WO2015129191A1 - 王冠用鋼板およびその製造方法ならびに王冠 - Google Patents

王冠用鋼板およびその製造方法ならびに王冠 Download PDF

Info

Publication number
WO2015129191A1
WO2015129191A1 PCT/JP2015/000684 JP2015000684W WO2015129191A1 WO 2015129191 A1 WO2015129191 A1 WO 2015129191A1 JP 2015000684 W JP2015000684 W JP 2015000684W WO 2015129191 A1 WO2015129191 A1 WO 2015129191A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
crown
temperature
steel plate
rolling
Prior art date
Application number
PCT/JP2015/000684
Other languages
English (en)
French (fr)
Inventor
智也 平口
克己 小島
裕樹 中丸
雅巳 辻本
利裕 菊地
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016505035A priority Critical patent/JP6195012B2/ja
Priority to US15/121,540 priority patent/US20160362761A1/en
Priority to BR112016019612A priority patent/BR112016019612A2/pt
Priority to KR1020167026089A priority patent/KR101871735B1/ko
Priority to CN201580010012.5A priority patent/CN106029926B/zh
Publication of WO2015129191A1 publication Critical patent/WO2015129191A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D41/00Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
    • B65D41/02Caps or cap-like covers without lines of weakness, tearing strips, tags, or like opening or removal devices
    • B65D41/10Caps or cap-like covers adapted to be secured in position by permanent deformation of the wall-engaging parts
    • B65D41/12Caps or cap-like covers adapted to be secured in position by permanent deformation of the wall-engaging parts made of relatively stiff metallic materials, e.g. crown caps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate for a crown that is used in beer bottles and the like and has excellent shape uniformity when forming a crown, a method for producing the same, and a crown.
  • SR Single Reduce
  • DR Double Reduce
  • crown molding In crown molding, the central part is squeezed to some extent at the initial stage of molding, and then the outer edge part is molded into a pleated shape.
  • a shape defect that causes uneven pleat shapes may occur.
  • a crown with a non-uniform pleat shape has a problem that even if it is plugged into a bottle, the pressure resistance cannot be obtained, the contents leak, and it does not serve as a lid. Even if the pleat shape is uniform, if the steel plate strength is low, there is a risk that the crown may come off due to insufficient pressure resistance.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-described problems of the prior art and to provide a crown steel plate excellent in workability, a manufacturing method thereof, and a crown.
  • the inventors have conducted intensive research to solve the above problems. Based on ultra-low carbon steel, study chemical composition, hot rolling conditions, cold rolling conditions (primary and secondary), continuous annealing conditions, improve average r value and control YP to appropriate value As a result, it has been found that it is possible to reduce the shape defect rate of the crown and to secure the compressive strength.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • C 0.0005 to 0.0050%
  • Si 0.020% or less
  • Mn 0.10 to 0.60%
  • P 0.020% or less
  • S 0.020 %: Al: 0.01 to 0.10% or less
  • N 0.0050% or less
  • Nb 0.010 to 0.050%
  • the balance is made of Fe and inevitable impurities
  • the average r value Is a steel plate for a crown having 1.30 or more and YP of 450 MPa or more and 650 MPa or less.
  • a steel slab having the chemical composition described in [1] above is subjected to hot rolling at a slab reheating temperature of 1150 ° C or higher and a finishing temperature of 870 ° C or higher, and then wound at a winding temperature of 600 ° C or higher.
  • a method of manufacturing a steel plate for a crown which is first cold-rolled after pickling, annealed at an annealing temperature of not less than the recrystallization temperature and not more than 790 ° C., and then subjected to secondary cold rolling at a reduction rate of not less than 10% and not more than 50%.
  • % indicating the ratio of the component composition is all by mass.
  • a crown steel plate excellent in workability having an average r value of 1.30 or more and YP of 450 MPa or more and 650 MPa or less can be obtained.
  • the steel plate for a crown of the present invention it becomes possible to improve the shape uniformity of the crown used for a beer bottle and the like and to obtain a sufficient pressure resistance.
  • C is an element that increases the strength of steel, but decreases workability.
  • the amount of the solute C in the steel sheet is large, the yield elongation increases, which tends to cause age hardening and stretcher strain during processing. Therefore, in the present invention using the continuous annealing method, it is necessary to control so that the C content is kept as low as possible in the steelmaking stage.
  • the amount of residual solid solution C increases, a steel plate will harden and it will become easy to generate
  • C is an element that affects the recrystallization texture.
  • the texture of the annealed plate increases in the crystal orientation group in which the ⁇ 111> direction is parallel to the normal direction of the plate surface, and the average r value is improved.
  • the drawability is improved and the crown shape defect is improved.
  • the C content is set to 0.0050% or less.
  • 0.0035% or less is preferable, and 0.0023% or less is more preferable.
  • excessive decarburization leads to an increase in cost during steelmaking, so 0.0005% is made the lower limit.
  • Si 0.020% or less
  • Mn 0.10 to 0.60%
  • Mn is added for the purpose of preventing hot brittleness. There is also an effect of preventing a decrease in hot ductility due to S contained in steel. In order to obtain these effects, addition of 0.10% or more is necessary.
  • the upper limit of Mn of the tin plate used for normal food containers is It is specified as 0.60% or less. From the above, the upper limit of Mn of the present invention is 0.60% or less. From the viewpoint of workability, Mn is preferably 0.45% or less.
