WO2021056956A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2021056956A1
WO2021056956A1 PCT/CN2020/075932 CN2020075932W WO2021056956A1 WO 2021056956 A1 WO2021056956 A1 WO 2021056956A1 CN 2020075932 W CN2020075932 W CN 2020075932W WO 2021056956 A1 WO2021056956 A1 WO 2021056956A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
control
control signal
power switch
Prior art date
Application number
PCT/CN2020/075932
Other languages
English (en)
French (fr)
Inventor
辛惠莹
高宽志
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2021056956A1 publication Critical patent/WO2021056956A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the embodiments of the present application relate to the field of circuit technology, and in particular, to a display device.
  • Surge refers to the overload voltage or current that is much greater than the steady-state voltage or current peak that is generated at the moment the power is turned on or when the circuit is abnormal. It is likely to cause the circuit to burn out at the moment of the surge, such as PN junction capacitors. Breakdown, resistance burnout, etc.
  • a surge voltage is generated at the moment when the switching power supply is turned on, which will cause damage to the circuit of the electronic equipment and its components, and in severe cases, it will cause irreversible damage to the electronic equipment.
  • a varistor or gas discharge tube is usually installed at the input port of the switching power supply circuit to absorb the surge voltage and prevent the subsequent components of the input port in the switching power supply circuit from being impacted by excessive surges.
  • a varistor or gas discharge tube can only absorb and suppress a limited surge voltage. When the surge voltage is much higher than the operating voltage of the varistor or gas discharge tube, even if it passes through the varistor or gas discharge tube. Absorption and suppression, there will be a higher surge voltage (ie residual voltage).
  • the power switch may be a metal oxide half field, for example. Metal-Oxide-Semiconductor Field-Effect Transistor (MOS) tube, Insulated Gate Bipolar Transistor (IGBT), etc., when the power switch is in the open and closed state of high-speed switching, the bus bar Under the action of the voltage Vm, the power switch and the inductor and capacitor oscillate, thereby generating a ringing voltage Vs. Therefore, the voltage applied to the power switch is Vm+Vs. If the bus voltage Vm is very high due to the residual voltage, the voltage applied to the power switch will be much higher than the upper limit of its normal operating voltage, resulting in The damage of the power switch may cause a safety accident in serious cases.
  • MOS Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the embodiment of the present application provides a display device.
  • the voltage of the rectifier circuit on the power board of the display device can be detected by the surge detection circuit on the power board.
  • the power switch can be stopped. , In order to protect the power switch, thereby improving the safety performance of the display device.
  • an embodiment of the present application provides a display device, including:
  • the power supply board is provided with a rectifier circuit, a surge detection circuit, a control circuit and a resonance circuit, and the resonance circuit includes a power switch; wherein,
  • the rectifier circuit is used to rectify the input AC power into DC power and deliver the DC power to the resonance circuit;
  • the resonant circuit is used to generate a drive pulse signal and a ringing voltage under the action of the direct current, and transmit the drive pulse signal to the drive board, and the ringing voltage acts on the power switch;
  • the surge detection circuit is used to detect the voltage of the rectifier circuit, and when the voltage of the rectifier circuit is greater than or equal to a preset voltage, output a first control signal to the control circuit, and the first control signal is used for To enable the control circuit to output a second control signal to the power switch, where the second control signal is used to control the power switch to be in a state where the resonance circuit can stop generating a ringing voltage;
  • the control circuit is configured to receive the first control signal, and output a second control signal to the power switch according to the first control signal;
  • the resonance circuit is configured to stop generating a ringing voltage after the power switch receives the second control signal, so as to reduce the voltage applied to the power switch.
  • the surge detection circuit includes: a first diode, a second diode, and a detection sub-circuit, and the first diode is electrically connected to the live wire and the detection sub-circuit, respectively ,
  • the second diode is electrically connected to the neutral line and the detection sub-circuit, and the detection sub-circuit is also electrically connected to the rectifier circuit and the control circuit;
  • the first diode is used to control the detection sub-circuit to detect the first voltage between the live wire and the neutral wire when the voltage of the live wire is greater than the voltage of the neutral wire;
  • the second diode is used to control the detection sub-circuit to detect the first voltage between the live line and the neutral line when the voltage of the neutral line is greater than the voltage of the live line;
  • the detection sub-circuit is used to detect the first voltage between the live wire and the neutral wire, and when the first voltage is greater than or equal to a first preset voltage, continuously sending a first control signal to the control circuit, Until the first voltage is less than the first preset voltage.
  • the surge detection circuit includes: a detection sub-circuit, and the detection sub-circuit is electrically connected to the rectifier circuit and the control circuit, respectively;
  • the detection sub-circuit is used to detect the second voltage of the direct current output by the rectifier circuit, and when the second voltage is greater than or equal to a second preset voltage, the first control signal is continuously sent to the control circuit until The second voltage is less than the second preset voltage.
  • the detection sub-circuit includes: a first resistor, a second resistor, and a first capacitor, and one end of the first resistor is electrically connected to the first diode and the second diode, respectively. Connected, the other end is electrically connected to one end of the second resistor, one end of the second resistor is also electrically connected to the control circuit, the other end is connected to the rectifier circuit, and the first capacitor is connected in parallel with the second resistor ;
  • the first resistor and the second resistor are used to divide the first voltage to detect the magnitude of the first voltage according to the divided voltage, and when the divided voltage indicates the first voltage When the voltage is greater than or equal to the preset first voltage, sending a first control signal to the control circuit;
  • the second resistor and the first capacitor are used to control the duration of sending the first control signal to the control circuit.
  • the detection sub-circuit includes: a first resistor, a second resistor, and a first capacitor.
  • One end of the first resistor is electrically connected to one end of the rectifier circuit that outputs direct current, and the other end is connected to the One end of the second resistor is electrically connected, the other end of the second resistor is electrically connected to the other end of the rectifier circuit that outputs direct current, and the first capacitor is connected in parallel with the second resistor;
  • the first resistor and the second resistor are used to divide the second voltage to detect the magnitude of the second voltage according to the divided voltage, and when the divided voltage indicates the second voltage When the voltage is greater than or equal to the preset second voltage, sending a first control signal to the control circuit;
  • the second resistor and the first capacitor are used to control the duration of sending the first control signal to the control circuit.
  • control circuit includes: a control sub-circuit and a control chip, the control sub-circuit is electrically connected to the detection sub-circuit and the first pin of the control chip, and the control chip The second pin is electrically connected to the power switch;
  • the control sub-circuit is configured to receive the first control signal, and send a third control signal to the control chip through the first pin according to the first control signal, and the third control signal is used for Instruct the control chip to output a second control signal to the power switch through the second pin;
  • the control chip is configured to output a second control signal to the power switch through the second pin according to the third control signal when receiving the third control signal; and when the first control signal is not received In the case of three control signals, control the state of the power switch.
  • control circuit includes: a control sub-circuit and a control chip, the control sub-circuit is electrically connected to the detection sub-circuit and the power switch, and the second pin of the control chip Electrically connected to the power switch;
  • the control sub-circuit is configured to receive the first control signal, and output a second control signal to the power switch according to the first control signal;
  • the control chip is configured to control the state of the power switch when the control sub-circuit does not output a second control signal to the power switch.
  • control sub-circuit includes: a controllable element, and the controllable element is electrically connected to the detection sub-circuit and the first pin of the control chip, respectively;
  • the controllable element is configured to receive the first control signal sent by the detection sub-circuit, and send the third control signal to the first pin of the control chip according to the first control signal, so that all The second pin of the control chip sends the second control signal to the power switch.
  • control sub-circuit includes a controllable element, and the controllable element is electrically connected to the detection sub-circuit and the power switch, respectively;
  • the controllable element is configured to receive the first control signal sent by the detection sub-circuit, and send the second control signal to the power switch according to the first control signal.
  • controllable element is any one of the following: an NPN type transistor, a PNP type transistor, an N type MOS transistor, and a P type MOS transistor.
  • the present application also provides a control method for preventing surge current, which is applied to any of the above-mentioned display devices, including:
  • the first voltage between the live wire and the neutral wire is detected, and when the first voltage is greater than or equal to the first preset voltage, the first control signal is continuously sent to the control circuit until the first voltage A voltage is less than the first preset voltage.
  • the second voltage of the direct current output by the rectifier circuit is detected, and when the second voltage is greater than or equal to a second preset voltage, the first control signal is continuously sent to the control circuit until the The second voltage is less than the second preset voltage.
  • the first control signal sent by the detection sub-circuit is received, and the third control signal is sent to the first pin of the control chip according to the first control signal, so that the control chip The second pin sends the second control signal to the power switch.
  • the embodiment of the application provides a display device.
  • the display device includes a display panel, a drive board, and a power supply board.
  • the power board of the display device is provided with a rectifier circuit, a surge detection circuit, a control circuit, and a resonance circuit (ie, a wave Surge protection circuit), use the surge detection circuit to detect the voltage of the rectifier circuit, when the voltage of the rectifier circuit exceeds the preset voltage, control the control circuit to make the control circuit control the state of the power switch in the resonant circuit, so that the resonant circuit stops generating vibration
  • the bell voltage reduces the voltage applied to the power switch and protects the power switch, thereby improving the safety performance of the display device.
  • FIG. 1 is a schematic structural diagram of a display device provided with an independent power supply board according to an embodiment of the application;
  • FIG. 2 is a schematic diagram of the structure of a circuit on a power supply board provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • FIG. 1 is a schematic structural diagram of a display device provided with an independent power supply board according to an embodiment of the application.
