WO2016192459A1 - 电压保护电路和系统 - Google Patents

电压保护电路和系统 Download PDF

Info

Publication number
WO2016192459A1
WO2016192459A1 PCT/CN2016/078716 CN2016078716W WO2016192459A1 WO 2016192459 A1 WO2016192459 A1 WO 2016192459A1 CN 2016078716 W CN2016078716 W CN 2016078716W WO 2016192459 A1 WO2016192459 A1 WO 2016192459A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
negative
protection circuit
mos transistor
dividing unit
Prior art date
Application number
PCT/CN2016/078716
Other languages
English (en)
French (fr)
Inventor
杨振兴
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016192459A1 publication Critical patent/WO2016192459A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present application relates to, but is not limited to, the field of electronic circuits, and more particularly to a voltage protection circuit and system.
  • Embodiments of the present invention provide a voltage protection circuit and system, which can solve the problem of system restart caused by the occurrence of negative lightning current or negative surge.
  • a voltage protection circuit includes a negative voltage detection comparison circuit, an isolation photocoupler and a MOS transistor; wherein:
  • the negative voltage detection comparison circuit is configured to: detect whether the negative voltage reaches a preset a voltage threshold, if the negative voltage reaches the voltage threshold, controlling the isolation optocouple to be in an on state;
  • the isolation optocoupler is configured to: control a MOS transistor connected to the isolation optocoupler to be turned off;
  • the MOS transistor is connected to the isolation optocoupler and the load circuit.
  • the negative voltage detection and comparison circuit is further configured to:
  • the isolation optocoupler is controlled to be in an off state when the negative voltage does not reach a preset voltage threshold.
  • the negative voltage detection and comparison circuit includes: a first voltage dividing unit, a second voltage dividing unit, a diode, and a voltage reference unit, wherein one end of the second voltage dividing unit is connected to the input terminal negative pole, and the second voltage dividing unit The other end is connected to the first voltage dividing unit, the first voltage dividing unit is connected to the anode pin of the voltage reference unit, the anode pin of the voltage reference unit is connected to the anode pin of the diode, and the cathode pin of the diode is connected to the input. The positive side of the end.
  • the negative voltage detection and comparison circuit further includes: a first capacitor, wherein the first capacitor and the first voltage dividing unit are connected in parallel to the REF pin and the anode pin of the voltage reference unit.
  • the negative voltage detection and comparison circuit further includes: a voltage dividing adjustment circuit configured to: adjust a ratio between a voltage of the first voltage dividing unit and a voltage of the second voltage dividing unit.
  • one end of the cathode of the isolation optocoupler is connected to the cathode pin of the voltage reference unit, and the other end of the isolation optocoupler is connected to the cathode of the input terminal through a resistor; the emission of the side of the isolation optocoupler The pole is connected to the source of the MOS transistor, and the collector of the secondary side of the isolation optocoupler is connected to the gate of the MOS transistor through a resistor.
  • the MOS tube is co-located with a DC power source of the load.
  • the voltage protection circuit further includes: a decoupling inductor located on a negative path between the negative voltage detection and comparison circuit and the MOS transistor on the input line.
  • a voltage protection system comprising:
  • an input end of the voltage protection circuit is connected to an output end of the protection circuit, and an output end of the voltage protection circuit is connected to an input end of the load circuit.
  • the circuit between the protection circuit and the load is turned on, and the problem of the system restart caused by the negative lightning current or the negative surge is solved, and the problem is improved.
  • the reliability of electronic communication equipment increases the customer experience satisfaction of the equipment.
  • the voltage protection circuit provided by the embodiment of the invention has the anti-reverse connection function, and when the input source and the negative input of the device are reversed, the device will not be damaged.
  • the voltage protection circuit provided by the embodiment of the invention has certain versatility, and the circuit is simple and easy to implement.
  • FIG. 1 is a schematic diagram of a voltage protection circuit according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a voltage protection circuit according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a voltage protection circuit according to an embodiment of the present invention.