  • S 0.020% or less
  • S combines with Fe in the steel to form FeS and reduces the hot ductility of the steel. In order to prevent this, S is made 0.020% or less. On the other hand, if S is too low, the risk of pitting corrosion increases, so 0.008% or more is preferable.
  • Al 0.01 to 0.10%
  • Al is an element added as a deoxidizer. Further, by forming N and AlN, there is an effect of reducing solid solution N in the steel. However, if the Al content is less than 0.01%, a sufficient deoxidation effect or a solid solution N reduction effect cannot be obtained. On the other hand, if it exceeds 0.10%, not only is the above effect saturated, but also inclusions such as alumina increase, such being undesirable. Therefore, the Al content is in the range of 0.01% to 0.10%.
  • N 0.0050% or less
  • the steel becomes hard due to strain age hardening and the workability decreases.
  • the element added in order to fix solid solution N must be increased, it leads to a cost increase. Therefore, the upper limit of N is set to 0.0050% or less.
  • 0.0010% or more is preferable.
  • Nb is an element that can improve the average r value by fixing the solid solution C in the steel sheet as NbC and decreasing the solid solution C.
  • the increase in the average r value improves the drawability and is effective in suppressing shape defects. If the amount of Nb is small, the effect of increasing the average r value is diminished, so the lower limit is made 0.010%.
  • the Nb addition amount increases, the recrystallization temperature rises, and thus there is a possibility that non-recrystallization occurs after annealing. Since this causes a variation in material, the content is made 0.050% or less.
  • the balance is Fe and inevitable impurities.
  • Cu, Ni, Cr, and Mo may be contained within a range that does not impair the effects of the present invention. According to ASTM A623M-11, Cu is 0.2% or less, Ni is 0.15% or less, Cr is 0.10% or less, and Mo is 0.05% or less. Other elements are 0.02% or less.
  • Sn may be contained within a range not impairing the effects of the present invention.
  • the structure of the steel plate for crowns of the present invention is a recrystallized structure. This is because if there is unrecrystallized after annealing, the material becomes non-uniform and the mechanical properties vary. However, an unrecrystallized area ratio of 5% or less is acceptable because it hardly affects the material variation.
  • the recrystallized structure is preferably a ferrite phase, and the phase other than the ferrite phase is preferably less than 1.0%. From the viewpoint of suppressing anisotropy during secondary cold rolling, the ferrite extension is preferably 4.2 or less.
  • a ferrite extension degree can be 4.2 or less by making the rolling rate of secondary cold rolling into 50% or less among the manufacturing methods mentioned later. Further, the ferrite extension can be measured by the method described in Examples below.
  • the slab having the above composition is subjected to hot rolling at a slab reheating temperature of 1150 ° C. or higher and a finishing temperature of 870 ° C. or higher, and then wound at a winding temperature of 600 ° C. or higher, pickled, and then first cold rolled. Then, annealing at an annealing temperature not lower than the recrystallization temperature and not higher than 790 ° C., followed by secondary cold rolling at a rolling reduction of not less than 10% and not more than 50%, a crown steel sheet having excellent workability can be obtained.
  • the hot rolling finishing temperature 870 ° C or higher
  • the hot rolling finishing temperature is set to 870 ° C. or higher.
  • the hot rolling finishing temperature is preferably 910 ° C. or lower.
  • the coiling temperature after hot rolling 600 ° C. or higher.
  • the coiling temperature is preferably higher than 700 ° C.
  • the coiling temperature after hot rolling is preferably 730 ° C. or lower.
  • the pickling conditions are not particularly limited as long as the surface scale can be removed.
  • Pickling can be performed by a commonly performed method.
  • pickling was illustrated as a scale removal method, methods other than pickling may be used as long as scale can be removed. For example, mechanical removal may be used.
  • the reduction ratio of primary cold rolling is preferably 86 to 89%.
  • the annealing method is preferably a continuous annealing method from the viewpoint of material uniformity and productivity. It is essential that the annealing temperature in the continuous annealing is equal to or higher than the recrystallization temperature. However, if the annealing temperature is too high, the crystal grains become coarse, the steel sheet strength decreases, and there is a possibility that YP within the range specified in the present invention cannot be obtained. In addition, with thin materials, there is a greater risk of breakage in the furnace and occurrence of buckling. For this reason, an annealing temperature shall be 790 degrees C or less. The soaking time during annealing is preferably 10 seconds to 90 seconds from the viewpoint of productivity.
  • Secondary cold rolling is a particularly important production condition in the present invention. If the rolling reduction exceeds 50%, the steel sheet becomes excessively hard, and the workability decreases. In addition, the average r value decreases and the ⁇ r value increases. Therefore, the reduction ratio of secondary cold rolling is set to 50% or less. On the other hand, secondary rolling is performed at a rolling reduction of 10% or more in order to ensure the pressure strength. Furthermore, in order to ensure the pressure strength, the rolling reduction is preferably over 30%.
  • the cold-rolled steel sheet obtained as described above is preferably subjected to the following surface treatment before being formed into a crown.
  • the steel plate subjected to the following surface treatment is also a crown steel plate of the present invention.