  • a display device such as a television, includes a display panel, a drive board, and a power supply board.
  • the display panel is used to present images to the user;
  • the drive board is used to drive the display panel to display the display panel.
  • the power board is used to supply power to the internal components of the display device.
  • the display device may also be a main board, a rear case, a base, etc., which are not shown in FIG. 1.
  • An input port circuit is arranged on the power board, and the input port circuit is connected to the mains through a plug.
  • the power board needs to convert the AC mains power into the DC power required by the components inside the display device.
  • a surge voltage will be generated in the power supply circuit of the display device, which will damage the internal components of the display device. Therefore, in the embodiment of the present application, a surge detection circuit 200 is provided on the power board to detect whether a surge voltage is generated in the power supply circuit, so as to prevent the display device from being damaged by the surge voltage.
  • FIG. 2 is a schematic structural diagram of a circuit on a power board provided by an embodiment of the application.
  • the power board includes: a rectifier circuit 100, a surge detection circuit 200, a control circuit 300, and a resonant circuit 400.
  • the resonant circuit 400 includes a power switch (not shown in Figure 2).
  • the circuit composed of the rectifier circuit 100, the surge detection circuit 200, the control circuit 300, and the resonance circuit 400 can detect whether there is a surge voltage in the circuit, and when there is a surge voltage in the circuit, the resonance circuit 400 stops working to protect the power board and then the display device. Therefore, in the embodiment of the present application, the circuit composed of the rectifier circuit 100, the surge detection circuit 200, the control circuit 300, and the resonance circuit 400 may be referred to as a surge protection circuit. Among them, in the surge protection circuit, in the surge protection circuit,
  • the rectifier circuit 100 is used to rectify the input AC power into DC power and deliver the DC power to the resonance circuit 400.
  • the resonance circuit 400 is used to generate a driving pulse signal and a ringing voltage under the action of direct current, and to transmit the driving pulse signal to the driving board, and the ringing voltage acts on the power switch.
  • the surge detection circuit 200 is used to detect the voltage of the rectifier circuit 100. When the voltage of the rectifier circuit 100 is greater than or equal to a preset voltage, it outputs a first control signal to the control circuit 300, and the first control signal is used to make the control circuit 300 outputs a second control signal to the power switch, and the second control signal is used to control the power switch to be in a state where the resonance circuit 400 can stop generating a ringing voltage.
  • the control circuit 300 is configured to receive the first control signal and output a second control signal to the power switch according to the first control signal.
  • the resonance circuit 400 is used to stop generating the ringing voltage after the power switch receives the second control signal, so as to reduce the voltage applied to the power switch.
  • the surge protection circuit provided by this embodiment is shown in FIG. 1.
  • the input port circuit is connected to an external power source (such as mains) through a plug to provide power to the display device, and the input port circuit is connected to the rectifier circuit 100 ,
  • the alternating current is rectified into direct current
  • the rectifier circuit 100 is electrically connected to the surge detection circuit 200 and the resonance circuit 400
  • the surge detection circuit 200 is electrically connected to the control circuit 300
  • the control circuit 300 is electrically connected to the resonance circuit 400.
  • the input port circuit obtains electric energy by connecting with an external power source. Since the power provided by the external power source is alternating current, the rectifier circuit 100 rectifies the alternating current into direct current. Among them, the rectifier circuit 100 provides direct current for the resonant circuit 400. Since the resonant circuit 400 contains a power switch and an inductance capacitor, when the power switch is switched on and off, the resonant circuit 400 will generate a ringing voltage. Therefore, the power switch is applied to the power switch. The voltage includes the voltage of the direct current output by the rectifier circuit 100 and the ringing voltage.
  • the surge detection circuit 200 is set to be connected to the rectifier circuit 100, and the surge detection circuit 200 is used to detect the voltage of the rectifier circuit 100. It should be noted that the surge detection circuit 200 can directly detect the voltage of the rectifier circuit 100 or The voltage of the rectifier circuit 100 is indirectly detected. When it is detected that the voltage exceeds the preset voltage, it outputs a first control signal to the control circuit 300. After the control circuit 300 receives the first control signal, it outputs a second control signal to the power switch according to the first control signal. The signal is used to control the state of the power switch, so that the resonance circuit 400 stops generating the ringing voltage, thereby reducing the voltage applied to the power switch.
  • the display device includes a display panel, a drive board, and a power supply board.
  • the power board of the display device is equipped with a rectifier circuit, a surge detection circuit, a control circuit, and a resonance circuit (that is, a surge protection circuit).
  • the surge detection circuit detects the voltage of the rectifier circuit.
  • the control circuit is controlled so that the control circuit controls the state of the power switch in the resonant circuit, so that the resonant circuit stops generating the ringing voltage and reduces the power applied to it.
  • the voltage on the power switch protects the power switch, thereby improving the safety performance of the display device.
  • FIG. 3 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • the surge detection circuit 200 includes: a first diode D1 and a second diode D2 and a detection sub-circuit 230.
  • the first diode D1 is electrically connected to the live wire and the detection sub-circuit 230 respectively
  • the second diode D2 is electrically connected to the neutral line and the detection sub-circuit 230 respectively
  • the detection sub-circuit 230 is also connected to the rectifier circuit 100 and the control circuit respectively. 300 electrical connections.
  • the first diode D1 is used to control the detection sub-circuit 230 to detect the first voltage between the live line and the neutral line when the voltage of the live line is greater than the voltage of the neutral line.
  • the second diode D2 is used to control the detection sub-circuit 230 to detect the first voltage between the live line and the neutral line when the voltage of the neutral line is greater than the voltage of the live line.
  • the detection sub-circuit 230 is used to detect the first voltage between the live wire and the neutral wire. When the first voltage is greater than or equal to the first preset voltage, it continuously sends the first control signal to the control circuit 300 until the first voltage is less than the first voltage. A preset voltage.
  • the anode of the first diode D1 is electrically connected to the live wire
  • the anode of the second diode D2 is electrically connected to the neutral wire
  • the cathode of the first diode D1 and the cathode of the second diode D2 are electrically connected to
  • the same end of the detection sub-circuit 230 is electrically connected.
  • the output terminal of the rectifier circuit 100 includes a positive output terminal and a negative output terminal
  • the detection sub-circuit 230 is also electrically connected to one of the output terminals of the rectifier circuit 100 and the control circuit 300 respectively.
  • the current flow direction is: live wire ⁇ first diode D1 ⁇ detection sub-circuit 230 ⁇ neutral wire, when the current flows from the neutral wire to the live wire At this time, the current flow direction is: neutral line ⁇ second diode D2 ⁇ detection sub-circuit 230 ⁇ live line. Since the magnitude of the voltage between the live wire and the neutral wire is related to whether there is a surge voltage in the circuit, the detection sub-circuit 230 can detect the voltage between the live wire and the neutral wire, and the voltage between the live wire and the neutral wire can be detected, for example, It is peak voltage detection or average voltage detection. In this embodiment of the present application, the voltage between the voltage between the live wire and the neutral wire is recorded as the first voltage.
  • the detection sub-circuit 230 detects that the first voltage is higher than the first preset voltage, it indicates that the surge voltage in the circuit is relatively high, and the control circuit 300 needs to be controlled so that the control circuit 300 controls the state of the power switch in the resonant circuit 400 so as to resonate The circuit 400 stops generating the ringing voltage, reducing the voltage on the power switch.
  • the surge protection circuit in the surge protection circuit, the voltage between the live line and the neutral line is detected by the surge detection circuit, and the state of the power switch is changed according to the voltage between the live line and the neutral line, so that the resonance circuit stops generating the ringing voltage , Reduce the voltage on the power switch, protect the power switch, and improve the safety of the display device.
  • FIG. 4 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • the surge detection circuit 200 includes: a detection sub-circuit 240.
  • the detection sub-circuit 240 is electrically connected to the rectifier circuit 100 and the control circuit 300 respectively.
  • the internal structure of the detection sub-circuit 240 shown in this embodiment and the internal structure of the detection sub-circuit 230 shown in the embodiment of FIG. 3 may be the same or different.
  • the detection sub-circuit 230 mentioned below It can also be replaced by a detection sub-circuit 240.
  • the detection sub-circuit 240 is used to detect the second voltage of the direct current output by the rectifier circuit 100. When the second voltage is greater than or equal to the second preset voltage, the first control signal is continuously sent to the control circuit 300 until the second voltage is less than the first voltage. 2. Preset voltage.
  • the output terminal of the rectifier circuit 100 includes a positive output terminal and a negative output terminal.
  • the voltage is the high-voltage electrolytic capacitor voltage (that is, the bus voltage). It is related to whether there is a surge voltage in the circuit. Therefore, the magnitude of the bus voltage can be directly detected by the detection sub-circuit 240, where the bus voltage is recorded as the second voltage in the embodiment of the present application.
  • the detection sub-circuit 240 detects that the second voltage is higher than the second preset voltage, it indicates that the surge voltage in the circuit is relatively high, and the control circuit 300 needs to be controlled so that the control circuit 300 controls the state of the power switch in the resonant circuit 400, thereby causing resonance
  • the circuit 400 stops generating the ringing voltage, reducing the voltage on the power switch.
  • the voltage of the DC power output by the rectifier circuit can also be detected by the surge detection circuit, and the state of the power switch is changed according to the voltage of the DC power, so that the resonance circuit stops generating the ringing voltage and reduces The voltage on the power switch protects the power switch and improves the safety of the display device.