  • the voltage protection circuit shown in FIG. 1 includes a negative voltage detection comparison circuit, an isolation photocoupler, and a MOS (Metal Oxide Semiconductor) tube;
  • MOS Metal Oxide Semiconductor
  • the negative voltage detection and comparison circuit is configured to: detect whether the negative voltage reaches a preset voltage threshold, and if the negative voltage reaches the voltage threshold, control the isolation optocouple to be in an on state;
  • the isolation optocoupler is configured to: control a MOS transistor connected to the isolation optocoupler to be turned off;
  • the MOS transistor is connected to the isolation optocoupler and the load circuit.
  • the voltage protection circuit determines whether the circuit between the protection circuit and the load is turned on according to the comparison between the negative voltage and the voltage threshold, and solves the negative lightning current or the negative surge.
  • the problem of causing the system to restart has increased the reliability of the electronic communication device and improved the customer experience satisfaction of the device.
  • the negative voltage detection and comparison circuit is further configured to:
  • the isolation optocoupler is controlled to be in an off state when the negative voltage does not reach a preset voltage threshold.
  • the voltage threshold is determined according to the actual needs of the circuit, for example, the voltage threshold is calculated according to the magnitude of the voltage causing the load to restart, or is determined according to an empirical value.
  • the negative voltage detection and comparison circuit includes: a first voltage dividing unit, a second voltage dividing unit, a diode, and a voltage reference unit, wherein one end of the second voltage dividing unit is connected to the input terminal negative pole, and the second voltage dividing unit The other end is connected to the first voltage dividing unit, the first voltage dividing unit is connected to the anode pin of the voltage reference unit, the anode pin of the voltage reference unit is connected to the anode pin of the diode, and the cathode pin of the diode is connected to the input. The positive side of the end.
  • the protective circuit at the front end first generates a negative voltage, and a voltage is generated across the first voltage dividing unit when the voltage reaches the reference voltage of the voltage reference unit.
  • the optocoupler When the diode is turned on, the optocoupler is turned on, and the optocoupler side pulls the driving VDR of the MOS transistor to DC-, and turns off VT1, so that no large reverse current is generated, and the energy of the front end of the load is avoided.
  • the system is restarted after being pumped back.
  • the voltage reference unit and the isolated optocoupler will not work due to the unidirectional conductivity of the diode, and the MOS tube is driven by an external circuit.
  • the voltage makes the MOS transistor turn on and the circuit works normally.
  • the negative voltage detection and comparison circuit further includes: a first capacitor, wherein the first capacitor and the first voltage dividing unit are connected in parallel with a REF pin and an anode of the voltage reference unit.
  • the function of the first capacitor is to filter the voltage reference unit to increase the anti-interference capability of the first capacitor.
  • the capacitance of the first capacitor is a picofarad (pf) level.
  • the negative voltage detection and comparison circuit further includes: a voltage dividing adjustment circuit configured to: adjust a ratio between a voltage of the first voltage dividing unit and a voltage of the second voltage dividing unit.
  • the voltage obtained by the two voltage dividing units can be controlled by the voltage dividing adjusting circuit, thereby realizing the modification of the voltage threshold.
  • one end of the cathode of the isolation optocoupler is connected to the cathode pin of the voltage reference unit, and the other end of the isolation optocoupler is connected to the cathode of the input terminal through a resistor; the emission of the side of the isolation optocoupler The pole is connected to the source of the MOS transistor, and the collector of the secondary side of the isolation optocoupler is connected to the gate of the MOS transistor through a resistor.
  • the MOS tube is co-located with a DC power source of the load.
  • the voltage protection circuit further includes: a decoupling inductor located on a negative path between the negative voltage detection and comparison circuit and the MOS transistor on the input line.
  • the function of the decoupling inductor is to prevent the voltage on the capacitor from being absorbed too quickly by the negative lightning current or surge when the large negative lightning current or surge occurs, so that the port generates negative voltage for negative voltage detection. Compare circuit actions.
  • an embodiment of the present invention further provides a voltage protection system, including:
  • an input end of the voltage protection circuit is connected to an output end of the protection circuit, and an output end of the voltage protection circuit is connected to an input end of the load circuit.
  • the circuit between the protection circuit and the load is turned on, and the problem that the system is restarted due to the occurrence of the negative lightning current or the negative surge is solved, and the electronic is improved.
  • the reliability of the communication device improves the customer experience satisfaction of the device.
  • FIG. 2 is a structural diagram of a voltage protection circuit according to an embodiment of the present invention.
  • the voltage protection circuit shown in FIG. 2 includes: a negative voltage detection and comparison circuit, an isolation photocoupler D2 that controls the MOS transistor to be turned on or off, and a decoupling Inductor L1 and power MOS transistor VT1.
  • the voltage protection circuit provided by the embodiment of the present invention is placed to meet the specification requirements.
  • the decoupled inductor L1 is placed on the negative path of the input line before the MOS tube.
  • the negative voltage detection and comparison circuit includes: a first voltage dividing resistor R1, a second voltage dividing resistor R2, a first capacitor C1, a diode VD1, and a voltage reference unit D1.
  • One end of the R2 is connected to the input terminal negative pole, R2.
  • the other end is connected to R1.
  • R1 and C1 are connected in parallel with the REF pin and the anode pin of D1.
  • the anode pin of D1 is connected to the anode pin of diode VD1, and the cathode pin of VD1 is connected to the positive terminal of the input terminal.
  • the cathode lead of the voltage reference unit D1 is connected to the cathode end of the primary side of the photocoupler D2, the anode of the other end of the photocoupler D2 is connected to the resistor R3, and the other end of the R3 is connected to the cathode of the input terminal.
  • the emitter of the secondary side of the optocoupler D2 is connected to the source of the MOS transistor VT1, and the collector of the secondary side of the photocoupler D2 is connected to the gate of the MOS transistor VT1 through a driving resistor R4.
  • a MOS transistor VT1 driving voltage is generated.
  • the driving voltage VDR of the MOS transistor VT1 is derived from DC+ and DC-, and the R6 is connected in series with the 12V Zener diode VD3 to generate the MOS transistor VT1.
  • the 12V driving voltage and the capacitor C2 function as a filter energy storage.
  • R1 and R2 are divided in series.
  • D1 is turned on, and then the photocoupler D2 is turned on, and the optocoupler D2 is connected to the MOS transistor VT1.
  • the driving VDR is pulled low to DC-, and the MOS tube VT1 cannot be turned on.
  • the negative voltage after the reverse connection does not reach the load of the latter stage (Load), thereby avoiding damage of the rear stage load.
  • a protective circuit at the front end When a negative lightning current or a negative surge occurs in the circuit, first, a protective circuit at the front end generates a negative voltage at the AB terminal, and a voltage is generated across the R1 when the voltage reaches the reference voltage of the voltage reference unit D1. D1 is turned on, and then the photocoupler D2 is turned on. The optocoupler D2 pulls the drive VDR of the MOS transistor VT1 down to DC-, and turns off the MOS transistor VT1, so that no large reverse current is generated, and the load is avoided. The energy on the front-end capacitor C3 is reversed to cause the system to restart.
  • the application example provided by the embodiment of the present invention solves the problem that the system is restarted due to the occurrence of a negative lightning current or a negative surge by detecting the residual voltage after the lightning surge protection circuit, thereby improving the reliability of the electronic communication device and improving the reliability. Customer experience satisfaction with the device.
  • the voltage protection circuit provided by the embodiment of the invention has the anti-reverse connection function, and when the input source and the negative input of the device are reversed, the device will not be damaged.
  • the voltage protection circuit provided by the embodiment of the invention has certain versatility, and the circuit is simple and easy to implement.
  • the embodiment of the invention provides a voltage protection circuit and system, which solves the problem that the system is restarted due to the occurrence of negative lightning current or negative surge, improves the reliability of the electronic communication device, and improves the customer experience satisfaction of the device.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种电压保护电路和电压保护系统。该电压保护电路包括:负向电压检测比较电路、隔离光耦(D2)和MOS管(VT1)。负向电压检测比较电路设置为:检测负向电压是否达到预先设置的电压阈值,如果负向电压达到电压阈值,则控制隔离光耦(D2)处于导通状态;隔离光耦(D2)设置为:控制与隔离光耦(D2)相连的MOS管(VT1)截止;MOS管(VT1)与隔离光耦(D2)和负载电路相连。该电压保护电路能够解决负向雷击电流或负向浪涌的出现造成系统重启的问题,并且兼具防反接功能。

