WO2011087053A1 - 自動培養装置、及び培養容器設置方法 - Google Patents

自動培養装置、及び培養容器設置方法 Download PDF

Info

Publication number
WO2011087053A1
WO2011087053A1 PCT/JP2011/050433 JP2011050433W WO2011087053A1 WO 2011087053 A1 WO2011087053 A1 WO 2011087053A1 JP 2011050433 W JP2011050433 W JP 2011050433W WO 2011087053 A1 WO2011087053 A1 WO 2011087053A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
base
flow path
automatic
unit
Prior art date
Application number
PCT/JP2011/050433
Other languages
English (en)
French (fr)
Inventor
雅之 大和
豊茂 小林
和俊 菅
騰 守谷
貴之 野崎
亮太 中嶌
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011087053A1 publication Critical patent/WO2011087053A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to an automatic culture apparatus for culturing cells, and more particularly, to an automatic culture technique for efficiently culturing cells with aseptic cleanliness.
  • Patent Document 1 provides an example of processing a culture container transport operation, a medium exchange, and the like using an articulated robot manipulator.
  • this articulated robot manipulator it is possible to sterilize itself.
  • the automatic culture apparatus such as Patent Document 2 is a closed system
  • the flow path is attached while maintaining the sterility of the interior, and the medium (culture solution) and cells (cell suspension) are attached.
  • the problem is whether to inject into the flow path.
  • the sealed flow path can be easily installed in the apparatus and the driving force is efficiently applied.
  • the tissues collected in the operating room are placed in aseptically treated test tubes, etc.
  • CPC Cell Processing Center
  • the tissue is made into cells and cultured with the desired adjustments.
  • the harvested cells In order for the harvested cells to be cultured without any contamination, they must be produced manually in a process and environment that meets particularly strict regulations.
  • the cells or tissues produced by the apparatus Even in an automatic culture apparatus that automatically performs cell culture processing by a machine, the cells or tissues produced by the apparatus must not be contaminated with any bacteria or viruses during the production.
  • the culture vessel itself for automatic culture has a sealed structure, the inside is sterilized, and a system for culturing cells by supplying a driving force from the outside is preferable.
  • a closed culture vessel how to put the culture medium and cells in the culture vessel aseptically and carry out the culture treatment becomes a problem.
  • the present invention has been made in view of such a situation, and an object thereof is to provide an automatic culture apparatus and culture container installation method aiming at GMP compliance, which can make a tissue using human cells. To do.
  • an automatic culture apparatus for culturing cells comprising a culture vessel, a channel connected to the culture vessel, and a base on which the culture vessel and the channel are placed. And an automatic culture apparatus having a base on which a base is mounted and which gives a driving force to the base.
  • an automatic culture apparatus for culturing cells which performs cell culture using a heat-retaining part that keeps cells and a culture solution at a predetermined temperature, and a culture vessel A cell culture unit, an air circulation unit that circulates air between the cell culture unit and the heat insulation unit, and a control unit that controls the heat insulation unit, the cell culture unit, and the air circulation unit.
  • an automatic culture apparatus having a configuration in which a base on which a flow path connected to a container is placed is provided and a drive unit that applies a driving force to the installed base.
  • the present invention provides a culture container installation method for an automatic culture apparatus that performs cell culture using a culture container, wherein the culture container and a flow path connected to the culture container are mounted. After placing the base with the culture vessel and the flow path connected to the base set that is mechanically detachable, move the base set into the automatic culture device and move the base to a predetermined position in the culture unit. A method for installing a culture vessel to be placed is provided.
  • the automatic culture apparatus of the present invention uses a mechanism called a base.
  • This base makes it possible to optimally arrange the culture vessel and the closed system flow path, and to easily connect the drive unit inside the automatic culture apparatus to supply a driving force to the flow path.
  • the cleanness can be maintained at a GMP level capable of culturing human cells, and efficient automatic culture of cells can be achieved by a closed culture vessel or a closed flow path.
  • FIG. 1 It is a figure which shows the whole schematic structure of the automatic culture apparatus which has not installed the base which included the drive system based on a 2nd Example. It is a block diagram which shows the state before the connection of the base and the flow path which included the drive system based on a 2nd Example. It is a block diagram which shows the state after the connection of the base and flow path which included the drive system based on a 2nd Example. It is a side view which shows the state before a drive mechanism (solenoid) operate
  • a drive mechanism solenoid
  • an automatic culture device without a base in the culture preparation stage can sterilize the interior with sterilization gas or the like. Thereafter, the environmental maintenance mechanism inside the automatic culture apparatus operates, the refrigerator functioning as a heat retaining unit maintains approximately 4 ° C., and the inside of the cell culture chamber, which is the culture unit, is 37 ° C., 5% carbon dioxide, and humidity 100%. Hold.
  • a closed flow path including a closed culture vessel that has been sterilized, a sterilized base capable of installing the culture vessel and the flow path, and a transport means for installing the base in an automatic culture apparatus
  • the base set is equipped with them in a highly clean environment with very few particles and bacteria.
  • a guide or the like can be installed on the base of the flow path to make it easy to understand visually.
  • the cell suspension and the culture medium can also be installed in the flow path.
  • the channel can be kept in a sealed structure with the cell suspension and the medium added.
  • a base set is used to connect the base to the drive mechanism. Remove the base from the base set by the base set mechanism.
  • the base and the drive mechanism are connected, and a three-way valve and a syringe pump (syringe pump, syringe driver) can be driven.
  • a base configuration including the drive mechanism without being separated from the drive mechanism can be used.
  • the cells (cell suspension) and the culture medium (culture solution) are moved from the refrigerator to the tank in the flow path base, and the temperature is set to 37 ° C. To do.
  • a seal is provided between the cell culture chamber and the refrigerator having different temperature zones and humidity, and the flow path is installed in the through hole of the seal.
  • a flow path is controlled by a flow path drive mechanism and a flow path base, a culture container drive mechanism and a culture container base with a three-way valve or a syringe pump, and a cell suspension or a medium is supplied into the culture container.
  • the culture vessel is rotated (clockwise as viewed from the front of the automatic culture apparatus) by the rotary shaft motor and is vertically set, and the cell suspension or the medium is supplied from the lower part of the culture vessel.
  • rotate the culture vessel with the rotary shaft motor counterclockwise when viewed from the front of the automatic culture device
  • stand vertically to discharge the cell suspension or culture medium from the bottom of the culture vessel and inspect it Move to the device.
  • the culture vessel is quickly rotated by a rotating shaft motor (clockwise as viewed from the front of the automatic culture device) and vertically placed, and the cell suspension or medium is supplied from the lower part of the culture vessel, so that the inside of the culture vessel
  • the liquid flow can be efficiently exchanged while keeping the cleanness in one-way.
  • the state of the cells in the culture container can be observed with a separately installed microscope or the like.
  • the base set is used or the culture vessel is taken out alone and used for a desired use.
  • the channel is discarded according to the application, and the base set and the base are sterilized by an autoclave or the like and reused, and the inside of the automatic culture apparatus is sterilized with a sterilizing gas or the like and is used again.
  • FIG. 1 is an overall schematic diagram of an automatic culture apparatus 10 according to the first embodiment.
  • FIG. 2 is a schematic view of the appearance of the automatic culture apparatus 10 when the cell culture chamber door 11 and the refrigerator door 12 are closed.
  • FIG. 3 is an overall schematic diagram of the automatic culture apparatus 10 when the flow channel base 51 in the automatic culture apparatus 10 is removed.
  • 4A to 4D are schematic diagrams relating to the attachment and detachment of the flow path 27 and the base 18.
  • 5A to 5D are schematic diagrams relating to the base set 50.
  • FIG. 6A to 6E are side views regarding the processing of the base 18 by the base set 50.
  • FIG. 7A to 7D are side views regarding the connection and operation of the valve 24 and the drive unit 19 of the base 18.
  • FIG. 8A to FIG. 8D are front views relating to the liquid injection operation to the culture vessel 20 by the rotation mechanism 17.
  • FIG. 9 is a block diagram showing a circuit for operating the automatic culture apparatus 10.
  • the whole structure of the automatic culture apparatus 10 is demonstrated using FIG.1, FIG2 and FIG.3.
  • the automatic culture apparatus 10 includes, as basic components, a cell culture chamber 13 that is a culture unit, a refrigerator 14 that functions as a heat retaining unit, a control unit 15, and a clean air circulation unit 16 that is an air circulation unit.
  • a cell culture chamber 13 that is a culture unit
  • a refrigerator 14 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • a control unit 15 that functions as a heat retaining unit
  • the entire automatic culture apparatus 10 is composed of a cell culture chamber 13, a refrigerator 14, a control unit 15, and a clean air circulation unit 16, and the cell culture chamber door 11 and the refrigerator door 12 are arranged. By opening it, it is possible to access the inside of the automatic culture apparatus 10.
  • a flow path 27 is provided by a culture container base 21 having a culture container 20, a culture container drive unit 22 connected to the culture container 20, a rotating mechanism 17 that rotates them, a motor 23, a valve 24, a motor 25, and a tank 26.
  • a flow path base 28 to be configured, a flow path drive unit 29 connected thereto, a carbon dioxide supply mechanism 30 for adjusting the environment in the cell culture chamber 13, a carbon dioxide sensor 31, a humidity adjustment mechanism with a temperature sensor 32, a humidity sensor 33, and a fan 34.