  • the control circuit 300 includes: a control sub-circuit 310 and a control chip 320
  • the control sub-circuit 310 is electrically connected to the detection sub-circuit 230 and the first pin of the control chip 320, respectively, and the second pin of the control chip 320 is electrically connected to the power switch.
  • the control sub-circuit 310 is used to receive the first control signal and send a third control signal to the control chip 320 through the first pin according to the first control signal, and the third control signal is used to instruct the control chip 320 to send the control chip 320 to the control chip 320 through the second pin
  • the power switch outputs the second control signal.
  • the control chip 320 is configured to output a second control signal to the power switch through the second pin according to the third control signal when receiving the third control signal; and to control the state of the power switch when the third control signal is not received.
  • one end of the control sub-circuit 310 is electrically connected to the detection sub-circuit 230, the other end is electrically connected to the first pin of the control chip 320, and the second pin of the control chip 320 is electrically connected to the power switch. Therefore, the first control signal sent by the detection sub-circuit 230 can be received, and the third control control signal can be output to the control chip 320 through the first pin of the control chip 320 according to the first control signal.
  • the first pin of the control chip 320 may be, for example, a pin with a fixed function, such as a dead time control pin, a feedback control pin, an overcurrent control pin, a soft start pin, and an overvoltage control pin.
  • the second pin of the control chip 320 is controlled by hardware to output the second control signal to the power switch; or the function of each pin in the control chip 320 is controlled by software After detecting that the first pin receives the third control signal, the second pin is controlled to output the second control signal to the power switch, thereby controlling the state of the power switch, so that the resonance circuit 400 stops generating the ringing voltage.
  • the control chip 320 controls the power switch through the second pin. Status, so that the display device works normally.
  • the control sub-circuit is electrically connected between the detection sub-circuit and the control chip, and the control chip is electrically connected to the power switch.
  • the detection sub-circuit detects that the surge voltage is too high, the control The sub-circuit enables the control chip to control the power switch, so that the resonant circuit stops generating ringing voltage, thereby protecting the power switch and improving the safety of the display device.
  • the control circuit 300 includes: a control sub-circuit 330 and a control chip 320,
  • the control sub-circuit 310 is electrically connected to the detection sub-circuit 230 and the power switch, respectively, and the second pin of the control chip 330 is electrically connected to the power switch.
  • the internal structure of the control sub-circuit 310 in this embodiment and the internal structure of the control sub-circuit 330 shown in the embodiment of FIG. 3 may be the same or different, and the control sub-circuit 310 mentioned below can also be replaced with Control sub-circuit 330.
  • the control sub-circuit 330 is configured to receive the first control signal and output a second control signal to the power switch according to the first control signal.
  • the control chip 320 is used for controlling the state of the power switch when the control sub-circuit 330 does not output the second control signal to the power switch.
  • one end of the control sub-circuit 330 is electrically connected to the detection sub-circuit 230, and the other end is electrically connected to the power switch, so that the control sub-circuit 330 can receive the first control signal sent by the detection sub-circuit 230, so that according to the first control signal
  • the control signal directly sends the second control signal to the power switch, so that the power switch is in a state where the resonance circuit 400 can stop generating the ringing voltage.
  • the pin of the control chip 320 is electrically connected to the power switch, for example, it is still the second pin.
  • the control sub-circuit in the control circuit of the surge protection circuit, is electrically connected between the detection sub-circuit and the power switch. After receiving the first control signal, it directly outputs the second control signal to the power switch to control the power switch. In the state, the resonant circuit stops generating the ringing voltage, thereby protecting the power switch and improving the safety of the display device.
  • FIG. 5 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • the detection sub-circuit 230 includes: a first resistor R1, a second resistor R2, and a first capacitor C1.
  • One end of the first resistor R1 is respectively It is electrically connected to the first diode D1 and the second diode D2, the other end is electrically connected to one end of the second resistor R2, one end of the second resistor R2 is also electrically connected to the control circuit 300, and the other end is connected to the rectifier circuit 100 ,
  • the first capacitor C1 is connected in parallel with the second resistor R2.
  • the control sub-circuit 310 includes a controllable element 411, and the controllable element 411 is electrically connected to the detection sub-circuit 230 and the first pin of the control chip 320, respectively.
  • the first resistor R1 and the second resistor R2 are used to divide the first voltage to detect the magnitude of the first voltage according to the divided voltage. When the divided voltage indicates that the first voltage is greater than or equal to the preset first voltage At this time, the first control signal is sent to the control circuit 300.
  • the second resistor R2 and the first capacitor C1 are used to control the duration of sending the first control signal to the control circuit 300.
  • the controllable element 411 is configured to receive the first control signal sent by the detection sub-circuit 230, and send a third control signal to the first pin of the control chip 320 according to the first control signal, so as to control the second pin of the chip 320 Send a second control signal to the power switch.
  • controllable element 411 may be, for example, an NPN transistor, a PNP transistor, an N-type MOS transistor, or a P-type MOS transistor.
  • the P-type MOS transistor VI is taken as an example for description.
  • the power switch is also described by taking the P-type MOS transistor V2 as an example.
  • the current flow is: live wire ⁇ first diode D1 ⁇ first resistor R1 ⁇ second Resistor R2 ⁇ VB1 ⁇ zero line.
  • the first resistor R1 and the second resistor R2 are used to divide the first voltage. Since point A in the circuit is electrically connected to the gate of the P-type MOS transistor VI, under normal circumstances, P The type MOS transistor VI is turned on, and the first pin of the control chip 320 is connected to a high level. When the first voltage is greater than or equal to the first preset voltage, the voltage at point A also rises, that is, the P-type MOS transistor VI The increase in the gate voltage is equivalent to sending the first control signal to the P-type MOS transistor VI.
  • the P-type MOS tube VI After the gate voltage of the P-type MOS tube VI increases, the P-type MOS tube VI is turned off. At this time, the first pin of the control chip 320 is connected to a low level, which is equivalent to the P-type MOS tube VI to the control chip 320. The first pin of the control chip 320 sends the third control signal. After the first pin of the control chip 320 receives the third control signal, it outputs a high level to the P-type MOS transistor V2 through the second pin, which is equivalent to sending the first pin to the power switch. The second control signal causes the P-type MOS tube V2 to switch from the on state to the off state, so that the P-type MOS tube V2 and the inductor and capacitor T1 do not generate a ringing voltage.
  • the first capacitor C1 is connected in parallel with the second resistor R2.
  • the first capacitor C1 is in a charged state and the P-type MOS transistor VI is in an off state.
  • the surge voltage gradually decreases, the first capacitor C1 is in a discharged state, which can reduce the speed of the voltage drop at point A, increase the length of time the P-type MOS transistor VI is in the off state, thereby increasing the P-type MOS transistor V2 in the off state duration.
  • the resistance value of the first resistor R1 is fixed, the larger the resistance value of the second resistor R2, the higher the voltage at point A, and the longer the P-type MOS transistor VI is in the off state, making the P-type MOS transistor The longer V2 is in the cut-off state. Therefore, by adjusting the parameter values of the first capacitor C1 and the second resistor R2, it is possible to control the duration of sending the first control signal to the control circuit 300 (that is, the P-type MOS transistor VI), thereby controlling the P-type MOS transistor V2 to be in the off state. duration.
  • the surge protection circuit provided in this embodiment can not only control the state of the power switch, prevent the resonant circuit from generating ringing voltage, reduce the voltage on the P-type MOS tube (ie power switch), avoid damage to the power switch, and improve the display The safety of the device. It is also possible to adjust the time period during which the resonant circuit does not generate a ringing voltage by detecting the first capacitor and the second resistor in the sub-circuit, which improves the flexibility of the surge protection circuit.
  • FIG. 6 is a schematic structural diagram of a surge protection circuit provided by another embodiment of the application.
  • the detection sub-circuit 230 includes: the detection sub-circuit 230 includes a first resistor R1, a second resistor R2, and a first capacitor C1.
  • One end of a resistor R1 is electrically connected to one end of the rectifier circuit 100 that outputs direct current, the other end is electrically connected to one end of the second resistor R2, and the other end of the second resistor R2 is electrically connected to the other end of the rectifier circuit 100 that outputs direct current.
  • the first capacitor C1 is connected in parallel with the second resistor R2.
  • the control sub-circuit 310 includes a controllable element 411, and the controllable element 411 is electrically connected to the detection sub-circuit 230 and the power switch, respectively.
  • the first resistor R1 and the second resistor R2 are used to divide the second voltage to detect the magnitude of the second voltage according to the divided voltage. When the divided voltage indicates that the second voltage is greater than or equal to the preset second voltage At this time, the first control signal is sent to the control circuit 300.
  • the second resistor R2 and the first capacitor C1 are used to control the duration of sending the first control signal to the control circuit 300.
  • the controllable element 411 is configured to receive the first control signal sent by the detection sub-circuit 230, and send a second control signal to the power switch according to the first control signal.
  • controllable element 411 takes the P-type MOS transistor V1 as an example for description.
  • the power switch also takes the N-type MOS transistor V3 as an example for description.
  • one end of the first resistor R1 is electrically connected to the positive input end of the rectifier circuit 100, the other end is electrically connected to one end of the second resistor R2, and the other end of the second resistor R2 is electrically connected to the negative input end of the rectifier circuit 100, so that the first resistor R1 is electrically connected to the negative input end of the rectifier circuit 100.
  • a resistor R1 and a second resistor R2 divide the second voltage.
  • Point A in the circuit is electrically connected to the gate of the P-type MOS transistor VI, and the gate of the N-type MOS transistor V3 is connected to the drain of the P-type MOS transistor VI.
