WO2011085622A1 - 控制电路及方法、电源装置 - Google Patents

控制电路及方法、电源装置 Download PDF

Info

Publication number
WO2011085622A1
WO2011085622A1 PCT/CN2010/079589 CN2010079589W WO2011085622A1 WO 2011085622 A1 WO2011085622 A1 WO 2011085622A1 CN 2010079589 W CN2010079589 W CN 2010079589W WO 2011085622 A1 WO2011085622 A1 WO 2011085622A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
control
switching power
voltage
Prior art date
Application number
PCT/CN2010/079589
Other languages
English (en)
French (fr)
Inventor
樊晓东
冯磊
赵福高
刘志华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011085622A1 publication Critical patent/WO2011085622A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Control circuit and power supply device The present application claims to be filed on June 28, 2010, the Chinese Patent Office, Application No. 201010212837. 4. The priority of the Chinese patent application entitled “Control Circuit and Method, Power Supply Device", all of which are The content is incorporated herein by reference.
  • the present invention relates to the field of power supply technologies, and in particular, to a control circuit and method, and a power supply device. BACKGROUND OF THE INVENTION In the field of power supply technology, a synchronous rectification circuit is a widely used circuit.
  • the switching power supply circuit of the conventional synchronous rectification circuit generally uses a diode to achieve rectification, but the conduction loss of the diode is high, resulting in a low switching efficiency of the switching power supply using the diode rectifier circuit.
  • MOSFET metal-Oxide-Semiconductor Field-Effect-Transistor
  • Figure 1 shows the circuit diagram of the switching power supply circuit of the existing synchronous rectification circuit.
  • the switch tubes Q1-Q4 are the switch tubes of the primary side of the switching power supply circuit of the synchronous rectification circuit.
  • VIN+ and VIN- are the input terminals of the primary side of the switching power supply circuit of the synchronous rectification circuit.
  • the switch tube Q5-Q8 is a switch tube of the secondary side of the switching power supply circuit of the synchronous rectification circuit.
  • the implementation of the switch tube is not unique. For example, it can be realized by a diode, a triode, or a MOSFET.
  • the switch tube Q1-Q8 is taken as an example. See Figure 1, where V0UT+ and V0UT- are the outputs of the secondary side.
  • the first capacitor C1 is the input filter capacitor of the primary side of the switching power supply circuit of the synchronous rectifier circuit. As shown in Fig.
  • the switching transistor Q5-Q8 on the secondary side of the switching power supply circuit of the synchronous rectification circuit uses the M0S tube instead of the diode in the conventional technology, which greatly reduces the conduction loss and improves the efficiency of the power supply.
  • the MOSFET is turned on, the current flows in both directions.
  • the synchronous rectification technology generates a large output reverse current surge, which is extremely vulnerable to damage to the M0S tube. Therefore, the switching power supply of the synchronous rectification circuit using the M0S tube has a reliability hazard.
  • the prior art adopts an anti-reverse diode or a MOS tube at the voltage input end of the primary-side switching tube rectifying unit for quickly turning off the reverse when the conduction current is reversed. Current to effectively protect the switching power supply of the synchronous rectifier circuit.
  • the prior art uses an anti-reverse diode or a MOS tube at the primary side voltage input end of the switching power supply circuit of the synchronous rectification circuit, although in one To a certain extent, it prevents the power supply from generating a reverse current surge to the input when the input power supply produces a low impedance drop.
  • the anti-reverse diode or the MOS transistor is added, the system cost will increase.
  • the anti-reverse diode or the MOS transistor is disposed in the main circuit of the switching power supply circuit of the synchronous rectification circuit, the power loss of the circuit is also increased. Reduce the efficiency of the power supply. Summary of the invention
  • Embodiments of the present invention provide a control circuit and method, and a power supply device, which are used to solve the defects of increasing the system cost and power consumption of a circuit for preventing a current reverse surge in the prior art, without increasing cost and power consumption. , effectively suppressing reverse current surges.
  • An embodiment of the present invention provides a control circuit, including:
  • an acquiring module configured to acquire a voltage signal generated by the reverse surge current when a reverse surge current occurs on a primary side of the switching power supply circuit of the synchronous rectification circuit
  • a holding module configured to continuously output the first control signal for a preset first time period when the voltage signal is greater than a preset first voltage threshold
  • a control module configured to control, according to the first control signal, a secondary side switch that turns off the switching power supply circuit of the synchronous rectification circuit.
  • Embodiments of the present invention provide a power supply device, a switching power supply circuit including a synchronous rectification circuit, and a control circuit as described above.
  • the embodiment of the invention further provides a control method for suppressing a reverse current surge, comprising:
  • the secondary side switching transistor of the switching power supply circuit of the synchronous rectification circuit is turned off according to the first control signal.
  • the control circuit and method and the power supply device detect the voltage signal generated by the reverse surge current when a reverse current surge occurs, thereby switching the secondary side of the switching power supply circuit of the synchronous rectifier circuit The disconnection is performed, and the current reverse surge is effectively suppressed, and the safety in the switching power supply of the synchronous rectification circuit can be effectively protected. Therefore, the reliability of the power supply is ensured.
  • the technical solution of the embodiment of the invention can also ensure the working efficiency of the power source.
  • FIG. 1 is a circuit diagram of a switching power supply circuit of a conventional synchronous rectification circuit
  • FIG. 2 is a schematic structural diagram of a control circuit according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a control circuit provided in the second embodiment
  • FIG. 4 is a schematic structural diagram of a power supply device according to Embodiment 3 of the present invention.
  • FIG. 5 is a circuit diagram of a power supply device according to Embodiment 4 of the present invention.
  • Figure 6 is a signal timing waveform diagram of the circuit shown in Figure 5;
  • FIG. 7 is a flowchart of a method for controlling a reverse current surge according to Embodiment 5 of the present invention.
  • FIG. 8 is a flowchart of a method for controlling a reverse current surge according to Embodiment 6 of the present invention.
  • the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. The described embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
  • FIG. 2 is a schematic structural diagram of a control circuit according to Embodiment 1 of the present invention. As shown in FIG. 2, the control circuit of this embodiment includes: an acquisition module 10, a hold module 11, and a control module 12.
  • the obtaining module 10 is configured to obtain a voltage signal generated by a reverse surge current when a reverse surge current occurs on a primary side of the switching power supply circuit of the synchronous rectification circuit.
  • the holding module 11 is configured to continuously output the first control signal for a preset first time period when the voltage signal is greater than the preset first voltage threshold.
  • the control module 12 is configured to turn off the secondary side switching tube of the switching power supply circuit of the synchronous rectification circuit according to the first control signal. Specifically, when the input end of the switching power supply of the synchronous rectification circuit generates a low impedance drop, the primary side of the switching power supply circuit of the synchronous rectification circuit generates a large current reverse surge.
  • the acquisition module 10 in the control circuit of the embodiment is connected to the primary side of the switching power supply circuit of the synchronous rectifier circuit, and the primary side of the switching power supply circuit of the synchronous rectifier circuit is opened.
  • the acquisition module 10 obtains a voltage signal generated by the reverse surge current from the primary side of the switching power supply circuit of the synchronous rectifier circuit, which may also be referred to as a reverse To the voltage signal.
  • the holding module 11 is connected to the obtaining module 10.
  • the first control signal is continuously output during the preset first time period.
  • the control module 12 is connected to the holding module 11 and turns off the switching tube of the secondary side of the switching power supply circuit of the synchronous rectification circuit according to the first control signal outputted by the holding module 11 to prevent the current from being reversed when a current reverse surge occurs. Ensure that the switching tube in the switching power supply circuit of the synchronous rectification circuit avoids overcurrent damage.
  • the voltage signal generated by the reverse surge current is acquired and detected and controlled to turn off the synchronous rectification circuit.
  • FIG. 3 is a schematic structural diagram of a control circuit provided in the second embodiment.
  • the control circuit of this embodiment further includes a detection module 13 based on the first embodiment.
  • the detecting module 13 is connected to the secondary side of the switching power supply circuit of the synchronous rectifying circuit, and is configured to output a second control signal when the output voltage of the secondary side of the switching power supply circuit of the synchronous rectifying circuit is greater than a preset second voltage threshold.
  • the detection module 13 is also connected to the control module 12.
  • the control module 12 can control the secondary side switching tube of the switching power supply circuit that turns on the synchronous rectification circuit according to the second control signal output by the detecting module 13.
  • the switch of the secondary side of the switching power supply circuit of the synchronous rectifier circuit is quickly turned off by using the solution of the first embodiment, thereby ensuring the safety of the switch.
  • the reverse current of the output of the secondary side is not released in time, causing the output voltage of the output voltage of the secondary side to be too high, which causes a great Security risks.
  • a detection module 13 is provided.
  • the detection module 13 is connected to the output end of the secondary side of the switching power supply circuit of the synchronous rectifier circuit, and detects the output voltage overvoltage output of the output voltage terminal of the secondary side of the switching power supply circuit of the synchronous rectifier circuit.
  • the second control signal is output to drive the secondary switching tube of the switching power supply circuit of the synchronous rectifier circuit to release the switching power supply circuit of the synchronous rectifier circuit. Reverse current at the output of the secondary side.
  • the control circuit of the embodiment can prevent or suppress the output voltage of the output voltage terminal of the secondary side of the switching power supply circuit of the synchronous rectifier circuit from being excessively high during the reverse current surge process, and the components in the switching power supply circuit of the synchronous rectifier circuit Causes damage; can effectively protect the safety of the switching power supply circuit of the synchronous rectification circuit.
