WO2022193696A1 - 交流电机的档位控制电路和系统、开关控制器及电子设备 - Google Patents

交流电机的档位控制电路和系统、开关控制器及电子设备 Download PDF

Info

Publication number
WO2022193696A1
WO2022193696A1 PCT/CN2021/130361 CN2021130361W WO2022193696A1 WO 2022193696 A1 WO2022193696 A1 WO 2022193696A1 CN 2021130361 W CN2021130361 W CN 2021130361W WO 2022193696 A1 WO2022193696 A1 WO 2022193696A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
signal
circuit
gear
switch
Prior art date
Application number
PCT/CN2021/130361
Other languages
English (en)
French (fr)
Inventor
冉宏宇
章燕
刘义刚
魏明明
李鸿强
Original Assignee
苏州贝昂科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110299651.5A external-priority patent/CN112953478B/zh
Priority claimed from CN202110299653.4A external-priority patent/CN113067525A/zh
Application filed by 苏州贝昂科技有限公司 filed Critical 苏州贝昂科技有限公司
Priority to GB2211053.0A priority Critical patent/GB2609316A/en
Priority to EP21920115.9A priority patent/EP4087116A4/en
Priority to KR1020227021180A priority patent/KR20220131377A/ko
Priority to JP2022539075A priority patent/JP7377982B2/ja
Priority to US17/794,610 priority patent/US20230327590A1/en
Publication of WO2022193696A1 publication Critical patent/WO2022193696A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/092Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P17/00Arrangements for controlling dynamo-electric gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/42Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation

Definitions

  • the present application relates to the technical field of gear control, and in particular, to a gear control circuit and system of an AC motor.
  • the present invention relates to the field of device control, and in particular, to a switch controller and an electronic device.
  • a multi-gear motor refers to a motor with multiple running gears.
  • the motor speed corresponding to each running gear is different. With the increase of gears, the speed of the motor increases. Bit toggle control.
  • Pulse Width Modulation is a way of digitally encoding the level of an analog signal.
  • a PWM signal is a digital signal.
  • the purpose of the embodiments of the present application is to provide a gear position control circuit and system for an AC motor, which is used to solve the problem that the existing AC motor will cause a relatively large difference in the controllable switch that controls the opening or closing of the gear position when the gear switching difference is too large. Large inrush current, which in turn causes the problem of large controllable switching loss and low life.
  • the present invention provides a gear position control circuit of an AC motor, the gear position control circuit comprising: a plurality of controllable switches, each of the controllable switches is respectively used for connecting with the live wire of the AC power supply and one-to-one correspondence with multiple gear positions of the AC motor; a detection unit, which is respectively connected with each of the controllable switches to detect the switch state corresponding to the controllable switches; a gear position input unit, It is used for receiving an externally input target gear position m; a control unit is connected with the gear position input unit for obtaining the target gear position m; the control unit is also connected with each of the controllable switches and The detection units are respectively connected to obtain the current gear position n of the AC motor according to the switch state of each controllable switch; if m is greater than n, the control unit controls each switch between n and m.
  • the controllable switches corresponding to the gears are opened in the order from small to large, and the controllable switch corresponding to the gear i-1 is closed after each controllable switch corresponding to the gear i is opened; if m is less than n, all The control unit controls the controllable switches corresponding to each gear between m to n to be opened in sequence from large to small, and closes the gear i+ after each open the controllable switch corresponding to a gear i. 1 corresponds to the controllable switch.
  • the control unit receives the target gear m transmitted by the gear input unit, and determines the current gear n through the switch state of each controllable switch detected by the detection unit, and then when m is greater than n
  • the controllable switches corresponding to the gears are opened in order from small to large, and each time the controllable switch corresponding to a gear i is opened, the gear i- 1 corresponds to the controllable switch; when m is less than n, the controllable switch corresponding to each gear between m and n is opened in order from large to small, and each gear is opened.
  • the controllable switch corresponding to i After the controllable switch corresponding to i is closed, the controllable switch corresponding to position i+1 is closed; through this design, when the gears are switched, the gears are gradually switched in sequence, so that the gear switching is smoother and the gears are switched. Compared with one-time adjustment to a gear with an excessively large difference, the gradual switching will generate a smaller inrush current, thereby reducing the loss of the controllable switch and improving the life of the controllable switch.
  • the detection unit includes a plurality of state detection circuits, and two input ends of each state detection circuit are respectively connected to the output end of a controllable switch and the neutral line of the AC power supply, so as to Obtain the switch state of the correspondingly connected controllable switch; the control unit is connected to the output end of each state detection circuit, so as to receive the switch state of each controllable switch, and determine the switch state according to the switch state of each controllable switch.
  • the gear position corresponding to the controllable switch in the closed state is determined as the current gear position n of the AC motor.
  • control unit is further configured to determine that the AC motor is not started when it is determined that no controllable switch is in a closed state.
  • each state detection circuit includes a resistor R1, a resistor R2, a diode Q1, an optocoupler isolator D1, a resistor R3, a resistor R4, a resistor R5 and a capacitor C1, and one end of the resistor R1 Connect the output end of the controllable switch corresponding to the gear position, the other end of the resistor R1 is connected to the first end of the resistor R2, the second end of the resistor R2 is connected to the positive pole of the transmitting end of the optocoupler isolator D1, so The first end of the resistor R3 is connected to the neutral line of the power supply, the second end of the resistor R3 is connected to the cathode of the emitter of the optocoupler isolator D1, and the anode of the diode Q1 is connected to the first end of the resistor R3, The cathode of the diode Q1 is connected to the second end of the resistor R2, the collector of the receiving end
  • controllable switch is a relay, and one end of each of the resistors R1 is connected to the normally open contact of the relay corresponding to the gear position.
  • the detection unit further includes a power supply detection circuit, two input ends of the power supply detection circuit are respectively connected to the live wire and the neutral wire of the AC power supply, and the power supply detection circuit
  • the output end of the power supply is connected to the control unit, and the power detection circuit is used to collect the power supply signal, and the power supply signal includes a power supply voltage signal and a power supply frequency signal;
  • the control unit is also used for The power supply voltage signal determines the presence or absence of the power supply, and the delay time for controlling the closing of the controllable switch is determined according to the power supply frequency signal.
  • the power detection circuit includes a resistor R6, a resistor R7, a diode Q2, an optocoupler isolator D2, a resistor R8, a resistor R9, a resistor R10, and a capacitor C2, and one end of the resistor R6 Connect the live wire of the AC power supply, the other end of the resistor R6 is connected to the first end of the resistor R7, the second end of the resistor R7 is connected to the positive electrode of the transmitting end of the optocoupler isolator D2, and the The first end is connected to the neutral line of the AC power supply, the second end of the resistor R8 is connected to the negative electrode of the transmitting end of the optocoupler isolator D2, the positive electrode of the diode Q2 is connected to the first end of the resistor R8, the The cathode of the diode Q2 is connected to the second end of the resistor R7, the collector of the receiving end of the optocoupler is
  • the gear control circuit further includes a rectifier, and the control unit is connected to the AC power source through the rectifier.
  • the gear control circuit further includes a filtering and anti-jamming unit, and the ground wire of the AC power supply is connected to the AC motor through the filtering and anti-jamming unit, and the ground wire of the AC power supply is connected to the AC motor.
  • the neutral line is connected to the AC motor and the rectifier through the filtering and anti-jamming unit, and the live wire of the AC power source is connected to the input end of the rectifier and the controllable switch through the filtering and anti-jamming unit.
  • the present invention provides a gear position control system for an AC motor, the system comprising: an AC power source, an AC motor, and a gear position control circuit according to any one of the optional implementations of the first aspect, the AC motor including multiple There are gears, each gear corresponds to a different motor speed, and each of the controllable switches in the gear control circuit is respectively connected to the live wire of the AC power supply and is respectively connected to the multiple gears of the AC motor in a one-to-one correspondence.
  • the control unit can receive the target gear m transmitted by the gear input unit, and the value of each controllable switch detected by the detection unit.
  • the switch state is used to determine the current gear n, and then when m is greater than n, the controllable switches corresponding to each gear between n and m are controlled to be opened in order from small to large, and each time a switch is opened.
  • the controllable switch corresponding to the gear i-1 is closed after the controllable switch corresponding to the gear i-1; in the case where m is less than n, the controllable switch corresponding to each gear between m and n is controlled according to the gear.
  • Step by step switching makes the gear switching smoother. Compared with the one-time adjustment to the gear that is too different, the gradual switching of the gear will generate a smaller inrush current, thereby reducing the loss of the controllable switch. The life of the controllable switch is improved.
  • Another embodiment of the present invention provides a switch controller and an electronic device, which can improve the problem that the PWM signal is not conducive to controlling the start and stop of the electronic device due to factors such as small load and unstable signal.
  • an embodiment of the present application provides a switch controller, where the switch controller includes a signal modulation circuit, a signal follower circuit, a comparison circuit, and a switch control circuit;
  • the input end of the signal modulation circuit is used to receive the first PWM signal, and the output end of the signal modulation circuit is connected to the input end of the signal follower circuit for outputting the signal modulation circuit to convert the first PWM signal. modulating a second PWM signal representing an analog signal;
  • the output terminal of the signal follower circuit is connected to the first input terminal of the comparison circuit, and the signal follower circuit is used to increase the current load power of the second PWM signal to a preset load power;
  • the output end of the comparison circuit is connected to the input end of the switch control circuit for receiving the reference signal at the second input end of the comparison circuit, and the first input end receives the second PWM signal When the control signal is output;
  • the output end of the switch control circuit is used for connecting with the control end of the device body of the electronic device, and the switch control circuit controls the switch device in the switch control circuit to be in a conducting state when receiving the control signal.
  • the switch controller can perform digital-to-analog conversion through the signal modulation circuit to modulate the first PWM signal of the digital signal to obtain the second PWM signal of the analog signal, and then use the signal follower circuit to modulate the modulated PWM signal.
  • the second PWM signal performs load amplification to prevent the second PWM signal from being unable to control the switch of the switch control circuit due to its small load, which can improve the problem of inconvenience in controlling the start and stop of the electronic device through the PWM signal.
  • the switch control circuit includes a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a first diode, a second diode, a first A resistor, a second resistor, a third resistor, a triode, and a MOS transistor characterizing the switching device;
  • the first end of the first capacitor and the first end of the first resistor are connected to the output end of the comparison circuit, the second end of the first capacitor is grounded, and the second end of the first resistor is connected to the output end of the comparison circuit.
  • the base of the triode is connected, the emitter of the triode is grounded, the collector of the triode is connected to the first end of the third resistor, and the second end of the third resistor is connected to the second end of the second resistor.
  • the first end is connected to the first end of the MOS tube, and the second end of the second resistor and the second end of the MOS tube are both connected to the input end of the control power supply;
  • the first end of the first diode, the first end of the second capacitor, and the first end of the third capacitor are all connected to the input end of the control power supply.
  • the second end, the second end of the second capacitor, and the second end of the third capacitor are all grounded;
  • the third end of the MOS tube is used as the output end of the switch control circuit, and the first end of the third resistor and the first end of the second diode are both connected to the third end of the MOS tube , the second end of the third resistor and the second end of the second diode are both grounded;
  • the triode when the triode receives the control signal through the first resistor, the second end of the MOS transistor is conductive with the third end of the MOS transistor;
  • the second end of the MOS transistor is disconnected from the third end of the MOS transistor.
  • the signal follower circuit includes a follower and a protection subcircuit
  • the input end of the follower serves as the input end of the signal follower circuit
  • the output of the follower The terminal is connected to the input terminal of the protection sub-circuit
  • the output terminal of the protection sub-circuit serves as the output terminal of the signal follower circuit
  • the protection sub-circuit is used for isolating and buffering the second PWM signal.
  • the load of the second PWM signal can be increased by the follower, and the PWM signal with the increased load can be isolated and buffered by the protection sub-circuit, so as to output a safe and stable analog signal.
  • the comparison circuit includes a comparator, and a first input end of the comparator is configured to receive the second PWM signal output by the signal following circuit through a specified resistance ;
  • the second input terminal of the comparator is used for receiving the reference signal
  • the output terminal of the comparator serves as the output terminal of the comparison circuit.
  • the comparator can output the control signal according to the second PWM signal, and then the switch control of the circuit can be realized according to the control signal.
  • the switch controller further includes a magnetic bead, and the signal modulation circuit is configured to receive the first PWM signal through the magnetic bead.
  • the electromagnetic radiation interference can be suppressed by the magnetic beads, which is beneficial to improve the stability of the input PWM signal.
  • the switch controller further includes a protection resistor, and the output terminal of the signal follower circuit is connected to the input terminal of the comparison circuit through the protection resistor.
  • the protection resistor can ensure the stability of the transmitted second PWM signal, and prevent the second PWM signal from being unstable due to the impact of the load.
  • the switch controller further includes a rectifier module connected to the input end of the signal modulation circuit.
  • the switch controller may further include a voltage stabilizing circuit for stabilizing the reference signal received by the comparison circuit.
  • an embodiment of the present application further provides an electronic device, the electronic device includes a device body and the above-mentioned switch controller, a control end of the device body is connected to an output end of the switch controller, wherein the The device body starts up when receiving the control signal output from the output end of the switch controller.
  • the device body includes a DC motor.
  • 1 is a first structural diagram of a gear control circuit provided by an embodiment of the present application.
  • FIG. 2 is a specific circuit diagram of a detection unit provided by an embodiment of the present application.
  • FIG. 3 is a specific structural diagram of a power supply detection circuit provided by an embodiment of the present application.
  • FIG. 5 is a third structural diagram of a gear position control circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a circuit module of a switch controller provided by an embodiment of the present application.
  • FIG. 7 is a schematic connection diagram of a signal modulation circuit and a signal follower circuit in a switch controller provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of a comparison circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a switch control circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a voltage regulator circuit provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Icon A-AC motor; B-AC power supply; L-live wire; N-neutral wire; E-ground wire; 1-controllable switch; 2-detection unit; 201-state detection circuit; 202-power detection circuit; 3 -Gear input unit; 4-Control unit; 5-Rectification unit; 6-Filter and anti-interference unit; 10-Electronic equipment; 20-Switch controller; 21-Signal modulation circuit; 22-Signal follower circuit; 23-Comparison circuit ; 24- switch control circuit; 25- voltage regulator circuit; 26- protection sub-circuit; 27- rectifier module; 30- device body; 100- signal source; 101- magnetic beads; 102- third diode; 103- first Four diodes; 104-fifth capacitor; 105-sixth capacitor; 106-fourth resistor; 107-fifth resistor; 108-seventh capacitor; 109-follower; 110-eighth capacitor; 111-sixth 112-seventh resistor; 113-n
  • the embodiment of the present application provides a gear position control circuit for an AC motor.
  • the AC motor A has multiple gear positions, and different gear positions correspond to different rotation speeds of the AC motor A. For example, the rotation speed of the AC motor can be changed from slow to fast.
  • the multiple gears of the AC motor are divided into low-speed gears, medium-speed gears and high-speed gears; the gear-position control circuit designed in this application is shown in Figure 1, including a plurality of controllable switches 1, a detection unit 2, a gear-position input Unit 3 and control unit 4, the plurality of controllable switches 1 are respectively used to connect with the live wire L of the AC power supply B and are respectively used to connect with the multiple gears of the AC motor A in a one-to-one correspondence, as a possible implementation manner , the number of the multiple controllable switches 1 is the same as the number of gears of the AC motor. For example, when the gears of the AC motor are respectively low-speed gear, medium-speed gear and high-speed gear, the number of multiple controllable