  • the second pin of the control chip 320 is electrically connected.
  • the P-type MOS transistor VI is turned on, so that the voltage of the gate of the N-type MOS transistor V3 is the sum of the voltage at point A and the voltage provided by the control chip 320 through the second pin.
  • the voltage at point A also increases, that is, the gate voltage of the P-type MOS transistor VI increases, which is equivalent to sending the first control signal to the P-type MOS transistor VI.
  • the P-type MOS transistor VI is turned off, and no voltage is provided to the gate of the N-type MOS transistor V3, which is equivalent to the P-type MOS transistor VI sending a second control to the N-type MOS transistor V3 signal.
  • the voltage of the gate of the N-type MOS transistor V3 is only the voltage provided by the control chip 320 through the second pin, that is, the voltage of the gate of the N-type MOS transistor V3 is reduced, and the N-type MOS transistor V3 is switched from the on state to the off state. State, so that the N-type MOS tube V3 and the inductor capacitor T1 will not generate a ringing voltage.
  • the time period during which the N-type MOS transistor V3 is in the off state can be adjusted.
  • the specific principle can be referred to the above description, and will not be repeated here.
  • the detection sub-circuit controls the state of the controllable element according to the voltage of the direct current output by the rectifier circuit, and then makes the controllable element directly control the state of the power switch, so that the resonance circuit stops generating the ringing voltage, Simplify the circuit design, stop the ringing voltage as quickly as possible when the surge voltage is generated, protect the power switch, and improve the safety of the display device.
  • connection mode of the surge detection circuit 200 in the surge protection circuit shown in FIG. 5 can replace the connection mode of the surge detection circuit 200 in the surge protection circuit in FIG. 6, as shown in FIG. 7 .
  • the connection mode of the control circuit 300 in the surge protection circuit shown in FIG. 5 can replace the connection mode of the control circuit 300 in the surge protection circuit in FIG. 6, as shown in FIG. 8.
  • the safety capacitor C2 is set in the input port circuit, when the input port circuit is disconnected from the external power supply, the safety capacitor C2 needs to be made within a safe time (for example, 2s) The voltage is released below a safe value (for example, 30V). Therefore, a third resistor R3 and a fourth resistor R4 are provided in the rectifier circuit 100, and the third resistor R3 and the fourth resistor R4 are connected in series and connected to the live wire and the other. In the meantime, the voltage of the safety capacitor C2 is released through the third resistor R3 and the fourth resistor R4. It should be noted that when the connection mode of the surge detection circuit 200 in the surge protection circuit is as shown in FIG. 5 and FIG.
  • the third resistor R3 and the fourth resistor R4 may not be provided in the rectifier circuit 100, and the first resistor R3 and the fourth resistor R4 may not be provided in the rectifier circuit 100.
  • the resistor R1 and the second resistor R2 release the voltage of the safety capacitor C2.
  • the current flow is: live wire ⁇ first diode D1 ⁇ first resistor R1 ⁇ second resistor R2 ⁇ VB1 ⁇ zero line, or zero line ⁇ Second diode D2 ⁇ First resistance R1 ⁇ Second resistance R2 ⁇ VB1 ⁇ Live wire.
  • surge protection circuit provided in Figures 5 to 8 can also be used as an undervoltage or overvoltage protection circuit.
  • the present application also provides a control method for preventing surge current, which is applied to any of the above-mentioned display devices, including:
  • the first voltage between the live wire and the neutral wire is detected, and when the first voltage is greater than or equal to the first preset voltage, the first control signal is continuously sent to the control circuit until the first voltage A voltage is less than the first preset voltage.
  • the second voltage of the direct current output by the rectifier circuit is detected, and when the second voltage is greater than or equal to a second preset voltage, the first control signal is continuously sent to the control circuit until the The second voltage is less than the second preset voltage.
  • the first control signal sent by the detection sub-circuit is received, and the third control signal is sent to the first pin of the control chip according to the first control signal, so that the control chip The second pin sends the second control signal to the power switch.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本申请提供一种显示装置,通过在显示装置的电源板上设置有整流电路、浪涌检测电路、控制电路以及谐振电路,利用浪涌检测电路检测整流电路的电压,在整流电路的电压超过预设电压时,使控制电路控制谐振电路中功率开关的状态,从而使谐振电路停止产生振铃电压。