  • the switching tube of the secondary side of the switching power supply circuit that turns off or turns on the synchronous rectification circuit can be specifically driven by turning off or turning on the switching tube of the secondary side of the switching power supply circuit of the synchronous rectification circuit.
  • the switch tube on the secondary side of the switching power supply circuit of the synchronous rectification circuit can be flexibly controlled.
  • 4 is a schematic structural diagram of a power supply device according to Embodiment 3 of the present invention.
  • the power supply device of this embodiment includes a switching power supply circuit 20 and a control circuit 21 of a synchronous rectification circuit.
  • the control circuit 21 may specifically include: an obtaining module 10, a holding module 11, and a control module 12.
  • the acquisition module 10 is connected to the switching power supply circuit 20 of the synchronous rectification circuit for obtaining a voltage signal generated by the reverse surge current when a reverse surge current occurs on the primary side of the switching power supply circuit 20 of the synchronous rectification circuit.
  • the holding module 11 is connected to the obtaining module 10, and is configured to continuously output the first control signal for a preset first time period when the voltage signal is greater than the preset first voltage threshold.
  • the control module 12 is connected to the switching power supply circuit 20 of the synchronous rectification circuit for controlling the secondary side switching transistor of the switching power supply circuit 20 that turns off the synchronous rectification circuit according to the first control signal output from the holding module 11.
  • the acquired voltage signal is detected and detected to turn off the switching tube of the secondary side of the switching power supply circuit of the synchronous rectifier circuit, thereby effectively suppressing the current reverse wave.
  • the surge ensures the safety of the switching tube in the switching power supply circuit of the synchronous rectification circuit.
  • the control circuit 21 in the power supply device of the present embodiment further includes a detection module 13.
  • the detecting module 13 is respectively connected to the switching power supply circuit 20 and the control module 12 of the synchronous rectifying circuit, and is configured to output a second control signal when the output voltage of the secondary side of the switching power supply circuit of the synchronous rectifying circuit is greater than a preset second voltage threshold.
  • the control module 12 controls the secondary side switching transistor of the switching power supply circuit that turns on the synchronous rectification circuit according to the second control signal.
  • the voltage at the output end of the secondary side of the switching power supply circuit of the synchronous rectification circuit caused by the reverse current surge can be prevented or suppressed, and the components in the switching power supply circuit of the synchronous rectification circuit are damaged. Thereby effectively protecting the safety of the switching power supply circuit of the synchronous rectification circuit.
  • the prior art is provided with an anti-reverse diode or a MOS tube in the main circuit of the switching circuit power supply, a large fixed power loss is introduced in the main circuit; however, the embodiment of the present invention does not need to be provided with anti-reverse in the main circuit.
  • the diode or MOSFET is controlled by an additional control circuit and does not introduce a fixed power loss in the main loop.
  • FIG. 5 is a circuit diagram of a power supply device according to Embodiment 4 of the present invention. As shown in FIG. 5, the power supply device is a switching power supply circuit that controls the synchronous rectification circuit shown in FIG. 1 by using a control circuit as shown by a broken line in FIG. As shown in FIG. 5,
  • the acquisition module in the control circuit of the corresponding embodiment includes a sampling resistor R_SENSE and a signal amplifier U1.
  • the sampling resistor R_SENSE is disposed on the primary side of the switching power supply circuit of the synchronous rectification circuit for detecting whether the primary side of the switching power supply circuit of the synchronous rectification circuit has a zero-crossing reverse current i. Since the signal of the reverse current i is relatively weak, the signal amplifier U1 is used to obtain the initial voltage signal generated by the reverse current i from both ends of the sampling resistor R_SENSE, and the voltage signal is amplified to obtain a voltage signal.
  • the sampling resistor R_SENSE of this embodiment may be a common resistor, or a line impedance, a DC impedance of a common mode or a differential mode inductor, and a front-stage anti-reverse or slow-start M0S tube on-resistance. It should be noted that, in this embodiment, the reverse current is detected by the “current sampling resistor”, and the same can be detected by detecting the input voltage.
  • the holding module of the corresponding embodiment includes two serially divided first voltage dividing resistors R1 and second voltage dividing resistors R2, a comparator U2 and a first control unit.
  • One end of the first voltage dividing resistor R1 is connected to the input end of the amplifier U1, the other end is connected in series with the second voltage dividing resistor R2, and the other end is also connected to one of the input ends of the comparator U2.
  • the voltage signal input by the amplifier U1 is divided by the first voltage dividing resistor R1 to obtain a voltage signal after the voltage division, and the divided voltage signal CMPin is output to the input end of the comparator U2.
  • the comparator U2 compares the received divided voltage signal CMPin with a preset first voltage threshold Vref1, and outputs a first control signal CMPout when the divided voltage signal CMPin is greater than the first voltage threshold Vref1.
  • the design of the first voltage dividing resistor R1 and the second voltage dividing resistor R2 can help to flexibly design the amplification ratio of the amplifier U1 and the first voltage threshold Vref1.
  • the comparator U2 is further provided with a reset pin, that is, a Reset pin, and the Reset pin is at a first level (for example, a high level in the example of the present invention), and the comparator U2 can The role of "hold", at this time the output of the comparator U2 remains as the first control signal CMPout that is output when triggered. At this point, comparator U2 can be considered to be in the input comparison and trigger the hold state.
  • the comparator U2 When the Reset pin of the comparator U2 is at the second level (for example, a low level in the present embodiment), the comparator U2 outputs "reset" to restore the current comparison output state, that is, outputs a signal according to the comparison result. At this time, it can be considered that the comparator U2 is in the state of input and compares the outputs.
  • the level of the Reset pin is controlled by the first control unit. As shown in FIG. 5, the first control unit includes a capacitor C2, a first power source VCC1 and a first pull-up resistor R3, a current limiting resistor R8, a first resistor R9 and a second resistor R10, and a first switching transistor Q9 and a second Switch tube Q10.
  • the switching tubes in the control circuit are all implemented by triodes. In practical applications, the switching tubes can also be implemented by other means (such as MOS tubes). These implementation techniques are well known to those skilled in the art. This will not be repeated here.
  • the capacitor C2 is connected to the Reset pin and the other terminal is grounded.
  • One end of the capacitor C2 is also connected to the first power source VCC1 by being connected in series with the first resistor R9 and the current limiting resistor R8.
  • the first power source VCC1 is also connected to the second switching transistor Q10 through the first pull-up resistor R3.
  • the second switching transistor Q10 When the comparator U2 outputs the first control signal CMPout, the second switching transistor Q10 is turned on, thereby causing the first switching transistor Q9 to be turned on. After the first switch Q9 is turned on, the capacitor C2 is discharged through a loop composed of the first resistor R9, the first switch transistor Q9, and the capacitor C2, causing the voltage of the Reset pin connected to the capacitor C2 to decrease, that is, the reset pin is high. The level is lowered to a low level. The time from when the detection voltage signal is greater than the first voltage threshold, the comparator U2 starts to output the first control signal CMPout until the Reset pin falls low for the first time period.
  • the length of the first time period can be preset by the preset resistance of the first resistor R9 (in the discharge loop of the capacitor C2, related to the discharge time of the capacitor C2).
  • the Reset pin is high, and the comparator U2 is in the "Input comparison and trigger maintenance" state, which has the effect of "maintaining".
  • the comparator U2 continuously outputs the first control signal CMPout which is output according to the comparison of the voltage signal and the first voltage threshold Vref1 until the Reset pin is lowered to a low level.
  • the length of the first period of time should be greater than or equal to the operating time of the primary side MOS tube drive pulse modulation.
  • the control module includes an optocoupler U3 and a second control unit. One end of the photodiode in the photocoupler U3 is connected to the first power source VCC1, and the other end is connected to the second switch tube Q10.
  • the second control unit includes a second power source VCC2, a third resistor R4, a fourth resistor R7, and a grounding resistor R5, a third switching transistor Q11, a fourth switching transistor Q12, and a first transistor Q13.
  • the first transistor Q13 here uses a PNP junction MOS tube.
  • the emitter of the first transistor Q13 is connected to the second power source VCC2, and the second power source VCC2 is also connected to the base of the first transistor Q13 through the fourth resistor R7 to control the conduction of the first transistor Q13.
  • the role of the threshold The collector of the first transistor Q13 is grounded through the grounding resistor R5, the base of the first transistor Q13 is connected to the collector of the transistor in the photocoupler U3 through the third resistor R4, and the emitter of the transistor of the optocoupler U3 is grounded.
  • Third switch tube Q11 And the fourth switching transistor Q12 is respectively connected to the collector of the first transistor Q13 (may also be connected by a resistor).
  • the first drive signal DRVA and the second drive signal DRVB in FIG. 5 are drive input signals of the first drive U4 and the second drive U5, respectively. As shown in FIG.
  • the first driving signal DRVA and the second driving signal DRVB are short-circuited (ie, DRVA and DRVB are pulled low to 0), thereby turning off the first
  • the synchronous rectification driving amplification signal outputted by the driving U4 and the second driving U5 also turns off the switching transistors Q5-Q8 of the secondary side of the switching power supply circuit of the synchronous rectification circuit.
  • the control circuit and the corresponding power supply device of the embodiment when a current reverse surge occurs, the voltage signal generated by the reverse surge current is acquired and detected to switch the secondary side of the switching power supply circuit of the synchronous rectifier circuit.
  • the tube is disconnected, effectively suppressing the current reverse surge, and ensuring the safety of the switching tube in the switching power supply of the synchronous rectification circuit. Therefore, the reliability of the voltage is ensured.