  • the detection unit 2 is connected to each controllable switch 1 respectively, and is used to detect the switch state of each controllable switch 1, that is, to detect whether each controllable switch is closed or open;
  • the gear input unit 3 is used to receive external
  • the input target gear m the control unit 4 is connected to the gear input unit 3, and is connected to each controllable switch 1 and the detection unit 2, the AC motor A is also connected to the neutral line N and the ground wire of the AC power supply B E connection.
  • the gear control circuit designed above during operation, the gear input unit 3 sends a target gear signal to the control unit 4, assuming that the target gear sent at this time is m, wherein the occurrence of the signal from the gear input unit 3 can be
  • the input is made by the staff operating the gear input unit 3; after the control unit 4 receives the target gear m, the control unit 4 can identify the current gear of the AC motor based on the switch state of each controllable switch 1 sent by the detection unit 2 n, wherein the detection unit 2 can periodically feed back the detected switching state of each controllable switch 1 to the control unit 4 .
  • the control unit 4 After the control unit 4 obtains the target gear position m and the current gear position n, it can first determine the size of m and n. If m is greater than n, it means that an upshift is currently required. At this time, the control unit 4 can control the ratio between n to m. The controllable switch 1 corresponding to each gear position is opened in the order from small to large, and after each controllable switch corresponding to gear i is turned on, the controllable switch corresponding to gear i-1 is closed. ; If m is less than n, it means that downshifting is currently required. At this time, the control unit 4 can control the controllable switch 1 corresponding to each gear between m and n, and turn on the gears in descending order. , and each time the controllable switch 1 corresponding to the gear i is turned on, the controllable switch 1 corresponding to the gear i+1 is closed.
  • control unit can control gears 0 to 3.
  • the controllable switch 1 corresponding to each gear is opened in the order from small to large, that is, the controllable switch corresponding to gear 1, the controllable switch corresponding to gear 2 and the controllable switch corresponding to gear 3 are turned on in turn.
  • the controllable switch corresponding to the 2nd gear After the controllable switch corresponding to the 2nd gear is turned on, the controllable switch corresponding to the 1st gear is turned off; after the controllable switch corresponding to the 3rd gear is turned on, the controllable switch corresponding to the 2nd gear is turned off, and then the AC motor can be realized.
  • the control unit 4 controls the 3rd gear to
  • the controllable switch 1 corresponding to each gear between the 1st gears is opened in the order from large to small, that is, the controllable switch corresponding to the 2nd gear and the controllable switch corresponding to the 1st gear are turned on in turn, and, After the controllable switch corresponding to the 2nd gear is turned on, the controllable switch corresponding to the 3rd gear is turned off, and the controllable switch corresponding to the 2nd gear is turned off after the controllable switch corresponding to the 1st gear is turned on.
  • the control unit receives the target gear m transmitted by the gear input unit, and determines the current gear n by the switch state of each controllable switch detected by the detection unit, and then when m is greater than n Next, the controllable switches corresponding to each gear position between n and m are opened in order from small to large, and each time the controllable switch corresponding to gear i is opened, the corresponding controllable switch of gear i-1 is closed.
  • controllable switch when m is less than n, the controllable switch corresponding to each gear between m and n is opened in sequence from large to small, and each gear i is opened corresponds to The controllable switch corresponding to the gear position i+1 is closed after the controllable switch is set; through this design, when the gear position is switched, the gear positions are gradually switched in sequence, so that the gear switching is smoother and the gears are gradually switched. Compared with the one-time adjustment to a gear with an excessively large difference, a smaller inrush current will be generated, thereby reducing the loss of the controllable switch and improving the life of the controllable switch.
  • the detection unit 2 includes a plurality of state detection circuits 201 , and the plurality of state detection circuits 201 include two input terminals and one output terminal.
  • the two input ends of the detection circuit 201 are respectively connected with a controllable switch 1 and the neutral line N of the AC power supply B to detect the switching state of the correspondingly connected controllable switch 1.
  • the control unit 4 is connected to each state detection circuit 201.
  • the output terminal is connected to receive each controllable switch to obtain the switch state. When it is determined that there is only one controllable switch in the closed state according to the switch state of each controllable switch, the corresponding gear of the closed controllable switch will be set. The position is determined as the current gear n of the AC motor.
  • each state detection circuit 201 includes a resistor R1, a resistor R2, a diode Q1, an optocoupler isolator D1, a resistor R3, a resistor R4, a resistor R5, a capacitor C1, and a resistor R1
  • One end of the resistor R1 is connected to the output end of the controllable switch corresponding to the gear position, the other end of the resistor R1 is connected to the first end of the resistor R2, the second end of the resistor R2 is connected to the positive electrode of the transmitting end of the optocoupler isolator D1, and the first end of the resistor R3 is connected to the The neutral line N of the power supply, the second end of the resistor R3 is connected to the cathode of the emitter of the optocoupler isolator D1, the anode of the diode Q1 is connected to the first end of the resistor R3, the cathode of the diode Q1 is connected
  • the state detection circuit 201 when the controllable switch 1 connected to the state detection circuit 201 is disconnected, the optocoupler isolator D1 in the state detection circuit 201 is not conducting, and the state detection circuit 201 transmits a low level to the control unit 4 When the controllable switch 1 connected to the state detection circuit 201 is closed, the state detection circuit 201 can receive a high-level signal from the output end of the controllable switch 1, thereby isolating the optocoupler in the state detection circuit 201 The device D1 is turned on, so that the state detection circuit 201 sends a high-level signal to the control unit 4, so that the control unit 4 can know that the controllable switch corresponding to the state detection circuit 201 is closed based on the high-level signal.
  • the control unit 4 when performing the current gear identification, can obtain the level signal transmitted by each state detection circuit 201 to identify the switch state of the controllable switch correspondingly connected to each state detection circuit 201, and then determine When only one controllable switch 1 is in the closed state, the gear position corresponding to the controllable switch in the closed state is determined as the current gear position n of the AC motor.
  • the control unit 4 recognizes that all the controllable switches 1 are in the off state after recognizing the switch state of the controllable switches correspondingly connected to each state detection circuit 201 . In this case , the control unit 4 determines that the AC motor has not started; after the control unit 4 recognizes the switch state of the controllable switch correspondingly connected to each state detection circuit 201, the control unit 4 recognizes that there are two or more controllable switches 1 in the long-term state. Time closed state, in this case, the control unit 4 determines that the operation of the AC electrode is faulty, and then can automatically alarm.
  • the detection unit 2 further includes a power supply detection circuit 202 , and the structure of the power supply detection circuit 202 is completely the same as that of the state detection circuit 201 , and specifically includes: a resistor R6 , resistor R7, diode Q2, optocoupler isolator D2, resistor R8, resistor R9, resistor R10 and capacitor C2, one end of resistor R6 is connected to the live wire L of AC power supply B, the other end of resistor R6 is connected to the first end of resistor R7, The second end of the resistor R7 is connected to the anode of the emitter of the optocoupler isolator D2, the first end of the resistor R8 is connected to the neutral line N of the AC power supply B, the second end of the resistor R8 is connected to the cathode of the emitter of the optocoupler isolator D2, and the diode Q2 The positive electrode is connected to the first end of the resistor
  • the difference between the power detection circuit 202 and the state detection circuit 201 is that the two input ends of the power detection circuit 202 are respectively connected to the live wire L and the neutral wire N of the AC power supply B, and the power detection circuit 202 is used to collect the power supply signal. , and transmits the power supply signal to the control unit 4, wherein the power supply signal includes the power supply frequency; the control unit 4 can determine the presence or absence of the power supply based on the power supply signal transmitted by the power supply detection circuit 202, and according to the power supply frequency To determine the delay for controlling the closing of the controllable switch 1, for example, when adjusting the gear position, it is necessary to control the closing of the controllable switch of a certain gear position.
  • the timing is when the waveform of the commercial power passes through the abscissa, that is, when the abscissa is 0, the controllable switch is closed or opened, and the damage to the controllable switch is minimal.
  • the gear control circuit further includes a rectifier unit 5 , and the control unit 4 is connected to the AC power source B through the rectifier unit 5 , so that the control unit 4 can be based on
  • the rectifier unit 5 converts the AC power of the AC power source B into the DC power for its operation; in addition, in addition to the above methods, the control unit 4 can be directly connected to the DC power source to realize the power supply of the control unit 4, as a possible implementation.
  • the rectifier unit 5 may specifically be a rectifier or other components that can convert alternating current into direct current.
  • a Farad capacitor C5 can be connected in parallel between the rectifier unit 5 and the control unit 4 , so that the control unit 4 can maintain an alarm for a certain period of time when the external voltage is cut off.
  • the gear control circuit further includes a filtering and anti-interference unit 6 , and the ground wire of the AC power supply B is connected to the AC motor A through the filtering and anti-interference unit 6 , the neutral line N of the AC power source B is connected to the AC motor A and the rectifier unit 5 through the filtering and anti-interference unit 6, and the live wire L of the AC power source B is connected to the input of the rectifier unit 5 and the controllable switch 1 through the filtering and anti-interference unit 6 end connection.
  • the ground wire of the AC power supply B is connected to the AC motor A through the filtering and anti-interference unit 6
  • the neutral line N of the AC power source B is connected to the AC motor A and the rectifier unit 5 through the filtering and anti-interference unit 6
  • the live wire L of the AC power source B is connected to the input of the rectifier unit 5 and the controllable switch 1 through the filtering and anti-interference unit 6 end connection.
  • the filtering and anti-interference unit 6 includes a fuse S1, a resistor R11, a resistor R12, a resistor R13, a capacitor C3 and a capacitor C4, and one end of the fuse S1 is connected to the live wire L of the AC power supply B.
  • the other end of the fuse S1 is connected to the first end of the resistor R11, the second end of the resistor R11 is connected to the rectifier unit 5 and the second end of the capacitor C3, and the first end of the capacitor C3 is connected to the neutral line N of the AC power supply B.
  • the neutral line N of the AC power source B is connected to the AC motor A
  • the first end of the capacitor C4 is connected to the first end of the capacitor C3, and the second end of the capacitor C4 is connected to the ground wire E of the AC power source B.
  • the first end of the resistor R12 is connected to the second end of the capacitor C3, and the second end of the resistor R12 is connected to the neutral line N of the AC power supply B through the resistor R13;
  • other existing filtering and anti-interference structures can also be used as the filtering and anti-interference unit 6 .
  • the resistor R11 is a thermistor, which plays the role of overcurrent protection and overheat detection in the circuit; the capacitor C3 is used to suppress EMI conduction interference and eliminate spark circuits; the resistor R12 and the resistor R13 can make When pulling out the plug, ensure that the voltage of the power plug drops below 36V within 1s to protect personal safety.
  • the present application provides a gear control system for an AC motor.
  • the system includes an AC power source B, an AC electrode A, and the gear control circuit described in any of the optional implementations in the first embodiment.
  • the gear control circuit in the gear control circuit Each controllable switch 1 is respectively connected with the multiple gear positions of the AC power source B and the AC motor A in a one-to-one correspondence.
  • the gear position control system of this embodiment is consistent with the principle of the gear position control circuit described in the first embodiment. Here No further description will be given.
  • the control unit can receive the target gear m transmitted by the gear input unit, and the value of each controllable switch detected by the detection unit.
  • the switch state is used to determine the current gear n, and then when m is greater than n, the controllable switches corresponding to each gear between n and m are controlled to be opened in order from small to large, and each time a switch is opened.
  • the controllable switch corresponding to the gear i-1 is closed after the controllable switch corresponding to the gear i-1; in the case where m is less than n, the controllable switch corresponding to each gear between m and n is controlled according to the gear.
  • Step by step switching makes the gear switching smoother. Compared with the one-time adjustment to the gear that is too different, the gradual switching of the gear will generate a smaller inrush current, thereby reducing the loss of the controllable switch. The life of the controllable switch is improved.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some communication interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.
  • an embodiment of the present application provides a switch controller 20 , which can control the start and stop of the device body 30 of the electronic device 10 through a PWM signal, which is beneficial to reduce the energy consumption of the electronic device 10 .
  • the switch controller 20 may include a signal modulation circuit 21 , a signal follower circuit 22 , a comparison circuit 23 and a switch control circuit 24 .
  • the input end of the signal modulation circuit 21 is used to receive the first PWM signal, and the output end of the signal modulation circuit 21 is connected to the input end of the signal follower circuit 22, and is used for the output signal modulation circuit 21 to modulate the first PWM signal to represent the analog signal.
  • the second PWM signal may be generated by the signal source 100, and the manner in which the signal source 100 generates the PWM signal is well known to those skilled in the art, and details are not described herein again.
  • the PWM signal generated by the signal source 100 is the first PWM signal, which can be output to the input end of the signal modulation circuit 21 . After the first PWM signal is modulated by the signal modulation circuit 21, the obtained signal is the second PWM signal.
  • the first PWM signal can also be output to the electric motor, and the electric motor controls the rotational speed of the electric motor according to the PWM signal.
  • the manner in which the motor uses the PWM signal to control the rotational speed of the motor is well known to those skilled in the art, and will not be repeated here.
  • the output terminal of the signal follower circuit 22 is connected to the first input terminal of the comparison circuit 23 , and the signal follower circuit 22 is used for increasing the current load power of the second PWM signal to a preset load power.
  • the preset load power may be set according to actual requirements, which is not specifically limited here.
  • the signal follower circuit 22 can buffer and isolate the second PWM signal, and improve the load-carrying capability of the signal.
  • the output terminal of the comparison circuit 23 is connected to the input terminal of the switch control circuit 24 for outputting a control signal when the second input terminal of the comparison circuit 23 receives the reference signal and the first input terminal receives the second PWM signal.
  • the reference signal of the comparison circuit 23 can be a reference voltage, and the user can set the reference voltage according to actual needs, and the reference voltage is the threshold level of the comparison circuit 23 .
  • the output end of the switch control circuit 24 is used to connect to the control end of the device body 30 of the electronic device 10 .
  • the switch control circuit 24 receives a control signal, it controls the switch devices in the switch control circuit 24 to be in an on state.
  • the switch device of the switch control circuit 24 is electrically connected to the control terminal on the device body 30 .
  • the switch device When the switch device is turned on, the device body 30 can be powered on through the control terminal, thereby realizing the startup of the device body 30 .
