存在する場合には時効硬化によるYPのさらなる上昇を招くため、Cは0.0030%以下とする必要がある。好ましくは0.0020%以下である。
Si:0.05%以下
 Siは、0.05%を超えて多量に添加されると、鋼板が硬質化して加工性が劣化したり、焼鈍時のSi酸化物の生成によりめっき性が低下してしまう。また、熱間圧延を施す際に、組織がオーステナイトからフェライトに変態する温度が上昇するため、オーステナイト域で圧延を終了させるのが難しくなる。従って、Siは0.05%以下とする必要がある。
Mn:0.1~0.5%
 Mnは、有害な鋼中SをMnSとして無害化するため、0.1%以上添加する必要がある。一方、0.5%を超える多量の添加は、鋼板の硬質化による加工性の劣化や、焼鈍時のフェライト粒の再結晶を抑制することから、Mnは0.5%以下とする必要がある。好ましくは0.3%以下である。
P:0.05%以下
 Pは、鋼板の結晶粒の粒界に偏析して、延性や靭性を劣化させることから、0.05%以下とする必要がある。好ましくは0.03%以下である。
S:0.02%以下
 Sは、熱間加工での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは鋼板の強度の向上にほとんど寄与しないばかりか、不純物元素として粗大なMnSを形成することにより、延性を低下させる。従って、S量は極力低減することが望ましいが、0.02%以下であれば許容できる。
Al:0.02~0.10%
 Alは、冷間圧延後の焼鈍過程において、昇温時に窒化物を形成することで、NbCの析出サイトとして働くため、フェライトの粒成長を制御して、鋼板の粒径および集合組織を最適化することができる。また、窒化物を形成することで固溶Nによる時効硬化を抑制することができる。これらの効果を得るためにはAlは0.02%以上とする必要がある。
 一方、0.10%を超える多量のAlは、窒化物の析出を促進し、{111}周りでのフェライト粒の優先的な析出が抑制されてしまう。さらに、熱間圧延時において、鋼がオーステナイトからフェライトに変態する温度が上昇するため、オーステナイト域で圧延を終了させるのが困難となる。従って、Alは0.10%以下とする必要がある。
N:0.0010~0.0050%
 Nは、冷間圧延後の焼鈍過程において、昇温時にAlと窒化物を形成することで、NbCの析出サイトとして働き、フェライトの粒成長を制御し、粒径および集合組織を最適化することができる。そのため、Nは0.0010%以上とする必要がある。一方、0.0050%を超えて多量に添加すると、熱間圧延中にスラブ割れを伴い、表面疵が発生するおそれが生じる。また、焼鈍後に固溶Nとして存在する場合には、時効硬化を引き起こしてしまう。従って、Nは0.0050%以下とする必要がある。
Nb:0.010~0.035%
 Nbは、冷間圧延後の焼鈍過程における均熱時に、炭化物を形成することで、フェライトの粒成長を制御し、粒径および集合組織を最適化することができる。さらに、熱間圧延においては、固溶Nbとして存在し、オーステナイトの再結晶を抑制することで、仕上圧延後の冷却において、未再結晶オーステナイトからのフェライト変態を促進し、低r値化に有利な集合組織を発達させることができる。このような効果を得るため、Nbは0.010%以上添加する必要がある。
 一方、0.035%を超える多量のNb添加は、Nbの炭窒化物や固溶Nbの増大を招き、鋼板の硬質化による延性の低下を招くとともに、焼鈍時のフェライトの再結晶を抑制することから、焼鈍温度が高くなり、集合組織を制御することができなくなってしまう。従って、Nbは0.035%以下とする必要がある。特に好ましいNb量は、0.012~0.030%の範囲である。
 以上、本発明の基本成分について説明したが、本発明では、r値を低めて、鋼板の形状凍結性を向上させることを目的として、B:0.0003~0.0015%をさらに含有させることができる。
B:0.0003~0.0015%
 Bは、熱間圧延において固溶Bとして存在し、オーステナイトの再結晶を抑制することで、仕上圧延後の冷却時において、未再結晶オーステナイトからのフェライト変態を促進し、低r値化に有利な集合組織を発達させる。このような効果を得るためには、Bは0.0003%以上添加する必要がある。