  • a large fixed power loss is introduced in the main circuit; however, the embodiment of the present invention does not need to be provided with anti-reverse in the main circuit.
  • the diode or MOSFET is controlled by an additional control circuit and does not introduce a fixed power loss in the main loop. The power loss of the control circuit is very small compared to the fixed power loss introduced in the main loop.
  • the control circuit of this embodiment may further include a detection module including at least one Zener diode.
  • the first Zener diode D1 and the second Zener diode D2 and the second pull-up resistor R6 including two serial connections are taken as an example.
  • the first Zener diode D1 is connected to the output voltage terminal of the secondary side of the switching power supply circuit of the synchronous rectifier circuit, and the second Zener diode D2 is connected to the base of the first transistor Q13 through the second pull-up resistor R6.
  • the third switching transistor Q11 and the fourth switching transistor Q12 are disconnected, thereby restoring the input of the first driving signal DRVA and the second driving signal DRVB to the first driving U4 and the second driving U5, the first driving signal DRVA and the
  • the second driving signal DRVB controls the first driving U4 and the second driving U5 to be turned on, thereby turning on the secondary side switching tube Q5-Q8 of the switching power supply of the synchronous rectifying circuit, and releasing the voltage of the output end of the secondary side of the switching power supply circuit of the synchronous rectifying circuit . Therefore, the CNT level signal is the second control signal,
  • the secondary switching transistor of the switching power supply circuit that turns off or turns on the synchronous rectification circuit is controlled according to the level of the CNT level signal.
  • the reverse current is detected by the sampling resistor R-SENSE. Since the reverse current signal is weak, the signal amplifier U1 is used to obtain the voltage signal from both ends of the sampling resistor R-SENSE. After being divided by the first voltage dividing resistor R1 and the second voltage dividing resistor R2, the divided voltage signal CMPin is input to the input terminal of the comparator U2.
  • the comparator U2 compares the received voltage signal with a preset first voltage threshold Vref1. When the voltage signal is greater than the first voltage threshold Vref1, the comparator U2 outputs the first control signal CMPout, thereby turning on the second switching transistor Q10.
  • the second switch tube Q10 is turned on, and the first switch tube Q9 can be turned on, so that the capacitor C2 forms a loop with the first resistor R9, and the capacitor C2 starts to discharge. Therefore, the Reset pin of the comparator U2 connected to the positive terminal of the capacitor C2 is gradually lowered from the high level to the low level. As shown in FIG. 5, when the comparator U2 outputs the first control signal CMPout to turn on the second switching transistor Q10, the driving photocoupler U3 is operated to turn on the first transistor Q13.
  • the first transistor Q13 is turned on, and the third switch tube Q11 and the fourth switch tube Q12 can be turned on, thereby turning off the first drive U4 and the first switch of the switch tube of the secondary side of the switching power supply circuit of the synchronous rectifier circuit.
  • the second driving U5 respectively emits a first driving signal DRVA and a second driving signal DRVB.
  • the first driving signal DRVA and the second driving signal DRVB control to open or close the first driving U4 and the second driving U5 of the switching tube of the secondary side of the switching power supply circuit of the synchronous rectification circuit, thereby implementing the opening or closing of the synchronous rectification circuit
  • the first drive signal DRVA controls to open or close the first drive U4, thereby controlling to open or close the switch tubes Q5 and Q8 of the secondary side.
  • the second drive signal DRVB controls to open or close the second drive U5, thereby controlling to open or close the switch tubes Q6 and Q7 of the secondary side.
  • the control circuit and the corresponding power supply device of the embodiment can prevent the voltage at the output end of the secondary side of the switching power supply circuit of the synchronous rectification circuit from being excessively high during the suppression of the reverse current surge, and the switching power supply circuit of the synchronous rectification circuit
  • the component causes damage; effectively protects the safety of the switching power supply circuit of the synchronous rectifier circuit.
  • Figure 6 is a signal timing waveform diagram of the circuit of Figure 5. The circuit shown in FIG.
  • the coupling U3 is transmitted to the secondary side, and the first transistor Q13 is turned on, correspondingly the CNT level at the collector of the first transistor Q13 is high, so that the conduction is connected to the collector of the first transistor Q13.
  • the second drive U5 inputs a first drive signal DRVA and a second drive signal DRVB, wherein the first drive U4 controls the secondary side switching transistors Q5 and Q8; the second drive U5 controls the secondary side switching transistors Q6 and Q7.
  • the first drive signal DRVA controls the switching transistors Q5 and Q8 that turn off the secondary side
  • the second drive signal DRVB controls the switching transistors Q6 and Q7 that turn off the secondary side.
  • DEC—V0UT has an output overvoltage, and the first Zener diode D1 and the second Zener diode D2 are turned on, thereby increasing the voltage of the base of the first transistor Q13.
  • the first transistor Q13 is turned off by the second pull-up resistor R6, and the CNT level at the collector of the first transistor Q13 is low, thereby disconnecting the third switching transistor Q11 and the fourth switching transistor Q12, thereby
  • the first driving signal DRVA and the second driving signal DRVB are input to the first driving U4 and the second driving U5, and the first driving U4 and the second driving U5 are controlled to turn on the switching transistors Q5 and Q8 of the secondary side.
  • the output voltage DEC_V0UT of the switching power supply circuit of the synchronous rectification circuit is clamped by the primary side to prevent output overvoltage.
  • the first Zener diode D1 and the second Zener diode D2 are turned off, and the output state of the first control signal CMPout is maintained, and the CNT at the collector of the first transistor Q13
  • the level is still output high, and the third switch tube Q11 and the fourth switch tube Q12 are respectively turned on, thereby cutting off the input of the first drive signal DRVA and the second drive signal DRVB to the first drive U4 and the second drive U5, thereby controlling
  • the switching tube Q5-Q8 of the secondary side of the switching power supply of the synchronous rectification circuit is turned off, and the reverse current in the switching power supply of the synchronous rectification circuit is prevented from continuing to increase.
  • the output of the first control signal CMPout is high at time t2, and the first switching transistor Q9 is turned on, so that the voltage on the RESET pin capacitor continues to slowly decrease. Until t3, the slowly falling RESET level is low. At this time, since the current is not detected by the input, the first control signal CMPout is output low, so that the CNT level at the collector of the first transistor Q13 is Low, turning off the third switching transistor Q11 and the fourth switching transistor Q12, thereby restoring the input of the first driving signal DRVA and the second driving signal DRVB to the first driving U4 and the second driving U5, and the switching power supply circuit of the synchronous rectification circuit returns to normal Working status.
  • Step 100 When a reverse surge current occurs on the primary side of the switching power supply circuit of the synchronous rectifier circuit, step 101 When the voltage signal is greater than the preset first voltage threshold, continuously outputting a first control signal during the preset first time period; Step 102: Control, according to the first control signal, a secondary side switch that turns off the switching power supply circuit of the synchronous rectification circuit.
  • the primary side of the switching power supply of the synchronous rectification circuit when the input power source generates a low impedance drop, the primary side of the switching power supply of the synchronous rectification circuit generates a large current reverse surge.
  • a current reverse occurs in the primary switching transistor rectifying unit of the switching power supply of the synchronous rectification circuit, a voltage signal generated by the reverse current is obtained.
  • the first control signal is continuously output during the preset first time period.
  • the switching tube of the secondary side of the switching power supply of the synchronous rectification circuit is turned off, so as to ensure that the switching tube in the switching power supply circuit of the synchronous rectification circuit is protected from damage when a current reverse surge occurs.
  • a voltage signal generated by a reverse surge current is acquired and detected to be applied to the secondary side of the switching power supply of the synchronous rectifier circuit.
  • the switch tube is disconnected, effectively suppressing the current reverse surge, and ensuring the safety of the switch tube in the switching power supply of the synchronous rectifier circuit.
  • FIG. 8 is a flowchart of a method for controlling a reverse current surge according to Embodiment 6 of the present invention.
  • the control method for suppressing the reverse current surge of the present embodiment may further include the following steps after the step 102: Step 103: When synchronizing When the output voltage of the secondary side of the switching power supply circuit of the rectifier circuit is greater than the preset second voltage threshold, the second control signal is output; Step 104, controlling the secondary side of the switching power supply circuit of the synchronous rectifier circuit according to the second control signal turning tube.
  • the switch of the secondary side of the switching power supply circuit of the synchronous rectification circuit is quickly turned off by using the solution of the fifth embodiment, thereby ensuring the safety of the switch.
  • the voltage at the output of the secondary side is not released in time, causing the voltage at the output of the secondary side to be too high, posing a great safety hazard to the power supply.
  • the second control signal is output to turn on the secondary switching transistor of the switching power supply circuit of the synchronous rectifier circuit, and release the voltage of the output terminal of the secondary side of the switching power supply circuit of the synchronous rectifier circuit.
  • the control method for suppressing reverse current surge of the embodiment can prevent the voltage at the output end of the secondary side of the switching power supply circuit of the synchronous rectification circuit from being excessively high during the suppression of the reverse current surge, and the switching power supply to the synchronous rectification circuit
  • the components in the circuit are damaged; the safety of the switching power supply circuit of the synchronous rectification circuit can be effectively protected. Therefore, the reliability of the power supply is ensured, and at the same time, the technical solution of the embodiment can be used to ensure the working efficiency of the power supply.
  • the implementation flow of the control method for suppressing reverse current surge of the embodiment shown in FIG. 7 and FIG. 8 is the same as the implementation mechanism of the control circuit or the control circuit of the corresponding embodiment of FIG. 1 to FIG. 6 in the corresponding power supply device.