  • the control signal can be a level signal, which can be a high level signal, a low level signal, etc., and can be set according to the actual situation.
  • the switch controller 20 can perform digital-to-analog conversion through the signal modulation circuit 21 to modulate the first PWM signal of the digital signal to obtain the second PWM signal of the analog signal, and then use the signal follower circuit 22 to adjust the
  • the modulated second PWM signal is loaded to amplify, so as to avoid that the load of the second PWM signal is too small to control the switch of the switch control circuit 24 , which can improve the problem of inconvenient to control the start and stop of the electronic device 10 by the PWM signal.
  • the switch control circuit 24 may include a first capacitor 125 , a second capacitor 126 , a third capacitor 127 , a fourth capacitor 133 , a first diode 124 , and a second diode 134 , a first resistor 128 , a second resistor 129 , a third resistor 131 , a triode 132 and a MOS transistor 130 representing the switching device.
  • the first end of the first capacitor 125 and the first end of the first resistor 128 are connected to the output end of the comparison circuit 23 , the second end of the first capacitor 125 is grounded, and the second end of the first resistor 128 is connected to the base of the triode 132 connected, the emitter of the transistor 132 is grounded, the collector of the transistor 132 is connected to the first end of the third resistor 131 , the second end of the third resistor 131 is connected to the first end of the second resistor 129 and the first end of the MOS transistor 130 Connection, the second end of the second resistor 129 and the second end of the MOS transistor 130 are both connected to the input end of the control power supply.
  • the first end of the first diode 124, the first end of the second capacitor 126, and the first end of the third capacitor 127 are all connected to the input end of the control power supply.
  • the second end of the first diode 124, the second end of the second The second end of the capacitor 126 and the second end of the third capacitor 127 are both grounded.
  • the third end of the MOS tube 130 is used as the output end of the switch control circuit 24 , the first end of the third resistor 131 and the first end of the second diode 134 are both connected to the third end of the MOS tube 130 , and the third resistor 131 The second end of the second diode 134 and the second end of the second diode 134 are both grounded.
  • the transistor 132 when the transistor 132 receives the control signal through the first resistor 128 , the second end of the MOS transistor 130 is connected to the third end of the MOS transistor 130 .
  • the transistor 132 When the transistor 132 does not receive a control signal through the first resistor 128 , the second end of the MOS transistor 130 is disconnected from the third end of the MOS transistor 130 .
  • the comparator 121 may be a voltage comparator.
  • the level signal output by the comparator 121 is the G1 signal.
  • the control power supply can be a 15V power supply, which is well known to those skilled in the art, and the source and drain of the MOS transistor 130 can be used as switches for controlling the power supply.
  • the G1 signal can control the turn-on and turn-off of the NPN transistor 132 through the first resistor 128, thereby stably controlling the turn-on and turn-off of the PMOS.
  • the transistor 132 may be an NPN type transistor 132, and the MOS transistor 130 may be a P-type MOS transistor.
  • the control signal may be at a high level.
  • the switch controller 20 continues to receive the first PWM signal and the base of the NPN transistor is at a high level, the collector and the emitter of the transistor 132 are turned on, and the current flows from the collector to the emitter.
  • the gate (or G pole) of the PMOS transistor is at a low level, the source (or S pole) and drain (or D pole) of the PMOS transistor are turned on, and the current flows from the source to the drain pole, so that the control terminal of the device body 30 can be powered on to realize startup.
  • the switch controller 20 does not receive the first PWM signal, the base of the NPN transistor is at a low level. At this time, the collector and the emitter of the transistor 132 are disconnected, and at the same time, the source and drain of the PMOS transistor are disconnected. Therefore, the control terminal of the device body 30 can be powered off to realize the shutdown, thereby saving the energy consumption of the electronic device 10 .
  • the second resistor 129 is used to disconnect the power supply when the NPN transistor is not conducting.
  • the third resistor 131 is used to protect the triode 132 .
  • the first capacitor 125 may be a polar capacitor such as an electrolytic capacitor for stabilizing the G1 signal.
  • the second capacitor 126 may be an electrolytic capacitor for stabilizing the power supply voltage.
  • the third capacitor 127 can be a non-polar capacitor such as a ceramic capacitor, and is used to remove the interference of the power supply.
  • the fourth capacitor 133 may be a non-polar capacitor for improving the stability of the output signal.
  • the first diode 124 and the second diode 134 protect the rear load from the impact of overvoltage and current, and also play a protective role for the device body 30 .
  • the signal modulation circuit 21 may include a third diode 102 , a fourth diode 103 , a fifth capacitor 104 , a sixth capacitor 105 , a seventh capacitor 108 , and a fourth resistor 106 and the fifth resistor 107 .
  • the cathode of the third diode 102 is connected to the first power supply
  • the anode of the third diode 102 is connected to the first end of the fifth resistor 107
  • the second end of the fifth resistor 107 is connected to the first end of the seventh capacitor 108 After connection, it is used as the output terminal of the signal modulation circuit 21 .
  • the second end of the seventh capacitor 108 is grounded.
  • the first power supply can be a 5V power supply, which is well known to those skilled in the art.
  • the cathode of the fourth diode 103 , the first end of the fifth capacitor 104 , the first end of the sixth capacitor 105 , and the first end of the fourth resistor 106 are all connected to the anode of the third diode 102 and the The first end of the fifth resistor 107 is connected.
  • the anode of the fourth diode 103, the second end of the fifth capacitor 104, the second end of the sixth capacitor 105, and the second end of the fourth resistor 106 are all grounded.
  • the third diode 102 and the fourth diode 103 play a protective role, so that the input voltage is not higher than the power supply and no negative voltage occurs, so as to ensure the safety of the following circuits;
  • the fifth capacitor 104 cooperates with the sixth capacitor 105 for converting the first PWM signal into a DC signal.
  • the fifth capacitor 104 may be a polar capacitor (eg, an electrolytic capacitor).
  • the sixth capacitor 105 may be a non-polar capacitor (eg, a ceramic capacitor), and may be used to absorb low-frequency interference.
  • the fifth resistor 107 is used to eliminate the reflected signal, because according to the theory of the operational amplifier, its input impedance is infinite, so the input pin current is close to 0, so the current input by the PWM signal flows to the ground through the 106 resistor. If there is no fifth resistor 107, the signal will be reflected back to the output of the magnetic bead 101. If the PWM signal input signal has poor load capacity, an oscillating signal will be formed, making the following output signal unstable.
  • the seventh capacitor 108 is used to absorb the reflected signal more effectively.
  • the fifth resistor 107 can block the reflected high-frequency signal at the input end of the follower 109, and the seventh capacitor 108 absorbs the high-frequency signal, thereby filtering out the high-frequency signal.
  • the interference signal of the input signal of the follower 109 ensures the quality of the input signal of the follower 109 .
  • the signal follower circuit 22 may include a follower 109 and a protection subcircuit 26 .
  • the input end of the circuit 26 is connected, the output end of the protection sub-circuit 26 is used as the output end of the signal follower circuit 22, and the protection sub-circuit 26 is used for isolating and buffering the second PWM signal.
  • the follower 109 may be a voltage follower, which is used to ensure that the voltage of the second PWM signal input to the follower 109 and the voltage of the second PWM signal output to the follower 109 remain unchanged, and increase the current of the output PWM signal.
  • the follower 109 includes a first input terminal "+IN”, a second input terminal “-IN”, a power terminal VCC, a ground terminal GND and an output terminal OUT.
  • the first input terminal “+IN” of the follower 109 is used as the input terminal of the signal follower circuit 22 and can be connected to the second terminal of the fifth resistor 107 .
  • the second input terminal “-IN” of the follower 109 is connected to the output terminal OUT of the follower 109 .
  • the power supply terminal VCC of the follower 109 is used for connecting with the second power supply, and the second power supply can be a 5V power supply, which is well known to those skilled in the art.
  • the ground terminal GND of the follower 109 is grounded.
  • the output terminal OUT of the follower 109 is connected to the input terminal of the protection sub-circuit 26 .
  • the protection sub-circuit 26 includes a sixth resistor 111 , a seventh resistor 112 , an eighth capacitor 110 , a ninth capacitor 113 , a tenth capacitor 115 , a fifth diode 116 and a sixth diode 117 .
  • the first end of the sixth resistor 111 is connected to the first end of the eighth capacitor 110, and serves as the input end of the protection sub-circuit 26, and the input end is connected to the output end OUT of the follower 109.
  • the second end of the seventh resistor 112 , the second end of the ninth capacitor 113 , the second end of the tenth capacitor 115 , and the anode of the fifth diode 116 are all grounded.
  • the cathode of the sixth diode 117 is connected to a third power source, and the third power source may be a 5V power source, which is well known to those skilled in the art.
  • the second end of the sixth resistor 111 can be used as an output end of the protection sub-circuit 26 to output the second PWM signal that has been isolated and buffered.
  • the sixth resistor 111 is used to isolate the capacitive load of the operational amplifier, and can also eliminate the phase lag generated by the feedback loop. For example, based on the sixth resistor 111, when the load of the PWM signal is relatively large, the oscillation of the system will not be caused, and the stability of the signal in the circuit can be improved.
  • the seventh resistor 112 , the ninth capacitor 113 , and the tenth capacitor 115 are all used for signal stabilization and will not be impacted by the load.
  • the eighth capacitor 110 is used to eliminate the phase lag caused by the subsequent load.
  • the fifth diode 116 and the sixth diode 117 are used to play a protective role so that the input voltage is not higher than the power supply and no negative voltage occurs, so as to protect the safety and stability of the signals in the front and rear circuits.
  • the follower 109 can increase the load of the second PWM signal, and the protection sub-circuit 26 can isolate and buffer the increased load PWM signal to output a safe and stable analog signal.
  • the comparison circuit 23 includes a comparator 121 , and the first input end of the comparator 121 is used to receive the second PWM signal output by the signal follower circuit 22 through a specified resistance; the second PWM signal of the comparator 121 The input terminal is used to receive the reference signal; the output terminal of the comparator 121 is used as the output terminal of the comparison circuit 23 .
  • the second input terminal of the comparator 121 may be connected to the fourth power source through the eighth resistor 114 .
  • the fourth power source may be grounded through the eighth resistor 114 and the ninth resistor 122 .
  • the fourth power supply can be a 5V power supply, which is well known to those skilled in the art.
  • the specified resistor is the tenth resistor 120
  • the first input terminal of the comparator 121 receives the second PWM signal output by the signal following circuit 22 through the tenth resistor 120
  • the comparator 121 receives the second PWM signal according to the first input terminal and the second input terminal.
  • the G1 signal is output to the input end of the switch control circuit 24 through the output end.
  • the eighth resistor 114 and the ninth resistor 122 are used to adjust the voltage (threshold level) of the reference signal of the comparator 121, so that the first input end of the comparator 121 outputs a high level when the second PWM signal is input; When the input terminal of the comparator 121 does not receive the second PWM signal, it outputs a low level.
  • the tenth resistor 120 is used to isolate the signal output from the signal follower circuit 22 and the interference of the input terminal of the comparator 121 .
  • the comparator 121 can output the control signal according to the second PWM signal, and then the switch control of the circuit can be realized according to the control signal.
  • the switch controller 20 may further include magnetic beads 101 , and the signal modulation circuit 21 is configured to receive the first PWM signal through the magnetic beads 101 .
  • the electromagnetic radiation interference can be suppressed by the magnetic beads 101, which is beneficial to improve the stability of the input PWM signal.
  • the switch controller 20 further includes a protection resistor 118 , and the output terminal of the signal follower circuit 22 is connected to the input terminal of the comparison circuit 23 through the protection resistor 118 .
  • the protection resistor 118 can ensure the stability of the transmitted second PWM signal, and prevent the second PWM signal from being unstable due to the impact of the load.
  • the switch controller 20 further includes a rectifier module 27 connected to the input end of the signal modulation circuit 21 .
  • the rectifier module 27 may include a rectifier bridge for rectifying the alternating current into direct current, so that the direct current motor can be powered by the direct current.
  • the terminal Vim shown in FIG. 6 is used to supply power for the rotation of the motor.
  • the terminal GND is used for grounding, and the terminal VCC supplies power to the control module of the device body 30 , and the working mode of the control module in the device body 30 is well known to those skilled in the art.
  • the switch controller 20 may further include a voltage stabilizing circuit 25 for stabilizing the reference signal received by the comparison circuit 23 .
  • the voltage regulator circuit 25 may include a polar capacitor and two non-polar capacitors, the polar capacitor and the two non-polar capacitors are connected in parallel, one end of the parallel connection is connected to the fifth power supply, the other end of the parallel connection is grounded, and the fifth power supply can be 5V
  • the power supply, the voltage regulator circuit 25 is used to provide a stable 5V power supply for the comparator 121 to improve the stability of the reference signal.
  • the signal modulation circuit 21 can perform smooth processing on the first PWM signal, so that it can respond in time to a sudden change of the pulse width.
  • the modulated second PWM signal is an analog voltage signal, and after being modulated by the signal follower circuit 22, the load-carrying capability and anti-interference capability of the second PWM signal can be improved.
  • the device body 30 can turn on the control power supply when there is a PWM signal (the first PWM signal), and turn off the control power supply when there is no PWM signal, so as to minimize power consumption.
  • an embodiment of the present application further provides an electronic device 10 .
  • the electronic device 10 includes a device body 30 and the above-mentioned switch controller 20 .
  • the control end of the device body 30 is connected to the output end of the switch controller 20 , wherein , the device body 30 starts when receiving the control signal output from the output end of the switch controller 20 .
  • the device body 30 may be determined according to the actual situation.
  • the apparatus body 30 includes a DC motor.
  • the device body 30 may be a DC brushless motor in an air purifier.
  • the present application provides a switch controller and an electronic device.
  • the switch controller may include a signal modulation circuit, a signal follower circuit, a comparison circuit, and a switch control circuit.
  • the input end of the signal modulation circuit is used for receiving the first PWM signal, and the output end of the signal modulation circuit is connected with the input end of the signal follower circuit, for the output signal modulation circuit to modulate the first PWM signal into a second PWM signal representing an analog signal
  • the output end of the signal follower circuit is connected with the first input end of the comparison circuit, and the signal follower circuit is used to increase the current load power of the second PWM signal to the preset load power;
  • the output end of the comparison circuit is connected with the input end of the switch control circuit is connected to the second input terminal of the comparison circuit for receiving the reference signal, and the first input terminal receives the second PWM signal, and outputs the control signal;
  • the output terminal of the switch control circuit is used for connecting with the device body of the electronic device.
  • the control terminal is connected, and when the switch control circuit receives the control signal, the switch device in the switch control circuit is controlled to be in a conducting state.
  • the switch controller can perform digital-to-analog conversion through the signal modulation circuit to modulate the first PWM signal of the digital signal to obtain the second PWM signal of the analog signal, and then use the signal follower circuit to modulate the second modulated PWM signal.
  • the PWM signal is used for load amplification, so as to avoid that the load of the second PWM signal is too small to control the switch of the switch control circuit, which can improve the problem that it is inconvenient to control the start and stop of the electronic device through the PWM signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