  • the culture vessel base 21, the flow path base 28, and the culture medium base 35 are collectively referred to as a base 18, and the culture container drive unit 22 and the flow path drive unit 29 are collectively referred to as the drive unit 19. Called.
  • the inside of the cell culture chamber 13 maintains an environment of, for example, a temperature of 37 ° C., a humidity of 100%, and 5% carbon dioxide.
  • the medium base 21 can be placed in the refrigerator 14, and the internal temperature can be maintained by the seal 46 while the flow path 27 is taken out of the refrigerator 12 by the claw portion 36 attached to the refrigerator.
  • the clean air circulation unit 16 warms the air in the cell culture chamber 13 that has exited from the exhaust port 37 with a heater 39 and supplies the air to the cell culture chamber 13 through a clean filter such as a HEPA (High Efficiency Particulate Air) filter with a fan 38. The cleanliness inside the cell culture chamber 13 is maintained.
  • the control unit 15 is independent from other compartments, and blocks the temperature, humidity, and carbon dioxide in the cell culture chamber 13.
  • FIG. 2 shows a state of the automatic culture apparatus 10 with the cell culture chamber door 11 and the refrigerator door 12 closed.
  • the automatic culture apparatus 10 is configured to maintain an internal sealing property and to maintain an internal temperature by a heat insulating mechanism. Furthermore, the cell culture chamber door 11 and the refrigerator door 12 are each provided with a stopper and a heat insulation mechanism that are closed when they are closed, and when the doors are closed, the internal sealing and temperature of the automatic culture apparatus 10 are maintained. Can do.
  • the control unit 15 includes a display unit 42 for displaying a status, an input unit 43 for performing operations related to control, and a communication unit 44 that can access an external device such as a PC or a recording device and an internal control device. .
  • the claw portions 36-1 and 2 of the refrigerator door 12 are connected to the cell culture chamber 13 and the space inside the automatic culture apparatus 10 with the refrigerator door 12 closed when the flow path 27 is not attached. Therefore, it is possible to sterilize the cell culture chamber 13, the refrigerator 14, and the clean air circulation unit 16 at a time by supplying a sterilization gas from the sterilization gas supply port 40 with the cell culture chamber door 11 and the refrigerator door 12 closed. It is. Here, since the apparatus is sealed, the sterilization gas does not leak to the outside of the automatic culture apparatus 10. At this time, the sterilization gas does not enter the control unit 15. After the completion, after the sterilizing gas remaining from the sterilizing gas exhaust port 41 is discharged, aeration is performed for a predetermined time to prepare for the next culture.
  • the flow path 27 in the cell culture chamber 13 and the refrigerator 14, the culture container base 21, the flow path base 28, and the culture medium base 35 are respectively a culture container drive unit 22 and a flow path drive unit. 29. It can be removed from the refrigerator 14, and after the cell culture is completed, the inside is put in this state, and the sterilization process described with reference to FIG. 2 is performed.
  • the culture vessel drive unit 22 and the flow path drive unit 29 are provided with a drive seal 74 in order to prevent corrosion and waterproofing of the drive mechanism during sterilization.
  • the automatic culture apparatus of the present example has the overall configuration as described above. Hereinafter, main components of the automatic culture apparatus of Example 1 will be described.
  • FIGS. 4A and 4B are schematic views showing the configuration of the flow path 27 and the base 18, and FIGS. 4C and 4D are views showing the structure of the seal between the cell culture chamber 13 and the refrigerator 14.
  • FIG. The individual elements in FIGS. 4A to 4D will be described sequentially.
  • FIG. 4A shows a state in which the channel 27 shown on the left side and the base 18 shown on the right side are separated
  • FIG. 4B shows the channel-equipped base 51 in which the channel 27 and the base 18 are integrated.
  • 46 indicates a seal for sealing the cell culture chamber 13 and the refrigerator 14
  • FIG. 4C shows the seal 46 to the claw portion 36-2 provided on the wall of the cell culture chamber 13 and the refrigerator 14.
  • the structure before installation is shown
  • FIG. 4D shows the installation state of the seal 46 on the claw portion 36-2.
  • the seal 46 is provided with a hole 47 and a notch 48.
  • FIGS. 5A to 5D are schematic views showing a base set used for installing the base 18 in the automatic culture apparatus, its transporter, and a process of connecting the base 18 to the base set 50.
  • FIG. The insertion mechanism 61 of the base set 50 in the figure includes a lever 52, a claw 53, a slide 60, and a clamp 62.
  • FIG. 5A shows the state of the base set 50 alone
  • FIG. 5B shows the state where the base 51 with flow path integrated with the flow path 27 is connected to the base set 50.
  • FIG. 5C shows a state in the middle of setting the channel-equipped base 51 to the drive unit 19.
  • FIG. 5D shows the configuration of the transport tool 90 that transports the base set 50.
  • FIG. 6A to 6E are side views regarding the installation of the base 18 using the base set 50
  • FIG. 6A shows a state in which the base 18 is not connected to the base set 50
  • FIG. 6B shows that the base 18 is connected to the base set 50
  • 6C shows a state where the base 18 is moved to the drive unit 19 shown in FIG. 3
  • FIG. 6D shows a state where the lever 52 is lifted and the claw 53 of the base 18 is removed and inserted into the groove 45
  • FIG. 6E shows a state of the base set 50 after the base 18 is installed in the drive unit 19 as shown in FIG.
  • the automatic culture apparatus 10 Before the cells are cultured, the automatic culture apparatus 10 is in the state of FIG. 2 in which the cell culture chamber door 11 and the refrigerator door 12 are closed in the state of FIG. Then, the inside is sterilized with a sterilizing gas such as hydrogen peroxide or ozone.
  • a sterilizing gas such as hydrogen peroxide or ozone.
  • the flow path 27 and the base 18 are separated as shown in FIG. 4A, and the flow path 27 is first manufactured aseptically as a unit, and enters a sterilization bag or the like.
  • the base 18 is configured to be individually sterilized and is sterilized in a sterilization bag or the like.
  • the base set 50 shown in FIG. 5A which is used as a guide to the drive unit 19 by setting the base 18 when installing, is configured to be individually sterilized in the same manner as the base 18, and this can also be used for a sterilization bag or the like. Put in and sterilize.
  • the base 18, the flow path 27, and the base set 50 are taken out of the sterilization bag in a highly clean environment such as a clean bench or a cell isolator in a CPC (Cell Processing Center), and aseptically placed on the base set 50 on the base set 50.
  • a channel 27, that is, a channel-equipped base 51 is installed.
  • the culture vessel 20 is also connected to the flow path 27 in this highly clean environment and the inside thereof is sealed.
  • the medium 54 is connected so that necessary reagents and washing liquids can be supplied into the flow path 27, such as the medium container 55 and the cell suspension 56.
  • the base 18 is installed in the base set 50.
  • the claw 53 of the base set 50 is caught by the claw receiver 58 of the base 18 to fix the position.
  • the tube of the flow path 27 has a guide 59 (including authentication by color and number) such as a groove shape to be installed in the base 18, and can be definitely installed by connecting along the guide 59.
  • the inside has a sealed structure. Even when the culture vessel and the flow path are connected and the cells, the culture solution, and the washing solution are introduced, the inside has a sealed structure.
  • FIG. 4B shows a state in which the flow path 27 is installed on the guide 59 shown in FIG. 4A
  • FIG. 5B shows a state in which the base 51 with flow path is installed in the base set 50.
  • the flow path 27 has a sealed structure as described above, and in this state, even if the cleanliness of the external environment is lowered, the inside is in a state of maintaining a high clean environment. Therefore, the base set 50 may be taken out from a high clean environment.
  • the insertion mechanism 61 is in the state shown in FIG. 6A.
  • the insertion mechanism 61 can move the slide 60 in and out by pushing and pulling the lever 52.
  • the slide 60 has an L-shaped clamp 62, a claw 53 at one end, and a spring 63 at the other end. Normally, the tab 53 is in a protruding state.
  • 5B and 6B show a state where the base 18 is installed in the base set 50.
  • the base set 50 is moved to the automatic culture apparatus 10 in FIG. 3, the slide 60 is installed in the groove 45 of the automatic culture apparatus 10, the lever 52 is pushed, and the slide 60 is taken out as shown in FIG. 6C.
  • the claw 53 is removed from the claw receptacle 58 by pushing the lever 52 upward as shown in FIG. 6D.
  • the state at this time is shown in FIG. 5C.
  • the base 18 is connected to the drive unit 19 of FIG.
  • the base 18 can be fixed to the drive unit 19 using a stopper or the like. Pulling the lever 52 and putting the slide 60 into the state of FIG. 6E while the lever 52 is tilted, return the lever 52 to the state of FIG. 6A and remove the base set 50 from the automatic culture apparatus 10. Depending on the method, it can be left.
  • FIG. 4C there is a seal 46 that seals the cell culture chamber 13 and the refrigerator compartment 14 in the flow path 27 between the culture medium base 35 and the flow path base 28.
  • the seal 46 has a notch 48 through which the flow path 27 is set in the hole 47.
  • the seal 46 is set in the claw 36 as shown in FIG. 4D, the notch 48 is closed, and the channel 27 can be passed through the hole 47 while being sealed. Thereafter, the cell culture chamber door 11 and the refrigerator door 12 are closed, and culture is started.
  • the above method may be executed in reverse.
  • the transport tool 90 is provided with a moving mechanism 91 for moving the base set 50 up and down by turning a handle 93 and a handle 92 for facilitating transport.
  • the base 18 in which the flow path 27 is set that is, the base 51 with flow path is installed in the base set 50, and the operator moves it to the automatic culture apparatus 10 to easily set the base 18 to the drive unit 19 or the like. Can be. ⁇ Connection between base and mechanism> A method of driving the valve in the flow path on the base 18 will be described with reference to FIGS. 7A to 7F.
  • FIG. 7A shows the state of the base 18 and the drive unit 19 where the flow path 27 is not connected to the valve 24, and FIG. 7B shows the state where the flow path 27 is connected to the valve 24 of the base 18 and the base 18 and drive unit 19 are connected.