Description

一种显示装置
本专利申请要求于2019年9月26日提交的、申请号为201910919848.7的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本申请实施例涉及电路技术领域,尤其涉及一种显示装置。
背景技术
浪涌是指电源接通瞬间或是在电路出现异常情况下产生的远大于稳态电压或电流峰值的过载电压或电流,它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等。对于电子设备,在其开关电源接通的瞬间产生浪涌电压,会造成电子设备的电路及其器件的损坏,严重时会对引起电子设备不可逆的损坏。
相关技术中,通常在开关电源电路的输入端的端口设置压敏电阻或气体放电管,用来吸收浪涌电压,避免开关电源电路中输入端端口的后级器件受到过高浪涌的冲击。但是,压敏电阻或气体放电管只能吸收和抑制有限的浪涌电压,当浪涌电压远远高于压敏电阻或气体放电管的动作电压时,即使经过压敏电阻或气体放电管的吸收和抑制,还会存在较高的浪涌电压(即残压)。
然而,这些残压会使得开关电源电路的高压电解电容电压(即母线电压Vm)升高,并且,开关电源电路中的功率开关与电感电容电连接,其中,功率开关例如可以是金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOS)管,绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等,当功率开关处于断开、闭合两种状态高速切换时,在母线电压Vm的 作用下,功率开关与电感电容产生振荡,从而产生振铃电压Vs。因此,施加到功率开关上的电压为Vm+Vs,如果在残压的作用下,母线电压Vm非常高,会使得施加在功率开关的电压远远高于其的正常工作电压的上限,从而导致功率开关的损坏,严重时,引发安全事故。
申请内容
本申请实施例提供一种显示装置,通过电源板上的浪涌检测电路可以检测显示装置的电源板上的整流电路的电压,当检测到电压为浪涌电压时,可以使功率开关停止工作中,以保护功率开关,从而提高显示装置的安全性能。
在一些实施例中,本申请实施例提供一种显示装置,包括:
显示面板;
驱动板,用于驱动所述显示面板;
电源板,所述电源板上设置有整流电路、浪涌检测电路、控制电路以及谐振电路,所述谐振电路包括功率开关;其中,
所述整流电路,用于将输入的交流电整流为直流电,并将所述直流电输送给所述谐振电路;
所述谐振电路,用于在所述直流电的作用下产生驱动脉冲信号和振铃电压,并将所述驱动脉冲信号传输给所述驱动板,所述振铃电压作用于所述功率开关;
所述浪涌检测电路,用于检测所述整流电路的电压,当所述整流电路的电压大于或等于预设电压时,向所述控制电路输出第一控制信号,所述第一控制信号用于使所述控制电路向所述功率开关输出第二控制信号,所述第二控制信号用于控制所述功率开关处于可使所述谐振电路停止产生振铃电压的状态;
所述控制电路,用于接收所述第一控制信号,并根据所述第一控制信号向 所述功率开关输出第二控制信号;
所述谐振电路,用于在所述功率开关接收到所述第二控制信号后,停止产生振铃电压,以减少施加在所述功率开关上的电压。
在一些可能的实施例中,所述浪涌检测电路包括:第一二极管和第二二极管以及检测子电路,所述第一二极管分别与火线、所述检测子电路电连接,所述第二二极管分别与零线、所述检测子电路电连接,所述检测子电路还分别与所述整流电路、所述控制电路电连接;
所述第一二极管,用于在所述火线的电压大于所述零线的电压时,控制所述检测子电路检测所述火线和零线之间的第一电压;
所述第二二极管,用于在所述零线的电压大于所述火线的电压时,控制所述检测子电路检测所述火线和零线之间的第一电压;
所述检测子电路,用于检测所述火线和零线之间的第一电压,当所述第一电压大于或等于第一预设电压时,向所述控制电路持续发送第一控制信号,直至所述第一电压小于所述第一预设电压。
在一些可能的实施例中,所述浪涌检测电路包括:检测子电路,所述检测子电路分别与所述整流电路、所述控制电路电连接;
所述检测子电路,用于检测所述整流电路输出的直流电的第二电压,当所述第二电压大于或等于第二预设电压时,向所述控制电路持续发送第一控制信号,直至所述第二电压小于所述第二预设电压。
在一些可能的实施例中,所述检测子电路包括:第一电阻、第二电阻以及第一电容,所述第一电阻的一端分别与所述第一二极管和第二二极管电连接,另一端与所述第二电阻的一端电连接,所述第二电阻的一端还与控制电路电连 接,另一端与所述整流电路连接,所述第一电容与所述第二电阻并联;
所述第一电阻和所述第二电阻,用于对第一电压进行分压以根据分压后的电压检测所述第一电压的大小,当所述分压后的电压指示所述第一电压大于或等于预设第一电压时,向所述控制电路发送第一控制信号;
所述第二电阻和所述第一电容,用于控制向所述控制电路发送第一控制信号的时长。
在一些可能的实施例中,所述检测子电路包括:第一电阻、第二电阻以及第一电容,所述第一电阻的一端与所述整流电路输出直流电的一端电连接,另一端与所述第二电阻的一端电连接,所述第二电阻的另一端与所述整流电路输出直流电的另一端电连接,所述第一电容与所述第二电阻并联;
所述第一电阻和所述第二电阻,用于对第二电压进行分压以根据分压后的电压检测所述第二电压的大小,当所述分压后的电压指示所述第二电压大于或等于预设第二电压时,向所述控制电路发送第一控制信号;
所述第二电阻和所述第一电容,用于控制向所述控制电路发送第一控制信号的时长。
在一些可能的实施例中,所述控制电路包括:控制子电路和控制芯片,所述控制子电路分别与所述检测子电路、所述控制芯片第一引脚电连接,所述控制芯片的第二引脚与所述功率开关电连接;
所述控制子电路,用于接收所述第一控制信号,并根据所述第一控制信号通过所述第一引脚向所述控制芯片发送第三控制信号,所述第三控制信号用于指示所述控制芯片通过所述第二引脚向所述功率开关输出第二控制信号;
所述控制芯片,用于在接收所述第三控制信号时,根据所述第三控制信号 通过所述第二引脚向所述功率开关输出第二控制信号;以及在未接收到所述第三控制信号时,控制所述功率开关的状态。
在一些可能的实施例中,所述控制电路包括:控制子电路和控制芯片,所述控制子电路分别与所述检测子电路、所述功率开关电连接,所述控制芯片的第二引脚与所述功率开关电连接;
所述控制子电路,用于接收所述第一控制信号,并根据所述第一控制信号向所述功率开关输出第二控制信号;
所述控制芯片,用于在所述控制子电路不向所述功率开关输出第二控制信号时,控制所述功率开关的状态。
在一些可能的实施例中,所述控制子电路包括:可控元件,所述可控元件分别与所述检测子电路、所述控制芯片的第一引脚电连接;
所述可控元件,用于接收所述检测子电路发送的第一控制信号,并根据所述第一控制信号向所述控制芯片的第一引脚发送所述第三控制信号,以使所述控制芯片的第二引脚向所述功率开关发送所述第二控制信号。
在一些可能的实施例中,所述控制子电路包括可控元件,所述可控元件分别与所述检测子电路、所述功率开关电连接;
所述可控元件,用于接收所述检测子电路发送的第一控制信号,并根据所述第一控制信号向所述功率开关发送所述第二控制信号。
在一些可能的实施例中,所述可控元件为以下任一一种:NPN型三极管、PNP型三极管、N型MOS管、P型MOS管。
在一些实施例中,本申请还提供一种防浪涌电流的控制方法,应用于上述任意所述的显示装置,包括:
检测整流电路的电压,当所述整流电路的电压大于或等于预设电压时,向控制电路输出第一控制信号;
接收所述第一控制信号,并根据所述第一控制信号向功率开关输出第二控制信号;
接收到所述第二控制信号后,停止产生振铃电压,以减少施加在所述功率开关上的电压。
在一些实施例中,检测火线和零线之间的第一电压,当所述第一电压大于或等于第一预设电压时,向所述控制电路持续发送第一控制信号,直至所述第一电压小于所述第一预设电压。
在一些实施例中,检测所述整流电路输出的直流电的第二电压,当所述第二电压大于或等于第二预设电压时,向所述控制电路持续发送第一控制信号,直至所述第二电压小于所述第二预设电压。
在一些实施例中,接收所述第一控制信号,并根据所述第一控制信号通过第一引脚向控制芯片发送第三控制信号;
接收所述第三控制信号时,根据所述第三控制信号通过第二引脚向所述功率开关输出第二控制信号;
以及在未接收到所述第三控制信号时,控制所述功率开关的状态。
在一些实施例中,接收检测子电路发送的第一控制信号,并根据所述第一控制信号向所述控制芯片的第一引脚发送所述第三控制信号,以使所述控制芯片的第二引脚向所述功率开关发送所述第二控制信号。
本申请实施例提供了一种显示装置,显示装置包括显示面板、驱动板、电源板,其中,通过在显示装置的电源板上设置整流电路、浪涌检测电路、控制 电路以及谐振电路(即浪涌保护电路),利用浪涌检测电路检测整流电路的电压,在整流电路的电压超过预设电压时,控制控制电路,使控制电路控制谐振电路中功率开关的状态,从而使谐振电路停止产生振铃电压,减少施加在功率开关上的电压,保护功率开关,从而提高显示装置的安全性能。
附图说明
为了更清楚地说明本申请或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的设有独立电源板的显示装置的结构示意图;
图2为本申请一实施例提供的电源板上电路的结构示意图;
图3为本申请另一实施例提供的浪涌保护电路的结构示意图;
图4为本申请另一实施例提供的浪涌保护电路的结构示意图;
图5为本申请另一实施例提供的浪涌保护电路的结构示意图;
图6为本申请另一实施例提供的浪涌保护电路的结构示意图;
图7为本申请另一实施例提供的浪涌保护电路的结构示意图;
图8为本申请另一实施例提供的浪涌保护电路的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例,都属于本申请保护的范围。
图1为本申请一实施例提供的设有独立电源板的显示装置的结构示意图。如图1所示,显示装置,例如电视机,包括:显示面板、驱动板、电源板,其中,显示面板用于给用户呈现画面;驱动板,用于驱动所述显示面板,使显示面板显示画面;电源板用于为显示装置内部的元件供电。需要说明的是,显示装置例如还可以主板、后壳及基座等,图1中未示出。
电源板上设置有输入端口电路,输入端口电路通过插头与市电相连。其中,电源板需要将交流市电转换为显示装置内部的元器件所需求的直流电。其中,输入端口电路通过插头与市电接通的瞬间以及断开的瞬间,会在显示装置的供电电路中产生浪涌电压,破坏显示装置内部的元器件。因此,本申请实施例在电源板上设置浪涌检测电路200,检测供电电路中是否产生浪涌电压,从而避免显示装置受到浪涌电压的破坏。