  • Various surface treatments may be applied to the steel sheet surface of the steel sheet after the secondary cold rolling.
  • a method of forming at least one of tin plating, chromium plating, and nickel plating by a general plating method such as electroplating can be given. Since the film thickness of the surface treatment such as plating is sufficiently small with respect to the plate thickness, the influence on the mechanical properties of the steel plate for crowns is at a negligible level.
  • the pressure resistance of the container is proportional to YP of the lid material. If the strength of the steel sheet is insufficient, sufficient pressure strength cannot be obtained, so the lower limit of YP is set to 450 MPa. On the other hand, if YP is too high, the compressive stress in the circumferential direction of the crown pleat increases and exceeds the critical buckling stress at the initial stage of crown molding, so that wrinkles are likely to occur. In order to prevent such a shape defect, the upper limit is set to 650 MPa.
  • the tensile test is performed using a JIS No. 5 size tensile test piece according to JIS Z 2241. The tensile direction is the rolling direction (L direction).
  • the pressure resistance of the container is proportional to the square of the plate thickness of the lid. If the plate thickness is too thin, the pressure resistance is reduced and the role as a lid cannot be achieved. Therefore, the plate thickness is preferably 0.13 mm or more, and more preferably 0.16 mm or more. On the other hand, from the viewpoint of resource saving by reducing the thickness of the crown steel plate, reducing the environmental burden, and reducing the material cost, it is preferable that the thickness of the steel plate is thinner than 0.22 mm which is the thickness of the current crown steel plate. . In order to obtain such an effect, the plate thickness is preferably 0.18 mm or less.
  • the crown steel plate excellent in workability of the present invention can be obtained.
  • a crown is a lid used for beverage bottles, etc. It has pleated projections on the side of the crown (generally 21 pleats) and caulks the pleated grooves on the drinking mouth of bottles. Seal the contents with.
  • a packing is provided on the inner surface of the crown lid to enhance the sealing performance. Cork sheets, PVC (polyvinyl chloride), PE (polyethylene), etc. are used as the packing material.
  • a steel slab was obtained by melting steel containing the component composition shown in Table 1 and the balance being Fe and inevitable impurities. Here, it is confirmed that the Sn amount is less than 0.0050% at all levels.
  • the obtained steel slab was reheated at the temperature shown in Table 2, and then hot rolled at the finish rolling temperature and the winding temperature shown in Table 2.
  • primary cold rolling was performed at the rolling reduction shown in Table 2
  • the obtained thin steel sheet was annealed at the annealing temperature (recrystallization temperature) shown in Table 2 in a continuous annealing furnace.
  • Secondary cold rolling was performed at the rolling reduction shown in Table 2 to produce a thin steel plate with the final finished plate thickness shown in Table 2.
  • Microstructure observation was performed on the steel sheet obtained by the above manufacturing method. Microscopic observation was performed in accordance with “JIS G 0551”, in which ferrite grains were revealed with nital and photographed at 400 ⁇ using an optical microscope. The presence or absence of non-recrystallization was confirmed visually with an optical microscope, and crystal grains that had not been recrystallized were judged as non-recrystallized. In addition, a photograph taken using an optical microscope is subjected to image processing, and the area ratio of non-recrystallized grains is calculated by distinguishing the non-recrystallized part from the re-crystallized completed part. Recrystallized more than 0% and 5% or less was marked with ⁇ , and unrecrystallized more than 5% with x.
  • the degree of extension of ferrite grains was calculated by the method shown in “JIS G 0202”.
  • the steel plate obtained by the above manufacturing method was subjected to chromium (tin-free) plating as a surface treatment, and then coated (baking treatment condition: heat treatment at 210 ° C. for 20 minutes) and pressed into a crown shape.
  • the mechanical properties and formability were investigated under the following test conditions.
  • the average r value average plastic strain ratio
  • the natural vibration method defined in JIS Z 2254 Annex JA was used. That is, the resonance frequency and average Young's modulus of the steel plates in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction were obtained, and the average r value was calculated.
  • ⁇ r in-plane anisotropy
  • the natural vibration method defined in JIS Z 2254 Annex JA was used. That is, the resonance frequency of the steel sheet in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction is measured, the Young's modulus anisotropy ⁇ E is calculated, and the ⁇ r value is calculated from an empirical formula showing the correlation between ⁇ r and ⁇ E. did.
  • the tensile test for YP measurement was performed using a JIS No. 5 size tensile test piece in accordance with JIS Z2241.
  • the tensile direction was the rolling direction (L direction).
  • a crown was molded and the uniformity of the pleat shape of the crown was evaluated.
  • the present invention examples have an average r value of 1.30 or more, YP of 450 MPa or more and 650 MPa or less, no non-recrystallization that may cause material variations, and excellent shape uniformity and pressure resistance. I understand.
  • one or more of the shape uniformity and pressure resistance are inferior, or there are unrecrystallized crystals with an area ratio exceeding 5%, which may cause material variations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Closures For Containers (AREA)
  • Metal Rolling (AREA)