  • FIG. 7C shows a state in which the base 18 and the drive unit 19 are connected as shown in FIG.
  • FIG. 7D shows a state in which a driving force is applied from the driving unit 19 and the valve 24 of the base 18 is driven.
  • a configuration using a motor 69 for applying a driving force is adopted.
  • the configuration and operation of the valve 24 will be described with reference to FIGS. 7A to 7D.
  • the base 18 includes a valve mechanism 65, a spring 66, and a switching mechanism 67. These are sterilizable materials.
  • One tube 68 of the flow path 27 is inserted between each of the valve mechanism 65 and the switching mechanism 67, and one of the tubes 68 is pushed above and below the switching mechanism 67 to close one of the tubes.
  • the drive unit 19 includes a motor 69, an encoder 70, a rod 71, and a cam 72.
  • the cam 72 is protected by an elastic drive seal 74 for protection. Since the motor 69, the encoder 70, the wiring 79, etc. cannot withstand sterilization processing, the inside of the drive unit 19 and the outside are isolated, and the internal electronic components are not affected even if the outside is sterilized. As shown in FIG. 7B, normally, before the base 18 and the drive unit 19 are connected, the cam 72 does not come out of the upper surface of the drive unit 19.
  • Reference numeral 74 denotes a drive seal made of an elastic body.
  • FIG. 7C shows a state where the base 18 is connected to the drive unit 19 as described above.
  • the cam 72 comes to a position at the lower end of the switching mechanism 67.
  • the cam 72 pushes up the switching mechanism 67, the valve mechanism 65, the tube 68 that has been closed until then opens, and the tube 68 that has been opened closes.
  • a path switch is performed.
  • the state is shown in FIG. 7D.
  • the drive seal 74 extends as the cam 72 moves up.
  • the motor 69 is used for switching the base tube, but a solenoid can be used instead of the motor as a modification.
  • FIG. 7E shows a state in which the solenoid 75 of the valve 24 is separated
  • FIG. 7F shows a state in which the solenoid 68 is connected and the tube 68 is switched.
  • the rod 76 is pulled by the spring 77 as shown in FIG. 7E.
  • the solenoid 75 is actuated, a state corresponding to FIG. 7D is obtained, and the rod 76 pushes out the spring 66, and the tube 68 is switched as shown in FIG. 7F.
  • the solenoid 75 used here has the same function as a push solenoid.
  • FIG. 8A shows a state before the base 18 is connected
  • FIG. 8B shows a state after the base 18 is connected
  • FIG. 8C shows a state where the culture vessel base 21 is set up vertically
  • FIG. 8D shows a culture vessel base. 21 shows a state where 21 is vertically lowered.
  • the flow path 27 and the base 18 are not set in the drive unit 19 as shown in FIG.
  • the base 18 in which the flow path 27 is set in the base set 50 shown in FIG. 5 is attached to the inside of the automatic culture apparatus 10 using the seal 46, the result is as shown in FIG. 8B.
  • the cells in the culture vessel 20 are usually cultured.
  • the inside of the refrigerator 14 that is a heat retaining unit maintains approximately 4 ° C.
  • the cell culture chamber 13 includes a heater 39, a carbon dioxide supply mechanism 30, a humidity generation mechanism 73, and respective sensors in order to achieve a carbon dioxide concentration of 5% and humidity of 100% at 37 ° C. Then, the internal air is circulated to keep the environment inside the cell culture chamber 13 uniform.
  • a HEPA filter or the like can be bitten around the fan 38 to keep the inside of the cell culture chamber 13 clean.
  • the internal environment is monitored, adjusted, and controlled by the display unit 42, the input unit 43, and the like, which are installed on the control unit 15 and the wall of the casing in which the control unit 15 is built. Further, the state of the cells can be grasped by an inspection mechanism that is separately prepared in the automatic culture apparatus 15 and includes a microscope, a medium sensor, etc. (not shown).
  • the motor 23 of the rotating mechanism 17 is driven to stand the culture vessel base 21 and the culture vessel drive unit 22 vertically as shown in FIG. 8C.
  • the cell suspension 56 and the culture medium 54 in the refrigerator 14 control the flow path base 28 and the flow path drive unit 29, that is, the valve 24, the motor 25, and the syringe pump 64.
  • the warmed cell suspension 56 and the culture medium 54 are placed in a vertical culture container by controlling the flow path 27 by the flow path base 28 and the flow path drive unit 29 and the culture vessel base 21 and the culture container drive unit 22. 20 from below.
  • the bubble which has entered the inside of the culture vessel 20 can be excluded from the upper side, and the inside can be efficiently filled with the liquid.
  • the motor 23 is driven to cultivate the cells as shown in FIG. 8B.
  • the culture solution is moved to a separately prepared inspection mechanism such as a medium sensor.
  • the motor 23 is driven to stand the culture vessel base 21 and the culture vessel drive unit 22 vertically in the reverse direction of FIG. 8C as shown in FIG. 8D. And all the waste liquid in the culture container 20 can be discharged
  • the waste liquid does not return to the culture space in the culture vessel 20 and the cells are always supplied with a clean and fresh medium, it is possible to maintain a clean environment without entering bacteria or the like.
  • FIG. 9 is a block diagram showing a configuration of a control system circuit in the control unit 15 for controlling internal devices in the automatic culture apparatus 10.
  • the control system circuit of the control unit 15 of the automatic culture apparatus 10 includes an input unit (keyboard, mouse, etc.) 81 for inputting data and instructions, and controls each operation of the automatic culture apparatus 10, for example, a central processing unit (Central A control processing unit 82 composed of a processing unit (CPU), a display unit 80 showing the control status to the user, a ROM 85 for storing programs and parameters, a RAM 86 for temporarily storing data and processing results, A memory 85 for performing an operation such as a cache, a sterilization process, a heater, a fan, a carbon dioxide supply, a water supply, and the like are performed, and an environment holding device 87 using a sensor for monitoring these conditions is connected to the base 18.
  • the control processing unit 82 controls the inside of the automatic culture device 10 with the sterilization function of the environment holding device 87 according to the culture preparation program stored in the ROM 85. Sterilization is performed, and after the treatment is completed, the culture environment holding treatment is advanced to a temperature of 37 ° C., a 5% carbon dioxide concentration, a humidity of 100%, and a clean environment field. At the same time, the refrigerator control 88 is performed.
  • the control processing unit 82 detects the set of the base 18 with the position sensor according to the automatic culture program stored in the ROM 85, the control processing unit 82 includes the culture vessel driving unit 22, the flow path driving unit 29, and the motor 23 of the rotating shaft mechanism 17.
  • a cell culture process in the culture vessel 20 is performed by the drive unit 19.
  • the display unit 80 and the communication unit 84 can indicate the processing status to the user.
  • the display unit 80 and the communication unit 84 indicate the completion to the user, and when the removal of the base 18 is detected, the control processing unit 82 performs the termination process according to the termination program stored in the ROM 85. As described above, a series of cell culture processes by the automatic culture apparatus 10 can be realized.
  • FIG. 10A shows a state where the base 18 ′ is installed in the automatic culture apparatus 10
  • FIG. 10B shows a case where the base 18 ′ is removed.
  • the valve 24 and the motor 25 are included in the culture vessel base 21 ′ and the flow path base 28 ′ of the base 18 ′, and therefore there is no drive unit 19 as shown in FIG.
  • a culture vessel base pedestal 94 and a flow path base pedestal 95 having a groove 45 are provided.
  • a wiring 79 for the valve 24 and the motor 25 and a connector 78 for connecting the same are necessary.
  • the connector 78 is connected by the carrier 90 and the base set 50 when the base 18 is installed.
  • FIGS. 10C and 10D correspond to FIGS. 4A and 4B of the first embodiment, respectively, and show a configuration in which the valve 24 and the motor 25 constituting the drive unit are included in the base 18 ′.
  • FIG. 10C shows a state where the flow path 27 and the base 18 ′ are separated
  • FIG. 10D shows a state where the flow path 27 and the base 18 ′ are integrated.
  • the drive unit 19 having the shape shown in FIG. 1 is not necessary for the automatic culture apparatus 10, precise positioning accuracy is not required at the time of installation, and it can be installed more easily. It is. However, since wiring for the valve 24 and the motor 25 is necessary at the time of installation, it is necessary to connect the connector 78, and it is desirable that the connector 78 has waterproof and gas-proof performance.
  • the drive unit since the drive unit is included in the base 18 ′, they can be detached from the automatic culture apparatus together, no drive seal is required, and sterilization is easy. That is, even if the sterilization process or the decontamination process is performed inside the automatic culture apparatus in a state where the culture container 20, the flow path 27, and the base 18 'are removed, there is no obstacle to the drive unit.
  • FIG. 11A shows a configuration when the solenoid 75 is not operating
  • FIG. 11B shows a state where the solenoid 68 is operated and the tube 68 is switched.
  • the contents described here mainly relate to the valve 24, and the drive system such as the syringe pump 64 on the base 18 'shown in FIG. 1 has the same configuration as the operation of FIGS. 7A to 7D.
  • the rod 76 is pushed out by the spring 77 as shown in FIG. 11A.
  • the base 18 ′ has a connector 78 for connecting to the wiring 79.
  • This connector 78 is desirably waterproof and gas-proof.
  • the present invention is useful as an automatic culture apparatus for culturing cells, particularly as a system for automatically culturing by supplying a driving force with a culture vessel and a flow path having a sealed structure.
  • Sterilization gas supply port 41 ... Sterilization gas discharge port 42 ... Display Part 43 ... Input part 44 ... Communication part 45 ... Groove 46 ... Seal 47 ... Hole 48 ... Cut 50 ... Base set 51 ... Base 52 with flow path ... Lever 53 ... Claw 54 ... Medium 55 ... Medium container 56 Cell suspension 57 ... Cell suspension container 58 ... Claw receptacle 59 ... Guide 60 ... Slide 61 ... Insertion mechanism 62 ... Clamp 63 ... Spring 64 ... Syringe pump 65 ... Valve mechanism 66 ... Spring 67 ... Switching mechanism 68 ... Tube 69 ... motor 70 ... encoder 71 ... rod 72 ... cam 73 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