Description

电压保护电路和系统 技术领域
本申请涉及但不限于电子电路领域,尤其涉及一种电压保护电路和系统。
背景技术
随着科学技术的进步及生活水平的提高,用户对电子通信设备的要求也越来越高。电子通信设备的抗雷击电流及浪涌能力越来越受到相应领域人士及相关电子通信设备厂家的重视。世界各国基本都出台了相关的电磁兼容标准,规定进入各国市场的电子通信设备必须满足各国的认证要求。比如,我国的3C认证标准,欧洲的CE认证标准,美国的UL认证标准。这些认证标准均对雷击电流和浪涌指标做了明确的等级要求。进入这些国家的电子通信设备必须满足对雷击电流和浪涌指标的要求。
由于雷击电流、浪涌等会产生瞬时大电流、过电压,为了避免电子、通信设备在实际使用的过程中受到损坏或影响用户体验,需要对雷击电流、浪涌采取防护措施。尤其是负向雷击电流或浪涌出现时,会吸收负载前端的电容上的能量,可能会造成系统重启,严重影响用户体验,给用户造成不好的产品质量印象。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种电压保护电路和系统,能够解决负向雷击电流或负向浪涌的出现造成系统重启的问题。
本发明实施例提供了如下技术方案:
一种电压保护电路,包括负向电压检测比较电路、隔离光耦和MOS管;其中:
所述负向电压检测比较电路,设置为:检测负向电压是否达到预先设置 的电压阈值,如果所述负向电压达到所述电压阈值,则控制所述隔离光耦处于导通状态;
所述隔离光耦,设置为:控制与所述隔离光耦相连的MOS管截止;
所述MOS管,与所述隔离光耦和负载电路相连。
其中,所述负向电压检测比较电路还设置为:
在所述负向电压未达到预先设置的电压阈值时,控制所述隔离光耦处于断开状态。
其中,所述负向电压检测比较电路包括:第一分压单元、第二分压单元、二极管和电压基准单元,其中,第二分压单元的一端接输入端负极,第二分压单元的另一端与第一分压单元相连,所述第一分压单元与电压基准单元的阳极引脚相连,电压基准单元的阳极引脚接在二极管的阳极引脚,二极管的阴极引脚接在输入端的正极。
其中,所述负向电压检测比较电路还包括:第一电容,其中,所述第一电容和所述第一分压单元并联在电压基准单元的REF引脚和阳极引脚。
其中,所述负向电压检测比较电路还包括:分压调节电路,设置为:调节第一分压单元的电压和第二分压单元的电压之间的比值。
其中,所述隔离光耦原边的阴极一端与电压基准单元的阴极引脚相连,所述隔离光耦原边的另一端阳极通过电阻与输入端的负极相连;所述隔离光耦副边的发射极与MOS管的源极相连,所述隔离光耦副边的集电极通过电阻与MOS管的栅极相连。
其中,所述MOS管与负载的直流电源共地。
其中,所述电压保护电路还包括:退偶电感,位于输入线路上所述负向电压检测比较电路与MOS管之间的负向通道上。
一种电压保护系统,包括:
防护电路;
上文所述的电压保护电路,所述电压保护电路的输入端与所述防护电路的输出端相连,所述电压保护电路的输出端与负载电路的输入端相连。
在本发明实施例中,根据负向电压与电压阈值的比较,确定防护电路和负载之间的电路是否导通,解决了负向雷击电流或负向浪涌出现造成系统重启的问题,提高了电子通信设备的可靠性,提高了设备的客户体验满意度。
而且,本发明实施例提供的电压保护电路兼具防反接功能,当设备的输入源正负极接反时,不会对设备造成损坏。本发明实施例提供的电压保护电路具有一定的通用性,电路简单,易于实现。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种电压保护电路的示意图;