 一方、Bが0.0015%を超えて多量に存在する場合には、冷間圧延後の焼鈍時にフェライトの再結晶を抑制することから、焼鈍温度を高くする必要が生じ、鋼板の集合組織を制御することができなくなる。従って、Bは0.0015%以下とする必要がある。
[%Al]/[%N]≧10
 また、Nの含有量[%N]に対してAlの含有量[%Al]が少ないと、冷間圧延後の焼鈍過程における昇温時に、AlNの析出が抑制されてしまう。そこで、本発明では、Nの含有量[%N]に対してAlの含有量[%Al]は10倍以上とする必要がある。
 ただし、上記の[%M]は、M元素の含有量(質量%)を表し、以下も、[%M]は、M元素の含有量(質量%)を表す。
 なお、本発明の冷延鋼板の上記成分以外の残部は、Feおよび不可避的不純物からなる。ここで、不可避的不純物とは、上記成分以外であって、本発明の作用・効果を損なわない限りにおいて含まれる微量元素のことを意味する。
 次に、本発明に従う鋼板の組織について説明する。
フェライトの平均粒径:8~20μm
 本発明に従う鋼の組織は、平均粒径:8μm以上のフェライト相を主体とすることで、低YPと高均一伸びとを両立することができる。
 一方、フェライトの粒径が20μmを超えて大きくなると、プレス加工時に肌荒れなどの表面模様が顕在化するだけでなく、集合組織の制御も困難となり、r値が高くなってしまう。従って、フェライトの平均粒径は20μm以下とする必要がある。
 なお、本発明において、フェライト相以外の組織は、セメンタイト相やベイナイト相などであるが、本発明にいう、フェライト相を主体とは、フェライトが鋼板組織の面積率で90%以上の範囲を占めていることである。好ましくは95%以上であり、より好ましくは100%である。
{211}から15°以内のフェライト粒の板面における面積率:50%以上
 {211}から15°以内のフェライト粒の板面における面積率を大きくすることで、r値を、圧延方向、圧延直角方向など板面全ての方向に対して小さくすることができるが、特に、鋼板の組織全体に対して、上記の面積率を50%以上とすると、r値を板面の全ての方向に対して2.0以下とすることができる。従って、本発明では、{211}から15°以内のフェライト粒の板面における面積率は50%以上とする。好ましくは、60%以上である。
 なお、本発明にいう、{211}から15°以内のフェライト粒とは、鋼板面に対し、EBSD(Electron Backscatter Diffraction)装置を用いて求めた{211}から15°以内であるフェライト粒のことを意味する。
 以下、本発明における各製造工程について具体的に説明する。
 溶製方法は通常の転炉法、電炉法等、従来公知の溶製方法のいずれもが適用可能である。溶製された鋼は、スラブに鋳造後、そのまま、あるいは、冷却して加熱し、熱間圧延を施して熱延板に仕上げた後、巻取る。ついで、酸洗後、冷間圧延および焼鈍を施す。
熱間圧延時の仕上げ温度:870~950℃
 熱間圧延時の仕上圧延の途中で、鋼板組織がオーステナイト相からフェライト相に変わると、圧延荷重が急激に低下して圧延機の荷重制御が困難になる。この場合には、通板中に鋼板の破断などの危険が生じる。
 また、上記の仕上圧延の最初からフェライト相で通板すれば、このような危険は回避できるものの、圧延温度が低下し、熱延板の組織が未再結晶フェライトとなり、冷間圧延時の荷重が増大してしまうという問題が生じる。従って、上記の仕上圧延はオーステナイト相で終了させることが肝要であり、870℃以上で終了させることが必要である。
 一方、上記の仕上圧延の終了温度が950℃を超えると、オーステナイト領域での再結晶が促進し、仕上圧延後の冷却において、未再結晶オーステナイトからのフェライト変態が抑制されるため、鋼板のr値が上昇してしまう。従って、上記の仕上圧延は950℃以下で終了する必要がある。好ましい温度範囲は、880~920℃である。 なお、熱間圧延後、鋼板の巻取りまでの冷却速度は、特に限定しないが、空冷以上の冷却速度が望ましい。ただし、必要に応じて、100℃/s以上の急冷を行ってもよい。
巻取り温度:450℃~630℃