Abstract

 本発明は、王冠の形状不良、耐圧強度不足の問題を解消する、加工性に優れた王冠用鋼板およびその製造方法、ならびに王冠用鋼板を成形してなる王冠を提供することを目的とする。 王冠用鋼板は、C:0.0005~0.0050%、Si:0.020%以下、Mn:0.10~0.60%、P:0.020%以下、S:0.020%以下、Al:0.01~0.10%、N:0.0050%以下、Nb:0.010~0.050%を含有し、残部はFe および不可避的不純物からなり、平均r値が1.30 以上、YPが450MPa 以上650MPa 以下である。鋼スラブを、スラブ再加熱温度が1150℃以上、仕上温度が870℃以上の熱間圧延を施したのち、巻取温度600℃以上で巻取り、酸洗後、一次冷間圧延し、再結晶温度以上790℃以下の焼鈍温度で焼鈍し、その後、圧下率10%以上50%以下の二次冷間圧延を行うことで得られる。

Description

王冠用鋼板およびその製造方法ならびに王冠
 本発明は、ビール瓶などに用いられる、王冠成形時の形状均一性に優れる王冠用鋼板およびその製造方法ならびに王冠に関するものである。
 近年の環境負荷低減及びコストダウンの観点から、ビール瓶蓋などに使われる王冠用鋼板の薄肉化が進んでいる。一般的に、薄肉化した鋼板として以下の2種類がある。すなわち、熱間圧延、冷間圧延、焼鈍に続いて、調質圧延を行うSR(Single Reduce)材と、二次冷間圧延を行うDR(Double Reduce)材である。王冠用鋼板の場合、板厚は、0.20mm以下の需要が拡大しており、薄肉化に伴う耐圧強度低下を補う加工硬化を利用できる二次冷間圧延を実施するDR材が望ましい。しかしながら、DR材は、一般的にSR材に比べて硬質となるため加工性が低いといった問題がある。
 王冠成形では、成形初期で中央部がある程度絞られ、その後、外縁部がひだ形状に成形される。加工性が低い鋼板の場合、ひだ形状が不均一となる形状不良が生じることがある。ひだ形状が不均一な王冠は、瓶に打栓されても耐圧強度が得られず内容物の漏洩が生じ、蓋としての役割を果たさないといった問題がある。また、ひだ形状が均一であっても、鋼板強度が低い場合には、耐圧強度不足により王冠が外れる危険性がある。
 良好な加工性を有する鋼板としては、極低炭素IF(Interstitial Free)鋼がよく知られている。極低炭素鋼を用いたDR材では、加工性向上と薄肉化の両立を志向した数多くの検討がある(例えば、特許文献1~3)。
特開平7-11333号公報 特開平5-287445号公報 特開2010-255021号公報
 しかしながら、上記従来技術を王冠に適用した場合は、いずれも王冠としての性能が確保できない問題点を抱えている。
 本発明は上記事情に鑑みなされたもので、上述した従来技術の問題を解決し、加工性に優れた王冠用鋼板およびその製造方法ならびに王冠を提供することを目的とする。
 発明者らは、前記課題を解決するために、鋭意研究を行った。極低炭素鋼をベースに、化学成分、熱間圧延条件、冷間圧延条件(一次、二次)、連続焼鈍条件を検討し、平均r値を向上させ、かつYPを適切な値に制御することで、王冠の形状不良率の減少と耐圧強度の確保を可能とすることを見出した。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.0005~0.0050%、Si:0.020%以下、Mn:0.10~0.60%、P:0.020%以下、S:0.020%以下、Al:0.01~0.10%以下、N:0.0050%以下、Nb:0.010~0.050%を含有し、残部はFeおよび不可避的不純物からなり、平均r値が1.30以上、YPが450MPa以上650MPa以下である王冠用鋼板。
[2]フェライト展伸度が4.2以下である上記[1]に記載の王冠用鋼板。
[3]上記[1]に記載の化学成分を有する鋼スラブを、スラブ再加熱温度が1150℃以上、仕上温度が870℃以上の熱間圧延を施したのち、巻取温度600℃以上で巻取り、酸洗後、一次冷間圧延し、再結晶温度以上790℃以下の焼鈍温度で焼鈍し、その後圧下率10%以上50%以下の二次冷間圧延を行う王冠用鋼板の製造方法。
[4]上記[1]または[2]に記載の王冠用鋼板を成形してなる王冠。
 なお、本発明において、成分組成の割合を示す%は全て質量%である。
 本発明によれば、平均r値が1.30以上であり、YPが450MPa以上650MPa以下である加工性に優れた王冠用鋼板が得られる。本発明の王冠用鋼板を用いることにより、ビール瓶などに用いられる王冠の形状均一性を高め、且つ十分な耐圧強度を得ることが可能となる。
王冠のひだ形状を示す図である。
 以下、本発明を詳細に説明する。まず、成分組成について説明する。
[C:0.0005~0.0050%]
Cは鋼の強度を高める元素であるが加工性を低下させる。鋼板中の固溶Cの量が多いと、降伏伸びが大きくなり、時効硬化や、加工時のストレッチャーストレインの原因となりやすい。そのため、連続焼鈍法を利用する本発明においては、製鋼段階においてCの含有量を極力低く抑えるように制御する必要がある。また、残存固溶C量が増加すると、鋼板が硬質化し王冠成形初期にしわが発生しやすくなり、形状不良率が高まる。また、Cは再結晶集合組織に影響を及ぼす元素である。C量が少ないほど、焼鈍板の集合組織は、<111>方向が板面法線方向に平行な結晶方位群への集積が高まり、平均r値が向上する。平均r値が向上することで、絞り性が向上し、王冠の形状不良が改善される。以上より、C含有量は0.0050%以下とする。より形状均一性を高めるために、0.0035%以下が好ましく、0.0023%以下がさらに好ましい。一方、過度の脱炭は製鋼時のコスト上昇を招くため、0.0005%を下限とする。
 [Si:0.020%以下]、
Siは多量に添加すると、鋼板の表面処理性の劣化及び耐食性の低下を招くため、0.020%以下とする。
 [Mn:0.10~0.60%]、
Mnは熱間脆性の防止を目的に添加される。鋼中に含まれるSに起因する熱間延性の低下を防止する効果もある。これらの効果を得るためには、0.10%以上の添加が必要である。一方、JIS G 3303に規定されたとりべ分析値やアメリカ合衆国材料試験協会規格(ASTM A623M-11)に規定されたとりべ分析値において、通常の食品容器に用いられるぶりき原板のMnの上限は0.60%以下と規定されている。以上より、本発明のMnの上限は0.60%以下とする。加工性の観点からは、Mnは0.45%以下が好ましい。
 [P:0.020%以下]
Pは、多量に添加すると、鋼が硬質化し加工性が低下することに加え、耐食性の低下を引き起こす。よって、Pの上限は0.020%とする。