培養容器や流路を密閉系構造にして、駆動力を供給して自動培養するシステムの培養容器に無菌的に培地や細胞を入れ培養処理を実施する。ベース18を無菌環境下で組み立てて、密閉系流路27内に培地や細胞を入れ、ガイドにより培養容器20や密閉系流路27の最適な配置を可能にし、ベース18を自動培養装置10の内部の駆動部19と容易に接続して、流路27に駆動力を供給する。ベース18により密閉系培養容器20による密閉系流路27の設置容易性を備え、GMPレベルの無菌的なクリーン度で、効率よく細胞を培養する自動培養装置を提供する。

Description

自動培養装置、及び培養容器設置方法
 本発明は細胞を培養する自動培養装置、特に、無菌的なクリーン度で効率よく細胞を培養する自動培養技術に関する。
 従来、細胞培養の作業は限りなく除菌されたクリーンルームの中で、厳格な製造工程の下で熟練された作業者の手作業により行われていた。そのため産業化に向けて細胞を大量に培養する場合、作業者の負担の増加と作業者への教育・育成に必要な時間とコスト、人為的なミスや検体の取り違え、さらに菌などを保有しているヒトからのコンタミネーション等が生じる可能性があり、それらの対策に多大なコストを要する。そのことが細胞大量培養の産業化において大きな壁となってしまう。そのため、機器を用いて一連の培養作業を自動化することで、それら問題点を解決させることが期待されている。そこで、現在はアーム型ロボットマニピュレータを用いて、人手でおこなっている培養作業を模倣する自動培養装置が主に開発されている。そのような培養装置においては、如何に機器を用いて無菌的に培養容器のハンドリングを実施するかが課題となっている。
 この課題を解決するために、例えば特許文献1は、多関節型ロボットマニピュレータを用いて培養容器の搬送操作や培地交換等を処理する例を提供している。この多関節型ロボットマニピュレータにおいては、それ自身を滅菌することを可能にしている。
 また、特許文献2にあるように培養容器と流路自身を密閉系にして処理する方式が考えられる。これは、軟骨細胞に高い圧力をかけて培養する装置で、培養容器や流路内を密閉系にして、培養終了後に外気に触れないよう培養容器と一部栓をした流路を取りだす方式で、無菌的に生成した軟骨組織を回収する手段を備える。
特開2006-149268号公報 特開2002-315566号公報
 特許文献1に記載のような自動培養装置においては、培養容器自体が密閉系でないために、フタを空けて培養容器内部を開放する動作が必要となり、自動培養装置内部の清浄性を保持せざるを得ず、人手で作業する場合ほどではないが全体システムが大きくなり、コストもかかってしまうという課題がある。
 また特許文献2のような自動培養装置においては、密閉系であるために、如何に内部の無菌性を保持したまま流路を取り付け、かつ培地(培養液)や細胞(細胞懸濁液)を流路内に注入するかが課題となっている。また、複雑な培養作業を実施する際に、その密閉した流路を装置へ容易に設置ができ、かつ効率的に駆動力を与えるかが課題となっている。
 現在、ヒト細胞を使用し、培養で作成した細胞や組織をヒトへ移植する再生医療において、手術室で採取した組織を無菌処理した試験管等に入れて、内部が無菌的状態で運び出し、GMP(Good Manufacturing Practice)に準拠したクリーンルームであるCPC(Cell Processing Center)内で組織を細胞にして、目的の調整を実施して培養する。採取された細胞が一切の汚染なく培養するために、とりわけ厳格なレギュレーションに適合した工程、環境下で人手により製造しなければならない。細胞の培養処理を機械により自動的におこなう自動培養装置においても、その装置で製造した細胞もしくは組織は、製造途中で一切の菌やウィルス等に汚染されてはならない。
 そのような状況下で、上述の開放系培養容器を使用した自動培養装置のシステムをかんがみると、自動培養装置内部を滅菌し、内部を高度なクリーン環境の保持を可能にするためには、巨大な空調設備と滅菌設備が必要になり、その設備自身のコストと維持コストがかかってしまう可能性がある。また滅菌の際にはモータ類の駆動系はそのままではその処理に耐えられない。そこで、自動培養のための培養容器自身を密閉構造にして、内部は滅菌してあり、外部から駆動力を供給して細胞を培養するシステムができるのが好ましい。しかし、密閉構造の培養容器で培養するためには、その培養容器へ如何に無菌的に培地や細胞を入れ、培養処理を実施するかが課題になってくる。
 本発明はこのような状況に鑑みてなされたものであり、ヒト細胞を用いて組織をつくることを可能とできる、GMP準拠を目指した自動培養装置、培養容器設置方法を提供することを目的とする。
 上記の目的を達成するため、本発明においては、細胞を培養するための自動培養装置であって、培養容器と、培養容器と接続する流路と、培養容器と流路が載置されるベースと、ベースが載置されベースに駆動力を与える駆動部とを有する自動培養装置を提供する。
 また、上記の目的を達成するため、本発明においては、細胞を培養するための自動培養装置であって、細胞と培養液を所定温度に保つ保温部と、培養容器を用いて細胞培養を行う細胞培養部と、細胞培養部と保温部とに空気を循環させる空気循環部と、保温部と細胞培養部と空気循環部を制御する制御部とを備え、細胞培養部は、培養容器と培養容器に接続される流路とが載置されるベースが設置され、設置されたベースに駆動力を与える駆動部を有する構成の自動培養装置を提供する。
 更に、上記の目的を達成するため、本発明においては、培養容器を用いて細胞培養を行う自動培養装置の培養容器設置方法であって、培養容器と培養容器に接続される流路とが載置されるベースを機構的に着脱可能なベースセットに、培養容器と流路とが接続したベースを載置した後、ベースセットを自動培養装置内へ移動し、ベースを培養部の所定位置へ載置する培養容器設置方法を提供する。
 すなわち、上記目的を達成するために、本発明の自動培養装置ではベースと呼ぶ機構を用いる。このベースは培養容器や密閉系流路の最適な配置を可能にし、自動培養装置の内部の駆動部と容易に接続して、流路に駆動力を供給することを可能にするものである。
 本発明の自動培養装置によれば、密閉系培養容器や密閉系流路により、クリーン度をヒト細胞培養可能なGMPレベルに保つことができ、かつ効率よい細胞の自動培養を図ることができる。
本発明の第1の実施例のベースを設置した自動培養装置の全体概略構成を示す図である。 第1の実施例に係る、扉を閉めた自動培養装置の外観を示す図である。 第1の実施例に係る、ベースを外した自動培養装置の内部の状態を示す図である。 第1の実施例に係る、ベースと流路の接続前の状態を示す構成図である。 第1の実施例に係る、ベースと流路の接続後の状態を示す構成図である。 第1の実施例に係る、細胞培養室と冷蔵庫のシールを設置する前の状態を示す構成図である。 第1の実施例に係る、細胞培養室と冷蔵庫のシールを設置した後の状態を示す構成図である。 第1の実施例に係る、ベースセットがベースとの接続前の状態を示す構成図である。 第1の実施例に係る、ベースセットがベースとの接続後の状態を示す構成図である。 第1の実施例に係る、ベースセットがベースを自動培養装置に挿入する状態を示す構成図である。 第1の実施例に係る、ベースセットを搬送する搬送具の構成を示す構成図である。 第1の実施例に係る、ベースセットにベースを置く前の状態を示す側面図である。 第1の実施例に係る、ベースセットにベースを置いた後の状態を示す側面図である。 第1の実施例に係る、駆動機構にベースを挿入した状態を示す側面図である。 第1の実施例に係る、ベースセットからベースを外すためにツメを外した状態を示す側面図である。 第1の実施例に係る、ベースセットからベースを外した後の状態を示す側面図である。 第1の実施例に係る、3方弁と駆動機構(モータ)が接続する前の状態を示す側面図である。 第1の実施例に係る、3方弁とモータが接続する前の状態を示す側面図である。 第1の実施例に係る、ベースと3方弁とモータが接続した後の状態を示す側面図である。 第1の実施例に係る、モータによりベースの3方弁を切り替えた状態を示す側面図である。 第1の実施例に係る、ベースのチューブが接続した3方弁と駆動機構(ソレノイド)が接続する前の状態を示す側面図である。 第1の実施例に係る、ソレノイドによりベースの3方弁を切り替えた状態を示す側面図である。 第1の実施例に係る、流路のついたベースを接続する前の自動培養装置正面構成を示す図である。 第1の実施例に係る、流路のついたベースを接続した後の自動培養装置正面構成を示す図である。 第1の実施例に係る、培養容器を垂直にして液を注入する際の自動培養装置正面構成を示す図である。 第1の実施例に係る、培養容器を垂直にして液を排出する際の自動培養装置正面構成を示す図である。 第1の実施例に係る、自動培養装置全体の制御の構成を示すブロック図である。 第2の実施例に係る、駆動系を内包したベースを設置した自動培養装置の全体概略構成を示す図である。 第2の実施例に係る、駆動系を内包したベースを設置していない自動培養装置の全体概略構成を示す図である。 第2の実施例に係る、駆動系を内包したベースと流路の接続前の状態を示す構成図である。 第2の実施例に係る、駆動系を内包したベースと流路の接続後の状態を示す構成図である。 第2の実施例に係る、駆動系を内包したベースのチューブが接続した3方弁で駆動機構(ソレノイド)が動作する前の状態を示す側面図である。 第2の実施例に係る、動作したソレノイドにより駆動系を内包したベースの3方弁を切り替えた状態を示す側面図である。