 熱間圧延後の巻取り温度が低いと、アシキュラーフェライトの生成により、鋼板が硬質化し、その後の冷間圧延時における荷重が高くなってしまい、実操業が困難となる。従って、巻取り温度は450℃以上とする必要がある。
 一方、巻取り温度が630℃を超えると、熱延コイル冷却時に、AlNやNbCが析出してしまい、冷間圧延後の焼鈍過程における炭窒化物の析出制御によるフェライトの粒径や集合組織の制御ができなくなってしまう。さらに、熱間圧延段階で炭化物の析出が促進され、固溶Cが無くなると、冷間圧延時において、固溶Cによる鋼板結晶粒内への剪断歪導入効果を得ることができなくなり、r値が上昇してしまう。従って、巻取り温度は630℃以下とする必要がある。
圧下率:80%以下
 冷間圧延時の圧下率が大きいと、鋼板の集合組織が発達しやすくr値が上昇してしまう。従って、圧下率は80%以下とする必要がある。一方、下限は特に限定しないが、圧下率が小さい場合は、所定の製品厚に対して、熱延板の板厚を近づける必要がでてくるため、熱間圧延や酸洗での生産性が低下してしまう。そのため、圧下率は50%以上とすることが好ましい。
600℃から均熱温度までの加熱速度v(℃/s):[%Al]/[%N])/10~([%Al]/[%N])
 冷間圧延後の昇温過程において、600℃から均熱温度までの加熱速度vが小さいと、AlNの析出が促進され、{111}周りだけでなく、{211}周りにもAlNは析出するため、均熱温度域でのフェライト再結晶を制御できなくなってしまう。このようなAlNの析出は、Nの質量に対するAlの質量の比、すなわち[%Al]/[%N]の値が大きいほど顕著になるため、vは[%Al]/[%N]の値を用いて、([%Al]/[%N])/10℃/s以上とする必要がある。
 一方、加熱速度が大きい場合には、昇温途中でのAlNの析出が起こることなく均熱温度域での再結晶が進行するため、フェライトの粒径や集合組織を制御できなくなってしまう。このようなAlNの析出抑制は[%Al]/[%N]の値が小さいほど顕著になるため、vは([%Al]/[%N])℃/s以下とする必要がある。
 なお、上記した範囲を(v)/([%Al]/[%N])の値で表すと、0.1~1.0となり、特に好ましくは、(v)/([%Al]/[%N]):0.2~0.8である。また、vは600℃から均熱温度までの平均加熱温度である。
均熱温度:730~850℃
 前記加熱後の均熱温度では、NbCを析出させながら再結晶を完了させ、フェライトの粒径と集合組織を制御する必要がある。そのため、均熱温度は730℃以上とする必要がある。
 一方、均熱温度が850℃を超えて高くなると、NbやCの固溶量が増加することでNbCの析出が抑制され、フェライトの粒成長が進行することで、集合組織が制御できなくなると共に、Cが析出せずに固溶したままで存在していると、時効硬化の原因となってしまう。このことから、均熱温度は850℃以下とする必要がある。好ましくは830℃以下である。
均熱時間:30~200s
 前記加熱後の均熱時間が短いと、再結晶が完了しないため、鋼板のYPが高くなると共に、均一伸びが低下し加工性が著しく劣化することから、均熱時間は30s以上とする必要がある。一方、均熱時間が200sを超えて長くなると、フェライト粒の成長が進行し、集合組織を制御することができなくなってしまう。従って、加熱時の均熱時間は200s以下とする必要がある。好ましくは、150s以下である。
均熱温度から600℃までの冷却速度v:3℃/s以上
 鋼板冷却時、特に600℃までの冷却速度vが小さいと、フェライト粒の成長が促進され、集合組織を制御することができなくなる。従って、均熱温度から600℃までの冷却速度vは3℃/s以上とする必要がある。一方、上限はとくに定めないが、あまりに速い冷却速度vは、特別な冷却設備を要する等、コスト的に不利となることから、30℃/s以下程度が望ましい。なお、vは均熱温度から600℃までの平均冷却温度である。
 ここに、600℃より低い領域での冷却速度は特に限定はない。また、必要に応じて、480℃近傍で溶融亜鉛によるめっきを行ってもよい。さらに、めっき後、500℃以上に再加熱してめっきを合金化してもよく、冷却途中で温度保持を行うなどの熱履歴を経てもよい。
 さらに、必要に応じて、圧下率:0.5~2%程度の調質圧延を行ってもよい。また、焼鈍途中でめっきを施さなかった場合には、耐腐食性を向上させるために電気亜鉛めっきなどを行ってもよい。さらに、冷延鋼板やめっき鋼板の上に、化成処理などによって皮膜を付けることもできる。