 [S:0.020%以下]
Sは、鋼中でFeと結合してFeSを形成し、鋼の熱間延性を低下させる。これを防止するため、Sは0.020%以下とする。一方、Sが低すぎると孔食の発生リスクが高まるため、0.008%以上が好ましい。
 [Al:0.01~0.10%]
Alは、脱酸剤として添加される元素である。また、NとAlNを形成することにより、鋼中の固溶Nを減少させる効果を有する。しかし、Alの含有量が0.01%未満では、十分な脱酸効果や固溶N低減効果が得られない。一方、0.10%を超えると、上記効果が飽和するだけでなく、アルミナなどの介在物が増加するため好ましくない。よって、Alの含有量は0.01%以上0.10%以下の範囲とする。
 [N:0.0050%以下]
Nが増加すると、歪時効硬化により、鋼が硬質化し加工性が低下する。また、固溶Nを固定するために添加する元素を増やさなければならないため、コストアップにつながる。よって、Nの上限は0.0050%以下とする。一方、Nを安定して0.0010%未満とすることは難しく、製造コストも上昇するため、0.0010%以上が好ましい。
 [Nb:0.010~0.050%]
Nbは鋼板中の固溶CをNbCとして固定し、固溶Cを減少させることで、平均r値を向上させることが可能な元素である。平均r値が高まることで、絞り性が向上し、形状不良の抑制に効果がある。Nb量が少ないと平均r値を高める効果が薄れてしまうため、下限を0.010%とする。一方、Nb添加量が増加すると、再結晶温度が上昇するため、焼鈍後、未再結晶が生じる可能性がある。これは材質ばらつきの原因となるため、0.050%以下とする。
 残部はFeおよび不可避的不純物とする。
 なお、Cu、Ni、Cr、Moは、本発明の効果を損なわない範囲で含有してもよい。
ASTM A623M-11よりCuは0.2%以下、Niは0.15%以下、Crは0.10%以下、Moは0.05%以下とする。その他元素は0.02%以下とする。
 また、本発明の効果を損なわない範囲でSnを含有してもよい。
 [Sn:0.0050%未満]
Snは多量に存在すると、平均r値を下げるため、0.0050%未満が望ましい。
 [鋼板の組織]
本発明の王冠用鋼板の組織は、再結晶組織とする。焼鈍後に未再結晶があると、材質が不均一となり機械特性にばらつきが発生するためである。但し、未再結晶面積率が5%以下であれば、材質ばらつきにほとんど影響しないため許容できる。また、再結晶組織は、フェライト相であることが好ましく、フェライト相以外の相は1.0%未満とすることが好ましい。そして、二次冷間圧延時の異方性を抑える観点から、フェライト展伸度は4.2以下が好ましい。鋼板のフェライト粒の展伸度が4.2を超えると周方向で形状均一なひだを得ることが難しい場合がある。なお、フェライト展伸度は、後述する製造方法のうち、二次冷間圧延の圧延率を50%以下とすることにより4.2以下とすることができる。また、フェライト展伸度は、後述の実施例記載の方法により測定することができる。
 次に本発明の加工性に優れた王冠用鋼板を得るための製造方法の一例について説明する。
上記組成を有するスラブに、スラブ再加熱温度が1150℃以上、仕上温度が870℃以上の熱間圧延を施したのち、巻取温度600℃以上で巻取り、酸洗後、一次冷間圧延し、再結晶温度以上790℃以下の焼鈍温度で焼鈍し、その後、圧下率10%以上50%以下の二次冷間圧延を行うことで加工性に優れた王冠用鋼板が得られる。
 [スラブ再加熱温度:1150℃以上]、
熱間圧延前のスラブ再加熱温度は、低すぎると、最終仕上圧延温度の確保が難しくなるため、1150℃以上とする。一方、加熱温度が高すぎると製品表面の欠陥や、エネルギーコストが上昇するなどの問題が発生するため、1300℃以下とすることが好ましい。
 [熱間圧延仕上温度:870℃以上]
熱間圧延仕上温度が低すぎると、鋼板表層でα粒の粗大化を招き、材質ばらつきの原因となる。よって、熱間圧延仕上温度は870℃以上とする。また、熱間圧延仕上温度が高すぎると熱延スケールが厚くなり、酸洗性が落ちる。よって、熱延仕上温度は910℃以下が好ましい。また、本発明では、NbによるIF化で固溶元素が減じられているため、仕上圧延までに炭化物等の析出処理など行う必要はない。そのため、通常の仕上圧延で圧延することができる。
 [熱間圧延後の巻取温度:600℃以上]
熱間圧延後の巻取温度が低すぎると、熱延形状不良が発生する。よって、熱間圧延後の巻取温度は600℃以上とする。鋼板の均一性を考慮し、巻取温度は700℃超えが好ましい。一方、巻取温度が高すぎると、熱延スケールが厚くなり、酸洗性が落ちるため、熱間圧延後の巻取温度は730℃以下が好ましい。
 酸洗条件は表層スケールが除去できればよく、特に条件は規定しない。通常行われる方法により、酸洗することができる。なお、スケール除去方法として酸洗を例示したが、スケールが除去できれば酸洗以外の方法を用いてもよい。例えば、機械的な除去などでもよい。
 [一次冷間圧延の圧下率:86~89%(好適条件)]
一次冷間圧延の圧下率は、高すぎると、圧延時に、圧延ロールに過大な荷重がかかり、設備に大きな負荷となる。一方、低すぎると、その分熱延鋼板を薄く製造しなければならないため、材質制御が困難となる。よって、一次冷間圧延の圧下率は86~89%が好ましい。
 [焼鈍温度:再結晶温度以上790℃以下]
焼鈍方法は、材質の均一性と生産性の観点から連続焼鈍法が好ましい。連続焼鈍における焼鈍温度は、再結晶温度以上であることが必須である。しかし、焼鈍温度が高すぎると結晶粒が粗大化し、鋼板強度が低下し、本発明規定の範囲のYPが得られない可能性がある。また、薄物材では、炉内破断やバックリングの発生の危険が大きくなる。このため、焼鈍温度は、790℃以下とする。焼鈍時の均熱時間は生産性の観点から10秒以上90秒以下とすることが好ましい。
 [二次冷間圧延の圧下率:10%以上50%以下]
焼鈍後、鋼板の薄肉化と強度増加をはかるため、二次冷間圧延を行う。二次冷間圧延は本発明において特に重要な製造条件である。圧下率が50%を超えると、鋼板が過度に硬質化し、加工性が低下する。また、平均r値の低下、Δr値の増加を引き起こす。よって、二次冷間圧延の圧下率は50%以下とする。一方、耐圧強度確保のため、10%以上の圧下率で二次圧延する。さらに耐圧強度を確保するためには、圧下率は30%超えが好ましい。
 上記のようにして得た冷延鋼板は、王冠に成形される前に、下記表面処理を施すことが好ましい。下記の表面処理を施した鋼板も本発明の王冠用鋼板である。
 [表面処理]