图2为本发明实施例提供的一种电压保护电路的结构图。
本发明的实施方式
下面将结合附图及具体实施例对本申请作进一步的详细描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例提供的一种电压保护电路的示意图。图1所示的电压保护电路,包括负向电压检测比较电路、隔离光耦和MOS(Metal Oxide Semiconductor,金属-氧化物-半导体)管;其中:
所述负向电压检测比较电路,设置为:检测负向电压是否达到预先设置的电压阈值,如果所述负向电压达到所述电压阈值,则控制所述隔离光耦处于导通状态;
所述隔离光耦,设置为:控制与所述隔离光耦相连的MOS管截止;
所述MOS管,与所述隔离光耦和负载电路相连。
在实际应用中,负向雷击电流或负向浪涌出现时,有以下两种常见的方法可以解决此问题:1、利用晶体管的开关特性,同时检测干路中的逆向电流,设置合适的电流阈值,控制晶体管的导通与关断。然而,使用此方法需要额外增加一个具有阻性功能器件以便检测逆向电流,不具有通用性;2、利用晶 体管的开关特性,同时检测雷击防护电路之后的负向残压,设置合适电压阈值,控制晶体管的导通与关断。
由上可以看出,本发明实施例提供的电压保护电路,根据负向电压与电压阈值的比较,确定防护电路和负载之间的电路是否导通,解决了负向雷击电流或负向浪涌出现造成系统重启的问题,提高了电子通信设备的可靠性,提高了设备的客户体验满意度。
另外,所述负向电压检测比较电路还设置为:
在所述负向电压未达到预先设置的电压阈值时,控制所述隔离光耦处于断开状态。
其中,该电压阈值是根据电路的实际需要确定的,例如根据造成负载重启的电压的大小计算出电压阈值,或者,根据经验值确定。
其中,所述负向电压检测比较电路包括:第一分压单元、第二分压单元、二极管和电压基准单元,其中,第二分压单元的一端接输入端负极,第二分压单元的另一端与第一分压单元相连,所述第一分压单元与电压基准单元的阳极引脚相连,电压基准单元的阳极引脚接在二极管的阳极引脚,二极管的阴极引脚接在输入端的正极。
当电路中出现负向雷击电流或负向浪涌时,首先经过前端的防护电路会产生负向电压,此时会在第一分压单元两端产生电压,当电压达到电压基准单元的基准电压时,二极管导通,随之隔离光耦导通,光耦副边把MOS管的驱动VDR拉低到DC-,关闭VT1,这样便不会产生较大的逆向电流,避免了负载前端的能量被反抽导致系统重启。
另外,当电路不存反接情况,且没有负向雷击电流、负向浪涌时,由于二极管的单向导电性,电压基准单元和隔离光耦不会工作,通过外部电路为MOS管提供驱动电压,使MOS管导通,电路正常工作。
其中,所述负向电压检测比较电路还包括:第一电容,其中,所述第一电容和所述第一分压单元并联在电压基准单元的REF引脚和阳极。
其中,第一电容的作用是为电压基准单元进行滤波,增加第一电容的抗干扰能力。可选地,第一电容的容值为皮法(pf)级。通过设置第一电容C1 的容值,可以调节电路的响应时间。
其中,所述负向电压检测比较电路还包括:分压调节电路,设置为:调节第一分压单元的电压和第二分压单元的电压之间的比值。
在实际应用中,可以通过该分压调节电路控制两个分压单元得到的电压,从而实现对电压阈值的修改。
其中,所述隔离光耦原边的阴极一端与电压基准单元的阴极引脚相连,所述隔离光耦原边的另一端阳极通过电阻与输入端的负极相连;所述隔离光耦副边的发射极与MOS管的源极相连,所述隔离光耦副边的集电极通过电阻与MOS管的栅极相连。