本申请提供一种交流电机的档位控制电路和系统,该档位控制电路包括:多个可控开关;检测单元,其用于检测对应可控开关的开关状态;一档位输入单元,其用于接收外部输入的目标档位m;控制单元,其与档位输入单元连接以用于获取目标档位m;从而提高了可控开关的寿命。本申请还公开了一种开关控制器及电子设备,包括信号调制电路、信号跟随电路、比较电路及开关控制电路,开关控制器可以通过信号调制电路进行数模转换,以对数字信号的第一PWM信号进行调制,得到模拟信号的第二PWM信号,然后通过信号跟随电路对经过调制的第二PWM信号进行负载放大,改善不便于通过PWM信号控制电子设备的启停问题。

Description

交流电机的档位控制电路和系统、开关控制器及电子设备
相关申请的交叉引用
本专利申请要求2021年3月19日提交的中国专利申请2021102996515,2021年3月19日提交的中国专利申请2021102996534的优先权,这些申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及档位控制技术领域,具体而言,涉及一种交流电机的档位控制电路和系统。在一些实施方式中,本发明涉及设备控制领域,具体而言,涉及一种开关控制器及电子设备。
背景技术
多档位电机指的是具有多个运行档位的电机,每个运行档位对应的电机转速不同,伴随着档位的增加电机的转速增大,电机利用连接的多个可控开关实现档位的切换控制。
但现有的交流电机在档位切换相差过大时会对控制档位开启或关闭的可控开关(例如继电器、IGBT等)产生较大的冲击电流,进而造成可控开关损耗较大,寿命低。
另外,脉冲宽度调制(Pulse Width Modulation,PWM)是一种对模拟信号电平进行数字编码的方式。PWM信号是一种数字信号。目前受限于PWM信号自身性能,不便于通过PWM信号控制大功率的电子设备的启停。
发明内容
本申请实施例的目的在于提供一种交流电机的档位控制电路和系统,用以解决现有的交流电机在档位切换相差过大时会对控制档位开启或关闭的可控开关产生较大的冲击电流,进而造成可控开关损耗较大,寿命低的问题。
第一方面,本发明提供一种交流电机的档位控制电路,所述档位控制电路包括:多个可控开关,每一所述可控开关分别用于与交流电源的火线连接以及分别用于与交流电机的多个档位一一对应连接;一检测单元,其分别与每一所述可控开关连接,以用于检测对应所述可控开关的开关状态;一档位输入单元,其用于接收外部输入的目标档位m;一控制单元,其与所述档位输入单元连接以用于获取所述目标档位m;所述控制单元还与每一所述可控开关以及所述检测单元分别连接,以用于根据每一所述可控开关的开关状态得到所述交流电机的当前档位n;若m大于n,所述控制单元控制n至m之间的每一档位对应的可控开关按照档位从小到大的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i-1对应的可控开关;若m小于n,所述控制单元控制m至n之间的每一档位对应的可控开关按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i+1对应的可控开关。
在上述设计的档位控制电路中,控制单元接收档位输入单元传输的目标档位m,以及通过检测单元检测的每一可控开关的开关状态来确定当前档位n,然后在m大于n的情况下,控制n至m之间的每一档位对应的可控开关按照档位从小到大的顺序依次打开,并在每打开一个档位i对应的可 控开关后关闭档位i-1对应的可控开关;在m小于n的情况下,控制m至n之间的每一档位对应的可控开关按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i+1对应的可控开关;通过这样的设计,使得在进行档位切换时,对档位进行逐步依次切换,使得档位的切换更加平滑,档位逐步切换相对于一次性调节到相差过大的档位来说,会产生更小的冲击电流,进而减小了对可控开关的损耗,提高了可控开关的寿命。
在第一方面的可选实施方式中,所述检测单元包括多个状态检测电路,每一状态检测电路的两个输入端分别与一可控开关的输出端和交流电源的零线连接,以获得对应连接的可控开关的开关状态;所述控制单元与每一状态检测电路的输出端连接,以用于接收每一可控开关的开关状态,在根据每一可控开关的开关状态确定仅存在一个可控开关处于闭合状态时,将处于闭合状态的可控开关对应的档位确定为所述交流电机的当前档位n。
在第一方面的可选实施方式中,所述控制单元还用于在确定不存在可控开关处于闭合状态,确定所述交流电机没有启动。
在第一方面的可选实施方式中,每一状态检测电路包括电阻R1、电阻R2、二极管Q1、光耦隔离器D1、电阻R3、电阻R4、电阻R5以及电容C1,所述电阻R1的一端连接对应档位的可控开关的输出端,所述电阻R1的另一端连接所述电阻R2的第一端,所述电阻R2的第二端连接所述光耦隔离器D1发射端的正极,所述电阻R3的第一端连接供电电源的零线,所述电阻R3的第二端连接所述光耦隔离器D1发射端的负极,所述二极管Q1的正极连接所述电阻R3的第一端,所述二极管Q1的负极连接所述电阻R2的第 二端,所述光耦隔离器D1接收端的集电极通过所述电阻R4连接所述控制单元;所述光耦隔离器D1接收端的集电极通过所述电阻R5连接一高电平信号;所述光耦隔离器D1接收端的发射极接地并通过所述电容C1与所述控制单元连接。
在第一方面的可选实施方式中,所述可控开关为继电器,每一所述电阻R1的一端与对应档位的继电器的常开触点连接。
在第一方面的可选实施方式中,所述检测单元还包括一电源检测电路,所述电源检测电路的两个输入端分别与所述交流电源的火线和零线连接,所述电源检测电路的输出端与所述控制单元连接,所述电源检测电路用于采集所述供电电源信号,所述供电电源信号包括供电电源电压信号以及供电电源频率信号;所述控制单元,还用于根据所述供电电源电压信号确定所述供电电源的有无,并根据所述供电电源频率信号确定控制可控开关闭合的延时。
在第一方面的可选实施方式中,所述电源检测电路包括电阻R6、电阻R7、二极管Q2、光耦隔离器D2、电阻R8、电阻R9、电阻R10以及电容C2,所述电阻R6的一端连接所述交流电源的火线,所述电阻R6的另一端连接所述电阻R7的第一端,所述电阻R7的第二端连接所述光耦隔离器D2发射端的正极,所述电阻R8的第一端连接所述交流电源的零线,所述电阻R8的第二端连接所述光耦隔离器D2发射端的负极,所述二极管Q2的正极连接所述电阻R8的第一端,所述二极管Q2的负极连接所述电阻R7的第二端,所述光耦隔离器D2接收端的集电极通过所述电阻R9连接所述控制单元;所述光耦隔离器D2接收端的集电极通过所述电阻R10连接一高电平信号; 所述光耦隔离器D2接收端的发射极接地并通过所述电容C2与所述控制单元连接。
在第一方面的可选实施方式中,所述档位控制电路还包括整流器,所述控制单元通过所述整流器与所述交流电源连接。
在第一方面的可选实施方式中,所述档位控制电路还包括滤波抗干扰单元,所述交流电源的地线通过所述滤波抗干扰单元与所述交流电机连接,所述交流电源的零线通过所述滤波抗干扰单元与所述交流电机和所述整流器连接,所述交流电源的火线通过所述滤波抗干扰单元与所述整流器和所述可控开关的输入端连接。
第二方面,本发明提供一种交流电机的档位控制系统,所述系统包括:交流电源、交流电机以及第一方面中任一可选实施方式的档位控制电路,所述交流电机包括多个档位,每一档位对应的电机转速不同,所述档位控制电路中的每一所述可控开关分别与交流电源的火线连接以及分别与交流电机的多个档位一一对应连接。
在上述设计的档位控制系统中,由于其包括前述设计的档位控制电路,因此,控制单元可接收档位输入单元传输的目标档位m,以及通过检测单元检测的每一可控开关的开关状态来确定当前档位n,然后在m大于n的情况下,控制n至m之间的每一档位对应的可控开关按照档位从小到大的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i-1对应的可控开关;在m小于n的情况下,控制m至n之间的每一档位对应的可控开关按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i+1对应的可控开关;通过这样的设计,使得在进行档位 切换时,对档位进行逐步依次切换,使得档位的切换更加平滑,档位逐步切换相对于一次性调节到相差过大的档位来说,会产生更小的冲击电流,进而减小了对可控开关的损耗,提高了可控开关的寿命。
本发明的另一实施例提供一种开关控制器及电子设备,能够改善PWM信号因负载小、信号不稳定等因素而不利于控制电子设备启停的问题。
为了实现上述目的,本申请的实施例通过如下方式实现:
第一方面,本申请实施例提供一种开关控制器,所述开关控制器包括信号调制电路、信号跟随电路、比较电路及开关控制电路;
所述信号调制电路的输入端用于接收第一PWM信号,所述信号调制电路的输出端与所述信号跟随电路的输入端连接,用于输出所述信号调制电路将所述第一PWM信号调制为表征模拟信号的第二PWM信号;
所述信号跟随电路的输出端与所述比较电路的第一输入端连接,所述信号跟随电路用于将所述第二PWM信号的当前负载功率增大至预设负载功率;
所述比较电路的输出端与所述开关控制电路的输入端连接,用于在所述比较电路的第二输入端接收到参考信号,且所述第一输入端接收到所述第二PWM信号时,输出控制信号;
所述开关控制电路的输出端用于与电子设备的设备本体的控制端连接,所述开关控制电路在接收到所述控制信号时,控制所述开关控制电路中的开关器件处于导通状态。
在上述的实施方式中,开关控制器可以通过信号调制电路进行数模转换,以对数字信号的第一PWM信号进行调制,得到模拟信号的第二PWM 信号,然后通过信号跟随电路对经过调制的第二PWM信号进行负载放大,避免第二PWM信号的负载小而无法控制开关控制电路的开关,能够改善不便于通过PWM信号控制电子设备的启停的问题。
结合第一方面,在一些可选的实施方式中,所述开关控制电路包括第一电容、第二电容、第三电容、第四电容、第一二极管、第二二极管、第一电阻、第二电阻、第三电阻、三极管及表征所述开关器件的MOS管;
所述第一电容的第一端和所述第一电阻的第一端与所述比较电路的输出端连接,所述第一电容的第二端接地,所述第一电阻的第二端与所述三极管的基极连接,所述三极管的发射极接地,所述三极管的集电极与所述第三电阻的第一端连接,所述第三电阻的第二端与所述第二电阻的第一端、所述MOS管的第一端连接,所述第二电阻的第二端和所述MOS管的第二端均与控制电源的输入端连接;
所述第一二极管的第一端、所述第二电容的第一端、所述第三电容的第一端均与所述控制电源的输入端连接,所述第一二极管的第二端、所述第二电容的第二端、所述第三电容的第二端均接地;
所述MOS管的第三端作为所述开关控制电路的输出端,所述第三电阻的第一端、所述第二二极管的第一端均与所述MOS管的第三端连接,所述第三电阻的第二端、所述第二二极管的第二端均接地;
其中,当所述三极管通过所述第一电阻接收到所述控制信号时,所述MOS管的第二端与所述MOS管的第三端导通;
当所述三极管通过所述第一电阻未接收到所述控制信号时,所述MOS管的第二端与所述MOS管的第三端断开。
在上述的实施方式中,通过三极管与MOS管相互配合,能够基于比较电路是否输出的控制信号,控制MOS管是否导通,从而实现电子设备的启停控制。在有PWM信号时候打开电子设备的供电电源,在没有PWM信号时候关闭供电电源以降低电子设备的功耗,避免在没有PWM信号时供电电源仍然开启而浪费电能。
结合第一方面,在一些可选的实施方式中,所述信号跟随电路包括跟随器及保护子电路,所述跟随器的输入端作为所述信号跟随电路的输入端,所述跟随器的输出端与所述保护子电路的输入端连接,所述保护子电路的输出端作为所述信号跟随电路的输出端,所述保护子电路用于隔离缓冲所述第二PWM信号。
在上述的实施方式中,通过跟随器可以对第二PWM信号的负载进行增大,通过保护子电路可以对增大负载的PWM信号进行隔离缓冲,以输出安全稳定的模拟信号。
结合第一方面,在一些可选的实施方式中,所述比较电路包括比较器,所述比较器的第一输入端用于通过指定电阻接收所述信号跟随电路输出的所述第二PWM信号;
所述比较器的第二输入端用于接收所述参考信号;
所述比较器的输出端作为所述比较电路的输出端。
在上述的实施方式中,通过比较器可以根据第二PWM信号输出控制信号,进而可以根据控制信号实现电路的开关控制。
结合第一方面,在一些可选的实施方式中,所述开关控制器还包括磁珠,所述信号调制电路用于通过所述磁珠接收所述第一PWM信号。
在上述的实施方式中,通过磁珠可以抑制电磁辐射干扰,从而有利于提高输入的PWM信号的稳定性。
结合第一方面,在一些可选的实施方式中,所述开关控制器还包括保护电阻,所述信号跟随电路的输出端通过所述保护电阻与所述比较电路的输入端连接。
在上述的实施方式中,保护电阻可以保证传输的第二PWM信号的稳定性,避免第二PWM信号因负载的冲击而不稳定。
结合第一方面,在一些可选的实施方式中,所述开关控制器还包括与所述信号调制电路的输入端连接的整流模块。
结合第一方面,在一些可选的实施方式中,所述开关控制器还可以包括用于对所述比较电路接收的所述参考信号进行稳压的稳压电路。
第二方面,本申请实施例还提供一种电子设备,所述电子设备包括设备本体及上述的开关控制器,所述设备本体的控制端与所述开关控制器的输出端连接,其中,所述设备本体在接收到所述开关控制器的输出端输出的控制信号时启动。
结合第二方面,在一些可选的实施方式中,所述设备本体包括直流电动机。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相 关的附图。
图1为本申请实施例提供的档位控制电路的第一结构图;
图2为本申请实施例提供的检测单元的具体电路图;
图3为本申请实施例提供的电源检测电路的具体结构图;
图4为本申请实施例提供的档位控制电路的第二结构图;
图5为本申请实施例提供的档位控制电路的第三结构图;
图6为本申请实施例提供的开关控制器的电路模块示意图;
图7为本申请实施例提供的开关控制器中的信号调制电路和信号跟随电路的连接示意图;
图8为本申请实施例提供的比较电路的示意图;
图9为本申请实施例提供的开关控制电路的示意图;
图10为本申请实施例提供的稳压电路的示意图;
图11为本申请实施例提供的电子设备的示意图。
图标:A-交流电机;B-交流电源;L-火线;N-零线;E-地线;1-可控开关;2-检测单元;201-状态检测电路;202-电源检测电路;3-档位输入单元;4-控制单元;5-整流单元;6-滤波抗干扰单元;10-电子设备;20-开关控制器;21-信号调制电路;22-信号跟随电路;23-比较电路;24-开关控制电路;25-稳压电路;26-保护子电路;27-整流模块;30-设备本体;100-信号源;101-磁珠;102-第三二极管;103-第四二极管;104-第五电容;105-第六电容;106-第四电阻;107-第五电阻;108-第七电容;109-跟随器;110-第八电容;111-第六电阻;112-第七电阻;113-第九电容;114-第八电阻;115-第十电容;116-第五二极管;117-第六二极管;118-保护电阻;120-第十电 阻;121-比较器;122-第九电阻;124-第一二极管;125-第一电容;126-第二电容;127-第三电容;128-第一电阻;129-第二电阻;130-MOS管;131-第三电阻;132-三极管;133-第四电容;134-第二二极管。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
第一实施例
本申请实施例提供一种交流电机的档位控制电路,该交流电机A具有多个档位,不同的档位对应的交流电机A的转速不同,例如,可以依照交流电机的转速由慢到快将该交流电机的多个档位分为低速档、中速档以及高速档;本申请设计的档位控制电路如图1所示,包括多个可控开关1、检测单元2、档位输入单元3以及控制单元4,该多个可控开关1分别用于与交流电源B的火线L连接以及分别用于与交流电机A的多个档位一一对应连接,作为一种可能的实施方式,该多个可控开关1的数量与交流电机的档位个数相同,例如,当交流电机的档位分别为低速挡、中速挡以及高速档时,多个可控开关1的数量为三个,每一档位连接一可控开关1。
该检测单元2分别与每一可控开关1连接,用于检测每一可控开关1的开关状态,即检测每一可控开关是闭合还是断开;该档位输入单元3用于接收外部输入的目标档位m,该控制单元4与该档位输入单元3连接,并且与每一可控开关1以及检测单元2连接,该交流电机A还会交流电源B的零线N和地线E连接。
上述设计的档位控制电路,在运行时,档位输入单元3向控制单元4 发送目标档位信号,假设此时发送的目标档位为m,其中,该档位输入单元3信号的发生可通过工作人员操作档位输入单元3输入;控制单元4接收到目标档位m之后,控制单元4可基于检测单元2发送的每一可控开关1的开关状态来识别出交流电机的当前档位n,其中,检测单元2可周期性地向控制单元4反馈检测得到的每一可控开关1的开关状态。
控制单元4在得到目标档位m和当前档位n之后,可首先判断m和n的大小,若m大于n,则说明当前需要进行升档,此时,控制单元4可控制n至m之间的每一档位对应的可控开关1,按照档位从小到大的顺序依次打开,并在每打开一个档位i对应的可控开关后,关闭档位i-1对应的可控开关;若m小于n,则说明当前需要进行降档,此时,控制单元4可控制m至n之间的每一档位对应的可控开关1,按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关1后,关闭档位i+1对应的可控开关1。