上記二次冷間圧延後の鋼板の鋼板表面に、各種表面処理を施してもよい。例えば電気めっき等の一般的なめっき方法により、錫めっき、クロムめっきおよびニッケルめっきのいずれか1種以上のめっきを形成する方法があげられる。
なお、めっき等の表面処理の膜厚は、板厚に関して十分に小さいので、王冠用鋼板の機械特性への影響は無視できるレベルである。
 次に、本発明の王冠用鋼板の材質特性について説明する。
 [平均r値:1.30以上]
王冠の形状不良は、王冠成形初期段階の絞り成形に伴うしわの発生が原因である。そこで、しわの発生を回避するために、絞り性を高めること、つまり高平均r値を志向する必要がある。平均r値が低いと、絞り性が低く、王冠成形初期段階でしわが発生し形状不良が発生するため、平均r値は1.30以上とする。成形初期の絞り性向上のため、平均r値1.40以上が望ましい。また、平均r値2.00が現実的な上限である。
 [|Δr|≦0.5(好適条件)] 
王冠を成形する上で周方向に対して均一にひだを成形するため|Δr|≦0.5が好ましい。さらに好ましくは、|Δr|≦0.4であり、より好ましくは、|Δr|≦0.3である。Δr(面内異方性)の測定はJIS Z 2254 附属書JAに規定される固有振動法を用いることができる。すなわち、圧延方向に対して0°、45°および90°方向の鋼板の共振周波数を測定し、ヤング率の異方性ΔEを算出し、ΔrとΔEの相関を示す実験式からΔr値を算出する。
 [YP:450MPa以上650MPa以下]
容器の耐圧強度は、蓋材のYPと比例関係にある。鋼板の強度が不足すると十分な耐圧強度が得られないため、YPの下限を450MPaとする。また、YPが高すぎると、王冠ひだ部分の周方向の圧縮応力が高まり、王冠成形初期で臨界座屈応力を上回るため、しわが発生しやすくなる。このような形状不良を防ぐため、上限は650MPaとする。引張試験は、JIS Z 2241に準拠し、JIS5号サイズの引張試験片を用いて行なう。引張方向は圧延方向(L方向)とする。
 [板厚:0.13mm以上0.18mm以下(好適条件)] 
容器の耐圧強度は蓋材の板厚の二乗に比例する。板厚が薄すぎると、耐圧強度が低下し、蓋としての役割を果たさなくなる。よって、板厚は0.13mm以上が好ましく、0.16mm以上がさらに好ましい。一方、王冠用鋼板の薄肉化による省資源化、環境負荷の低減、素材コスト低減の観点から、鋼板の板厚は現状の王冠用鋼板の板厚である0.22mmよりも薄くすることが好ましい。このような効果を得るため、好ましくは、板厚は0.18mm以下である。
 以上により、本発明の加工性に優れた王冠用鋼板が得られる。
 さらに、本発明の王冠用鋼板を成形することで、形状均一性に優れ、且つ十分な耐圧強度を有した王冠が得られる。王冠とは飲料用瓶などに用いられる蓋材であり、王冠側面にひだ状の突起を備え(一般的にひだの個数は21個)、ひだ状の溝を瓶などの飲み口にかしめることで内容物を密閉する。王冠蓋の内面には密封性を高めるためにパッキンを備えている。パッキンの素材には、コルクシート、PVC(ポリ塩化ビニル),PE(ポリエチレン)などが用いられる。
 表1に示す成分組成を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、鋼スラブを得た。ここでSn量は、すべての水準で0.0050%未満であることを確認している。得られた鋼スラブを表2に示す温度にて再加熱した後、表2に示す仕上げ圧延温度、巻取温度で熱間圧延を行った。次いで、酸洗後、表2に示す圧下率で一次冷間圧延して、得られた薄鋼板を、連続焼鈍炉にて表2に示す焼鈍温度(再結晶温度)で焼鈍を行い、表2に示す圧下率で二次冷間圧延を行い、表2に示す最終仕上板厚の薄鋼板を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記製造方法により得られた鋼板に対して、組織観察を行った。
組織観察は「JIS G 0551」 に準拠し、ナイタールによりフェライト粒を現出させ、光学顕微鏡を用いて400倍で撮影して行なった。未再結晶の有無は、光学顕微鏡により目視で確認し、再結晶に至っていない結晶粒を未再結晶と判断した。また、光学顕微鏡を用いて撮影した写真を画像処理して、未再結晶部と再結晶完了部を区別することで未再結晶粒の面積率を算出し、未再結晶0%を◎、未再結晶0%超5%以下を○、未再結晶5%超を×とした。フェライト粒の展伸度は、「JIS G 0202」に示される手法で算出した。
上記製造方法により得られた鋼板に、表面処理としてクロム(ティンフリー)めっきを施した後、塗装(焼付け処理条件:210℃で20分の熱処理)をし、王冠の形状にプレス加工した。下記試験条件で機械的特性と成形性について調査した。
平均r値(平均塑性ひずみ比)は、JIS Z 2254 附属書JAに規定される固有振動法を用いた。すなわち、圧延方向に対して0°、45°および90°方向の鋼板の共振周波数、平均ヤング率を求め、平均r値を算出した。Δr(面内異方性)は、JIS Z 2254 附属書JAに規定される固有振動法を用いた。すなわち、圧延方向に対して0°、45°および90°方向の鋼板の共振周波数を測定し、ヤング率の異方性ΔEを算出し、ΔrとΔEの相関を示す実験式からΔr値を算出した。
YP測定のための引張試験は、JIS Z 2241に準拠し、JIS5号サイズの引張試験片を用いて行なった。引張方向は圧延方向(L方向)とした。
また、王冠を成形し、王冠のひだ形状の均一性を評価した。王冠成形時に破断したものは不合格(表3において「×」)とし、破断なく成形できたものは、王冠の各ひだの長さ(図1中のL)を測定し、L値の標準偏差σを0.1以下のものを合格(表3において「○」)とし、L値の標準偏差σが0.1を超えるものも不合格(表3において「×」)とした。
また、耐圧性(耐圧強度)は、JIS S 9017に準じて、瓶に王冠を打栓後に耐圧試験を行い、115PSI以上のものを合格(表3において「○」)とし、115PSI未満のものを不合格(表3において「×」)とした。
結果を表3に示す。なお、形状均一性に劣る王冠は、瓶に打栓が不可能なため、耐圧試験は行っていない。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例は、平均r値が1.30以上、YPが450MPa以上650MPa以下であり、材質ばらつきの原因となり得る未再結晶も存在せず、形状均一性と耐圧性に優れることがわかる。
 一方、比較例は、形状均一性、耐圧性のいずれか一つ以上が劣っているか、材質ばらつきの原因となり得る面積率5%超えの未再結晶が存在している。
1:王冠上面
2:ひだ部分
L:ひだの高さ