Description

控制电路及施 电源装置 本申请要求于 2010年 6月 28日提交中国专利局、 申请号为 201010212837. 4、发明 名称为 "控制电路及方法、 电源装置"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域 本发明实施例涉及电源技术领域, 尤其涉及一种控制电路及方法、 电源装置。 背景技术 在电源技术领域, 同步整流电路是一种应用非常广泛的电路。
传统的同步整流电路的开关电源电路普遍采用二极管来实现整流,但是二极管的导 通损耗较高, 造成采用二极管的整流电路的开关电源工作效率较低。 后来, 人们逐渐采 用 金 属 - 氧 化 物 - 半 导 体 - 场 效 应 管 ( Metal-Oxide-Semiconductor Field-Effect-Transistor; 以下简称 M0SFET或者 M0S管)等开关管替代传统的二极管 实现同步整流。 如图 1 所示为现有的同步整流电路的开关电源电路的电路图。 开关管 Q1-Q4为同步整流电路的开关电源电路的原边的开关管。 VIN+和 VIN-为同步整流电路的 开关电源电路的原边的输入端。开关管 Q5-Q8为同步整流电路的开关电源电路的副边的 开关管。 开关管实现形式并不唯一, 例如, 通过二极管、 三极管、 M0S管都可以实现, 图 1中以开关管 Q1-Q8都采用 M0S管为例进行说明。参见图 1,这里 V0UT+和 V0UT-为副 边的输出端。 Π为同步整流电路的开关电源电路中的原边与副边的隔离变压器,第一电 容 C1为同步整流电路的开关电源电路的原边的输入滤波电容。 如图 1所示, 在同步整 流电路的开关电源电路的副边的开关管 Q5-Q8采用 M0S管替代传统技术中的二极管, 大 大降低了导通损耗, 提高了电源的效率。 但是 M0S管导通后, 电流是双向流动的。 当输 入电源产生低阻抗跌落的时候, 同步整流技术会产生很大的输出反向电流浪涌, 极易损 坏 M0S管, 因此采用 M0S管的同步整流电路的开关电源存在可靠性隐患。
为了增强同步整流电路的开关电源的可靠性,现有技术采用在原边开关管整流单元 的电压输入端增加防反二极管或者 M0S管, 以用于在导通电流反向时, 快速关断反向电 流, 以有效地保护同步整流电路的开关电源。
在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 现有技术采用在 同步整流电路的开关电源电路的原边电压输入端增加防反二极管或者 M0S管, 虽然在一 定程度上能够防止当输入电源产生低阻抗跌落时, 电源对输入端产生反向的电流浪涌。 但是增加了防反二极管或者 M0S管, 会带来系统成本的增加; 而且, 由于防反二极管或 者 M0S管是设置在同步整流电路的开关电源电路的主电路中,也会增加电路的功率损耗, 降低电源的工作效率。 发明内容
本发明实施例提供一种控制电路及方法、 电源装置, 用以解决现有技术中防止电流 反向浪涌的电路增加系统成本及功耗的缺陷, 能够在不增加成本及功耗的前提下, 有效 地实现抑制反向电流浪涌。
本发明实施例提供一种控制电路, 包括:
获取模块, 用于当同步整流电路的开关电源电路的原边出现反向浪涌电流时, 获取 所述反向浪涌电流产生的电压信号;
保持模块, 用于当所述电压信号大于预设的第一电压阈值时, 在预设的第一时间段 内持续输出第一控制信号;
控制模块,用于根据所述第一控制信号控制关断所述同步整流电路的开关电源电路 的副边开关管。
本发明实施例提供一种电源装置, 包括同步整流电路的开关电源电路, 如上所述的 控制电路。
本发明实施例还提供一种抑制反向电流浪涌的控制方法, 包括:
当同步整流电路的开关电源电路的原边出现反向浪涌电流时, 获取所述
当所述电压信号大于预设的第一电压阈值时,在预设的第一时间段内持续输出一第 一控制信号;
根据所述第一控制信号, 控制关断所述同步整流电路的开关电源电路的副边开关 管。
本发明实施例的控制电路及方法、 电源装置, 通过对发生反向电流浪涌时的反向浪 涌电流产生的电压信号进行检测, 从而对同步整流电路的开关电源电路的副边的开关管 进行断开, 有效地抑制了电流反向浪涌, 能够有效地保护同步整流电路的开关电源中的 安全性。 因此, 保证了电源的可靠性。 同时采用发明实施例的技术方案, 还能够保证电 源的工作效率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还 可以根据这些附图获得其他的附图。
图 1为现有的同步整流电路的开关电源电路的电路图;
图 2为本发明实施例一提供的控制电路的结构示意图;
图 3为本实施例二的提供的控制电路的结构示意图;
图 4为本发明实施三提供的电源装置的结构示意图;
图 5为本发明实施例四提供的电源装置的电路图;
图 6为图 5所示电路的一种信号时序波形图;
图 7为本发明实施例五提供的抑制反向电流浪涌的控制方法的流程图;
图 8为本发明实施例六提供的抑制反向电流浪涌的控制方法的流程图。 具体实 ¾ ^式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施例中 的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例 是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范 围。 图 2为本发明实施例一提供的控制电路的结构示意图。 如图 2所示, 本实施例的控制 电路, 包括: 获取模块 10、 保持模块 11、 控制模块 12。 其中获取模块 10用于当同步整流电路的开关电源电路的原边出现反向浪涌电流时, 获取反向浪涌电流产生的电压信号。保持模块 11用于当电压信号大于预设的第一电压阈 值时, 在预设的第一时间段内持续输出第一控制信号。 控制模块 12用于根据第一控制信 号, 关断同步整流电路的开关电源电路的副边开关管。 具体地, 当同步整流电路的开关电源的输入端产生低阻抗跌落时, 同步整流电路的 开关电源电路的原边会产生很大的电流反向浪涌。本实施例的控制电路中的获取模块 10 与同步整流电路的开关电源电路的原边相连, 当同步整流电路的开关电源电路的原边开 关管整流单元发生电流反向浪涌, 出现反向浪涌电流时, 获取模块 10从同步整流电路的 开关电源电路的原边获取反向浪涌电流产生的电压信号, 也可以称之为反向电压信号。 保持模块 11与获取模块 10连接, 当获取模块 10获取的电压信号大于预设的第一电压阈值 时, 在预设的第一时间段内, 持续输出第一控制信号。 控制模块 12与保持模块 11连接, 根据保持模块 11输出的第一控制信号, 关断同步整流电路的开关电源电路的副边的开关 管, 以在发生电流反向浪涌时阻止电流反向, 保证同步整流电路的开关电源电路中的开 关管避免过流损坏。 本实施例的控制电路, 当同步整流电路的开关电源电路的原边发生电流反向浪涌 时, 通过获取反向浪涌电流产生的电压信号并进行检测和控制, 以关断同步整流电路的 开关电源电路的副边的开关管,有效地抑制了同步整流电路的开关电源电路中的电流反 向浪涌, 保证了同步整流电路的开关电源电路中的开关管的安全。 图 3为本实施例二的提供的控制电路的结构示意图。 如图 3所示, 本实施例的控制电 路在上述实施例一的基础上, 还包括一检测模块 13。 检测模块 13与同步整流电路的开关电源电路的副边连接,用于当同步整流电路的开 关电源电路的副边的输出电压大于预设的第二电压阈值时, 输出第二控制信号。 检测模 块 13还与控制模块 12连接。 控制模块 12可以根据检测模块 13输出的第二控制信号, 控制 导通同步整流电路的开关电源电路的副边开关管。 由于当发生反向电流浪涌时, 采用上述实施例一的方案, 快速关断同步整流电路的 开关电源电路的副边的开关管, 从而保证开关管的安全。 但是有些时候, 快速关断同步 整流电路的开关电源电路的副边的开关管之后, 由于副边输出端反向电流没有及时释 放, 造成副边输出电压端的输出电压过高, 给系统造成很大的安全隐患。 本实施例通过 设置一个检测模块 13, 该检测模块 13与同步整流电路的开关电源电路的副边的输出端连 接, 检测同步整流电路的开关电源电路的副边的输出电压端的输出电压过压输出时, 即 副边的输出电压大于预设的第二电压阈值时, 输出第二控制信号, 以导通同步整流电路 的开关电源电路的副边开关管驱动,释放同步整流电路的开关电源电路的副边的输出端 的反向电流。 本实施例的控制电路, 可以防止或抑制反向电流浪涌过程中, 造成的同步整流电路 的开关电源电路的副边的输出电压端的输出电压过高,对同步整流电路的开关电源电路 中元件造成损坏; 能够有效地保护同步整流电路的开关电源电路中的安全性。 上述两个实施例中, 关断或者导通同步整流电路的开关电源电路的副边的开关管, 具体可以通过关断或者导通同步整流电路的开关电源电路的副边的开关管驱动, 以实现 关断或者导通同步整流电路的开关电源电路的副边的开关管。能够对同步整流电路的开 关电源电路的副边的开关管进行灵活控制。 图 4为本发明实施例三提供的电源装置的结构示意图。 如图 4所示, 本实施例的电源 装置包括同步整流电路的开关电源电路 20和控制电路 21。 其中控制电路 21, 具体可以包括: 获取模块 10、 保持模块 11和控制模块 12。 获取模 块 10与同步整流电路的开关电源电路 20连接,用于当同步整流电路的开关电源电路 20的 原边出现反向浪涌电流时, 获取反向浪涌电流产生的电压信号。 保持模块 11与获取模块 10连接, 用于当电压信号大于预设的第一电压阈值时, 在预设的第一时间段内持续输出 第一控制信号。 控制模块 12与同步整流电路的开关电源电路 20连接, 用于根据保持模块 11输出的第一控制信号控制关断同步整流电路的开关电源电路 20的副边开关管。 