其中,所述MOS管与负载的直流电源共地。
其中,所述电压保护电路还包括:退偶电感,位于输入线路上所述负向电压检测比较电路与MOS管之间的负向通道上。
退偶电感的作用在于:当大的负向雷击电流或浪涌出现时,可以阻止电容上的电压过快地被负向雷击电流或浪涌吸收到,以便端口产生负压供负向电压检测比较电路动作。
另外,本发明实施例还提供一种电压保护系统,包括:
防护电路;
上文所述的电压保护电路,所述电压保护电路的输入端与所述防护电路的输出端相连,所述电压保护电路的输出端与负载电路的输入端相连。
在本发明实施例,根据负向电压与电压阈值的比较,确定防护电路和负载之间的电路是否导通,解决了负向雷击电流或负向浪涌出现造成系统重启的问题,提高了电子通信设备的可靠性,提高了设备的客户体验满意度。
下面对本发明实施例提供的电路和系统作进一步说明。
图2为本发明实施例提供的一种电压保护电路的结构图,图2所示的电压保护电路包括:负向电压检测比较电路、控制MOS管开通或关断的隔离光耦D2、退偶电感L1以及功率MOS管VT1。
如图2所示,本发明实施例提供的电压保护电路要放置在满足规格要求 的雷击电流防护、浪涌防护电路之后,退偶电感L1要放在输入线路的负向通道上,在MOS管之前。
如图2所示,负向电压检测比较电路包括:第一分压电阻R1、第二分压电阻R2、第一电容C1、二极管VD1以及电压基准单元D1,R2的一端接输入端负极,R2的另一端与R1连接。R1和C1并联在D1的REF引脚和阳极引脚,D1的阳极引脚接在二极管VD1的阳极引脚,VD1的阴极引脚接在输入端的正极。电压基准单元D1的阴极引脚与光耦D2原边的阴极一端相连,光耦D2原边的另一端阳极与电阻R3相连,R3的另一端与输入端的负极相连。光耦D2副边的发射极与MOS管VT1的源极相连,光耦D2副边的集电极通过一个驱动电阻R4接在MOS管VT1的栅极。
如图2所示,给出了一种MOS管VT1驱动电压产生的方式,MOS管VT1的驱动电压VDR来自于DC+和DC-之间,R6与12V稳压管VD3串联,为MOS管VT1产生12V驱动电压,电容C2起到滤波储能作用。
当电路输入端反接时,R1和R2串联分压,R1两端的电压达到电压基准单元D1的基准电压时,D1导通,随之光耦D2导通,光耦D2副边把MOS管VT1的驱动VDR拉低到DC-,MOS管VT1无法导通,反接后的负压不会到达后级的负载(Load),避免了后级负载的损坏。
当电路中出现负向雷击电流或负向浪涌时,首先经过前端的防护电路在AB端产生负向电压,此时会在R1两端产生电压,当电压达到电压基准单元D1的基准电压时,D1导通,随之光耦D2导通,光耦D2副边把MOS管VT1的驱动VDR拉低到DC-,关闭MOS管VT1,这样便不会产生较大的逆向电流,避免了负载前端电容C3上的能量被反抽导致系统重启。
本发明实施例提供的应用实例,通过检测雷击浪涌防护电路之后的残压,解决了负向雷击电流或负向浪涌出现造成系统重启的问题,提高了电子通信设备的可靠性,提高了设备的客户体验满意度。而且,本发明实施例提供的电压保护电路兼具防反接功能,当设备的输入源正负极接反时,不会对设备造成损坏。本发明实施例提供的电压保护电路具有一定的通用性,电路简单,易于实现。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明实施例提供一种电压保护电路和系统,解决了负向雷击电流或负向浪涌出现造成系统重启的问题,提高了电子通信设备的可靠性,提高了设备的客户体验满意度。