Claims (4)

  1.  質量%で、C:0.0005~0.0050%、Si:0.020%以下、Mn:0.10~0.60%、P:0.020%以下、S:0.020%以下、Al:0.01~0.10%、N:0.0050%以下、Nb:0.010~0.050%を含有し、残部はFeおよび不可避的不純物からなり、
    平均r値が1.30以上、YPが450MPa以上650MPa以下
    である王冠用鋼板。
  2.  フェライト展伸度が4.2以下である請求項1に記載の王冠用鋼板。
  3.  請求項1に記載の化学成分を有する鋼スラブを、スラブ再加熱温度が1150℃以上、仕上温度が870℃以上の熱間圧延を施したのち、巻取温度600℃以上で巻取り、酸洗後、一次冷間圧延し、再結晶温度以上790℃以下の焼鈍温度で焼鈍し、その後、圧下率10%以上50%以下の二次冷間圧延を行う王冠用鋼板の製造方法。
  4.  請求項1または2に記載の王冠用鋼板を成形してなる王冠。
                            
     
PCT/JP2015/000684 2014-02-25 2015-02-13 王冠用鋼板およびその製造方法ならびに王冠 WO2015129191A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016505035A JP6195012B2 (ja) 2014-02-25 2015-02-13 王冠用鋼板およびその製造方法ならびに王冠
US15/121,540 US20160362761A1 (en) 2014-02-25 2015-02-13 Steel sheet for crown cap, method for manufacturing same, and crown cap
BR112016019612A BR112016019612A2 (pt) 2014-02-25 2015-02-13 folha de aço para tampa de coroa, método para fabricação da mesma e tampa de coroa
KR1020167026089A KR101871735B1 (ko) 2014-02-25 2015-02-13 크라운 캡용 강판 및 그의 제조 방법 및 크라운 캡
CN201580010012.5A CN106029926B (zh) 2014-02-25 2015-02-13 瓶盖用钢板及其制造方法以及瓶盖

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014033851 2014-02-25
JP2014-033851 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129191A1 true WO2015129191A1 (ja) 2015-09-03

Family

ID=54008529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000684 WO2015129191A1 (ja) 2014-02-25 2015-02-13 王冠用鋼板およびその製造方法ならびに王冠

Country Status (8)