本实施例的电源装置, 当发生电流反向浪涌时, 通过获取的电压信号并进行检测, 以关断同步整流电路的开关电源电路的副边的开关管, 有效地抑制了电流反向浪涌, 保 证了同步整流电路的开关电源电路中的开关管的安全。 同时, 不仅提高了电源的工作效 率, 还提高了电源的可靠性。 如图 4所示, 本实施例的电源装置中的控制电路 21中还包括检测模块 13。 检测模块 13分别与同步整流电路的开关电源电路 20和控制模块 12连接,用于当同步整流电路的开 关电源电路的副边的输出电压大于预设的第二电压阈值时, 输出第二控制信号, 以供控 制模块 12根据第二控制信号控制导通同步整流电路的开关电源电路的副边开关管。 本实施例的电源装置, 可以防止或抑制反向电流浪涌过程中, 造成的同步整流电路 的开关电源电路的副边的输出端的电压过高,对同步整流电路的开关电源电路中元件造 成损坏; 从而有效地保护同步整流电路的开关电源电路的安全性。 同时, 由于现有技术是在整流电路开关电源主回路中设置防反二极管或 M0S管, 会 在主回路引入一个很大的固定功率损耗; 而本发明实施例并不需要在主回路设置防反二 极管或 M0S管, 而是通过一个附加的控制电路进行控制, 并不会在主回路引入固定的功 率损耗, 而控制电路的功率损耗跟在主回路引入的固定功率损耗相比, 是非常小的; 因 此, 采用本发明实施例, 可以有效地节省功率损耗, 提高电源的工作效率。 本实施例的电源装置中的控制电路 21具体可以采用上述实施例一至二的相关的控 制电路, 详细请参照上述实施例一至二的记载, 在此不再赘述。 图 5为本发明实施四提供的电源装置的电路图。 如图 5所示, 该电源装置是采用如图 5中虚线框所示的控制电路来控制图 1所示的同步整流电路的开关电源电路。 如图 5所示, 在上述图 2、 图 3或者图 4所示实施例的基础上, 对应实施例的控制电路 中的获取模块包括取样电阻 R— SENSE和信号放大器 U1。 其中取样电阻 R— SENSE设置在同步整流电路的开关电源电路的原边上, 用以检测同 步整流电路的开关电源电路的原边是否有过零反向电流 i。 由于反向电流 i的信号比较微 弱, 采用信号放大器 U1从取样电阻 R— SENSE两端获取反向电流 i产生的初始电压信号, 并 对电压信号进行放大处理, 得到电压信号。 本实施例的取样电阻 R— SENSE可以为普通电 阻、 也可以为线路阻抗, 共模或差模电感的直流阻抗, 前级防反或缓启动 M0S管导通电 阻。 需要说明的是, 本实施例中采用的是通过 "电流取样电阻 "来检测反向电流, 同理 也可以采用检测输入电压的方式检测。 如图 5所示, 对应实施例的保持模块包括两个串接的第一分压电阻 R1和第二分压电 阻 R2、 比较器 U2和第一控制单元。 其中第一分压电阻 R1的一端与放大器 U1输入端连接, 另一端串联第二分压电阻 R2后 接地, 同时另一端也与比较器 U2的其中一个输入端相连。 放大器 U1输入的电压信号经第 一分压电阻 R1分压后得到分压后的电压信号, 并将该分压后的电压信号 CMPin输出至比 较器 U2的输入端。 该比较器 U2对接收的分压后的电压信号 CMPin和预设的第一电压阈值 Vrefl进行比较, 当分压后的电压信号 CMPin大于第一电压阈值 Vrefl时, 输出第一控制 信号 CMPout。 这里设计第一分压电阻 R1和第二分压电阻 R2, 可以有助于灵活设计放大器 U1的放大比例以及第一电压阈值 Vrefl。 如图 5所示, 比较器 U2上还设置有一个复位引脚即 Reset引脚, 该 Reset引脚为第一 电平 (例如本发明例中设为高电平) , 比较器 U2可以起到 "保持"的作用, 此时比较器 U2的输出保持为被触发时输出的第一控制信号 CMPout。此时可以认为比较器 U2处于输入 比较并触发维持状态。 当比较器 U2的 Reset引脚为第二电平 (例如在本明实施例中为低 电平), 比较器 U2输出 "被复位", 恢复当前比较输出状态, 即根据比较结果输出信号。 此时可以认为比较器 U2处于输入并比较输出的状态。 具体地, 由第一控制单元来控制 Reset引脚的电平。 如图 5所示, 第一控制单元包括 电容 C2、 第一电源 VCC1以及第一上拉电阻 R3、 限流电阻 R8、 第一电阻 R9和第二电阻 R10, 以及第一开关管 Q9和第二开关管 Q10。 在本发明实施例中, 控制电路中的开关管都用三 极管来实现, 实际应用中也可以通过其他方式 (如 M0S管) 来实现开关管, 这些实现技 术为本领域人员所熟知的技术,在此不再赘述。参见图 5, 电容 C2—端与 Reset引脚相连, 另一端接地。其电容 C2的一端还通过与第一电阻 R9和限流电阻 R8串联后与第一电源 VCC1 连接。 第一电源 VCC1还通过第一上拉电阻 R3与第二开关管 Q10连接。 当比较器 U2输出第 一控制信号 CMPout时, 导通第二开关管 Q10, 从而导致第一开关管 Q9导通。 导通第一开 关管 Q9之后, 电容 C2通过由第一电阻 R9、 第一开关管 Q9和电容 C2组成的回路放电, 导致 与电容 C2相连的 Reset引脚的电压降低, 即将 Reset引脚由高电平降为低电平。 可以取从 当检测电压信号大于第一电压阈值时, 比较器 U2开始输出第一控制信号 CMPout直到 Reset引脚降为低电平的时间为第一时间段。 通过预设的第一电阻 R9的阻值 (在电容 C2 的放电回路中, 与电容 C2的放电时间有关) , 可以预设第一时间段的长度。 该第一时间 段内, Reset引脚为高电平, 比较器 U2处于 "输入比较并触发维持"状态, 具有 "维持" 的作用。 此时比较器 U2持续输出根据对电压信号和第一电压阈值 Vrefl比较而输出的第 一控制信号 CMPout , 直到 Reset引脚降为低电平。 该第一时间段的长度应该大于或等于 原边 M0S管驱动脉冲调制的工作时间。 从而可以保证同步整流电路的开关电源的安全隐 患。 Reset引脚的降为低电平, 比较器 U2输出 "被复位" , 此时比较器 U2处于 "输入并 比较输出" 的状态, 即对输入的电压信号和第一电压阈值 Vrefl进行比较, 并根据比较 结果输出信号。 如图 5所示, 控制模块包括光耦 U3和第二控制单元。 光耦 U3中的光敏二极管的一端 与第一电源 VCC1连接, 另一端与第二开关管 Q10连接。 当比较器 U2输出第一控制信号 CMPout , 导通第二开关管 Q10时, 驱动光耦 U3中光敏二极管发出光电子, 从而导通光耦 U3中三极管接收光电子, 从而导通第二控制单元工作。 如图 5所示, 第二控制单元包括第二电源 VCC2、 第三电阻 R4、 第四电阻 R7和接地电 阻 R5, 第三开关管 Ql l、 第四开关管 Q12和第一三极管 Q13。 如图 5所示, 这里的第一三极 管 Q13采用 PNP结的 M0S管。第一三极管 Q13的发射极与第二电源 VCC2连接, 第二电源 VCC2 还通过第四电阻 R7与第一三极管 Q13的基极连接, 以起到控制第一三极管 Q13导通门限的 作用。 第一三极管 Q13的集电极通过接地电阻 R5接地, 第一三极管 Q13的基极通过第三电 阻 R4与光耦 U3中的三极管的集电极连接,光耦 U3的三极管的发射极接地。第三开关管 Q11 和第四开关管 Q12分别与第一三极管 Q13的集电极连接 (也可以分别通过电阻来连接) 。 当光耦 U3导通工作时, 第一三极管 Q13导通, 此时第一三极管 Q13的集电极处的电平 CNT 为高电平; 从而控制第三开关管 Q11和第四开关管 Q12导通。 参考图 5, 在同步整流电路 的电源电路的工作工程中。 图 5中第一驱动信号 DRVA和第二驱动信号 DRVB分别是第一驱 动 U4和第二驱动 U5的驱动输入信号。 如图 5所示, 第三开关管 Q11和第四开关管 Q12导通 后, 短路了第一驱动信号 DRVA和第二驱动信号 DRVB (即将 DRVA、 DRVB拉低为 0 ) , 从而 关断第一驱动 U4和第二驱动 U5输出的同步整流驱动放大信号, 也就关断了同步整流电路 的开关电源电路的副边的开关管 Q5-Q8。 本实施例的控制电路及对应的电源装置, 当发生电流反向浪涌时, 通过获取反向浪 涌电流产生的电压信号并进行检测, 以对同步整流电路的开关电源电路的副边的开关管 进行断开, 有效地抑制了电流反向浪涌, 保证了同步整流电路的开关电源中的开关管的 安全。 因此, 保证了电压的可靠性。 同时, 由于现有技术是在整流电路开关电源主回路 中设置防反二极管或 M0S管, 会在主回路引入一个很大的固定功率损耗; 而本发明实施 例并不需要在主回路设置防反二极管或 M0S管, 而是通过一个附加的控制电路进行控制, 并不会在主回路引入固定的功率损耗, 而控制电路的功率损耗跟在主回路引入的固定功 率损耗相比, 是非常小的; 因此, 采用本发明实施例, 可以有效地节省功率损耗, 提高 电源的工作效率。 如图 5所示, 本实施例的控制电路还可以包括检测模块, 该检测模块包括至少一个 稳压二极管。 如图 5所示, 以包括两个串接的第一稳压二极管 D1和第二稳压二极管 D2和 第二上拉电阻 R6为例。第一稳压二极管 D1与同步整流电路的开关电源电路的副边的输出 电压端相连, 第二稳压二极管 D2通过第二上拉电阻 R6与第一三极管 Q13的基极相连。 如图 5所示, 当同步整流电路的开关电源电路的副边的输出电压大于由第一稳压二 极管 D1和第二稳压二极管 D2共同确定的第二电压阈值时(该第二电压阈值等于第一稳压 二极管 D1和第二稳压二极管 D2稳压电压之和) , 导通第一稳压二极管 D1和第二稳压二极 管 D2, 能够上拉第二上拉电阻 R6提高第一三极管 Q13的基极电压, 从而断开第一三极管 Q13。 此时, 对应地, 第一三极管 Q13的集电极处的电平 CNT为低电平。 