图2为本申请一实施例提供的电源板上电路的结构示意图,如图2所示,电源板包括:整流电路100、浪涌检测电路200、控制电路300以及谐振电路400,其中,谐振电路400包括功率开关(图2中未示出)。本申请实施例中,由于整流电路100、浪涌检测电路200、控制电路300以及谐振电路400组成的电路可以检测电路中是否存在浪涌电压,并在电路中存在浪涌电压时,使谐振电路400停止工作,保护电源板,进而保护显示装置,因此,本申请实施例中可以将整流电路100、浪涌检测电路200、控制电路300以及谐振电路400组成的电路称为浪涌保护电路。其中,在浪涌保护电路中,
整流电路100,用于将输入的交流电整流为直流电,并将直流电输送给谐振电路400。
谐振电路400,用于在直流电的作用下产生驱动脉冲信号和振铃电压,并将驱动脉冲信号传输给驱动板,振铃电压作用于功率开关。
浪涌检测电路200,用于检测整流电路100的电压,当所述整流电路100的电压大于或等于预设电压时,向控制电路300输出第一控制信号,第一控制信号用于使控制电路300向功率开关输出第二控制信号,第二控制信号用于控制功率开关处于可使谐振电路400停止产生振铃电压的状态。
控制电路300,用于接收第一控制信号,并根据第一控制信号向功率开关输出第二控制信号。
谐振电路400,用于在功率开关接收到第二控制信号后,停止产生振铃电压,以减少施加在功率开关上的电压。
本实施例提供的浪涌保护电路,如图1所示,在结构上,输入端口电路通过插头与外部电源(例如市电)连接,从而为显示装置提供电能,输入端口电路与整流电路100连接,将交流电整流为直流电,整流电路100分别与浪涌检测电路200、谐振电路400电连接,并且,浪涌检测电路200与控制电路300电连接,控制电路300与谐振电路400电连接。
本实施例提供的浪涌保护电路的工作原理为:
输入端口电路通过与外部电源连接获得电能,由于外部电源提供的电为交流电,因此,整流电路100将交流电整流为直流电。其中,整流电路100为谐振电路400提供直流电,由于谐振电路400中含有功率开关和电感电容,在功率开关开、关切换时,谐振电路400会产生振铃电压,因此,施加在功率开关上的电压包括整流电路100输出的直流电的电压和振铃电压。
如果在电源接通瞬间,在输入端口电路中有浪涌电压产生,会使得整流电 路100输出的直流电的电压升高,因此,施加在功率开关上的电压也随之升高,高于功率开关正常工作时的电压的上限,从而造成功率开关的损坏,存在安全隐患。
因此,设置浪涌检测电路200与整流电路100连接,利用浪涌检测电路200检测整流电路100的电压,其中,需要说明的是,浪涌检测电路200可以直接检测整流电路100的电压,也可以间接检测整流电路100的电压。当检测到电压超过预设电压时,向控制电路300输出第一控制信号,在控制电路300接收到第一控制信号后,根据第一控制信号向功率开关输出第二控制信号,该第二控制信号用于控制功率开关状态,使谐振电路400停止产生振铃电压,从而减少施加在功率开关上的电压。
本实施例,显示装置包括显示面板、驱动板、电源板,其中,通过在显示装置的电源板上设置整流电路、浪涌检测电路、控制电路以及谐振电路(即浪涌保护电路),利用浪涌检测电路检测整流电路的电压,在整流电路的电压超过预设电压时,控制控制电路,使控制电路控制谐振电路中功率开关的状态,从而使谐振电路停止产生振铃电压,减少施加在功功率开关上的电压,保护功率开关,从而提高显示装置的安全性能。
图3为本申请另一实施例提供的浪涌保护电路的结构示意图。如图3所示,在图2所示实施例的基础上,浪涌检测电路200包括:第一二极管D1和第二二极管D2以及检测子电路230。其中,第一二极管D1分别与火线、检测子电路230电连接,第二二极管D2分别与零线、检测子电路230电连接,检测子电路230还分别与整流电路100、控制电路300电连接。
第一二极管D1,用于在火线的电压大于零线的电压时,控制检测子电路230 检测火线和零线之间的第一电压。
第二二极管D2,用于在零线的电压大于火线的电压时,控制检测子电路230检测火线和零线之间的第一电压。
检测子电路230,用于检测火线和零线之间的第一电压,当第一电压大于或等于第一预设电压时,向控制电路300持续发送第一控制信号,直至第一电压小于第一预设电压。
本实施例中,第一二极管D1的正极与火线电连接,第二二极管D2的正极与零线电连接,第一二极管D1的负极和第二二极管D2的负极与检测子电路230的同一端电连接。其中,整流电路100的输出端包括正输出端和负输出端,检测子电路230还分别与整流电路100的其中一个输出端、控制电路300电连接。
由于火线和零线之间的点为交流电,当电流由火线流向零线时,电流的流向为:火线→第一二极管D1→检测子电路230→零线,当电流由零线流向火线时,电流的流向为:零线→第二二极管D2→检测子电路230→火线。由于火线和零线之间的电压的大小与电路中是否有浪涌电压有关,因此,通过检测子电路230可以检测火线和零线之间的电压,检测火线和零线之间的电压例如可以是峰值电压检测,或者平均电压检测,其中,本申请实施例中,将火线和零线之间的电压之间的电压记为第一电压。
其中,电流在通过检测子电路230流向火线或零线时,通过整流电路100流向火线或零线,具体可参考图5和图6,此处不再赘述。检测子电路230检测到第一电压高于第一预设电压时,说明电路中浪涌电压较高,需要控制控制电路300,使控制电路300控制谐振电路400中功率开关的状态,从而使谐振电路400停止产生振铃电压,减少功率开关上承受的电压。
本实施例,浪涌保护电路中,通过浪涌检测电路检测火线和零线之间的电压,根据火线和零线之间的电压,改变功率开关的状态,从而使谐振电路停止产生振铃电压,减小了功率开关上的电压,保护功率开关,提高显示装置的安全性。
图4为本申请另一实施例提供的浪涌保护电路的结构示意图。如图3所示,在图2所示实施例的基础上,浪涌检测电路200包括:检测子电路240。其中,检测子电路240分别与整流电路100、控制电路300电连接。需要说过的是,本实施例中所示的检测子电路240的内部结构与图3实施例中所示的检测子电路230的内部结构可以相同或不同,下文中提到的检测子电路230也可以替换为检测子电路240。
检测子电路240,用于检测整流电路100输出的直流电的第二电压,当第二电压大于或等于第二预设电压时,向控制电路300持续发送第一控制信号,直至第二电压小于第二预设电压。
本实施例中,整流电路100的输出端包括正输出端和负输出端,正输出端和负输出端之间为直流电,其电压为高压电解电容电压(即母线电压),由于母线电压的大小与电路中是否有浪涌电压有关,因此,可以通过检测子电路240直接检测母线电压的大小,其中,本申请实施例中将母线电压记为第二电压。检测子电路240检测到第二电压高于第二预设电压时,说明电路中浪涌电压较高,需要控制控制电路300,使控制电路300控制谐振电路400中功率开关的状态,从而使谐振电路400停止产生振铃电压,减少功率开关上承受的电压。
本实施例,浪涌保护电路中,还可以通过浪涌检测电路检测整流电路输出的直流电的电压,根据直流电的电压,改变功率开关的状态,从而使谐振电路 停止产生振铃电压,减小了功率开关上的电压,保护功率开关,提高显示装置的安全性。
在一些可能的实施例中,在浪涌检测电路200如图3和图4任一所示实施例的基础上,继续如图3所示,控制电路300包括:控制子电路310和控制芯片320,控制子电路310分别与检测子电路230、控制芯片320第一引脚电连接,控制芯片320的第二引脚与功率开关电连接。
控制子电路310,用于接收第一控制信号,并根据第一控制信号通过第一引脚向控制芯片320发送第三控制信号,第三控制信号用于指示控制芯片320通过第二引脚向功率开关输出第二控制信号。
控制芯片320,用于在接收第三控制信号时,根据第三控制信号通过第二引脚向功率开关输出第二控制信号;以及在未接收到第三控制信号时,控制功率开关的状态。
本实施例中,控制子电路310的一端与检测子电路230电连接,另一端与控制芯片320的第一引脚电连接,控制芯片320的第二引脚与功率开关电连接。从而可以接收检测子电路230发送的第一控制信号,并根据第一控制信号通过控制芯片320的第一引脚向控制芯片320输出第三控制控制信号。其中,控制芯片320的第一引脚例如可以是具有固定功能的引脚,例如,死区时间控制引脚、反馈控制引脚、过流控制引脚、软启动引脚,过压控制引脚,从而在第一引脚接收到第三控制信号后,通过硬件控制是控制芯片320的第二引脚向功率开关输出第二控制信号;或者,通过软件控制控制芯片320中各引脚的功能,在检测到第一引脚接收到第三控制信号后,控制第二引脚向功率开关输出第二控制信号,从而控制功率开关的状态,使谐振电路400停止产生振铃电压。
另外,在控制芯片320的第一引脚没有接收到第三控制信号时,即电路中不存在浪涌电压或浪涌电压的大小较低时,控制芯片320通过第二引脚控制功率开关的状态,从而使显示装置正常工作。
本实施例,在浪涌保护电路中,通过控制子电路电连接在检测子电路和控制芯片之间,控制芯片与功率开关电连接,在检测子电路检测到浪涌电压过高时,通过控制子电路使控制芯片控制功率开关,使谐振电路停止产生振铃电压,从而保护功率开关,提高显示装置的安全性。
在一些可能的实施例中,在浪涌检测电路200如图3和图4任一所示实施例的基础上,如图4所示,控制电路300包括:控制子电路330和控制芯片320,控制子电路310分别与检测子电路230、功率开关电连接,控制芯片330的第二引脚与功率开关电连接。需要说明的是,本实施例中控制子电路310的内部结构与图3实施例中所示的控制子电路330的内部结构可以相同或不同,下文中提到的控制子电路310也可以替换为控制子电路330。
控制子电路330,用于接收第一控制信号,并根据第一控制信号向功率开关输出第二控制信号。
控制芯片320,用于在控制子电路330不向功率开关输出第二控制信号时,控制功率开关的状态。
本实施例中,控制子电路330的一端与检测子电路230电连接,另一端与功率开关电连接,使控制子电路330可以接收到检测子电路230发送的第一控制信号,从而根据第一控制信号直接向功率开关发送第二控制信号,使功率开关处于一种可使谐振电路400停止产生振铃电压的状态。而控制芯片320的引脚与功率开关电连接,例如还是第二引脚,在控制子电路330不向功率开关输 出第二控制信号时,控制功率开关的状态,此时,功率开关的状态为正常工作时的状态。
本实施例,浪涌保护电路的控制电路中,控制子电路电连接在检测子电路和功率开关之间,在接收到第一控制信号后,直接向功率开关输出第二控制信号,控制功率开关的状态,使谐振电路停止产生振铃电压,从而保护功率开关,提高显示装置的安全性。
图5为本申请另一实施例提供的浪涌保护电路的结构示意图。在图3和/或图4所示实施例的基础上,如图5所示,检测子电路230包括:第一电阻R1、第二电阻R2以及第一电容C1,第一电阻R1的一端分别与第一二极管D1和第二二极管D2电连接,另一端与第二电阻R2的一端电连接,第二电阻R2的一端还与控制电路300电连接,另一端与整流电路100连接,第一电容C1与第二电阻R2并联。控制子电路310包括:可控元件411,可控元件411分别与检测子电路230、控制芯片320的第一引脚电连接。
第一电阻R1和第二电阻R2,用于对第一电压进行分压以根据分压后的电压检测第一电压的大小,当分压后的电压指示第一电压大于或等于预设第一电压时,向控制电路300发送第一控制信号。