Country Link
US (1) US20160362761A1 (ja)
JP (1) JP6195012B2 (ja)
KR (1) KR101871735B1 (ja)
CN (1) CN106029926B (ja)
BR (1) BR112016019612A2 (ja)
MY (1) MY174492A (ja)
TW (1) TWI541363B (ja)
WO (1) WO2015129191A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465265B1 (ja) * 2017-07-31 2019-02-06 Jfeスチール株式会社 王冠用鋼板、王冠、および王冠用鋼板の製造方法
WO2019026738A1 (ja) 2017-07-31 2019-02-07 Jfeスチール株式会社 王冠用鋼板、王冠、および王冠用鋼板の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335967A (zh) * 2016-11-19 2017-11-10 张红伟 密封瓶盖制作工艺
CN107335968A (zh) * 2016-11-19 2017-11-10 张红伟 瓶盖制作工艺
CN106868400A (zh) * 2017-03-21 2017-06-20 德龙钢铁有限公司 一种瓶盖用钢及其制造方法
WO2018181451A1 (ja) * 2017-03-31 2018-10-04 Jfeスチール株式会社 鋼板およびその製造方法と王冠およびdrd缶
PH12019501998B1 (en) * 2017-03-31 2022-08-12 Jfe Steel Corp Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing (drd) can
WO2023217382A1 (de) * 2022-05-12 2023-11-16 Actega Ds Gmbh Dichtungseinlage für kronkorken mit verringerter blechstärke
KR20250092851A (ko) * 2023-12-15 2025-06-24 주식회사 포스코 캔용 냉연 강판 및 그 제조방법
KR20250092494A (ko) * 2023-12-15 2025-06-24 주식회사 포스코 캔용 냉연 강판 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247669A (ja) * 1992-03-06 1993-09-24 Toyo Kohan Co Ltd 薄肉化深絞り缶用高強度鋼板の製造方法
JPH07228921A (ja) * 1993-12-20 1995-08-29 Kawasaki Steel Corp 加工性に優れた表面処理鋼板用原板の製造方法
JPH11209845A (ja) * 1998-01-28 1999-08-03 Kawasaki Steel Corp 加工性と耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JP2008202113A (ja) * 2007-02-21 2008-09-04 Jfe Steel Kk 缶用鋼板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331504B2 (ja) 1992-04-13 2002-10-07 新日本製鐵株式会社 ネックドイン加工性に優れた非時効性容器用鋼板
JP2980486B2 (ja) 1993-06-24 1999-11-22 新日本製鐵株式会社 非時効低イヤリング容器用鋼板の製造方法
JPH08218146A (ja) * 1995-02-08 1996-08-27 Kawasaki Steel Corp フランジ加工性及びネック成形性に優れた溶接缶用鋼板とその製造方法
JP4045602B2 (ja) * 1995-10-05 2008-02-13 Jfeスチール株式会社 絞り成形性に優れる缶用鋼板の製造方法
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
KR20090078836A (ko) * 2006-12-20 2009-07-20 제이에프이 스틸 가부시키가이샤 냉연 강판 및 그 제조 방법
JP5463720B2 (ja) 2009-04-22 2014-04-09 Jfeスチール株式会社 缶用鋼板用冷延鋼板と缶用鋼板およびそれらの製造方法
JP5051247B2 (ja) * 2010-01-15 2012-10-17 Jfeスチール株式会社 成形性と形状凍結性に優れた冷延鋼板およびその製造方法
JP5056863B2 (ja) * 2010-01-15 2012-10-24 Jfeスチール株式会社 冷延鋼板およびその製造方法
JP5794004B2 (ja) * 2011-07-12 2015-10-14 Jfeスチール株式会社 フランジ加工性に優れる高強度缶用鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247669A (ja) * 1992-03-06 1993-09-24 Toyo Kohan Co Ltd 薄肉化深絞り缶用高強度鋼板の製造方法
JPH07228921A (ja) * 1993-12-20 1995-08-29 Kawasaki Steel Corp 加工性に優れた表面処理鋼板用原板の製造方法
JPH11209845A (ja) * 1998-01-28 1999-08-03 Kawasaki Steel Corp 加工性と耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JP2008202113A (ja) * 2007-02-21 2008-09-04 Jfe Steel Kk 缶用鋼板の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465265B1 (ja) * 2017-07-31 2019-02-06 Jfeスチール株式会社 王冠用鋼板、王冠、および王冠用鋼板の製造方法
WO2019026738A1 (ja) 2017-07-31 2019-02-07 Jfeスチール株式会社 王冠用鋼板、王冠、および王冠用鋼板の製造方法
WO2019026739A1 (ja) * 2017-07-31 2019-02-07 Jfeスチール株式会社 王冠用鋼板、王冠、および王冠用鋼板の製造方法
AU2018309965B2 (en) * 2017-07-31 2020-12-10 Jfe Steel Corporation Steel sheet for crown cap, crown cap, and method for manufacturing steel sheet for crown cap
US11359255B2 (en) 2017-07-31 2022-06-14 Jfe Steel Corporation Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
US11459149B2 (en) 2017-07-31 2022-10-04 Jfe Steel Corporation Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap

Also Published As

Publication number Publication date
CN106029926B (zh) 2018-10-02
KR101871735B1 (ko) 2018-06-27
BR112016019612A2 (pt) 2018-10-23
TWI541363B (zh) 2016-07-11
KR20160126014A (ko) 2016-11-01
JP6195012B2 (ja) 2017-09-13
TW201536930A (zh) 2015-10-01
US20160362761A1 (en) 2016-12-15
MY174492A (en) 2020-04-23
CN106029926A (zh) 2016-10-12
JPWO2015129191A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6195012B2 (ja) 王冠用鋼板およびその製造方法ならびに王冠
JP5858208B1 (ja) 高強度容器用鋼板及びその製造方法
TWI617677B (zh) Steel plate for can and method for producing steel plate for can
CN102482748A (zh) 高加工性三片焊接罐用钢板及其制造方法
US12129535B2 (en) Steel sheet for cans and method of producing same
TW201837199A (zh) 兩片罐用鋼板及其製造方法
TWI493053B (zh) 三片式罐體及其製造方法
JP6123735B2 (ja) 王冠用鋼板、その製造方法および王冠
JP5803660B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
JP6198011B2 (ja) 硬質容器用鋼板の製造方法
US10837078B2 (en) Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing (DRD) can
CN104781437B (zh) 三片罐用钢板及其制造方法
JP5540580B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
KR101975129B1 (ko) 왕관용 강판 및 그 제조 방법 그리고 왕관
JP2015151620A (ja) 缶用鋼板および缶用鋼板の製造方法
AU2018309964B2 (en) Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
JP5803510B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
CA2975068A1 (en) Steel sheet for crown cap, method for manufacturing steel sheet for crown cap, and crown cap
NZ756845B2 (en) Steel Sheet, Method of Manufacturing Same, Crown Cap, and Drawing and Redrawing (DRD) Can

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505035

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: NC2016/0000497

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15121540

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167026089

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15755200

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016019612

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016019612

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160824