 種々の実施形態を説明するに先立ち、本発明のベースを用いた自動培養装置の好適的な構成について以下概説する。
 最初に、培養準備段階でベースのない自動培養装置は滅菌ガス等で内部を滅菌処理することができる。その後、自動培養装置内部の環境保持機構が動作し、保温部として機能する冷蔵庫はおよそ4℃を保持し、培養部である細胞培養室内部は37℃、5%二酸化炭素、湿度100%の状態を保持する。同時に、無菌処理をおこなった密閉系培養容器を含めた密閉系流路と、その培養容器と流路を設置できる滅菌処理をおこなったベースと、そのベースを自動培養装置に設置するための搬送手段を備えたベースセット、それらを極めて粒子や菌が少ない高クリーン環境下で設置する。流路のベースへの設置にはガイドなどで、間違えないよう視覚的にわかりやすくおこなうことができる。この中で、細胞懸濁液と培地も流路内に設置することが可能である。これで流路は、細胞懸濁液と培地を入れた状態で、密閉構造を保持した状態にできる。ベースセット上にすべてを設置したら、それをクリーンルーム内もしくはその外の自動培養装置へ移動し、その扉を開ける。ベースセットを用いて、ベースを駆動機構に接続させる。ベースセットの機構により、ベースセットからベースを取り外す。ここで、ベースと駆動機構が接続して3方弁やシリンジポンプ(syringe pump, syringe driver)が駆動可能となる。または、駆動機構と分離せずに駆動機構を内包したベース構成も利用できる。
 この状況となると、例えば、流路駆動機構のシリンジポンプ等を用い、冷蔵庫より細胞(細胞懸濁液)や培地(培養液)を流路ベースにあるタンクへ移動させて、温度を37℃にする。その際、温度帯や湿度の異なる細胞培養室と冷蔵庫の間にシールを設け、流路はそのシールの貫通穴に設置される。流路駆動機構と流路ベース、培養容器駆動機構と培養容器ベースの3方弁やシリンジポンプで流路を制御して、培養容器内に細胞懸濁液もしくは培地を供給する。その際に、回転軸モータにより、培養容器を回転(自動培養装置正面から見て時計回りに)させて垂直に立て、培養容器下部より細胞懸濁液もしくは培地を供給する。培地交換などのときには回転軸モータにより、培養容器を回転(自動培養装置正面から見て反時計回りに)させて垂直に立て、培養容器下部より細胞懸濁液もしくは培地を排出し、それを検査装置へ移動する。そして、速やかに回転軸モータにより、培養容器を回転(自動培養装置正面から見て時計回りに)させて垂直に立て、培養容器下部より細胞懸濁液もしくは培地を供給することで、培養容器内の液の流れが一方通行でクリーン度を保ちつつ、効率よい培地交換を可能にできる。培養中は別途設置した顕微鏡などで、培養容器中の細胞の状態を観察できる。所定の処理をおこなった後、細胞が増殖もしくは組織となったら、ベースセットを用いるもしくは単独で培養容器を取り出し、所望の用途で使用する。流路は用途に応じて廃棄し、ベースセットとベースはオートクレーブなどで滅菌して再利用し、自動培養装置内部は内部を滅菌ガスなどで滅菌処理して、再度使用する。
 続いて、添付図面を参照して種々の実施形態について説明する。ただし、以下に説明する実施形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。また、各図において共通の構成については同一の参照番号が付されている。
 図1から図9は第1の実施例に係る自動培養装置を説明するための図である。図1は第1の実施例に係る自動培養装置10の全体概略図である。図2は細胞培養室扉11と冷蔵庫扉12を閉じたときの自動培養装置10の外観の概略図である。図3は自動培養装置10内部にある流路付ベース51を取り除いた場合の自動培養装置10の全体概略図である。図4A~図4Dは流路27とベース18の着脱に関する概略図である。図5A~図5Dはベースセット50に関する概略図である。図6A~図6Eはベースセット50によるベース18の処理に関する側面図である。図7A~図7Dはベース18の弁24と駆動部19の接続と動作に関する側面図である。図8A~図8Dは回転機構17による培養容器20へ注液動作に関する正面図である。図9は自動培養装置10を動作させるための回路を示すブロック図である。
 <自動培養装置の構成>
 図1、図2及び図3を用いて、自動培養装置10の全体構成について説明する。自動培養装置10は基本的な構成要素として、培養部である細胞培養室13、保温部として機能する冷蔵庫14、制御部15、空気循環部である清浄空気循環部16によって構成されている。以下、それぞれの基本構成について説明する。
 図1に示されるように、自動培養装置10全体は細胞培養室13、冷蔵庫14、制御部15、清浄空気循環部16の4区画によって構成されており、細胞培養室扉11と冷蔵庫扉12を開けることで自動培養装置10内部とアクセスすることが可能である。細胞培養室13には、培養容器20がある培養容器ベース21とそれに接続する培養容器駆動部22、それらを回転させる回転機構17とモータ23、弁24やモータ25、タンク26で流路27を構成する流路ベース28とそれに接続する流路駆動部29、そして細胞培養室13内環境を調整する二酸化炭素供給機構30、二酸化炭素センサ31、湿度調整機構に温度センサ32、湿度センサ33、ファン34で構成している。
 なお、図1に示すように、培養容器ベース21、流路ベース28、培地ベース35を纏めて、ベース18と称し、培養容器駆動部22と流路駆動部29を纏めて、駆動部19と称する。
 細胞培養時には、細胞培養室13内部は、例えば温度37℃、湿度100%、5%二酸化炭素の環境を保持する。冷蔵庫14には培地ベース21を入れることができ、冷蔵庫につけてあるツメ部36により、流路27を冷蔵庫12から出しつつ、シール46により内部の温度を保持することを可能にする。清浄空気循環部16は排気口37から出た細胞培養室13内空気をヒータ39で温めてファン38にてHEPA(High Efficiency Particulate Air)フィルタなどの清浄フィルタを介して細胞培養室13へ供給し、細胞培養室13内部の清浄度を保持する。制御部15は他の区画から独立しており、細胞培養室13内の温度、湿度、二酸化炭素を遮断している。
 図2に細胞培養室扉11、冷蔵庫扉12を閉めた自動培養装置10の状態を示している。自動培養装置10は内部の密閉性を保持し、断熱機構により内部の温度を保持する構成になっている。さらに細胞培養室扉11と冷蔵庫扉12にはそれぞれ閉めたら密閉するストッパや断熱機構が備えられており、それら扉が閉じたときに、自動培養装置10の内部の密閉性や温度を保持することができる。制御部15には状態を表示する表示部42、制御に関する操作をするための入力部43、PCや記録装置など外部機器と内部の制御用機器とアクセスできるような通信部44で構成している。
 また、冷蔵庫扉12のツメ部36-1、2は流路27がついていない場合は、冷蔵庫扉12を閉じた自動培養装置10内部で細胞培養室13と空間が通じている。そのため、細胞培養室扉11と冷蔵庫扉12が閉じた状態で滅菌ガス供給口40から滅菌ガスを供給して、細胞培養室13、冷蔵庫14、清浄空気循環部16を一度に滅菌することが可能である。ここで、装置が密閉されているために滅菌ガスは自動培養装置10の外部に漏れない。このとき、制御部15内部に滅菌ガスが入らない構成になっている。終了後、滅菌ガス排気口41から残留している滅菌ガスを排出した後に、所定の時間エアレーションを実施して、次の培養に備えることを可能にする。
 図3に示したように、細胞培養室13、冷蔵庫14にある流路27と、培養容器ベース21、流路ベース28、培地ベース35の各ベースはそれぞれ培養容器駆動部22、流路駆動部29、冷蔵庫14から取り外すことが可能で、細胞培養終了後に内部をこの状態にして、図2を用いて説明した滅菌処理を実施する。培養容器駆動部22や流路駆動部29には滅菌処理の際に駆動機構への腐食や防水等を防ぐために、駆動シール74を設けた。この自動培養装置10内部には、各ベース18を設置するための溝45がある。これらの溝45を用い、ベース18を設置した際、それぞれの駆動部19とベース18が接続して、駆動力をベース18にもたらして、流路27を制御する。
 本実施例の自動培養装置は以上のような全体構成になっている。以下、実施例1の自動培養装置の主要構成要素について説明する。
 <ベースの構成>
 図4A~4D、図5A~5D、図6A~6Eを用いて、ベース18の構成について説明する。
 図4A、4Bは流路27とベース18の構成を示した概略図であり、図4C、4Dは細胞培養室13と冷蔵庫14間のシールの構造を示す図である。図4A~図4Dの個々の要素については、順次説明する。
 図4Aにおいて、左側に図示した流路27と、右側に図示したベース18が分離した状態を示し、図4Bは流路27とベース18が一体になった状態である流路付ベース51を示している。図4A、4Bにおける46は、細胞培養室13と冷蔵庫14をシールするためのシールを示し、図4Cはシール46の細胞培養室13と冷蔵庫14の壁に設けられたツメ部36-2への設置前の構造を示し、図4Dはそのシール46のツメ部36-2への設置状況を示している。シール46には穴47と切り込み48が設けられている。
 図5A~5Dはベース18を自動培養装置に設置するために用いるベースセット及びその搬送具と、ベース18がベースセット50に接続される工程を示した概略図である。同図におけるベースセット50の挿入機構61は、レバー52、ツメ53、スライド60、クランプ62から構成されている。