上述方案可基于如下举例理解:在m大于n的情况下,假设n=0,m=3,也就是电机当前没有启动,目标档位为3档时,控制单元可控制0档至3档之间的每一档位对应的可控开关1,按照档位从小到大的顺序依次打开,也就是依次打开1档对应的可控开关、2档对应的可控开关以及3档对应的可控开关,并且在打开2档对应的可控开关之后,将1档对应的可控开关关闭;在打开3档对应的可控开关之后,将2档对应的可控开关关闭,进而可以实现交流电机呈现处于3档的状态;在m小于n的情况下,假设n=3,n=1,也就是交流电机当前档位为3档,目标档位为1档时,控制单元4控制3档至1档之间的每一档位对应的可控开关1,按照档位从大到小的顺序 依次打开,也就是依次打开2档对应的可控开关以及1档对应的可控开关,并且,在打开2档对应的可控开关后关闭3档对应的可控开关,在打开1档对应的可控开关后关闭2档对应的可控开关。
上述设计的档位控制电路,控制单元接收档位输入单元传输的目标档位m,以及通过检测单元检测的每一可控开关的开关状态来确定当前档位n,然后在m大于n的情况下,控制n至m之间的每一档位对应的可控开关按照档位从小到大的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i-1对应的可控开关;在m小于n的情况下,控制m至n之间的每一档位对应的可控开关按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i+1对应的可控开关;通过这样的设计,使得在进行档位切换时,对档位进行逐步依次切换,使得档位的切换更加平滑,档位逐步切换相对于一次性调节到相差过大的档位来说,会产生更小的冲击电流,进而减小了对可控开关的损耗,提高了可控开关的寿命。
在本实施例的可选实施方式中,如图2所示,该检测单元2包括多个状态检测电路201,该多个状态检测电路201包括两个输入端和一个输出端,该多个状态检测电路201的两个输入端分别与一可控开关1以及交流电源B的零线N连接,以检测得到对应连接的可控开关1的开关状态,该控制单元4与每一状态检测电路201的输出端连接,用于接收每一可控开关得到开关状态,在根据每一可控开关的开关状态确定仅存在一个可控开关处于闭合状态时,将处于闭合状态的可控开关对应的档位确定为交流电机的当前档位n。
作为一种可能的实施方式,如图2所示,每一状态检测电路201包括电阻R1、电阻R2、二极管Q1、光耦隔离器D1、电阻R3、电阻R4、电阻R5以及电容C1,电阻R1的一端连接对应档位的可控开关的输出端,电阻R1的另一端连接电阻R2的第一端,电阻R2的第二端连接光耦隔离器D1发射端的正极,电阻R3的第一端连接供电电源的零线N,电阻R3的第二端连接光耦隔离器D1发射端的负极,二极管Q1的正极连接电阻R3的第一端,二极管Q1的负极连接电阻R2的第二端,光耦隔离器D1接收端的集电极通过电阻R4连接控制单元4;光耦隔离器D1接收端的集电极通过电阻R5连接一高电平信号;光耦隔离器D1接收端的发射极接地并通过电容C1与控制单元4连接;作为一种可能的实施方式,该可控开关1具体可为继电器,每一电阻R1的一端与对应档位的继电器的常开触点连接;这里需要说明的是,除了通过上述电路结构实现状态检测电路201以外,还可以通过现有的其他状态检测结构来作为状态检测电路201。
上述设计的状态检测电路,当状态检测电路201连接的可控开关1是断开时,状态检测电路201中的光耦隔离器D1不导通,状态检测电路201向控制单元4传输低电平信号;当状态检测电路201连接的可控开关1是闭合时,该状态检测电路201可从可控开关1的输出端接收到高电平信号,进而使得该状态检测电路201中的光耦隔离器D1导通,使得状态检测电路201向控制单元4发送高电平信号,进而使得控制单元4可基于该高电平信号得知该状态检测电路201对应连接的可控开关是闭合的。基于上述原理,在进行当前档位识别时,控制单元4可得到每一状态检测电路201传输的电平信号来识别出每一状态检测电路201对应连接的可控开关的开关状态, 进而在确定仅存在一个可控开关1处于闭合状态时,将处于闭合状态的可控开关对应的档位确定为交流电机的当前档位n。
作为一种可能的实施方式,控制单元4在识别出每一状态检测电路201对应连接的可控开关的开关状态之后,识别到所有的可控开关1均处于断开状态,在这样的情况下,控制单元4确定交流电机没有启动;控制单元4在识别出每一状态检测电路201对应连接的可控开关的开关状态之后,识别到有两个或两个以上的可控开关1均处于长时间闭合状态,在这样的情况下,控制单元4确定交流电极的运行出现故障,进而可进行自动报警。
在本实施例的可选实施方式中,如图3所示,该检测单元2还包括一电源检测电路202,该电源检测电路202与状态检测电路201的结构完全一致,其具体包括:电阻R6、电阻R7、二极管Q2、光耦隔离器D2、电阻R8、电阻R9、电阻R10以及电容C2,电阻R6的一端连接交流电源B的火线L,电阻R6的另一端连接电阻R7的第一端,电阻R7的第二端连接光耦隔离器D2发射端的正极,电阻R8的第一端连接交流电源B的零线N,电阻R8的第二端连接光耦隔离器D2发射端的负极,二极管Q2的正极连接电阻R8的第一端,二极管Q2的负极连接电阻R7的第二端,光耦隔离器D2接收端的集电极通过电阻R9连接控制单元;光耦隔离器D2接收端的集电极通过电阻R10连接一高电平信号;光耦隔离器D2接收端的发射极接地并通过电容C2与控制单元4连接。
电源检测电路202与状态检测电路201的不同点在于,该电源检测电路202的两个输入端分别连接在交流电源B的火线L和零线N上,该电源检测电路202用于采集供电电源信号,并将供电电源信号传输给控制单元4, 其中,该供电电源信号包括供电电源频率;控制单元4可基于电源检测电路202传输的供电电源信号来确定供电电源的有无,并且根据供电电源频率来确定控制可控开关1闭合的延时,例如,当在进行档位调节时,需要控制某一个档位的可控开关闭合,由于供电电源为市电即为50HZ的交流电,闭合的最好时机在于市电的波形经过横坐标即横坐标为0的时候对可控开关进行闭合或开启,对可控开关的损伤最小。
在本实施例的可选实施方式中,如图4所示,该档位控制电路还包括整流单元5,该控制单元4通过该整流单元5与该交流电源B连接,使得控制单元4可基于整流单元5将该交流电源B的交流电转换成其工作的直流电;另外,除了上述方式以外,控制单元4可直接与一直流电源连接,以实现控制单元4的供电,作为一种可能的实施方式,该整流单元5具体可为整流器或其他可将交流变换为直流的元器件。
作为一种可能的实施方式,如图4所示,可以在整流单元5和控制单元4之间并联一法拉电容C5,使得当外部电压断电的情况下控制单元4能维持一定时间的报警。
在本实施例的可选实施方式中,如图4所示,该档位控制电路还包括滤波抗干扰单元6,该交流电源B的地线通过该滤波抗干扰单元6与该交流电机A连接,该交流电源B的零线N通过该滤波抗干扰单元6与交流电机A和整流单元5连接,该交流电源B的火线L通过滤波抗干扰单元6与整流单元5和可控开关1的输入端连接。
作为一种可能的实施方式,如图5所示,该滤波抗干扰单元6包括保险丝S1、电阻R11、电阻R12、电阻R13、电容C3和电容C4,保险丝S1 的一端与交流电源B的火线L连接,保险丝S1的另一端与电阻R11的第一端连接,电阻R11的第二端与整流单元5和电容C3的第二端连接,该电容C3的第一端与交流电源B的零线N连接,该交流电源B的零线N与交流电机A连接,该电容C4的第一端与该电容C3的第一端连接,该电容C4的第二端与该交流电源B的地线E连接,该电阻R12的第一端与该电容C3的第二端连接,该电阻R12的第二端通过电阻R13与交流电源B的零线N连接;除了通过上述电路结构实现滤波抗干扰单元6以外,还可以通过现有的其他滤波抗干扰结构来作为滤波抗干扰单元6。
在上述实施方式中,电阻R11为热敏电阻,其在电路中起到过电流保护、过热检测的作用;电容C3用来抑制EMI传导干扰,消除火花电路等作用;电阻R12和电阻R13可以使得当拔出插头保证1s内电源插头的电压降到36V以下保护人身安全。
第二实施例
本申请提供一种交流电机的档位控制系统,该系统包括交流电源B、交流电极A以及第一实施例中任一可选实施方式所描述的档位控制电路,该档位控制电路中的每一可控开关1分别与交流电源B和交流电机A的多个档位一一对应连接,本实施例的档位控制系统与第一实施例描述的档位控制电路的原理一致,在这里不再进行赘述。
在上述设计的档位控制系统中,由于其包括前述设计的档位控制电路,因此,控制单元可接收档位输入单元传输的目标档位m,以及通过检测单元检测的每一可控开关的开关状态来确定当前档位n,然后在m大于n的情况下,控制n至m之间的每一档位对应的可控开关按照档位从小到大的 顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i-1对应的可控开关;在m小于n的情况下,控制m至n之间的每一档位对应的可控开关按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i+1对应的可控开关;通过这样的设计,使得在进行档位切换时,对档位进行逐步依次切换,使得档位的切换更加平滑,档位逐步切换相对于一次性调节到相差过大的档位来说,会产生更小的冲击电流,进而减小了对可控开关的损耗,提高了可控开关的寿命。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或 者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
第三实施例
请结合参照图6至图11,本申请实施例提供一种开关控制器20,可以通过PWM信号控制电子设备10的设备本体30的启停,有利于降低电子设备10的能耗。
请参照图6,开关控制器20可以包括信号调制电路21、信号跟随电路22、比较电路23及开关控制电路24。
信号调制电路21的输入端用于接收第一PWM信号,信号调制电路21的输出端与信号跟随电路22的输入端连接,用于输出信号调制电路21将第一PWM信号调制为表征模拟信号的第二PWM信号。其中,第一PWM信号可以由信号源100生成,信号源100生成PWM信号的方式为本领域技术人员所熟知,这里不再赘述。信号源100生成的PWM信号即为第一PWM信号,可以输出至信号调制电路21的输入端。第一PWM信号经过信号调制电路21进行调制处理后,得到的信号即为第二PWM信号。
当设备本体30为电动机时,第一PWM信号还可以输出至电动机,由电动机根据PWM信号对电动机的转速进行控制。其中,电动机通过PWM信号进行电动机转速控制的方式为本领域技术人员熟知,这里不再赘述。
信号跟随电路22的输出端与比较电路23的第一输入端连接,信号跟随电路22用于将第二PWM信号的当前负载功率增大至预设负载功率。其中,预设负载功率可以根据实际需求进行设置,这里不作具体限定。通过信号跟随电路22,可以维持第二PWM信号的电压不变,增大电流,从而 提高第二PWM信号的负载能力。可理解地,信号跟随电路22可以对第二PWM信号进行缓冲、隔离,并提高信号的带载能力。
比较电路23的输出端与开关控制电路24的输入端连接,用于在比较电路23的第二输入端接收到参考信号,且第一输入端接收到第二PWM信号时,输出控制信号。比较电路23的参考信号可以为参考电压,用户可以根据实际需求设置参考电压,该参考电压即为比较电路23的门限电平。
开关控制电路24的输出端用于与电子设备10的设备本体30的控制端连接,开关控制电路24在接收到控制信号时,控制开关控制电路24中的开关器件处于导通状态。开关控制电路24的开关器件与设备本体30上的控制端电连接,当开关器件导通后,设备本体30可以通过控制端上电,从而实现设备本体30的启动。控制信号可以为一种电平信号,可以为高电平、低电平等电平信号,可以根据实际情况进行设置。
在上述的实施方式中,开关控制器20可以通过信号调制电路21进行数模转换,以对数字信号的第一PWM信号进行调制,得到模拟信号的第二PWM信号,然后通过信号跟随电路22对经过调制的第二PWM信号进行负载放大,避免第二PWM信号的负载小而无法控制开关控制电路24的开关,能够改善不便于通过PWM信号控制电子设备10的启停的问题。
请参照图9,在本实施例中,开关控制电路24可以包括第一电容125、第二电容126、第三电容127、第四电容133、第一二极管124、第二二极管134、第一电阻128、第二电阻129、第三电阻131、三极管132及表征所述开关器件的MOS管130。
第一电容125的第一端和第一电阻128的第一端与比较电路23的输出 端连接,第一电容125的第二端接地,第一电阻128的第二端与三极管132的基极连接,三极管132的发射极接地,三极管132的集电极与第三电阻131的第一端连接,第三电阻131的第二端与第二电阻129的第一端及MOS管130的第一端连接,第二电阻129的第二端和MOS管130的第二端均与控制电源的输入端连接。
第一二极管124的第一端、第二电容126的第一端、第三电容127的第一端均与控制电源的输入端连接,第一二极管124的第二端、第二电容126的第二端、第三电容127的第二端均接地。
MOS管130的第三端作为开关控制电路24的输出端,第三电阻131的第一端、第二二极管134的第一端均与MOS管130的第三端连接,第三电阻131的第二端、第二二极管134的第二端均接地。
其中,当三极管132通过第一电阻128接收到控制信号时,MOS管130的第二端与MOS管130的第三端导通。
当三极管132通过第一电阻128未接收到控制信号时,MOS管130的第二端与MOS管130的第三端断开。
在本实施例中,比较器121可以为电压比较器。比较器121输出的电平信号即为G1信号。
在开关控制电路24中,控制电源可以为15V电源,为本领域技术人员熟知,MOS管130的源极与漏极可以作为控制电源的开关。G1信号可以通过第一电阻128控制NPN三极管132的导通和断开,从而稳定的控制PMOS的导通和断开。
三极管132可以为NPN型三极管132,MOS管130可以为P型MOS 管,此时,控制信号可以为高电平。在开关控制器20持续接收第一PWM信号时,NPN三极管的基极为高电平时,三极管132的集电极与发射极导通,且电流流向为集电极流向发射极。PMOS管的栅极(或称为G极)为低电平时,PMOS管的源极(或称为S极)与漏极(或称为D极)导通,且电流流向为源极流向漏极,从而可以使得设备本体30的控制端上电,以实现启动。
在开关控制器20未接收到第一PWM信号时,NPN三极管的基极为低电平,此时,三极管132的集电极与发射极断开,同时,PMOS管的源极与漏极断开,从而可以使得设备本体30的控制端掉电,以实现关闭,从而节省电子设备10的能耗。
第二电阻129用于在NPN三极管没有导通时候断开电源。
第三电阻131用于保护三极管132。
第一电容125可以为电解电容类的极性电容,用于稳定G1信号。
第二电容126可以为电解电容,用于稳定电源电压。
第三电容127可以为瓷片电容类的非极性电容,用于去除电源的干扰。
第四电容133可以为非极性电容,用于提高输出信号的稳定性。
第一二极管124和第二二极管134,保护后面负载免受过电压电流的冲击,同时对设备本体30也起到保护作用。
在上述的实施方式中,通过三极管132与MOS管130相互配合,能够基于比较电路23是否输出的控制信号,控制MOS管130是否导通,从而实现电子设备10的启停控制。在有PWM信号时候打开电子设备10的供电电源,在没有PWM信号时候关闭供电电源以降低电子设备10的功耗,避 免在没有PWM信号时供电电源仍然开启而浪费电能。
请参照图7,在本实施例中,信号调制电路21可以包括第三二极管102、第四二极管103、第五电容104、第六电容105、第七电容108、第四电阻106以及第五电阻107。第三二极管102的负极与第一电源连接,第三二极管102的正极与第五电阻107的第一端连接,第五电阻107的第二端与第七电容108的第一端连接后,作为信号调制电路21的输出端。第七电容108的第二端接地。第一电源可以为5V电源,为本领域技术人员熟知。
第四二极管103的负极、第五电容104的第一端、第六电容105的第一端、第四电阻106的第一端,均与所述第三二极管102的正极、所述第五电阻107的第一端连接。第四二极管103的正极、第五电容104的第二端、第六电容105的第二端、第四电阻106的第二端均接地。
在信号调制电路21中,第三二极管102及第四二极管103,起到保护作用使输入电压不高于电源电源不会出现负压,保证后面电路的安全;
第五电容104与第六电容105相互配合,用于将第一PWM信号转换成直流信号。
第五电容104可以为极性电容(比如为电解电容)。第六电容105可以为非极性电容(比如为瓷片电容),可以用于吸收低频干扰。
第五电阻107用于消除反射信号,因为根据运放的理论其输入阻抗是无穷大所以输入脚电流接近0,那么PWM信号输入的电流都通过106电阻流向地。如果没有这个第五电阻107,那么信号会反射回到磁珠101输出那里,如果PWM信号输入信号带载能力差那就会形成震荡信号,使得跟随输出的信号不稳定。
第七电容108用于更为有效的吸收反射信号,第五电阻107可以将反射回来的高频信号阻隔在跟随器109的输入端,并由第七电容108吸收该高频信号,从而滤除跟随器109的输入信号的干扰信号,保证跟随器109的输入信号的质量。
请参照图7,在本实施例中,信号跟随电路22可以包括跟随器109及保护子电路26,跟随器109的输入端作为信号跟随电路22的输入端,跟随器109的输出端与保护子电路26的输入端连接,保护子电路26的输出端作为信号跟随电路22的输出端,保护子电路26用于隔离缓冲第二PWM信号。
跟随器109可以为电压跟随器,用于保证输入跟随器109的第二PWM信号与输出跟随器109的第二PWM信号的电压保持不变,并增大输出PWM信号的电流。