对应地, 断开了 第三开关管 Q11和第四开关管 Q12, 从而恢复向第一驱动 U4和第二驱动 U5输入第一驱动信 号 DRVA和第二驱动信号 DRVB,第一驱动信号 DRVA和第二驱动信号 DRVB控制导通第一驱动 U4和第二驱动 U5, 从而导通同步整流电路的开关电源的副边开关管 Q5-Q8, 释放同步整 流电路的开关电源电路的副边的输出端的电压。 因此 CNT电平信号为第二控制信号, 可 以根据 CNT电平信号的高低, 控制关断或者导通同步整流电路的开关电源电路的副边开 关管。 如图 5所示, 采用取样电阻 R— SENSE检测反向电流, 由于反向电流的信号比较微弱, 采用信号放大器 U1从取样电阻 R— SENSE两端获取电压信号。 经第一分压电阻 R1和第二分 压电阻 R2分压后, 向比较器 U2的输入端输入分压后的电压信号 CMPin。 比较器 U2将接收 到的电压信号与预设的第一电压阈值 Vrefl进行比较。 当电压信号大于第一电压阈值 Vrefl , 比较器 U2输出第一控制信号 CMPout , 从而导通第二开关管 Q10。 同时第二开关管 Q10的导通, 可以打开第一开关管 Q9, 使得电容 C2与第一电阻 R9形成回路, 电容 C2开始 放电。 因此, 使得与电容 C2正端相连的比较器 U2的 Reset引脚由高电平逐渐降为低电平。 如图 5所示, 同时当比较器 U2输出第一控制信号 CMPout导通第二开关管 Q10之后, 从 而驱动光耦 U3工作, 以导通第一三极管 Q13。 第一三极管 Q13的导通, 能够导通第三开关 管 Q11和第四开关管 Q12,从而关断分别向同步整流电路的开关电源电路的副边的开关管 的第一驱动 U4和第二驱动 U5分别发出的第一驱动信号 DRVA和第二驱动信号 DRVB。其中第 一驱动信号 DRVA和第二驱动信号 DRVB控制断开或者闭合同步整流电路的开关电源电路 的副边的开关管的第一驱动 U4和第二驱动 U5, 从而实现断开或者闭合同步整流电路的开 关电源电路的副边的开关管。 例如第一驱动信号 DRVA控制断开或者闭合第一驱动 U4, 从 而控制断开或者闭合副边的开关管 Q5和 Q8。第二驱动信号 DRVB控制断开或者闭合第二驱 动 U5, 从而控制断开或者闭合副边的开关管 Q6和 Q7。 本实施例的控制电路及对应的电源装置, 可以防止抑制反向电流浪涌过程中, 造成 同步整流电路的开关电源电路的副边的输出端的电压过高,对同步整流电路的开关电源 电路中元件造成损坏; 有效地保护同步整流电路的开关电源电路的安全性。 图 6为图 5所示电路的一种信号时序波形图。下面结合图 5所示的电路与图 6所示的时 序图。 详细介绍图 5所示电路的工作流程。 如图 6所示, t0时刻, 在同步整流电路的开关电源电路原边, 当输入反向电流 i超 过一定阈值, 此时比较器 U2判断发生电源输入口的电流反灌, 这时比较器 U2输出第一控 制信号 CMPout ,并触发为高, 由于比较器 U2的 RESET脚的电平为高,第一控制信号 CMPout 输出状态被保持, 这时第二开关管 Q10导通, 信号通过高速的光耦 U3传递到副边, 导通 第一三极管 Q13, 对应地在第一三极管 Q13的集电极处的 CNT电平为高, 从而导通与第一 三极管 Q13的集电极相连的第三开关管 Q11和第四开关管 Q12, 从而切断向第一驱动 U4和 第二驱动 U5输入第一驱动信号 DRVA和第二驱动信号 DRVB,其中第一驱动 U4控制副边的开 关管 Q5和 Q8 ; 第二驱动 U5控制副边的开关管 Q6和 Q7。 因此, 对应地, 第一驱动信号 DRVA 控制关断副边的开关管 Q5和 Q8, 第二驱动信号 DRVB控制关断了副边的开关管 Q6和 Q7。 从 而防止了同步整流电路的开关电源中反灌电流继续增加。 同时 tO时刻由于第一控制信号 CMPout为高, 第一开关管 Q9会导通, 使 RESET脚上电压缓慢下降。 状态一直持续到 t l时刻, 当检测到同步整流电路的开关电源电路的输出电压
DEC— V0UT出现输出过压, 第一稳压二极管 D1和第二稳压二极管 D2导通, 从而提高了第一 三极管 Q13基极的电压。 通过第二上拉电阻 R6使第一三极管 Q13截止, 第一三极管 Q13的 集电极处的 CNT电平为低, 因此断开了第三开关管 Q11和第四开关管 Q12, 从而恢复向第 一驱动 U4和第二驱动 U5输入第一驱动信号 DRVA和第二驱动信号 DRVB,第一驱动 U4和第二 驱动 U5, 控制导通副边的开关管 Q5和 Q8。 同步整流电路的开关电源电路的输出电压 DEC— V0UT被原边箝位, 防止出现输出过压。 当输出过压恢复到正常范围, t2时刻,第一稳压二极管 D1和第二稳压二极管 D2截止, 由于第一控制信号 CMPout的输出状态保持,第一三极管 Q13的集电极处的 CNT电平仍输出 为高, 第三开关管 Q11和第四开关管 Q12分别被导通, 从而切断向第一驱动 U4和第二驱动 U5输入第一驱动信号 DRVA和第二驱动信号 DRVB, 从而控制关断了同步整流电路的开关电 源的副边的开关管 Q5-Q8 , 防止了同步整流电路的开关电源中反灌电流继续增加。 同时, t2时刻第一控制信号 CMPout的输出为高, 第一开关管 Q9会导通, 使 RESET脚电容上电压 继续缓慢下降。 直到 t3时刻, 缓慢下降的 RESET电平为低, 这时由于输入没有检测到电流反灌状态, 第一控制信号 CMPout输出为低, 使第一三极管 Q13的集电极处的 CNT电平为低, 关断第三 开关管 Q11和第四开关管 Q12, 从而恢复向第一驱动 U4和第二驱动 U5输入第一驱动信号 DRVA和第二驱动信号 DRVB, 同步整流电路的开关电源电路恢复正常工作状态。 图 7为本发明实施例五提供的抑制反向电流浪涌的控制方法的流程图。 本实施例的 执行主体为控制电路。 如图 7所示, 本实施例的抑制反向电流浪涌的控制方法, 具体可 以包括如下步骤: 步骤 100、 当同步整流电路的开关电源电路的原边出现反向浪涌电流时, 步骤 101、 当电压信号大于预设的第一电压阈值时, 在预设的第一时间段内持续输 出一第一控制信号; 步骤 102、 根据第一控制信号, 控制关断同步整流电路的开关电源电路的副边开关 管。 具体地, 在同步整流电路的开关电源中, 在输入电源产生低阻抗跌落时, 同步整流 电路的开关电源的原边会产生很大的电流反向浪涌。当同步整流电路的开关电源的原边 开关管整流单元发生电流反向时, 获取反向电流产生的电压信号。 当获取的电压信号大 于预设的第一电压阈值时, 在预设的第一时间段内, 持续输出第一控制信号。 最后根据 第一控制信号, 关断同步整流电路的开关电源的副边的开关管, 以在发生电流反向浪涌 时, 保证同步整流电路的开关电源电路中的开关管避免受到损坏。 本实施例的抑制反向电流浪涌的控制方法, 当发生电流反向浪涌时, 通过获取反向 浪涌电流产生的电压信号并进行检测, 以对同步整流电路的开关电源的副边的开关管进 行断开,有效地抑制了电流反向浪涌,保证了同步整流电路的开关电源中开关管的安全。 因此, 保证了电源的可靠性、 同时, 采用本实施例的技术方案, 还能够保证电源的工作 效率。 图 8本发明实施例六提供的抑制反向电流浪涌的控制方法的流程图。在上述图 7所示 实施例的基础上, 如图 8所示, 本实施例的抑制反向电流浪涌的控制方法, 在上述步骤 102之后, 具体还可以包括如下步骤: 步骤 103、 当同步整流电路的开关电源电路的副边的输出电压大于预设的第二电压 阈值时, 输出第二控制信号; 步骤 104、 根据第二控制信号, 控制导通同步整流电路的开关电源电路的副边开关 管。 具体地, 由于当发生发向电流浪涌时, 采用上述实施例五的方案, 快速关断同步整 流电路的开关电源电路的副边的开关管, 从而保证开关管的安全。 但是有些时候, 快速 关断同步整流电路的开关电源电路的副边的开关管之后, 由于副边输出端的电压没有及 时释放, 造成副边输出端的电压过高, 给电源造成很大的安全隐患。 本实施例通过检测 同步整流电路的开关电源电路的副边的输出端的电压, 当检测到同步整流电路的开关电 源电路的副边的输出端的电压过压输出时, 即副边的输出电压大于预设的第二电压阈值 时, 输出第二控制信号, 以导通同步整流电路的开关电源电路的副边开关管, 释放同步 整流电路的开关电源电路的副边的输出端的电压。 本实施例的抑制反向电流浪涌的控制方法, 可以防止抑制反向电流浪涌过程中, 造 成同步整流电路的开关电源电路的副边的输出端的电压过高,对同步整流电路的开关电 源电路中元件造成损坏;能够有效地保护同步整流电路的开关电源电路的安全性。因此, 保证了电源的可靠性、 同时, 采用本实施例的技术方案, 还能够保证电源的工作效率。 图 7和图 8所示实施例的抑制反向电流浪涌的控制方法的实现流程与上述图 1-图 6所 对应实施例的控制电路或控制电路处于对应电源装置中的实现机制相同,详细亦可参照 上述控制电路实施例的相关描述, 在此不再赘述。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序 在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM, 磁碟 或者光盘等各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管 参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然 可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替 换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的 精神和范围。