第二电阻R2和第一电容C1,用于控制向控制电路300发送第一控制信号的时长。
可控元件411,用于接收检测子电路230发送的第一控制信号,并根据第一控制信号向控制芯片320的第一引脚发送第三控制信号,以使控制芯片320的第二引脚向功率开关发送第二控制信号。
本实施例中,可控元件411例如可以是NPN型三极管、PNP型三极管、N 型MOS管、P型MOS管,其中,本实施例以P型MOS管VI为例进行说明。另外,功率开关也以P型MOS管V2为例进行说明。
以火线(图中用L表示)电压高于零线(图中用N表示)电压为例进行说明,此时,电流流向为:火线→第一二极管D1→第一电阻R1→第二电阻R2→VB1→零线,第一电阻R1和第二电阻R2用于对第一电压进行分压,由于电路中A点与P型MOS管VI的栅极电连接,在正常情况下,P型MOS管VI导通,控制芯片320的第一引脚接入的是高电平,当第一电压大于或等于第一预设电压时,A点电压也升高,即P型MOS管VI的栅极电压升高,相当于向P型MOS管VI发送第一控制信号。
P型MOS管VI的栅极电压升高后,P型MOS管VI截止,此时,控制芯片320的第一引脚接入的是低电平,相当于P型MOS管VI向控制芯片320的第一引脚发送第三控制信号,控制芯片320的第一引脚接收到第三控制信号后,通过第二引脚向P型MOS管V2输出高电平,相当于向功率开关发送第二控制信号,使P型MOS管V2由导通状态切换为截止状态,从而使P型MOS管V2和电感电容T1不会产生振铃电压。
其中,第一电容C1与第二电阻R2并联,当输入端口电路接通外部电源,使电路中产生浪涌电压时,第一电容C1处于充电状态,P型MOS管VI处于截止状态。当浪涌电压逐渐减小时,第一电容C1处于放电状态,可以减小A点处电压降低的速度,增加P型MOS管VI处于截止状态的时长,从而增加P型MOS管V2处于截止状态的时长。
另外,在第一电阻R1阻值固定的情况下,第二电阻R2的阻值越大,A点的电压越高,P型MOS管VI处于截止状态的时长也越长,使得P型MOS管 V2处于截止状态的时长也越长。因此,通过调整第一电容C1和第二电阻R2的参数值,可以控制向控制电路300(即P型MOS管VI)发送第一控制信号的时长,进而控制P型MOS管V2处于截止状态的时长。
本实施例提供的浪涌保护电路,不仅可以控制功率开关的状态,使谐振电路不会产生振铃电压,减少P型MOS管(即功率开关)上的电压,避免功率开关损坏,提高了显示装置的安全性。还可以通过检测子电路中的第一电容和第二电阻调整谐振电路不会产生振铃电压的时长,提高了浪涌保护电路的灵活性。
图6为本申请另一实施例提供的浪涌保护电路的结构示意图。在图3和/或图4所示实施例的基础上,如图6所示,检测子电路230包括:检测子电路230包括:第一电阻R1、第二电阻R2以及第一电容C1,第一电阻R1的一端与整流电路100输出直流电的一端电连接,另一端与第二电阻R2的一端电连接,第二电阻R2的另一端与整流电路100输出直流电的另一端电连接,第一电容C1与第二电阻R2并联。控制子电路310包括可控元件411,可控元件411分别与检测子电路230、功率开关电连接。
第一电阻R1和第二电阻R2,用于对第二电压进行分压以根据分压后的电压检测第二电压的大小,当分压后的电压指示第二电压大于或等于预设第二电压时,向控制电路300发送第一控制信号。
第二电阻R2和第一电容C1,用于控制向控制电路300发送第一控制信号的时长。
可控元件411,用于接收检测子电路230发送的第一控制信号,并根据第一控制信号向功率开关发送第二控制信号。
本实施例中,可控元件411以P型MOS管V1为例进行说明。另外,功率开关也以N型MOS管V3为例进行说明。
例如,第一电阻R1的一端电连接在整流电路100的正输入端,另一端与第二电阻R2的一端电连接,第二电阻R2的另一端与整流电路100的负输入端,从而使第一电阻R1和第二电阻R2对第二电压进行分压,电路中的A点与P型MOS管VI的栅极电连接,N型MOS管V3的栅极与P型MOS管VI的漏极、控制芯片320的第二引脚电连接。
在正常情况下,P型MOS管VI导通,使N型MOS管V3的栅极的电压为A点电压和控制芯片320通过第二引脚提供的电压之和。当第二电压大于或等于第二预设电压时,A点电压也升高,即P型MOS管VI的栅极电压升高,相当于向P型MOS管VI发送第一控制信号。P型MOS管VI的栅极电压升高后,P型MOS管VI截止,不在向N型MOS管V3的栅极提供电压,相当于P型MOS管VI向N型MOS管V3发送第二控制信号。此时,N型MOS管V3栅极的电压仅仅为控制芯片320通过第二引脚提供的电压,即N型MOS管V3栅极的电压降低,N型MOS管V3由导通状态切换为截止状态,从而使N型MOS管V3和电感电容T1不会产生振铃电压。
其中,通过调整第一电容C1和/或第二电阻R2的参数值,可以调整N型MOS管V3处于截止状态的时长,具体原理可参考上文描述,此处不再赘述。
本实施例提供的浪涌保护电路,检测子电路根据整流电路输出的直流电的电压控制可控元件的状态,然后使可控元件直接控制功率开关的状态,从而使谐振电路停止产生振铃电压,简化电路设计,在浪涌电压产生时,尽可能快的停止产生振铃电压,保护功率开关,提高显示装置的安全性。
需要说明的是,图5中所示的浪涌检测电路200在浪涌保护电路中的连接方式可以替换图6中浪涌检测电路200在浪涌保护电路中的连接方式,如图7所示。其中,图5中所示的控制电路300在浪涌保护电路中的连接方式可以替换图6中控制电路300在浪涌保护电路中的连接方式,如图8所示。
如图5-图8所示,由于在输入端口电路中设置了安规电容C2,因此,在输入端口电路与外部电源断开时,需要在安全时间内(例如,2s)使安规电容C2电压释放到安全值(例如,30V)以下,因此,在整流电路100中设置了第三电阻R3和第四电阻R4,使第三电阻R3和第四电阻R4串联,并点连接在火线和之间,通过第三电阻R3和第四电阻R4释放安规电容C2的电压。需要说明的是,当浪涌检测电路200在浪涌保护电路中的连接方式为图5和图7所示时,整流电路100中可以不在设置第三电阻R3和第四电阻R4,通过第一电阻R1和第二电阻R2释放安规电容C2的电压,此时,电流的流向为:火线→第一二极管D1→第一电阻R1→第二电阻R2→VB1→零线,或者零线→第二二极管D2→第一电阻R1→第二电阻R2→VB1→火线。
需要说明的是,图5-图8中提供的浪涌保护电路还可以作为欠电压或过电压保护电路。
在一些实施例中,本申请还提供一种防浪涌电流的控制方法,应用于上述任意所述的显示装置,包括:
检测整流电路的电压,当所述整流电路的电压大于或等于预设电压时,向控制电路输出第一控制信号;
接收所述第一控制信号,并根据所述第一控制信号向功率开关输出第二控制信号;
接收到所述第二控制信号后,停止产生振铃电压,以减少施加在所述功率开关上的电压。
在一些实施例中,检测火线和零线之间的第一电压,当所述第一电压大于或等于第一预设电压时,向所述控制电路持续发送第一控制信号,直至所述第一电压小于所述第一预设电压。
在一些实施例中,检测所述整流电路输出的直流电的第二电压,当所述第二电压大于或等于第二预设电压时,向所述控制电路持续发送第一控制信号,直至所述第二电压小于所述第二预设电压。
在一些实施例中,接收所述第一控制信号,并根据所述第一控制信号通过第一引脚向控制芯片发送第三控制信号;
接收所述第三控制信号时,根据所述第三控制信号通过第二引脚向所述功率开关输出第二控制信号;
以及在未接收到所述第三控制信号时,控制所述功率开关的状态。
在一些实施例中,接收检测子电路发送的第一控制信号,并根据所述第一控制信号向所述控制芯片的第一引脚发送所述第三控制信号,以使所述控制芯片的第二引脚向所述功率开关发送所述第二控制信号。
本实施例中,防浪涌电流的控制方法的具体实现过程请参考上述显示装置的介绍,这里不再展开说明。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (15)

  1. 一种显示装置,其特征在于,包括:
    显示面板;
    驱动板,用于驱动所述显示面板;
    电源板,所述电源板上设置有整流电路、浪涌检测电路、控制电路以及谐振电路,所述谐振电路包括功率开关;其中,
    所述整流电路,用于将输入的交流电整流为直流电,并将所述直流电输送给所述谐振电路;
    所述谐振电路,用于在所述直流电的作用下产生驱动脉冲信号和振铃电压,并将所述驱动脉冲信号传输给所述驱动板,所述振铃电压作用于所述功率开关;
    所述浪涌检测电路,用于检测所述整流电路的电压,当所述整流电路的电压大于或等于预设电压时,向所述控制电路输出第一控制信号,所述第一控制信号用于使所述控制电路向所述功率开关输出第二控制信号,所述第二控制信号用于控制所述功率开关处于可使所述谐振电路停止产生振铃电压的状态;
    所述控制电路,用于接收所述第一控制信号,并根据所述第一控制信号向所述功率开关输出第二控制信号;
    所述谐振电路,用于在所述功率开关接收到所述第二控制信号后,停止产生振铃电压,以减少施加在所述功率开关上的电压。
  2. 根据权利要求1所述的显示装置,其特征在于,所述浪涌检测电路包括:第一二极管和第二二极管以及检测子电路,所述第一二极管分别与火线、所述检测子电路电连接,所述第二二极管分别与零线、所述检测子电路电连接,所述检测子电路还分别与所述整流电路、所述控制电路电连接;
    所述第一二极管,用于在所述火线的电压大于所述零线的电压时,控制所述检测子电路检测所述火线和零线之间的第一电压;
    所述第二二极管,用于在所述零线的电压大于所述火线的电压时,控制所述检测子电路检测所述火线和零线之间的第一电压;
    所述检测子电路,用于检测所述火线和零线之间的第一电压,当所述第一电压大于或等于第一预设电压时,向所述控制电路持续发送第一控制信号,直至所述第一电压小于所述第一预设电压。
  3. 根据权利要求1所述的显示装置,其特征在于,所述浪涌检测电路包括:检测子电路,所述检测子电路分别与所述整流电路、所述控制电路电连接;
    所述检测子电路,用于检测所述整流电路输出的直流电的第二电压,当所述第二电压大于或等于第二预设电压时,向所述控制电路持续发送第一控制信号,直至所述第二电压小于所述第二预设电压。
  4. 根据权利要求2所述的显示装置,其特征在于,所述检测子电路包括:第一电阻、第二电阻以及第一电容,所述第一电阻的一端分别与所述第一二极管和第二二极管电连接,另一端与所述第二电阻的一端电连接,所述第二电阻的一端还与控制电路电连接,另一端与所述整流电路连接,所述第一电容与所述第二电阻并联;
    所述第一电阻和所述第二电阻,用于对第一电压进行分压以根据分压后的电压检测所述第一电压的大小,当所述分压后的电压指示所述第一电压大于或等于预设第一电压时,向所述控制电路发送第一控制信号;
    所述第二电阻和所述第一电容,用于控制向所述控制电路发送第一控制信号的时长。
  5. 根据权利要求3所述的显示装置,其特征在于,所述检测子电路包括:第一电阻、第二电阻以及第一电容,所述第一电阻的一端与所述整流电路输出直流电的一端电连接,另一端与所述第二电阻的一端电连接,所述第二电阻的另一端与所述整流电路输出直流电的另一端电连接,所述第一电容与所述第二电阻并联;