请再次参照图7,跟随器109包括第一输入端“+IN”、第二输入端“-IN”、电源端VCC、接地端GND与输出端OUT。跟随器109的第一输入端“+IN”作为信号跟随电路22的输入端,可以与第五电阻107的第二端连接。跟随器109的第二输入端“-IN”与跟随器109的输出端OUT连接。跟随器109的电源端VCC用于与第二电源连接,第二电源可以为5V电源,为本领域技术人员熟知。跟随器109的接地端GND接地。跟随器109的输出端OUT与保护子电路26的输入端连接。
其中,保护子电路26包括第六电阻111、第七电阻112、第八电容110、第九电容113、第十电容115、第五二极管116以及第六二极管117。
第六电阻111的第一端与第八电容110的第一端连接,并作为保护子电 路26的输入端,该输入端与跟随器109的输出端OUT连接。第六电阻111的第二端与第七电阻112的第一端、第九电容113的第一端、第十电容115的第一端、第五二极管116的负极、第六二极管117的正极连接。第七电阻112的第二端、第九电容113的第二端、第十电容115的第二端、第五二极管116的正极均接地。第六二极管117的负极与第三电源连接,第三电源可以为5V电源,为本领域技术人员熟知。第六电阻111的第二端可以作为保护子电路26的输出端,输出经过隔离缓冲的第二PWM信号。
第六电阻111用于隔离运放的容性负载,另外也可以消除反馈回路产生的相位滞后。比如,基于第六电阻111,PWM信号的负载较大时,也不会造成系统的震荡,可以提高电路中信号的稳定性。
第七电阻112、第九电容113、第十电容115,均用于信号的稳定,不至于受负载的冲击。
第八电容110用于消除后面负载对相位造成的滞后。
第五二极管116以及第六二极管117,用于起到保护作用使输入电压不高于电源不会出现负压,保护前后电路的信号的安全和稳定。
在上述的实施方式中,通过跟随器109可以对第二PWM信号的负载进行增大,通过保护子电路26可以对增大负载的PWM信号进行隔离缓冲,以输出安全稳定的模拟信号。
请参照图8,在本实施例中,比较电路23包括比较器121,比较器121的第一输入端用于通过指定电阻接收信号跟随电路22输出的第二PWM信号;比较器121的第二输入端用于接收参考信号;比较器121的输出端作为比较电路23的输出端。
在本实施例中,比较器121的第二输入端可以通过第八电阻114与第四电源连接。另外,第四电源可以通过第八电阻114、第九电阻122接地。第四电源可以为5V电源,为本领域技术人员熟知。
指定电阻即为第十电阻120,比较器121的第一输入端通过第十电阻120接收信号跟随电路22输出的第二PWM信号,然后由比较器121根据第一输入端、第二输入端接收的信号,通过输出端输出G1信号至开关控制电路24的输入端。
第八电阻114、第九电阻122,用于调节比较器121的参考信号的电压(门限电平),使比较器121的第一输入端有第二PWM信号输入时,输出高电平;在比较器121的输入端未接收到第二PWM信号时,输出低电平。
第十电阻120用于隔离信号跟随电路22输出的信号和比较器121的输入端的干扰。
在上述的实施方式中,通过比较器121可以根据第二PWM信号输出控制信号,进而可以根据控制信号实现电路的开关控制。
请再次参照图7,作为一种可选的实施方式,开关控制器20还可以包括磁珠101,信号调制电路21用于通过磁珠101接收第一PWM信号。
在上述的实施方式中,通过磁珠101可以抑制电磁辐射干扰,从而有利于提高输入的PWM信号的稳定性。
请再次参照图7,作为一种可选的实施方式,开关控制器20还包括保护电阻118,信号跟随电路22的输出端通过保护电阻118与比较电路23的输入端连接。
在上述的实施方式中,保护电阻118可以保证传输的第二PWM信号的 稳定性,避免第二PWM信号因负载的冲击而不稳定。
请参照图11,作为一种可选的实施方式,开关控制器20还包括与信号调制电路21的输入端连接的整流模块27。
整流模块27中可以包括整流桥,用于将交流电整流为直流电,以便于直流电机使用直流电进行供电,如图6所示的接线端Vim用于为电机转动供电。接线端GND用于接地,接线端VCC为设备本体30的控制模块进行供电,设备本体30中的控制模块的工作方式为本领域技术人员熟知。
请参照图10,作为一种可选的实施方式,开关控制器20还可以包括用于对比较电路23接收的参考信号进行稳压的稳压电路25。
稳压电路25可以包括极性电容及两个非极性电容,极性电容及两个非极性电容并联,并联的一端与第五电源连接,并联的另一端接地,第五电源可以为5V电源,稳压电路25用于为比较器121提供稳定的5V电源,以提高参考信号的稳定性。
基于上述设计,通过信号调制电路21可以对第一PWM信号进行平滑的处理,如此,对于突然变化的脉宽也能及时响应。经过调制的第二PWM信号为模拟电压信号,经过信号跟随电路22调制后能提高第二PWM信号的带载能力和抗干扰能力。基于磁珠101、保护子电路26、保护电阻118等,可以对于PWM信号的浪涌、静电等能提供安全可靠的保护。另外,设备本体30可以在有PWM信号(第一PWM信号)时候打开控制电源,没有PWM信号时候关闭控制电源,以最大限度的减少功耗。
请再次参照图11,本申请实施例还提供一种电子设备10,电子设备10包括设备本体30及上述的开关控制器20,设备本体30的控制端与开关控 制器20的输出端连接,其中,设备本体30在接收到开关控制器20的输出端输出的控制信号时启动。
在本实施例中,设备本体30可以根据实际情况进行确定。例如,设备本体30包括直流电动机。比如,设备本体30可以为空气净化器中的直流无刷电动机。
需要说明的是,在本实施例中,各类电阻、电容、磁珠、二极管的参数可以根据实际情况进行选择,为本领域技术人员熟知,这里不作具体限定。
综上所述,本申请提供一种开关控制器及电子设备。开关控制器可以包括信号调制电路、信号跟随电路、比较电路及开关控制电路。信号调制电路的输入端用于接收第一PWM信号,信号调制电路的输出端与信号跟随电路的输入端连接,用于输出信号调制电路将第一PWM信号调制为表征模拟信号的第二PWM信号;信号跟随电路的输出端与比较电路的第一输入端连接,信号跟随电路用于将第二PWM信号的当前负载功率增大至预设负载功率;比较电路的输出端与开关控制电路的输入端连接,用于在比较电路的第二输入端接收到参考信号,且第一输入端接收到第二PWM信号时,输出控制信号;开关控制电路的输出端用于与电子设备的设备本体的控制端连接,开关控制电路在接收到控制信号时,控制开关控制电路中的开关器件处于导通状态。在本方案中,开关控制器可以通过信号调制电路进行数模转换,以对数字信号的第一PWM信号进行调制,得到模拟信号的第二PWM信号,然后通过信号跟随电路对经过调制的第二PWM信号进行负载放大,避免第二PWM信号的负载小而无法控制开关控制电路的开关,能够 改善不便于通过PWM信号控制电子设备的启停的问题。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种交流电机的档位控制电路,其特征在于,所述档位控制电路包括:
    多个可控开关,每一所述可控开关分别用于与交流电源的火线连接以及分别用于与交流电机的多个档位一一对应连接;
    一检测单元,其分别与每一所述可控开关连接,以用于检测对应所述可控开关的开关状态;
    一档位输入单元,其用于接收外部输入的目标档位m;
    一控制单元,其与所述档位输入单元连接以用于获取所述目标档位m;所述控制单元还与每一所述可控开关以及所述检测单元分别连接,以用于根据每一所述可控开关的开关状态得到所述交流电机的当前档位n;若m大于n,所述控制单元控制n至m之间的每一档位对应的可控开关按照档位从小到大的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i-1对应的可控开关;若m小于n,所述控制单元控制m至n之间的每一档位对应的可控开关按照档位从大到小的顺序依次打开,并在每打开一个档位i对应的可控开关后关闭档位i+1对应的可控开关。
  2. 根据权利要求1所述的档位控制电路,其特征在于,所述检测单元包括多个状态检测电路,每一状态检测电路的两个输入端分别与一可控开关的输出端和交流电源的零线连接,以获得对应连接的可控开关的开关状态;
    所述控制单元与每一状态检测电路的输出端连接,以用于接收每一可控开关的开关状态,在根据每一可控开关的开关状态确定仅存在一个可控 开关处于闭合状态时,将处于闭合状态的可控开关对应的档位确定为所述交流电机的当前档位。
  3. 根据权利要求2所述的档位控制电路,其特征在于,所述控制单元还用于在确定不存在可控开关处于闭合状态,确定所述交流电机没有启动。
  4. 根据权利要求2所述的档位控制电路,其特征在于,每一状态检测电路包括电阻R1、电阻R2、二极管Q1、光耦隔离器D1、电阻R3、电阻R4、电阻R5以及电容C1,所述电阻R1的一端连接对应档位的可控开关的输出端,所述电阻R1的另一端连接所述电阻R2的第一端,所述电阻R2的第二端连接所述光耦隔离器D1发射端的正极,所述电阻R3的第一端连接供电电源的零线,所述电阻R3的第二端连接所述光耦隔离器D1发射端的负极,所述二极管Q1的正极连接所述电阻R3的第一端,所述二极管Q1的负极连接所述电阻R2的第二端,所述光耦隔离器D1接收端的集电极通过所述电阻R4连接所述控制单元;所述光耦隔离器D1接收端的集电极通过所述电阻R5连接一高电平信号;所述光耦隔离器D1接收端的发射极接地并通过所述电容C1与所述控制单元连接。
  5. 根据权利要求4所述的档位控制电路,其特征在于,所述可控开关为继电器,每一所述电阻R1的一端与对应档位的继电器的常开触点连接。
  6. 根据权利要求2所述的档位控制电路,其特征在于,所述检测单元还包括一电源检测电路,所述电源检测电路的两个输入端分别与所述交流电源的火线和零线连接,所述电源检测电路的输出端与所述控制单元连接,所述电源检测电路用于采集所述供电电源信号,所述供电电源信号包括电源电压信号以及电源频率信号;
    所述控制单元,还用于根据所述电源电压信号确定所述供电电源的有无,并根据所述电源频率信号确定控制可控开关闭合的延时。
  7. 根据权利要求6所述的档位控制电路,其特征在于,所述电源检测电路包括电阻R6、电阻R7、二极管Q2、光耦隔离器D2、电阻R8、电阻R9、电阻R10以及电容C2,所述电阻R6的一端连接所述交流电源的火线,所述电阻R6的另一端连接所述电阻R7的第一端,所述电阻R7的第二端连接所述光耦隔离器D2发射端的正极,所述电阻R8的第一端连接所述交流电源的零线,所述电阻R8的第二端连接所述光耦隔离器D2发射端的负极,所述二极管Q2的正极连接所述电阻R8的第一端,所述二极管Q2的负极连接所述电阻R7的第二端,所述光耦隔离器D2接收端的集电极通过所述电阻R9连接所述控制单元;所述光耦隔离器D2接收端的集电极通过所述电阻R10连接一高电平信号;所述光耦隔离器D2接收端的发射极接地并通过所述电容C2与所述控制单元连接。
  8. 根据权利要求1所述的档位控制电路,其特征在于,所述档位控制电路还包括整流单元,所述控制单元通过所述整流单元与所述交流电源连接。
  9. 根据权利要求8所述的档位控制电路,其特征在于,所述档位控制电路还包括滤波抗干扰单元,所述交流电源的地线通过所述滤波抗干扰单元与所述交流电机连接,所述交流电源的零线通过所述滤波抗干扰单元与所述交流电机和所述整流单元连接,所述交流电源的火线通过所述滤波抗干扰单元与所述整流单元和所述可控开关的输入端连接。
  10. 一种交流电机的档位控制系统,其特征在于,所述系统包括:交 流电源、交流电机以及权利要求1-9中任一项所述的档位控制电路,所述交流电机包括多个档位,每一档位对应的电机转速不同,所述档位控制电路中的每一所述可控开关分别与交流电源的火线连接以及分别与交流电机的多个档位一一对应连接。
  11. 一种开关控制器,其特征在于,所述开关控制器包括信号调制电路、信号跟随电路、比较电路及开关控制电路;
    所述信号调制电路的输入端用于接收第一PWM信号,所述信号调制电路的输出端与所述信号跟随电路的输入端连接,用于输出所述信号调制电路将所述第一PWM信号调制为表征模拟信号的第二PWM信号;
    所述信号跟随电路的输出端与所述比较电路的第一输入端连接,所述信号跟随电路用于将所述第二PWM信号的当前负载功率增大至预设负载功率;
    所述比较电路的输出端与所述开关控制电路的输入端连接,用于在所述比较电路的第二输入端接收到参考信号,且所述第一输入端接收到所述第二PWM信号时,输出控制信号;
    所述开关控制电路的输出端用于与电子设备的设备本体的控制端连接,所述开关控制电路在接收到所述控制信号时,控制所述开关控制电路中的开关器件处于导通状态。
  12. 根据权利要求11所述的开关控制器,其特征在于,所述开关控制电路包括第一电容、第二电容、第三电容、第四电容、第一二极管、第二二极管、第一电阻、第二电阻、第三电阻、三极管及表征所述开关器件的MOS管;
    所述第一电容的第一端和所述第一电阻的第一端与所述比较电路的输出端连接,所述第一电容的第二端接地,所述第一电阻的第二端与所述三极管的基极连接,所述三极管的发射极接地,所述三极管的集电极与所述第三电阻的第一端连接,所述第三电阻的第二端与所述第二电阻的第一端及所述MOS管的第一端连接,所述第二电阻的第二端和所述MOS管的第二端均与控制电源的输入端连接;
    所述第一二极管的第一端、所述第二电容的第一端、所述第三电容的第一端均与所述控制电源的输入端连接,所述第一二极管的第二端、所述第二电容的第二端、所述第三电容的第二端均接地;
    所述MOS管的第三端作为所述开关控制电路的输出端,所述第三电阻的第一端、所述第二二极管的第一端均与所述MOS管的第三端连接,所述第三电阻的第二端、所述第二二极管的第二端均接地;
    其中,当所述三极管通过所述第一电阻接收到所述控制信号时,所述MOS管的第二端与所述MOS管的第三端导通;
    当所述三极管通过所述第一电阻未接收到所述控制信号时,所述MOS管的第二端与所述MOS管的第三端断开。
  13. 根据权利要求11所述的开关控制器,其特征在于,所述信号跟随电路包括跟随器及保护子电路,所述跟随器的输入端作为所述信号跟随电路的输入端,所述跟随器的输出端与所述保护子电路的输入端连接,所述保护子电路的输出端作为所述信号跟随电路的输出端,所述保护子电路用于隔离缓冲所述第二PWM信号。
  14. 根据权利要求11所述的开关控制器,其特征在于,所述比较电路包 括比较器,所述比较器的第一输入端用于通过指定电阻接收所述信号跟随电路输出的所述第二PWM信号;
    所述比较器的第二输入端用于接收所述参考信号;
    所述比较器的输出端作为所述比较电路的输出端。
  15. 根据权利要求11所述的开关控制器,其特征在于,所述开关控制器还包括磁珠,所述信号调制电路用于通过所述磁珠接收所述第一PWM信号。
  16. 根据权利要求11所述的开关控制器,其特征在于,所述开关控制器还包括保护电阻,所述信号跟随电路的输出端通过所述保护电阻与所述比较电路的输入端连接。
  17. 根据权利要求11所述的开关控制器,其特征在于,所述开关控制器还包括与所述信号调制电路的输入端连接的整流模块。
  18. 根据权利要求11所述的开关控制器,其特征在于,所述开关控制器还可以包括用于对所述比较电路接收的所述参考信号进行稳压的稳压电路。
  19. 一种电子设备,其特征在于,所述电子设备包括设备本体及如权利要求11-18中任一项所述的开关控制器,所述设备本体的控制端与所述开关控制器的输出端连接,其中,所述设备本体在接收到所述开关控制器的输出端输出的控制信号时启动。
  20. 根据权利要求19所述的电子设备,其特征在于,所述设备本体包括直流电动机。
PCT/CN2021/130361 2021-03-19 2021-11-12 交流电机的档位控制电路和系统、开关控制器及电子设备 WO2022193696A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB2211053.0A GB2609316A (en) 2021-03-19 2021-11-12 Gear control circuit for alternating current motor, system, switch controller and electronic device
EP21920115.9A EP4087116A4 (en) 2021-03-19 2021-11-12 TRANSMISSION CONTROL CIRCUIT FOR AC MOTOR, SYSTEM, SHIFT CONTROL AND ELECTRONIC DEVICE
KR1020227021180A KR20220131377A (ko) 2021-03-19 2021-11-12 교류 모터의 기어 제어 회로와 시스템, 스위치 컨트롤러 및 전자설비
JP2022539075A JP7377982B2 (ja) 2021-03-19 2021-11-12 交流モーターのギヤ制御回路とシステム
US17/794,610 US20230327590A1 (en) 2021-03-19 2021-11-12 Gear control circuit and system for alternating current motor, switch controller, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110299651.5 2021-03-19
CN202110299653.4 2021-03-19
CN202110299651.5A CN112953478B (zh) 2021-03-19 2021-03-19 开关控制器及电子设备
CN202110299653.4A CN113067525A (zh) 2021-03-19 2021-03-19 一种交流电机的档位控制电路和系统