Claims

权利要求
1、 一种控制电路, 其特征在于, 包括:
获取模块, 用于当同步整流电路的开关电源电路的原边出现反向浪涌电流时, 获取 所述反向浪涌电流产生的电压信号;
保持模块, 用于当所述电压信号大于预设的第一电压阈值时, 在预设的第一时间段 内持续输出第一控制信号;
控制模块,用于根据所述第一控制信号控制关断所述同步整流电路的开关电源电路 的副边开关管。
2、 根据权利要求 1所述的控制电路, 其特征在于, 还包括检测模块, 用于当所述同 步整流电路的开关电源电路的副边的输出电压大于预设的第二电压阈值时,输出第二控 制信号;
所述控制模块,还用于根据所述第二控制信号控制导通所述同步整流电路的开关电 源电路的副边开关管。
3、 根据权利要求 2所述的控制电路, 其特征在于, 所述控制模块还用于, 根据所述 第二控制信号控制导通所述同步整流电路的开关电源电路的副边开关管的驱动, 以导通 所述同步整流电路的开关电源电路的副边开关管。
4、 根据权利要求 1-3任一所述的控制电路, 其特征在于, 所述获取模块包括电流取 样电阻和信号放大器;
所述取样电阻, 设置在所述同步整流电路的开关电源电路的原边上;
所述信号放大器,用于从所述取样电阻两端获取所述反向浪涌电流产生的初始电压 信号, 并将所述初始电压信号进行放大处理, 得到所述电压信号。
5、 根据权利要求 1-3任一所述的控制电路, 其特征在于, 所述保持模块包括: 比较器, 用于对所述电压信号和预设的所述第一电压阈值进行比较, 当所述电压信 号大于所述第一电压阈值时, 输出所述第一控制信号;
所述比较器上设置有复位引脚, 当所述复位引脚为第一电平时, 所述比较器处于输 入比较并触发维持状态, 所述比较器持续输出所述第一控制信号; 当所述复位引脚为第 二电平时, 所述比较器被复位, 恢复输入并比较输出的状态;
第一控制单元, 用于当所述电压信号大于所述第一电压阈值时, 所述比较器输出所 述第一控制信号时, 控制所述复位引脚的电压降低, 直至经过所述第一时间段使得所述 复位引脚为低电平。
6、 根据权利要求 5所述的控制电路, 其特征在于, 所述保持模块还包括至少两个串 接的分压电阻;所述至少两个串接的分压电阻的一端与所述电压信号相连,另一端接地; 所述至少两个串接的分压电阻用于对所述电压信号进行分压, 向所述比较器输出分压电 压信号;
所述比较器, 具体用于对所述分压电压信号和预设的所述第一电压阈值进行比较, 当所述分压电压信号大于所述第一电压阈值时, 输出所述第一控制信号。
7、 根据权利要求 5所述的控制电路, 其特征在于, 所述第一控制单元包括: 电容, 所述电容的一端与所述复位引脚相连, 另一端接地;
所述电容的一端还通过电阻与第一电源相连,用于当所述比较器未输出所述第一控 制信号时, 保持所述电容一端为高电平, 以使得所述复位引脚为高电平; 当所述比较器 输出所述第一控制信号时, 所述第一控制信号控制所述电容放电, 以降低所述复位引脚 的电压, 直至经过所述第一时间段使得所述复位引脚降为低电平。
8、 根据权利要求 1所述的控制电路, 其特征在于, 所述控制模块包括光耦和第二控 制单元;
所述光耦, 用于根据所述第一控制信号, 导通所述第二控制单元;
所述第二控制单元,用于导通时控制关断所述同步整流电路的开关电源电路的副边 开关管。
9、根据权利要求 8所述的控制电路,其特征在于,所述第二控制单元包括第二电源、 第一三极管和接地电阻;
所述第一三极管的发射极与所述第二电源连接,所述第一三极管的集电极通过所述 接地电阻接地;
所述光耦通过导通所述第一三极管,控制关断所述同步整流电路的开关电源电路的 副边开关管。
10、 根据权利要求 2所述的控制电路, 其特征在于, 所述检测模块包括至少一个稳 压二极管,所述至少一个稳压二极管一端与所述同步整流电路的开关电源电路的副边的 输出电压端相连, 另一端与所述第一三极管的所述基极相连;
所述至少一个稳压二极管,用于在所述同步整流电路的开关电源电路的副边的输出 电压大于所述至少一个稳压二极管上预设的所述第二电压阈值时, 关断所述第一三极 管, 并控制导通所述同步整流电路的开关电源电路的副边开关管。
11、 根据权利要求 1所述的控制电路, 其特征在于, 所述控制模块, 具体用于根据 所述第一控制信号控制关断所述同步整流电路的开关电源电路的副边开关管的驱动, 以 关断所述同步整流电路的开关电源电路的副边开关管。
12、 一种电源装置, 包括同步整流电路的开关电源电路和如上权利要求 1-11任一所 述的控制电路。
13、 一种抑制反向电流浪涌的控制方法, 其特征在于, 包括:
当同步整流电路的开关电源电路的原边出现反向浪涌电流时, 获取所述
当所述电压信号大于预设的第一电压阈值时,在预设的第一时间段内持续输出一第 一控制信号;
根据所述第一控制信号, 控制关断所述同步整流电路的开关电源电路的副边开关 管。
14、 根据权利要求 13所述的抑制反向电流浪涌的控制方法, 其特征在于, 还包括: 当所述同步整流电路的开关电源电路的副边的输出电压大于预设的第二电压阈值 时, 输出第二控制信号;
根据所述第二控制信号, 控制导通所述同步整流电路的开关电源电路的副边开关 管。
PCT/CN2010/079589 2010-06-28 2010-12-09 控制电路及方法、电源装置 WO2011085622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010212837.4 2010-06-28
CN2010102128374A CN101895207A (zh) 2010-06-28 2010-06-28 控制电路及方法、电源装置

Publications (1)

Publication Number Publication Date
WO2011085622A1 true WO2011085622A1 (zh) 2011-07-21

Family

ID=43104312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079589 WO2011085622A1 (zh) 2010-06-28 2010-12-09 控制电路及方法、电源装置

Country Status (4)