Claims (9)

  1. 一种电压保护电路,包括负向电压检测比较电路、隔离光耦和MOS管;其中:
    所述负向电压检测比较电路,设置为:检测负向电压是否达到预先设置的电压阈值,如果所述负向电压达到所述电压阈值,则控制所述隔离光耦处于导通状态;
    所述隔离光耦,设置为:控制与所述隔离光耦相连的MOS管截止;
    所述MOS管,与所述隔离光耦和负载电路相连。
  2. 根据权利要求1所述的电压保护电路,其中,所述负向电压检测比较电路还设置为:
    在所述负向电压未达到预先设置的电压阈值时,控制所述隔离光耦处于断开状态。
  3. 根据权利要求1所述的电压保护电路,其中,所述负向电压检测比较电路包括:第一分压单元、第二分压单元、二极管和电压基准单元,所述第二分压单元的一端接输入端负极,所述第二分压单元的另一端与第一分压单元相连,所述第一分压单元与所述电压基准单元的阳极引脚相连,所述电压基准单元的阳极引脚接在二极管的阳极引脚,二极管的阴极引脚接在输入端的正极。
  4. 根据权利要求3所述的电压保护电路,其中,所述负向电压检测比较电路还包括:第一电容,所述第一电容和所述第一分压单元并联在所述电压基准单元的REF引脚和阳极引脚。
  5. 根据权利要求3所述的电压保护电路,其中,所述负向电压检测比较电路还包括:分压调节电路,设置为:调节第一分压单元的电压和第二分压单元的电压之间的比值。
  6. 根据权利要求3所述的电压保护电路,其中,所述隔离光耦原边的阴极一端与所述电压基准单元的阴极引脚相连,所述隔离光耦原边的另一端阳极通过电阻与输入端的负极相连;所述隔离光耦副边的发射极与所述MOS管的源极相连,所述隔离光耦副边的集电极通过电阻与所述MOS管的栅极相 连。
  7. 根据权利要求1所述的电压保护电路,其中,所述MOS管与负载的直流电源共地。
  8. 根据权利要求1至7任一所述的电压保护电路,所述电压保护电路还包括:退偶电感,位于输入线路上所述负向电压检测比较电路与所述MOS管之间的负向通道上。
  9. 一种电压保护系统,包括:
    防护电路;
    如权利要求1至8任一所述的电压保护电路,所述电压保护电路的输入端与所述防护电路的输出端相连,所述电压保护电路的输出端与负载电路的输入端相连。
PCT/CN2016/078716 2015-06-05 2016-04-07 电压保护电路和系统 WO2016192459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510307425.1 2015-06-05
CN201510307425.1A CN106300247A (zh) 2015-06-05 2015-06-05 电压保护电路和系统

Publications (1)

Publication Number Publication Date
WO2016192459A1 true WO2016192459A1 (zh) 2016-12-08

Family

ID=57440025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078716 WO2016192459A1 (zh) 2015-06-05 2016-04-07 电压保护电路和系统

Country Status (2)