Publications (1)

Publication Number Publication Date
WO2022193696A1 true WO2022193696A1 (zh) 2022-09-22

Family

ID=83321667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130361 WO2022193696A1 (zh) 2021-03-19 2021-11-12 交流电机的档位控制电路和系统、开关控制器及电子设备

Country Status (6)

Country Link
US (1) US20230327590A1 (zh)
EP (1) EP4087116A4 (zh)
JP (1) JP7377982B2 (zh)
KR (1) KR20220131377A (zh)
GB (1) GB2609316A (zh)
WO (1) WO2022193696A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115314036A (zh) * 2022-10-12 2022-11-08 合肥悦芯半导体科技有限公司 开关电路及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3204818A1 (en) 2021-11-16 2023-05-25 Lg Energy Solution, Ltd. Novel additive for nonaqueous electrolyte, and lithium secondary battery comprising same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071906A (ja) * 1999-09-02 2001-03-21 Railway Technical Res Inst 電気転てつ機
US20070013332A1 (en) * 2005-07-18 2007-01-18 Schneider Toshiba Inverter Europe Sas Device for powering a variable speed drive
US20120223690A1 (en) * 2011-03-04 2012-09-06 Fuji Electric Co., Ltd. Dc-dc converter control circuit and control method
CN205265646U (zh) * 2015-12-25 2016-05-25 北京迪赛奇正科技有限公司 箝位管强制关断电路
CN108390613A (zh) * 2018-03-21 2018-08-10 杭州先途电子有限公司 一种多档位电机控制方法及装置
CN208401817U (zh) * 2018-03-20 2019-01-18 深圳创睿高新能源有限公司 信号控制电路
CN109475029A (zh) * 2018-12-18 2019-03-15 深圳市稳先微电子有限公司 Led灯的调光驱动电路、调光驱动芯片及控制电路
CN209795173U (zh) * 2019-04-26 2019-12-17 四川泛华电器有限责任公司 一种油箱转换控制器
CN112953478A (zh) * 2021-03-19 2021-06-11 苏州贝昂科技有限公司 开关控制器及电子设备
CN113067525A (zh) * 2021-03-19 2021-07-02 苏州贝昂科技有限公司 一种交流电机的档位控制电路和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026360C2 (de) * 1980-07-11 1985-01-17 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zur Bedämpfung von Leistungspendelungen von Synchrongeneratoren in Netzen
JP3742929B2 (ja) * 2002-06-12 2006-02-08 ダイキン工業株式会社 電源装置
CN101414803B (zh) * 2008-11-28 2010-06-09 郑州春泉暖通节能设备有限公司 基于电压互感技术的多档速电机档位识别方法及装置
GB201006387D0 (en) * 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
KR101222291B1 (ko) 2011-07-20 2013-01-15 대구텍 유한회사 드릴 공구
CN103309251B (zh) * 2012-03-16 2016-01-27 中山大洋电机股份有限公司 一种实现高效控制的电器控制系统及其信号转换板
CN103899561A (zh) * 2012-12-28 2014-07-02 鸿富锦精密工业(深圳)有限公司 风扇控制电路
CN203809327U (zh) * 2014-02-12 2014-09-03 明瑞电子(成都)有限公司 风扇控制电路
CN204116516U (zh) * 2014-09-19 2015-01-21 郑州春泉节能股份有限公司 多档速电机档位接错检测装置的硬件结构
CN205725556U (zh) * 2016-04-21 2016-11-23 中山大洋电机股份有限公司 一种电机控制器及应用其的ecm电机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071906A (ja) * 1999-09-02 2001-03-21 Railway Technical Res Inst 電気転てつ機
US20070013332A1 (en) * 2005-07-18 2007-01-18 Schneider Toshiba Inverter Europe Sas Device for powering a variable speed drive
US20120223690A1 (en) * 2011-03-04 2012-09-06 Fuji Electric Co., Ltd. Dc-dc converter control circuit and control method
CN205265646U (zh) * 2015-12-25 2016-05-25 北京迪赛奇正科技有限公司 箝位管强制关断电路
CN208401817U (zh) * 2018-03-20 2019-01-18 深圳创睿高新能源有限公司 信号控制电路
CN108390613A (zh) * 2018-03-21 2018-08-10 杭州先途电子有限公司 一种多档位电机控制方法及装置
CN109475029A (zh) * 2018-12-18 2019-03-15 深圳市稳先微电子有限公司 Led灯的调光驱动电路、调光驱动芯片及控制电路
CN209795173U (zh) * 2019-04-26 2019-12-17 四川泛华电器有限责任公司 一种油箱转换控制器
CN112953478A (zh) * 2021-03-19 2021-06-11 苏州贝昂科技有限公司 开关控制器及电子设备
CN113067525A (zh) * 2021-03-19 2021-07-02 苏州贝昂科技有限公司 一种交流电机的档位控制电路和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115314036A (zh) * 2022-10-12 2022-11-08 合肥悦芯半导体科技有限公司 开关电路及电子设备
CN115314036B (zh) * 2022-10-12 2023-01-06 合肥悦芯半导体科技有限公司 开关电路及电子设备

Also Published As

Publication number Publication date
GB2609316A (en) 2023-02-01
EP4087116A4 (en) 2023-11-08
EP4087116A1 (en) 2022-11-09
GB202211053D0 (en) 2022-09-14
JP7377982B2 (ja) 2023-11-10
JP2023522521A (ja) 2023-05-31
US20230327590A1 (en) 2023-10-12
KR20220131377A (ko) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2022193696A1 (zh) 交流电机的档位控制电路和系统、开关控制器及电子设备
CN103841725B (zh) 泄放控制模块、可控硅调光led驱动电路及系统
US9309887B2 (en) System and method of remotely connecting and disconnecting the auxiliary power supply of a frequency inverter for variable capacity compressor employed in cooling systems
CN102005731B (zh) 提供过温度保护的控制器、功率转换器及其方法
CN104022650A (zh) 一种带输出短路保护功能的反激式开关电源
US20140139954A1 (en) Boost type power converting apparatus with protection circuit
CN105680418B (zh) 一种单相交流电机保护电路、风扇及空调
CN110797838A (zh) 一种直流过压保护电路及直流过压保护方法
CN201113788Y (zh) 一种电源保护电路
CN113676029A (zh) 一种基于igbt的有源钳位电路
CN208285214U (zh) 一种低功耗滞环驱动装置
CN203895973U (zh) 一种电涌保护箱
CN114124055B (zh) 一种单火线微功耗wifi墙壁开关电路
CN214256123U (zh) 一种浪涌电流抑制电路
CN211959179U (zh) 一种隔离驱动电子开关模块
CN210577783U (zh) 一种浪涌电流抑制电路及开关电源
CN210444288U (zh) 一种数据传输单元的通信接口电路
CN210380651U (zh) 电源保护电路及交直流电源转换电路
CN208589767U (zh) 一种电源或电池输出自恢复短路保护电路
CN106535414B (zh) 感应控制电路及led电源驱动控制电路
CN208156447U (zh) 一种高抗干扰电子压力控制电源
CN211267189U (zh) 一种led驱动电源电路
CN103475196A (zh) 一种绝缘栅双极型晶体管驱动器
KR200498026Y1 (ko) 교류 송전 회로 및 소켓
WO2021056956A1 (zh) 一种显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022539075

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202211053

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211112

ENP Entry into the national phase

Ref document number: 2021920115

Country of ref document: EP

Effective date: 20220727

NENP Non-entry into the national phase

Ref country code: DE