Country Link
US (2) US9276485B2 (zh)
EP (1) EP2400644B1 (zh)
CN (1) CN101895207A (zh)
WO (1) WO2011085622A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850953A (zh) * 2019-11-14 2020-02-28 中国航空工业集团公司西安航空计算技术研究所 一种耐过压浪涌电路
CN113541454A (zh) * 2021-07-29 2021-10-22 阳光电源股份有限公司 开关电源控制电路、开关电源的控制方法及装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895207A (zh) * 2010-06-28 2010-11-24 华为技术有限公司 控制电路及方法、电源装置
CN202217199U (zh) * 2011-07-21 2012-05-09 中兴通讯股份有限公司 一种电源模块和供电系统
US20130082538A1 (en) * 2011-09-05 2013-04-04 Peter Wambsganss Circuitry And Method For Inductive Power Transmission
CN102545621B (zh) * 2011-11-21 2014-03-12 华为技术有限公司 一种开关电源及控制方法
US8879217B2 (en) * 2012-06-29 2014-11-04 Infineon Technologies Austria Ag Switching regulator with negative current limit protection
CN102739090B (zh) * 2012-07-02 2014-06-25 华为技术有限公司 一种逆变器的过流保护装置及方法、逆变器
CN103887973B (zh) * 2012-12-24 2018-07-06 中兴通讯股份有限公司 控制倒灌电流产生功率管电压应力的方法及系统
US9438127B2 (en) 2013-03-11 2016-09-06 Analog Devices Global Reverse current control for an isolated power supply having synchronous rectifiers
US9577546B2 (en) 2013-03-15 2017-02-21 Pai Capital Llc Power converter with self-driven synchronous rectifier control circuitry
CN103280959B (zh) * 2013-05-20 2016-03-02 广州视源电子科技股份有限公司 开关电源变换器同步整流电路
US9236809B2 (en) * 2013-10-16 2016-01-12 Texas Instruments Incorporated Automatic timing adjustment for synchronous rectifier circuit
CN104659751A (zh) * 2013-11-20 2015-05-27 艾默生网络能源系统北美公司 一种整流电路的保护电路及电源
KR101501854B1 (ko) 2013-12-20 2015-03-11 엘에스산전 주식회사 동기 정류기의 구동 장치
CN104934944B (zh) * 2014-03-21 2018-09-07 绿达光电股份有限公司 过电压保护控制方法与相关的电源控制器
CN105337483A (zh) * 2014-08-07 2016-02-17 中兴通讯股份有限公司 一种防止电流反灌的装置
CN104502677A (zh) * 2014-11-17 2015-04-08 华为技术有限公司 检测电压变化的方法和装置
JP6619029B2 (ja) * 2015-06-25 2019-12-11 マイクロ モーション インコーポレイテッド アナログ式オプトカプラ用の入力保護回路
CN105553277B (zh) * 2015-12-31 2019-01-08 北京动力源科技股份有限公司 一种数字同步整流控制方法、装置及开关电源
US9780635B1 (en) * 2016-06-10 2017-10-03 Crane Electronics, Inc. Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters
CN107919867B (zh) * 2016-10-09 2020-12-08 华为技术有限公司 数字信号输入电路
CN106300966B (zh) * 2016-10-18 2018-10-30 成都前锋电子仪器有限责任公司 一种用于电源分析仪电源模块
CN108462163B (zh) * 2017-02-20 2019-09-17 成都鼎桥通信技术有限公司 满足负向浪涌要求的直流防反接电路
US9979285B1 (en) 2017-10-17 2018-05-22 Crane Electronics, Inc. Radiation tolerant, analog latch peak current mode control for power converters
CN107666305B (zh) * 2017-10-30 2023-10-03 杭州乾龙电器有限公司 智能开关
CN108964426B (zh) * 2018-08-27 2020-09-15 深圳市稳先微电子有限公司 一种同步整流管的控制芯片及ac-dc系统
CN109343401B (zh) * 2018-10-22 2023-03-24 正知(上海)智能技术有限公司 一种基于arm的人机交互控制系统及防爆箱
US10425080B1 (en) 2018-11-06 2019-09-24 Crane Electronics, Inc. Magnetic peak current mode control for radiation tolerant active driven synchronous power converters
CN111478566B (zh) * 2019-01-24 2022-12-13 海信视像科技股份有限公司 同步整流电路及显示装置
US11075585B2 (en) 2019-01-24 2021-07-27 Hisense Visual Technology Co., Ltd. Synchronous rectification circuit and display device
CN113193753B (zh) * 2020-01-13 2023-01-10 北京新能源汽车股份有限公司 一种同步整流装置以及无线充电系统的接收端模块
CN112014621A (zh) * 2020-08-03 2020-12-01 深圳创维-Rgb电子有限公司 一种电流检测电路、开关电源及电视机
CA3189138A1 (en) * 2020-08-11 2022-02-17 William Pachoud Mini automatic transfer switch
CN113904316B (zh) * 2021-10-27 2023-11-21 江苏嘉擎信息技术有限公司 用于主板设备的输入电源防护电路
CN114003147B (zh) * 2021-11-02 2022-08-09 深圳市汇顶科技股份有限公司 信号检测装置、触控板和电子设备
CN116456537B (zh) * 2023-04-28 2024-02-02 上海晶丰明源半导体股份有限公司 接口控制电路、控制方法及接口控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818704A (en) * 1997-04-17 1998-10-06 International Rectifier Corporation Synchronizing/driving circuit for a forward synchronous rectifier
CN1504014A (zh) * 2000-11-06 2004-06-09 艾利森公司 在同步整流变换器电路中减小反向电流的方法和电路
CN1691480A (zh) * 2004-04-14 2005-11-02 株式会社瑞萨科技 电源设备和开关式电源设备
CN101141095A (zh) * 2006-09-06 2008-03-12 台达电子工业股份有限公司 具有反向电流抑制器的同步整流顺向转换器
CN201048354Y (zh) * 2007-05-08 2008-04-16 新巨企业股份有限公司 同步整流控制电路
CN101895207A (zh) * 2010-06-28 2010-11-24 华为技术有限公司 控制电路及方法、电源装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841643A (en) * 1997-10-01 1998-11-24 Linear Technology Corporation Method and apparatus for isolated flyback regulator control and load compensation
JP3391320B2 (ja) * 1999-12-09 2003-03-31 株式会社村田製作所 Dc−dcコンバータ
CN1144345C (zh) 2000-07-07 2004-03-31 艾默生网络能源有限公司 反激同步整流dc/dc变换器保护装置
JP4088756B2 (ja) * 2001-03-13 2008-05-21 デンセイ・ラムダ株式会社 スイッチング電源装置
WO2003005546A1 (en) * 2001-07-05 2003-01-16 Di/Dt, Inc. Method and apparatus for controlling synchronous rectifiers of a power converter
US6618274B2 (en) * 2001-10-09 2003-09-09 Innoveta Technologies Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output
US6683443B2 (en) * 2002-02-20 2004-01-27 Texas Instruments Incorporated Soft start circuit for regulated power supply
JP4264837B2 (ja) * 2003-09-02 2009-05-20 サンケン電気株式会社 同期整流型dc−dcコンバータ
US7224590B2 (en) * 2004-09-30 2007-05-29 Acbol Polytech Inc. Forward converter with synchronous rectifier and reverse current control
US7616464B2 (en) * 2005-08-16 2009-11-10 Astec International Limited Reverse current control system for a power converter
US8233293B2 (en) * 2006-01-19 2012-07-31 Astec International Limited Reverse current protection for power converters having synchronous rectifiers
US7535210B2 (en) * 2006-10-18 2009-05-19 Texas Instruments Incorporated Predictive duty ratio generating circuit and method for synchronous boost converters operating in PFM mode
CN101399498B (zh) * 2007-09-26 2013-08-28 华为技术有限公司 直流转换电源装置及改进直流转换电源装置的方法
US20100026253A1 (en) 2008-07-30 2010-02-04 Shih-Yuan Wang Buck converter with surge protection
CN201256290Y (zh) 2008-08-04 2009-06-10 研祥智能科技股份有限公司 一种抑制浪涌电流和防输入电压反接的保护电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818704A (en) * 1997-04-17 1998-10-06 International Rectifier Corporation Synchronizing/driving circuit for a forward synchronous rectifier
CN1504014A (zh) * 2000-11-06 2004-06-09 艾利森公司 在同步整流变换器电路中减小反向电流的方法和电路
CN1691480A (zh) * 2004-04-14 2005-11-02 株式会社瑞萨科技 电源设备和开关式电源设备
CN101141095A (zh) * 2006-09-06 2008-03-12 台达电子工业股份有限公司 具有反向电流抑制器的同步整流顺向转换器
CN201048354Y (zh) * 2007-05-08 2008-04-16 新巨企业股份有限公司 同步整流控制电路
CN101895207A (zh) * 2010-06-28 2010-11-24 华为技术有限公司 控制电路及方法、电源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850953A (zh) * 2019-11-14 2020-02-28 中国航空工业集团公司西安航空计算技术研究所 一种耐过压浪涌电路
CN110850953B (zh) * 2019-11-14 2023-06-30 中国航空工业集团公司西安航空计算技术研究所 一种耐过压浪涌电路
CN113541454A (zh) * 2021-07-29 2021-10-22 阳光电源股份有限公司 开关电源控制电路、开关电源的控制方法及装置

Also Published As

Publication number Publication date
US9276485B2 (en) 2016-03-01
EP2400644B1 (en) 2014-10-15
EP2400644A1 (en) 2011-12-28
US20120026756A1 (en) 2012-02-02
CN101895207A (zh) 2010-11-24
US8259470B2 (en) 2012-09-04
US20110317453A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
WO2011085622A1 (zh) 控制电路及方法、电源装置
CN102097778B (zh) 一种节能型欠压和过压保护装置
US9083181B2 (en) Over-current protection circuit for light source driving module and related backlight module
TW201320517A (zh) 保護開路和/或短路狀況下電源變換系統的系統和方法
JP6498199B2 (ja) 突入電流制限装置
CN102684652B (zh) 防mcu或驱动ic故障的同步脉冲控制电路
WO2013107320A1 (zh) 浪涌保护电路
WO2013174137A1 (zh) 绝缘栅双极型晶体管的驱动电路
CN105634260B (zh) 输出短路保护电路
WO2012065494A1 (zh) 一种实现串口隔离的方法和串口隔离电路
CN104348365B (zh) 控制电路及方法、电源装置
WO2022193696A1 (zh) 交流电机的档位控制电路和系统、开关控制器及电子设备
WO2016192459A1 (zh) 电压保护电路和系统
CN104135257A (zh) 一种新型稳定实用的可控硅触发电路
TW201611484A (zh) 多相電源電路
TW202017295A (zh) 電源轉換器
CN214338161U (zh) 电磁炉专用芯片二级电流浪涌保护电路
CN112751410B (zh) 低压直流电路供电控制电路
CN208589767U (zh) 一种电源或电池输出自恢复短路保护电路
TWI554004B (zh) 電源轉換裝置及其控制方法
CN209104791U (zh) 一种电机过流保护电路
CN202076774U (zh) 一种节能型欠压/过压保护装置
CN219576881U (zh) 一种具有短路保护功能的开关电源
CN210142904U (zh) 直流供电系统中过压、反接及误接220vac保护装置
CN103647249A (zh) 一种欠压保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842904

Country of ref document: EP

Kind code of ref document: A1