 以下、実施例について説明する。表1に示す化学組成を有するスラブを溶製した後、1200℃で1時間のスラブ加熱後、同表に示す仕上げ温度(FT)と巻取り温度(CT)で熱間圧延等を行った。酸洗後、さらに、同表に示した条件で冷間圧延、加熱、均熱および冷却処理を行った。なお、冷間圧延後の板厚は0.6~0.8mmとした。
 ここで、加熱速度vは600℃から均熱温度までの平均加熱速度、冷却速度vは均熱温度から600℃までの平均冷却速度である。また、600℃以下も、vで室温まで冷却した。さらに、焼鈍後は、圧下率:1.0%の調質圧延を行い、組織と機械特性を調査した。表1に、得られた鋼板の組織および機械特性を調査した結果を併記する。
 なお、熱処理後のサンプルは、圧下率1%で調質圧延した後、圧延方向(L方向)、圧延45°方向(D方向)、圧延直角方向(C方向)それぞれからJIS5号引張試験片を採取し、L方向の引張り、およびL,D,C方向のr値測定を行った。また、L方向の断面(圧延方向の板厚断面)を光学顕微鏡にて組織観察すると共に、EBSDで結晶方位の測定を行った。
Figure JPOXMLDOC01-appb-T000001
(評価)
 フェライトの平均粒径は切断法により求めた。すなわち、各供試鋼の圧延方向と板厚方向の平均切片長さをそれぞれ求め、圧延方向の平均切片長さをX、板厚方向の平均切片長さをYとして、2/(1/X+1/Y)の値を求めることで各供試体のフェライトの平均粒径とした。
 フェライトの面積率は、組織画像から画像処理により求めた。
 また、集合組織はEBSDを用いて測定した。まず、供試鋼の全板厚方向の方位を測定し、鋼板面から15°以内の{211}を有するフェライト粒の面積率を求めた。
 引張特性については、圧延方向からJIS5号引張試験片を切出し、引張速度:10mm/分で引張試験(JIS Z 2241に準拠する)を行い、YPおよび均一伸びの値を測定した。
 r値は、圧延方向(L方向)、圧延45°方向(D方向)、圧延直角方向(C方向)の各方向からJIS5号引張試験片を切出し、予歪み15%で測定した。
 図1には、供試鋼No.1~11の鋼について、{211}から15°以内のフェライト粒の板面における面積率と、圧延方向、圧延45°方向、圧延直角方向それぞれのr値との関係を、図2および図3には、上記の面積率が50%以上であった供試鋼No.1~3、5、6、8、10について、フェライトの平均粒径とYPおよび均一伸びとの関係を、図4には、加熱速度以外、本発明の範囲内である供試鋼1~8について、{211}から15°以内のフェライト粒の板面における面積率と「v/([%Al]/[%N])」の関係をそれぞれ示す。
 図1より、供試鋼No.1~11の鋼について、{211}から15°以内のフェライト粒の板面における面積率が50%以上の場合、圧延方向、圧延45°方向、圧延直角方向のいずれの方向でも、r値は2.0以下となることが分かる。
 図2および図3より、フェライトの平均粒径を8μm以上とすることで、YPが230MPa以下という低降伏強度化、均一伸びが22%以上という高均一伸び化を達成できることがそれぞれに分かる。
 図4より、“v/([%Al]/[%N])”の値を0.1~1.0の範囲とすることで、{211}から15°以内のフェライト粒の板面における面積率を50%以上とすることができることが分かる。
 張出し加工時の形状凍結性の評価は円筒張出し試験により行った。図5にプレスの断面を示す。
 ポンチ径:30mm、ポンチ肩の半径:5mm、ダイ径:45mm、ダイ肩の半径:1mmとした。サンプルは100mmφに機械加工したものを用いて、しわ押さえ力を200kNとして、8mm高さの張出しを行った。プレス後の断面を図6に示す。
 形状凍結性の評価は、張出し後のねじれを目視で行い、ねじれのないものを○、ややねじれているものを△、大きくねじれているものを×とした。
 結果を表1に併記する。本発明鋼では、形状不良なくプレス形成できていることが分かる。
 この発明によれば、従来の冷延鋼板に比べて、優れた成形性および形状凍結性を具える冷延鋼板およびその製造方法の提供が可能となる。