 図5Aはベースセット50単体の状態を示し、図5Bは流路27と一体になった流路付ベース51がベースセット50に接続している状態を示している。一方、図5Cは流路付ベース51を駆動部19にセットしている途中の状態を示している。図5Dはベースセット50を搬送する搬送具90の構成を示している。
 図6A~6Eはベースセット50を用いたベース18の設置に関する側面図であり、図6Aはベース18がベースセット50に接続していない状態を示し、図6Bはベース18がベースセット50に接続した状態を示し、図6Cはベース18を図3に示した駆動部19へ移動させた状態を示し、図6Dはレバー52をあげて、ベース18のツメ53を外して溝45に入れた状態を示し、図6Eはベース18を図1に示すように駆動部19に設置した後の、ベースセット50の状態を示している。
 続いて、本実施例において、ベースセット50を用いて、ベース18を自動培養装置10の内部へ設置する方法について説明する。自動培養装置10は細胞を培養する前では、内部が図3の状態で細胞培養室扉11と冷蔵庫扉12を閉めた図2の状態となっている。そして、内部を過酸化水素水やオゾンなどの滅菌ガスで滅菌処理をおこなう。
 一方、流路27とベース18については図4Aのように分離しており、流路27は最初、一体で無菌的に製造し、滅菌バック等に入っている。ベース18は個別に滅菌できる構成になっており、滅菌バック等に入れて滅菌する。また、設置する際にベース18をセットして駆動部19へのガイドとして使用する図5Aに示すベースセット50もベース18と同様に個別に滅菌できる構成になっており、これも滅菌バック等に入れて滅菌する。
 これらベース18と流路27、ベースセット50は、例えばCPC(Cell Processing Center)内のクリーンベンチやセルアイソレータのような高クリーン環境で滅菌バックから出して、無菌的にベースセット50上にベース18と流路27、すなわち流路付きベース51を設置する。培養容器20もこの高クリーン環境で流路27に接続してその内部を密閉状態にする。また、培地54は培地容器55、細胞懸濁液56は細胞懸濁液容器57といったように、必要な試薬類や洗浄液類を流路27内へ供給できるよう接続する。
 まず、ベースセット50にベース18を設置する。ベースセット50のツメ53がベース18のツメ受け58に引っかかり位置を固定する。そして、流路27のチューブなどはベース18に設置するための溝形状などのガイド59(色、数字による認証を含む)があり、それに沿って接続することで間違いなく設置できる。
 この培養容器と流路とを接続した状態で、その内部が密閉構造を有する。また、培養容器と前記流路とを接続し、細胞、培養液、洗浄液を導入した状態でも、その内部が密閉構造を有する。
 流路27が図4Aに示したガイド59に設置された状態を図4Bに、流路付きベース51をベースセット50に設置した状態を図5Bに示す。流路27は上述の通り密閉構造になっており、この状態になれば、外部環境のクリーン度が下がっても、内部は高クリーン環境を保持した状態になっている。そのため、ベースセット50ごと高クリーン環境から出してもかまわない。
 そして、図3の状態になった自動培養装置10へ移動させ、ベースセット50を設置し、溝45とスライド60でベース18を駆動部19につなげる。その接続をもたらすスライド60とレバー52とツメ53からなる挿入機構61の側面図を用いて次に説明する。
 まず、図5Aのようにベースセット50へベース18が設置されていない時は、挿入機構61は図6Aの状態になっている。挿入機構61はレバー52を押し引きすることでスライド60を出し入れすることができる。またスライド60にL字クランプ62があり、一端にはツメ53、もう一端にはバネ63がある。通常はツメ53が出ている状態である。図5B、図6Bは、ベース18がベースセット50に設置された状態を示している。図5Bや図6Bに示すように、このツメ53がベース18のツメ受け58に合うように設置する。このときベース18は固定されている状態になる。
 続いて、ベースセット50を図3の自動培養装置10へ移動して、自動培養装置10の溝45にスライド60を設置し、レバー52を押して、図6Cのようにスライド60を出す。スライド60が出たら、図6Dのようにレバー52を上にたおしてツメ53をツメ受け58から外す。このときの状態を図5Cに示す。ここで、ベース18は図3の駆動部19に接続する。このとき、ストッパなどを用いてベース18を駆動部19に固定することができる。レバー52を倒したまま、レバー52を引き、スライド60を入れて図6Eの状態にしたら、レバー52を戻して、図6Aの状態にして、ベースセット50を自動培養装置10から取り外す。方式によっては置いてくることも可能である。
 ここで、図4Cのように、培地ベース35と流路ベース28の間の流路27に細胞培養室13と冷蔵室14をシールするシール46がある。このシール46には切り込み48があり、ここを通って流路27が穴47にセットしてある。このシール46を図4Dのように、ツメ36へセットすると切り込み48が閉じ、穴47により、シールをしたまま流路27を通すことができるようになる。その後、細胞培養室扉11、冷蔵庫扉12を閉めて、培養を開始する。ベース18を取り外す場合は、上記方法を逆に実行すればよい。
 ここで、ベースセット50の搬送具90について図5Dを用いて説明する。搬送具90にはハンドル93を回してベースセット50を上下に移動させる移動機構91と、搬送を容易にするための取手92が設置してある。流路27をセットしたベース18、すなわち流路付ベース51をベースセット50へ設置し、作業者がそれを自動培養装置10へ移動して、ベース18を駆動部19等へセットさせる作業を容易にすることができる。
<ベースと機構部の接続>
 図7A~図7Fを用いて、ベース18上の流路の弁の駆動方法について説明する。
 図7Aは流路27が弁24に接続していないベース18と駆動部19の状態を示し、図7Bは流路27がベース18の弁24に接続し、ベース18と駆動部19が接続していない状態を示し、図7Cは図1に見るように、ベース18と駆動部19が接続した状態を示す。さらに、図7Dは駆動部19から駆動力を与え、ベース18の弁24を駆動した状態を示した状態を示す。本構成においては、駆動力を与えるためにモータ69を使用した構成をとる。
 図7A~図7Dを用いて、弁24の構成、動作について説明する。最初にモータ69を使用して、弁24が分離できる場合について説明する。ベース18は弁機構65、バネ66、切替機構67がある。これらは滅菌可能な材質である。弁機構65と切替機構67の間にそれぞれ1本ずつ流路27のチューブ68を差し込み、切替機構67の上下で片側のチューブ68を押して一方を閉じる構成になっている。
 チューブ68を差し込む前は図7A、チューブ68を差し込んだ後は図7Bのようになっている。チューブ68を通常、切替機構67はバネ66で押されていて、図7Bのように下側のチューブ68が押されている。駆動部19には、モータ69、エンコーダ70、ロッド71、カム72が入っている。カム72の保護のため弾性を有する駆動シール74により保護されている。モータ69、エンコーダ70、配線79等は滅菌処理に耐えられないため、駆動部19内と外部は隔離され内部の電子部品は外部を滅菌処置しても影響がない。図7Bのように通常、ベース18と駆動部19が接続する前は、カム72は駆動部19上面から出ないようになっている。74は弾性体からなる駆動シールを示している。
 そして、前述のとおりにベース18を駆動部19に接続させた状態を図7Cに示す。カム72が切替機構67の下端の位置に来るようになっている。ここで、モータ70をエンコーダ71で測りながら所定量を回転させると、カム72が切替機構67を押し上げ、弁機構65それまで閉じていたチューブ68が開き、開いていたチューブ68が閉じて、流路の切り替えが実行される。その状態を図7Dに示した。駆動シール74がカム72の上昇により、伸張する。
 この状態でモータ69を元の状態に回転させることで、図7Cの初期状態に戻すことができ、また、図7Bのようにベース18を外すことが可能になる。
 以上の構成は、ベースのチューブの切替えにモータ69を使用したが、その変形例としてモータを使用する代わりにソレノイドを使用することもできる。
 図7E、図7Fにおいて、75はソレノイド、76はロッド、77はバネ、78はコネクタ、79は配線を示す。図7Eは弁24のソレノイド75が分離している状態を示し、図7Fは接続して、ソレノイド75が動作し,チューブ68を切替えた状態を示している。
 図7Aと同様の状態では、図7Eのようにロッド76はバネ77により、引っ張られている。ベース18が駆動部19と接続して、ソレノイド75を作動させると、図7Dに対応する状態となり、ロッド76がバネ66を押し出し、図7Fのようにチューブ68の切り替えをおこなう。ここで使用するソレノイド75はプッシュソレノイドと同じ働きをする。
 <培養容器への細胞懸濁液もしくは培地の注入>
 図8A~8Dにおいて、自動培養装置10による培養容器20への細胞、すなわち細胞懸濁液56、もしくは培養液、すなわち培地54の注入方法について説明する。図8Aはベース18を接続する前の状態を示し、図8Bはベース18を接続した後の状態を示し、図8Cは培養容器ベース21を垂直に立てた状態を示し、図8Dは培養容器ベース21を垂直に下げた状態を示している。