Country Link
CN (1) CN106300247A (zh)
WO (1) WO2016192459A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111061197A (zh) * 2019-12-31 2020-04-24 Tcl空调器(中山)有限公司 一种防反插电路的控制装置、控制方法及家用电器
CN111510125A (zh) * 2020-04-26 2020-08-07 宁波格立光电科技有限公司 一种高可靠隔离式高压开关电路
CN112684385A (zh) * 2020-12-14 2021-04-20 阳光电源股份有限公司 一种防反接电路及其应用装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370121A (zh) * 2017-07-28 2017-11-21 法雷奥汽车内部控制(深圳)有限公司 一种led照明的保护电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150927A1 (en) * 2003-01-31 2004-08-05 Strayer Lance R. High side reverse and overvoltage transient protection
CN102593810A (zh) * 2012-01-20 2012-07-18 华为技术有限公司 浪涌保护电路
CN203761022U (zh) * 2013-12-31 2014-08-06 洛阳隆盛科技有限责任公司 一种高效率直流输入保护电路
CN104124706A (zh) * 2014-07-16 2014-10-29 常州思普锐电力科技有限公司 一种具有逆功率保护的含有分布式电源的配电网系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226002B2 (ja) * 1995-04-28 2001-11-05 ティアック株式会社 逆流阻止回路を有する回路装置
CN1960102B (zh) * 2006-09-29 2010-10-06 蒋闯 电弧漏电保护装置及其保护方法
CN203289085U (zh) * 2013-05-10 2013-11-13 厦门新纪元电子实业有限公司 电池充电保护电路及使用该充电保护电路的充电器
CN203536942U (zh) * 2013-11-01 2014-04-09 广州市爱浦电子科技有限公司 新型反激变换器输出过压保护电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150927A1 (en) * 2003-01-31 2004-08-05 Strayer Lance R. High side reverse and overvoltage transient protection
CN102593810A (zh) * 2012-01-20 2012-07-18 华为技术有限公司 浪涌保护电路
CN203761022U (zh) * 2013-12-31 2014-08-06 洛阳隆盛科技有限责任公司 一种高效率直流输入保护电路
CN104124706A (zh) * 2014-07-16 2014-10-29 常州思普锐电力科技有限公司 一种具有逆功率保护的含有分布式电源的配电网系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111061197A (zh) * 2019-12-31 2020-04-24 Tcl空调器(中山)有限公司 一种防反插电路的控制装置、控制方法及家用电器
CN111510125A (zh) * 2020-04-26 2020-08-07 宁波格立光电科技有限公司 一种高可靠隔离式高压开关电路
CN112684385A (zh) * 2020-12-14 2021-04-20 阳光电源股份有限公司 一种防反接电路及其应用装置

Also Published As

Publication number Publication date
CN106300247A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016192459A1 (zh) 电压保护电路和系统
CN102570785B (zh) 一种直流电源热插拔缓启动控制电路及控制方法
CN203026904U (zh) 过流保护电路及具有该过流保护电路的pfc控制电路
CN202373957U (zh) 过压及欠压保护电路
WO2019169904A1 (zh) 一种低成本输入抗过压保护电路
WO2020062817A1 (zh) 一种抑制电源浪涌电压电流的控制电路及电源
CN107800117B (zh) 一种具有上电浪涌电流抑制功能的输入过压保护电路
CN109245082A (zh) 一种防反接和抑制开机浪涌电流的两用开关电路
WO2015043237A1 (zh) 一种pfc电路的浪涌防护电路
CN203027132U (zh) 多功能开关电源前级启动控制电路
CN104577968A (zh) 一种三相过压、欠压、缺相一体保护电路
CN219086797U (zh) 一种负向浪涌保护电路、供电系统及电子设备
CN103414163A (zh) 直流电源输出过流保护装置
CN208522452U (zh) 一种自恢复短路保护电路
CN107666305B (zh) 智能开关
CN205987136U (zh) 电视板卡供电保护电路
CN206850404U (zh) 一种具有迟滞窗口宽范围输入的电源欠压保护电路
CN203103926U (zh) 一种开关电源及其保护电路
CN105675977A (zh) 一种前后级掉电检测及控制磁保持继电器拉闸与数据保存的电能表以及方法
CN107026578B (zh) 一种用于拓宽小功率开关电源输入电压范围的电源装置
CN204391735U (zh) 焊机电源过压保护电路
CN204168130U (zh) 一种交流输入缓启动电路
WO2022100267A1 (zh) 过流保护触发电路及装置
CN209784800U (zh) 一种兼顾npn型和pnp型负载输出的保护电路
WO2020215279A1 (zh) 过压保护控制电路及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802382

Country of ref document: EP

Kind code of ref document: A1