Claims (3)

  1.  質量%で、C:0.0010~0.0030%、Si:0.05%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.02%以下、Al:0.02~0.10%、N:0.0010~0.0050%およびNb:0.010~0.035%を含有し、かつAl含有量およびN含有量が以下の(1)式の関係を満たし、残部はFeおよび不可避的不純物の組成からなる冷延鋼板であって、該冷延鋼板が平均粒径:8~20μmのフェライト粒を主体とする組織を有し、{211}から15°以内のフェライト粒の板面における面積率が該組織の50%以上であることを特徴とする成形性と形状凍結性に優れた冷延鋼板。
     [%Al]/[%N]≧10 ・・・(1)
     ただし、[%M]は、M元素の含有量を表す(質量%)。
  2.  前記冷延鋼板が、さらに質量%で、B:0.0003~0.0015%を含有することを特徴とする請求項1に記載の成形性と形状凍結性に優れた冷延鋼板。
  3.  請求項1または2に記載の組成からなる鋼のスラブを、仕上げ温度:870~950℃で熱間圧延を終了し、450~630℃の範囲で巻取り、ついで酸洗後、圧下率:80%以下で冷間圧延を施したのち、焼鈍を行うに際し、600℃から730~850℃の均熱温度までを、以下の(2)式の関係を満たす速度vで加熱し、該均熱温度域に30~200s保持した後、3℃/s以上の速度vで600℃まで冷却することを特徴とする成形性と形状凍結性に優れた冷延鋼板の製造方法。
     v(℃/s):([%Al]/[%N])/10~([%Al]/[%N])・・・(2)
     ただし、[%M]は、M元素の含有量を表す(質量%)。
PCT/JP2011/050587 2010-01-15 2011-01-07 成形性と形状凍結性に優れた冷延鋼板およびその製造方法 WO2011087108A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127019804A KR101464845B1 (ko) 2010-01-15 2011-01-07 성형성과 형상 동결성이 우수한 냉연 강판 및 그의 제조 방법
CN201180006233.7A CN102712982B (zh) 2010-01-15 2011-01-07 成形性和形状冻结性优良的冷轧钢板及其制造方法
MX2012008180A MX348493B (es) 2010-01-15 2011-01-07 Hoja de acero laminada en frio teniendo una excelente conformabilidad y capacidad de fijacion de forma y metodo para la fabricacion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-006963 2010-01-15
JP2010006963A JP5051247B2 (ja) 2010-01-15 2010-01-15 成形性と形状凍結性に優れた冷延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2011087108A1 true WO2011087108A1 (ja) 2011-07-21