 自動培養装置10の内部は、内部の滅菌後は図8Aのように駆動部19には流路27とベース18がセットされていない。前述の図5に示したベースセット50にて、流路27をセットしたベース18を、シール46を用いて自動培養装置10の内部へ取り付けると、図8Bのようになる。この状態で、通常は培養容器20内の細胞を培養する。保温部である冷蔵庫14内はおよそ4℃を保持する。また、細胞培養室13は37℃、5%の二酸化炭素濃度、湿度100%するために、ヒータ39、二酸化炭素供給機構30、湿度発生機構73とそれぞれのセンサがあり、ファン38と排気口37で内部空気を循環させて細胞培養室13内部の環境が均一になるように保つ。ファン38の周辺には必要に応じて、HEPAフィルタなどをかませて細胞培養室13内部の清浄度を保つことが可能である。この環境を保持するために、制御部15や制御部15が内蔵された筐体の壁部に設置されら表示部42、入力部43などで内部環境のモニタリングと調整、制御をおこなう。また、自動培養装置15の内部に別途用意している、図示を省略した顕微鏡や培地センサなどからなる検査機構により、細胞の状態を把握できる。
 次に、培養容器20へ細胞懸濁液56や培地54を供給する方法について説明する。まず、回転機構17のモータ23を駆動させて、図8Cのように培養容器ベース21と培養容器駆動部22を垂直に立てる。その際に、冷蔵庫14内の細胞懸濁液56や培地54は流路ベース28と流路駆動部29、すなわちその弁24、モータ25、シリンジポンプ64を制御して、流路ベース28内のタンク26へ移動して、37℃になるよう温めておく。そして、温められた細胞懸濁液56や培地54は流路ベース28と流路駆動部29、培養容器ベース21と培養容器駆動部22により、流路27を制御して垂直となった培養容器20の下側から供給する。これにより、培養容器20内部に入ってしまった気泡を上側から排除し、内部を効率よく液で満たすことができる。所望する量の細胞懸濁液56や培地54が供給されたら、モータ23を駆動させて、図8Bのようにし、細胞を培養する。この際、培養容器20内の廃液を回収することができれば、別途用意している培地センサ等の検査機構へ移動させる。
 さらに、培養容器20内の培地を効率よく排出するための一つの手段について説明する。モータ23を駆動させて、図8Dのように培養容器ベース21と培養容器駆動部22を図8Cの逆方向に垂直に立てる。そして、この状態の培養容器20の下側から廃液を出すことで、培養容器20内の廃液をすべて排出することが可能である。また、図8Cと図8Dの培養容器20において培養容器20内の液の注入、排出では、ともに図8Bの状態の培養容器20で右から左へ一方通行で液が流れる。それにより、廃液が培養容器20内の培養空間に戻らずに細胞には常に清潔で新鮮な培地が供給されるため、菌等が入らずクリーンな環境を保持することを可能にする。
 <自動培養装置の回路構成>
 図9は、自動培養装置10における内部機器を制御するための制御部15内の制御系回路の構成を示すブロック図である。
 自動培養装置10の制御部15の制御系回路は、データや指示を入力するための入力部(キーボード、マウス等)81と、自動培養装置10の各動作を制御する例えば、中央処理部(Central Processing Unit:CPU)から構成される制御処理部82と、制御の状況をユーザに示す表示部80と、プログラムやパラメータ等を格納するROM85と、一時的にデータや処理結果を格納するRAM86と、キャッシュ等の動作を行うためのメモリ85と、滅菌処理、ヒータ、ファン、二酸化炭素供給、水供給等の処理をおこない、それらの状況を監視するセンサによる環境保持装置87と、ベース18と接続して培養容器駆動部22、流路駆動部29、冷蔵庫内の環境を制御する冷蔵庫制御88、培養容器駆動部22を回転させるモータ23を備えている。
 ユーザが入力部81や通信部84から処理するべき培養工程を指示すると、制御処理部82は、ROM85に格納された培養準備プログラムに従って、環境保持装置87の滅菌機能で自動培養装置10の内部を滅菌し、処理終了後に培養環境保持処理を進め、温度37℃、5%二酸化炭素濃度、湿度100%、清潔環境野とし、同時に冷蔵庫制御88をおこなう。そして、制御処理部82は、ROM85に格納された自動培養プログラムに従って、ベース18のセットを位置センサで感知したら、培養容器駆動部22、流路駆動部29、回転軸機構17のモータ23からなる駆動部19により、培養容器20での細胞培養処理を実施する。随時、表示部80と通信部84でその処理状況をユーザに示すことができる。細胞培養処理が終了したら、表示部80と通信部84で終了をユーザに示し、ベース18の脱着を感知したら、制御処理部82は、ROM85に格納された終了プログラムに従い、終了処理をおこなう。以上により、自動培養装置10による一連の細胞培養処理を実現することが可能となる。
 以上、第1の実施例を詳述したが、引き続きベースの構成が異なる第2の実施例の自動培養装置を図10A~図10Dに従い説明する。なお、説明にあたっては、第1の実施例との差分のみを説明し、第1の実施例と同一の部分の説明は省略する。本実施例においては、弁が分離しないベースを使用する自動培養装置の構成を説明する。
 図10A、10Bにおいて、分離しない弁24の場合のベース18‘の設置方法について説明する。図10Aはベース18’が自動培養装置10内部に設置してある状態を示し、図10Bはベース18‘を取り外した場合について示している。
 図1、図2と比較して、弁24やモータ25はベース18’の培養容器ベース21‘と流路ベース28’に内包してあるため、図1に示すような駆動部19は存在せず、溝45を備えた培養容器ベース台座94、流路ベース台座95を備える。さらに、弁24のカム72やロッド76を保護するための駆動シール74も存在しない。しかし、ベース18‘は分離が可能であるため、弁24やモータ25のための配線79とそれをつなぐコネクタ78が必要である。このコネクタ78は搬送具90とベースセット50により、ベース18を設置した際に接続する。
 図10C、10Dは、それぞれ第1の実施例の図4A、図4Bに対応し、ベース18‘に駆動部を構成する弁24、モータ25を内包した場合の構成を示している。図10Cは流路27とベース18’が分離した状態を示し、図10Dは流路27とベース18‘が一体になった状態を示している。
 本実施例によれば、図1に示した形の駆動部19が自動培養装置10に不要であるため、設置の際には精密な位置精度が不要になり、より容易に設置することが可能である。但し、設置の際に弁24やモータ25用の配線が必要なため、コネクタ78を接続する必要があり、このコネクタ78は防水、防ガス性能を有することが望ましい。
 また、本実施例によれば、ベース18‘に駆動部が内包しているので、それらを一緒に自動培養装置から着脱でき、駆動シールが不要であり、滅菌処理も容易である。すなわち、培養容器20と流路27とベース18‘を外した状態で、自動培養装置内部に滅菌処理や除染処理を実施しても、駆動部に対する障害をもたらすことがない。
 さらに、本実施例の変形例として、弁24を内包するベース18‘内にソレノイド75も内包した場合について、図11A、図11Bを用いて説明する。
 図11Aはソレノイド75が動作していない場合の構成を示し、図11Bはソレノイド75が動作して、チューブ68の切り替えを行った状態を示している。ここで説明する内容は、主に弁24に関しており、図1に示したベース18’上のシリンジポンプ64等の駆動系に関しては図7A~図7Dの動作と同様の構成を有している。
 本構成にあっては、図7Aと同様の状態では、図11Aのようにロッド76はバネ77により押し出されている。ここで、ベース18‘は配線79と接続するためにコネクタ78を有している。このコネクタ78は防水・防ガス性を有することが望ましい。ソレノイド75を作動させると、図11Bのようにロッド76がソレノイドに引っ張られ、チューブ68の切り替えをおこなう。ここで使用するソレノイド75はプルソレノイドと同じ働きをする。
 以上、本発明の幾つかの実施形態について説明してきたが、これらの実施形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことは言うまでもない。
 本発明は、細胞を培養する自動培養装置、特に培養容器や流路を密閉構造にして、駆動力を供給して自動培養するシステムとして有用である。
10…自動培養装置
11…細胞培養室扉
12…冷蔵庫扉
13…細胞培養室
14…冷蔵庫
15…制御部
16…清浄空気循環部
17…回転機構
18、18‘…ベース
19…駆動部
20…培養容器
21、21‘…培養容器ベース
22…培養容器駆動部
23…モータ
24…弁
25…モータ
26…タンク
27…流路
28、28‘…流路ベース
29…流路駆動部
30…二酸化炭素供給機構
31…二酸化炭素センサ
32…温度センサ
33…湿度センサ
34…ファン
35…培地ベース
36…ツメ部
37…排気口
38…ファン
39…ヒータ
40…滅菌ガス供給口
41…滅菌ガス排出口
42…表示部
43…入力部
44…通信部
45…溝
46…シール
47…穴
48…切り込み
50…ベースセット
51…流路付ベース
52…レバー
53…ツメ
54…培地
55…培地容器
56…細胞懸濁液
57…細胞懸濁液容器
58…ツメ受け
59…ガイド
60…スライド
61…挿入機構
62…クランプ
63…バネ
64…シリンジポンプ
65…弁機構
66…バネ
67…切替機構
68…チューブ
69…モータ
70…エンコーダ
71…ロッド
72…カム
73…湿度発生機構
74…駆動シール
75…ソレノイド
76…ロッド
77…バネ
78…コネクタ
79…配線
80…表示部
81…入力部
82…制御処理部
83…メモリ
84…通信部
85…ROM
86…RAM
87…環境保持装置
88…冷蔵庫制御
90…搬送具
91…上下機構
92…取手
93…ハンドル
94…培養容器ベース台座
95…流路ベース台座。