    所述第一电阻和所述第二电阻,用于对第二电压进行分压以根据分压后的电压检测所述第二电压的大小,当所述分压后的电压指示所述第二电压大于或等于预设第二电压时,向所述控制电路发送第一控制信号;
    所述第二电阻和所述第一电容,用于控制向所述控制电路发送第一控制信号的时长。
  6. 根据权利要求4或5所述的显示装置,其特征在于,所述控制电路包括:控制子电路和控制芯片,所述控制子电路分别与所述检测子电路、所述控制芯片第一引脚电连接,所述控制芯片的第二引脚与所述功率开关电连接;
    所述控制子电路,用于接收所述第一控制信号,并根据所述第一控制信号通过所述第一引脚向所述控制芯片发送第三控制信号,所述第三控制信号用于指示所述控制芯片通过所述第二引脚向所述功率开关输出第二控制信号;
    所述控制芯片,用于在接收所述第三控制信号时,根据所述第三控制信号通过所述第二引脚向所述功率开关输出第二控制信号;以及在未接收到所述第三控制信号时,控制所述功率开关的状态。
  7. 根据权利要求4或5所述的显示装置,其特征在于,所述控制电路包括:控制子电路和控制芯片,所述控制子电路分别与所述检测子电路、所述功率开关电连接,所述控制芯片的第二引脚与所述功率开关电连接;
    所述控制子电路,用于接收所述第一控制信号,并根据所述第一控制信号向所述功率开关输出第二控制信号;
    所述控制芯片,用于在所述控制子电路不向所述功率开关输出第二控制信号时,控制所述功率开关的状态。
  8. 根据权利要求6所述的显示装置,其特征在于,所述控制子电路包括:可控元件,所述可控元件分别与所述检测子电路、所述控制芯片的第一引脚电连接;
    所述可控元件,用于接收所述检测子电路发送的第一控制信号,并根据所述第一控制信号向所述控制芯片的第一引脚发送所述第三控制信号,以使所述控制芯片的第二引脚向所述功率开关发送所述第二控制信号。
  9. 根据权利要求7所述的显示装置,其特征在于,所述控制子电路包括可控元件,所述可控元件分别与所述检测子电路、所述功率开关电连接;
    所述可控元件,用于接收所述检测子电路发送的第一控制信号,并根据所述第一控制信号向所述功率开关发送所述第二控制信号。
  10. 根据权利要求8或9所述的显示装置,其特征在于,所述可控元件为以下任一一种:NPN型三极管、PNP型三极管、N型金氧半场效晶体MOS管、P型金氧半场效晶体MOS管。
  11. 一种防浪涌电流的控制方法,其特征在于,应用于权利要求1-10任意所述的显示装置,包括:
    检测整流电路的电压,当所述整流电路的电压大于或等于预设电压时,向控制电路输出第一控制信号;
    接收所述第一控制信号,并根据所述第一控制信号向功率开关输出第二控 制信号;
    接收到所述第二控制信号后,停止产生振铃电压,以减少施加在所述功率开关上的电压。
  12. 根据权利要求11所述的方法,其特征在于,
    检测火线和零线之间的第一电压,当所述第一电压大于或等于第一预设电压时,向所述控制电路持续发送第一控制信号,直至所述第一电压小于所述第一预设电压。
  13. 根据权利要求12所述的方法,其特征在于,
    检测所述整流电路输出的直流电的第二电压,当所述第二电压大于或等于第二预设电压时,向所述控制电路持续发送第一控制信号,直至所述第二电压小于所述第二预设电压。
  14. 根据权利要求13所述的方法,其特征在于,
    接收所述第一控制信号,并根据所述第一控制信号通过第一引脚向控制芯片发送第三控制信号;
    接收所述第三控制信号时,根据所述第三控制信号通过第二引脚向所述功率开关输出第二控制信号;
    以及在未接收到所述第三控制信号时,控制所述功率开关的状态。
  15. 根据权利要求14所述的方法,其特征在于,
    接收检测子电路发送的第一控制信号,并根据所述第一控制信号向所述控制芯片的第一引脚发送所述第三控制信号,以使所述控制芯片的第二引脚向所述功率开关发送所述第二控制信号。
PCT/CN2020/075932 2019-09-26 2020-02-20 一种显示装置 WO2021056956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910919848.7 2019-09-26
CN201910919848.7A CN112564486B (zh) 2019-09-26 2019-09-26 显示装置

Publications (1)

Publication Number Publication Date
WO2021056956A1 true WO2021056956A1 (zh) 2021-04-01

Family

ID=75030221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075932 WO2021056956A1 (zh) 2019-09-26 2020-02-20 一种显示装置

Country Status (2)

Country Link
CN (1) CN112564486B (zh)
WO (1) WO2021056956A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201813314U (zh) * 2010-09-20 2011-04-27 石家庄国耀电子科技有限公司 一种交流电源有源功率因数校正电路的交流电压采样电路
CN203504786U (zh) * 2013-09-13 2014-03-26 美的集团股份有限公司 电磁加热控制电路及电压力锅
CN107635343A (zh) * 2017-10-25 2018-01-26 苏州纽克斯电源技术股份有限公司 输入检测保护电路及hid灯用交流电子镇流器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664012B2 (ja) * 1999-12-14 2005-06-22 富士電機デバイステクノロジー株式会社 スイッチング電源装置
CN2805264Y (zh) * 2005-07-18 2006-08-09 康佳集团股份有限公司 浪涌电流抑制电路
CN101582632A (zh) * 2008-05-12 2009-11-18 鸿富锦精密工业(深圳)有限公司 开关电源及使用该开关电源的用电设备
JP2013031335A (ja) * 2011-07-29 2013-02-07 Minebea Co Ltd 電源回路及び電源回路の制御方法
CN106210819A (zh) * 2016-07-21 2016-12-07 乐视控股(北京)有限公司 显示设备及用于显示装置的适配器
CN206353871U (zh) * 2016-12-26 2017-07-25 佛山市顺德区美的电热电器制造有限公司 电磁加热装置的开关管保护电路及电磁加热装置
CN108882422A (zh) * 2017-05-12 2018-11-23 佛山市顺德区美的电热电器制造有限公司 电磁加热控制电路、方法及电磁加热设备
CN108966393A (zh) * 2017-05-19 2018-12-07 佛山市顺德区美的电热电器制造有限公司 电磁加热电路及电磁加热电路浪涌保护方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201813314U (zh) * 2010-09-20 2011-04-27 石家庄国耀电子科技有限公司 一种交流电源有源功率因数校正电路的交流电压采样电路
CN203504786U (zh) * 2013-09-13 2014-03-26 美的集团股份有限公司 电磁加热控制电路及电压力锅
CN107635343A (zh) * 2017-10-25 2018-01-26 苏州纽克斯电源技术股份有限公司 输入检测保护电路及hid灯用交流电子镇流器

Also Published As

Publication number Publication date
CN112564486B (zh) 2022-04-22
CN112564486A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US20070252565A1 (en) Inrush current limiting circuit and power supply device using the same
US10236879B2 (en) Thyristor driving apparatus
CN110392975B (zh) 用于变换输入电压的方法和倍压器以及分离电路
US9088157B2 (en) Boost type power converting apparatus with protection circuit
US20210359532A1 (en) Charging circuit and electronic device
WO2020062817A1 (zh) 一种抑制电源浪涌电压电流的控制电路及电源
CN102857083A (zh) 一种适用于pfc变换器的输入浪涌电流抑制电路
CN116667301B (zh) 一种兼容性强的冲击电流抑制电路
JP2015535678A (ja) 過電圧保護装置および方法
CN113964863A (zh) 一种可自动实现组件级关断的串联型光伏系统
CN108964643A (zh) 一种带电流镜像端的功率器件的驱动控制电路及控制方法
US10236682B2 (en) Inrush current free switching apparatus and control method thereof
US20110044080A1 (en) Converter
CN108847835A (zh) 一种功率器件驱动保护电路及其控制方法
WO2020119531A1 (zh) 电源接口的浪涌保护电路、终端和浪涌电压泄放方法
CN104025455A (zh) 用于电压控制的半导体开关的保护装置
CN107979281B (zh) 一种输入电压分压模块及过压保护开关
US7800249B1 (en) Power supply system
WO2021056956A1 (zh) 一种显示装置
TW201315074A (zh) 功率開關串聯電路及其控制方法
WO2018163413A1 (ja) 電子式回路遮断器
TWI538333B (zh) 軟啟動開關電路及電子裝置
CN103929104A (zh) 无外加驱动电源的驱动电路
CN110611292A (zh) 一种pfc电路及其保护电路
WO2021139730A1 (zh) 一种过能保护电路、剩余电流装置、电子设备和配电盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867189

Country of ref document: EP

Kind code of ref document: A1