Family

ID=44304377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050587 WO2011087108A1 (ja) 2010-01-15 2011-01-07 成形性と形状凍結性に優れた冷延鋼板およびその製造方法

Country Status (7)

Country Link
JP (1) JP5051247B2 (ja)
KR (1) KR101464845B1 (ja)
CN (1) CN102712982B (ja)
MX (1) MX348493B (ja)
MY (1) MY155322A (ja)
TW (1) TWI427162B (ja)
WO (1) WO2011087108A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170510A (zh) * 2013-02-26 2013-06-26 首钢总公司 一种控制低碳冷镦钢屈强比的热轧方法
EP2907887A4 (en) * 2012-10-11 2015-12-02 Jfe Steel Corp COLD LAMINATED STEEL SHEET WITH HIGHER SHAPE FASTENING CAPACITY AND METHOD FOR MANUFACTURING THE SAME

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129191A1 (ja) * 2014-02-25 2015-09-03 Jfeスチール株式会社 王冠用鋼板およびその製造方法ならびに王冠
CN106347399B (zh) * 2016-08-31 2018-10-09 江苏同庆车辆配件有限公司 一种支撑座磨耗板
KR102219032B1 (ko) 2017-08-31 2021-02-23 닛폰세이테츠 가부시키가이샤 침탄용 강판, 및 침탄용 강판의 제조 방법
JP2019081916A (ja) * 2017-10-27 2019-05-30 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156023A (ja) * 1988-12-09 1990-06-15 Sumitomo Metal Ind Ltd 造形性の良好な冷延鋼板の製造法
WO2000006791A1 (fr) * 1998-07-27 2000-02-10 Nippon Steel Corporation Tole d'acier mince a base de ferrite presentant une excellente caracteristique de prise de forme, et son procede de fabrication
JP2002363693A (ja) * 2001-06-05 2002-12-18 Nippon Steel Corp 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
WO2010010964A1 (ja) * 2008-07-22 2010-01-28 Jfeスチール株式会社 冷延鋼板及びその製造方法並びにバックライトシャーシ
JP2010150580A (ja) * 2008-12-24 2010-07-08 Jfe Steel Corp 鋼板及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60121234T2 (de) * 2000-05-26 2006-11-09 Jfe Steel Corp. Kaltgewalztes Stahlblech und Zinkblech mit Reckalterungseigenschaften und Verfahren zur dessen Herstellung
JP4715496B2 (ja) * 2005-12-15 2011-07-06 Jfeスチール株式会社 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156023A (ja) * 1988-12-09 1990-06-15 Sumitomo Metal Ind Ltd 造形性の良好な冷延鋼板の製造法
WO2000006791A1 (fr) * 1998-07-27 2000-02-10 Nippon Steel Corporation Tole d'acier mince a base de ferrite presentant une excellente caracteristique de prise de forme, et son procede de fabrication
JP2002363693A (ja) * 2001-06-05 2002-12-18 Nippon Steel Corp 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
WO2010010964A1 (ja) * 2008-07-22 2010-01-28 Jfeスチール株式会社 冷延鋼板及びその製造方法並びにバックライトシャーシ
JP2010150580A (ja) * 2008-12-24 2010-07-08 Jfe Steel Corp 鋼板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907887A4 (en) * 2012-10-11 2015-12-02 Jfe Steel Corp COLD LAMINATED STEEL SHEET WITH HIGHER SHAPE FASTENING CAPACITY AND METHOD FOR MANUFACTURING THE SAME
CN103170510A (zh) * 2013-02-26 2013-06-26 首钢总公司 一种控制低碳冷镦钢屈强比的热轧方法

Also Published As

Publication number Publication date
JP5051247B2 (ja) 2012-10-17
KR101464845B1 (ko) 2014-11-25
KR20120099507A (ko) 2012-09-10
TWI427162B (zh) 2014-02-21
TW201134956A (en) 2011-10-16
MX348493B (es) 2017-06-15
MY155322A (en) 2015-09-30
JP2011144430A (ja) 2011-07-28
MX2012008180A (es) 2012-08-03
CN102712982B (zh) 2017-04-26
CN102712982A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
KR101287331B1 (ko) 연성이 우수한 고장력 강판 및 그 제조 방법
JP5549307B2 (ja) 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
JP5609945B2 (ja) 高強度冷延鋼板およびその製造方法
KR101515730B1 (ko) 신장 플랜지성이 우수한 고강도 냉연 강판 및 그 제조 방법
WO2011087108A1 (ja) 成形性と形状凍結性に優れた冷延鋼板およびその製造方法
JP2007291514A (ja) 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JPWO2019151017A1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
JP5272714B2 (ja) 製缶用鋼板の製造方法
KR20220005094A (ko) 고강도 열연 강판 및 그 제조 방법
JP2013064172A (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
WO2014057519A1 (ja) 形状凍結性に優れた冷延鋼板およびその製造方法
CN115087756A (zh) 热轧钢板
EP3231886B1 (en) Complex-phase steel sheet with excellent formability and manufacturing method therefor
KR20110018457A (ko) 냉연 강판 및 그 제조 방법 그리고 백라이트 섀시
JPH03277741A (ja) 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法
JP4867338B2 (ja) 超高強度鋼板およびその製造方法
WO2016194273A1 (ja) 熱延鋼板、フルハード冷延鋼板及び熱延鋼板の製造方法
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP5541243B2 (ja) 形状凍結性に優れた冷延鋼板およびその製造方法
JP5157417B2 (ja) 鋼板およびその製造方法
JPWO2019203251A1 (ja) 熱延鋼板
JP5157416B2 (ja) 鋼板およびその製造方法
JPH1161332A (ja) プレス成形性、耐歪時効性に優れた塗装焼付硬化型冷延鋼板
WO2022209839A1 (ja) 高強度鋼板およびその製造方法
JP2023549876A (ja) 強度、成形性及び表面品質に優れためっき鋼板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006233.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 5781/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/008180

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019804

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11732978

Country of ref document: EP

Kind code of ref document: A1