Claims (20)

  1. 細胞を培養するための自動培養装置であって、
    培養容器と、
    前記培養容器と接続する流路と、
    前記培養容器と前記流路が載置されるベースと、
    前記ベースが載置され、前記ベースに駆動力を与える駆動部と、
    を有することを特徴とする自動培養装置。
  2. 前記培養容器と前記流路とを接続した状態で、その内部が密閉構造を有する、
    ことを特徴とする請求項1に記載の自動培養装置。
  3. 前記培養容器と前記流路とを接続し、細胞、培養液、あるいは洗浄液を導入した状態で、その内部が密閉構造を有する、
    ことを特徴とする請求項1に記載の自動培養装置。
  4. 前記ベースはガイドを有し、前記流路は前記ガイドに沿って前記ベース上に載置される、ことを特徴とする請求項1に記載の自動培養装置。
  5. 前記ベースは、前記流路を開閉する弁を有し、前記駆動部は前記弁を開閉するモータを有する、
    ことを特徴とする請求項1に記載の自動培養装置。
  6. 前記ベースは、前記流路を開閉する弁と前記弁を開閉するモータを有する、
    ことを特徴とする請求項1に記載の自動培養装置。
  7. 前記ベースは、載置された前記培養容器と前記流路内の前記細胞、前記培養液、あるいは前記洗浄液を前記密閉構造内で動作させるポンプを備える、
    ことを特徴とする請求項3に記載の自動培養装置。
  8. 前記駆動部に前記ベースを載置した際に、前記保温部と前記細胞培養部との間に前記流路が貫通したシールを設置する、
    ことを特徴とする請求項1に記載の自動培養装置。
  9. 前記培養容器と前記流路とが載置された前記ベースと前記駆動部を、水平方向から垂直方向へ回転させる回転機構を備えた、
    ことを特徴とする請求項1に記載の自動培養装置。
  10. 前記回転機構は、前記培養容器へ前記培地を注入時または排出時にはそれぞれ逆の回転方向を与える、
    ことを特徴とする請求項9に記載の自動培養装置。
  11. 細胞を培養するための自動培養装置であって、
    細胞と培養液を所定温度に保つ保温部と、
    培養容器を用いて細胞培養を行う細胞培養部と、
    前記細胞培養部と前記保温部とに空気を循環させる空気循環部と、
    前記保温部と前記細胞培養部と前記空気循環部を制御する制御部とを備え、
    前記細胞培養部は、前記培養容器と前記培養容器に接続される流路とが載置されるベースが設置され、前記ベースに駆動力を与える駆動部を有する、
    ことを特徴とする自動培養装置。
  12. 前記駆動部に前記ベースを載置した際に、前記保温部と前記細胞培養部との間に前記流路が貫通するシールを設置する、
    ことを特徴とする請求項11に記載の自動培養装置。
  13. 前記細胞培養部は、前記培養容器と前記流路とが載置された前記ベースと前記駆動部を回転させる回転機構を備える、
    ことを特徴とする請求項11に記載の自動培養装置。
  14. 前記回転機構は、前記培養液を前記培養容器に注入時または排出時に逆の回転方向を与える、
    ことを特徴とする請求項13に記載の自動培養装置。
  15. 前記培養容器と前記流路とは、接続した状態でその内部が密閉構造となる、
    ことを特徴とする請求項11に記載の自動培養装置。
  16. 前記培養容器と前記流路とが接続し、前記細胞及び前記培養液を導入した状態でその内部が密閉構造を有する、
    ことを特徴とする請求項11に記載の自動培養装置。
  17. 前記ベースは、載置された前記培養容器と前記流路内の前記培養液を前記密閉構造内で動作させるポンプを備える、
    ことを特徴とする請求項16に記載の自動培養装置。
  18. 培養容器を用いて細胞培養を行う自動培養装置の培養容器設置方法であって、
    前記培養容器と前記培養容器に接続される流路とが載置されるベースを機構的に着脱する構造を有するベースセットに、前記培養容器と前記流路とが接続した前記ベースを載置し
    、前記自動培養装置内部へ移動して、前記ベースを所定位置に載置する、
    ことを特徴とする培養容器設置方法。
  19. 前記ベースセットは、搬送と設置を行うための移動手段を備えた、
    ことを特徴とする請求項18に記載の培養容器設置方法。
  20. 前記培養容器と前記流路と前記ベースと前記ベースセットは清潔野で組み立て可能であり
    、細胞と培養液を前記清潔野で注入した後、前記移動手段により前記自動培養装置内部に移動する、
    ことを特徴とする請求項19に記載の培養容器設置方法。
PCT/JP2011/050433 2010-01-13 2011-01-13 自動培養装置、及び培養容器設置方法 WO2011087053A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-004804 2010-01-13
JP2010004804A JP5140095B2 (ja) 2010-01-13 2010-01-13 自動培養装置、及び培養容器設置方法

Publications (1)

Publication Number Publication Date
WO2011087053A1 true WO2011087053A1 (ja) 2011-07-21

Family

ID=44304324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050433 WO2011087053A1 (ja) 2010-01-13 2011-01-13 自動培養装置、及び培養容器設置方法

Country Status (2)

Country Link
JP (1) JP5140095B2 (ja)
WO (1) WO2011087053A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141055A1 (ja) * 2011-04-13 2012-10-18 株式会社日立製作所 細胞培養装置、及び搬送装置
WO2015046068A1 (ja) * 2013-09-25 2015-04-02 東京エレクトロン株式会社 自動培養システム及び自動培養装置
CN114381371A (zh) * 2022-01-13 2022-04-22 山东大学齐鲁医院 一种用于乳腺癌免疫治疗的腺癌干细胞培养装置
CN114921327A (zh) * 2022-03-24 2022-08-19 覃拔 一种微生物孢子的培养设备
CN116200257A (zh) * 2023-03-10 2023-06-02 赛赋(北京)检测技术服务有限公司 一种细胞增殖智能化检测试剂盒及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912181B2 (ja) * 2012-06-29 2016-04-27 株式会社日立製作所 細胞組織検査システム、細胞培養装置、及び細胞組織検査方法
WO2015111347A1 (ja) 2014-01-27 2015-07-30 株式会社 日立ハイテクノロジーズ 流路制御方法および細胞培養装置
US10266801B2 (en) 2014-01-27 2019-04-23 Hitachi High-Technologies Corporation Cell culture device
JP6863382B2 (ja) * 2016-08-26 2021-04-21 株式会社Ihi 細胞培養システム
JP2022026843A (ja) * 2020-07-31 2022-02-10 東洋製罐グループホールディングス株式会社 細胞培養システム、細胞の製造方法、及びガス濃度制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149237A (ja) * 2004-11-26 2006-06-15 Hitachi Ltd 培養装置
JP2007319119A (ja) * 2006-06-02 2007-12-13 Hitachi Ltd 培養システム、培養装置、及び培養容器箱、並びに空気清浄化方法
JP2008148602A (ja) * 2006-12-15 2008-07-03 Hitachi Ltd 細胞培養装置及びその制御方法
JP2009125027A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 細胞培養装置
JP2009232861A (ja) * 2009-07-13 2009-10-15 Hitachi Ltd 細胞培養装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149237A (ja) * 2004-11-26 2006-06-15 Hitachi Ltd 培養装置
JP2007319119A (ja) * 2006-06-02 2007-12-13 Hitachi Ltd 培養システム、培養装置、及び培養容器箱、並びに空気清浄化方法
JP2008148602A (ja) * 2006-12-15 2008-07-03 Hitachi Ltd 細胞培養装置及びその制御方法
JP2009125027A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 細胞培養装置
JP2009232861A (ja) * 2009-07-13 2009-10-15 Hitachi Ltd 細胞培養装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141055A1 (ja) * 2011-04-13 2012-10-18 株式会社日立製作所 細胞培養装置、及び搬送装置
US9951305B2 (en) 2011-04-13 2018-04-24 Hitachi, Ltd. Cell culture device and transport device
WO2015046068A1 (ja) * 2013-09-25 2015-04-02 東京エレクトロン株式会社 自動培養システム及び自動培養装置
CN114381371A (zh) * 2022-01-13 2022-04-22 山东大学齐鲁医院 一种用于乳腺癌免疫治疗的腺癌干细胞培养装置
CN114381371B (zh) * 2022-01-13 2023-11-07 山东大学齐鲁医院 一种用于乳腺癌免疫治疗的腺癌干细胞培养装置
CN114921327A (zh) * 2022-03-24 2022-08-19 覃拔 一种微生物孢子的培养设备
CN116200257A (zh) * 2023-03-10 2023-06-02 赛赋(北京)检测技术服务有限公司 一种细胞增殖智能化检测试剂盒及其使用方法
CN116200257B (zh) * 2023-03-10 2023-08-11 赛赋(北京)检测技术服务有限公司 一种细胞增殖智能化检测试剂盒及其使用方法

Also Published As

Publication number Publication date
JP2011142837A (ja) 2011-07-28
JP5140095B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5140095B2 (ja) 自動培養装置、及び培養容器設置方法
KR101357418B1 (ko) 세포 배양 장치
JP5694277B2 (ja) 自動培養装置
KR101589356B1 (ko) 세포 배양 장치 및 반송 장치
JP4300863B2 (ja) 無菌システムとその使用方法
EP1650291B1 (en) Automatic cell cultivation apparatus utilizing autoclave sterilization and method for using the same
JP4550101B2 (ja) 自動細胞培養装置及びその使用方法
KR101291498B1 (ko) 인큐베이터
CN101400779B (zh) 隔离器用培养箱
KR101357336B1 (ko) 배양 장치
JP5814595B2 (ja) 搬送装置、及び液体注入方法
KR20150058053A (ko) 인큐베이터 및 인큐베이터 오염 제거 방법
JP5814594B2 (ja) 細胞培養装置
JP4656485B2 (ja) 無菌培養方法及びその装置
JP2005278565A (ja) 無菌培養方法及び無菌培養装置
JP4389614B2 (ja) 培養システム
JPH03259075A (ja) 無菌作業装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732923

Country of ref document: EP

Kind code of ref document: A1