JP6619029B2 - アナログ式オプトカプラ用の入力保護回路 - Google Patents

アナログ式オプトカプラ用の入力保護回路 Download PDF

Info

Publication number
JP6619029B2
JP6619029B2 JP2017566646A JP2017566646A JP6619029B2 JP 6619029 B2 JP6619029 B2 JP 6619029B2 JP 2017566646 A JP2017566646 A JP 2017566646A JP 2017566646 A JP2017566646 A JP 2017566646A JP 6619029 B2 JP6619029 B2 JP 6619029B2
Authority
JP
Japan
Prior art keywords
voltage
terminal
input
amplifier circuit
optocoupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017566646A
Other languages
English (en)
Other versions
JP2018518914A (ja
Inventor
ウルハス アルーン ショウチェ,
ウルハス アルーン ショウチェ,
ウィリアム エム. マンスフィールド,
ウィリアム エム. マンスフィールド,
ヴィシャル ヴィシュワスラオ ボーサル,
ヴィシャル ヴィシュワスラオ ボーサル,
Original Assignee
マイクロ モーション インコーポレイテッド
マイクロ モーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ モーション インコーポレイテッド, マイクロ モーション インコーポレイテッド filed Critical マイクロ モーション インコーポレイテッド
Publication of JP2018518914A publication Critical patent/JP2018518914A/ja
Application granted granted Critical
Publication of JP6619029B2 publication Critical patent/JP6619029B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/085Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light using opto-couplers between stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/802Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/444Diode used as protection means in an amplifier, e.g. as a limiter or as a switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Description

後述の実施形態は、オプトカプラに関するものであり、とくにアナログ式オプトカプラ用の入力保護回路に関するものである。
通信バスと工業計器とを結合させることが可能である。通信バスを用いると、工業計器は通信バスと結合されている他の工業計器またはデバイスと通信することができるようになる。たとえば、流量測定デバイスおよび流量制御デバイスを、物質を搬送する共通パイプラインと結合させることが可能である。流量測定デバイスと流量制御デバイスとを通信バスで互いに通信させて搬送物質の特性を制御するようにすることが可能である。さらに詳細にいえば、流量測定デバイスは物質の特性を測定してその測定結果を通信バスへ送ることができ、流量制御デバイスは通信バスから得られた測定結果を用いて搬送物質の特性を制御することができる。
工業計器は高電圧を用いたり高電圧に晒されたりすることが多い。加えて、通信バスは導電体を含んでいることが一般的である。その結果、通信バスに高電圧が電気的に伝達されてしまう恐れがある。このことは通信バスと結合されている他の装置またはデバイスに損傷を与え、大惨事を引き起こしてしまう恐れがある。したがって、ほとんどの安全規則には、工業計器から通信バスが電気的に隔離されていることが規定されている。また、安全規則には、電気的に隔離するための最小隔離定格電圧がさらに規定されている場合もある。
産業デバイスから通信バスを隔離するためにオプトカプラが用いられている。オプトカプラには隔離障壁が用いられている。隔離障壁は最大隔離定格電圧を有する透明な誘電体のことである。最大隔離定格電圧は安全規則に規定されている最小隔離定格電圧よりも高くてもよい。隔離障壁の一方側には発光ダイオード(LED)が設けられ、隔離障壁の他方側にはフォトダイオードが設けられている。LEDはたとえば工業計器と通信可能なコントローラと結合され、フォトダイオードは通信バスと結合されるようになっていてもよい。隔離障壁のLED側を非本質安全部(NON−IS SECTION)と一般的に呼び、隔離障壁のフォトダイオード側を本質安全部(IS SECTION)と一般的に呼ぶ。
オプトカプラでは、当該オプトカプラの入力と出力との間の関係に悪い影響を及ぼす問題が発生しやすい。たとえば、オプトカプラからの出力とオプトカプラの入力部に印加される電圧または電流とが線形関係を有していない場合もある。この非線形関係はLEDの温度感応性、LEDの輝度ドリフトなどに起因しうる。
これらの問題には高線形性オプトカプラを用いれば対処することができる。高線形性オプトカプラは非本質安全部にフィードバックフォトダイオードを有することが可能である。LEDの光出力の非線形または変動を補償するには、フィードバックフォトダイオードと一緒に外部アンプを用い、LEDの光出力を監視し、自動的にLED電流を調節するようにすればよい。フィードバックアンプはLEDの光出力を安定化させて線形化するように働く。
図1には、オプトドライバ回路10と通信可能に結合される高線形性オプトカプラでありうる例示的なオプトカプラ20が示されている。オプトドライバ回路10は入力部INで信号を受け取る。信号はいかなる適切な形態であってもよいが、説明のため、入力部INで受け取られる信号はパルス幅変調(PWM)信号とする。オプトドライバ回路10はPWM信号を当該PWM信号に比例しうるアナログ信号へと変換することができる。オプトドライバ回路10は、アナログ信号をさらに濾過(filter)し、増幅し、この濾過、増幅されたアナログ信号(「調整後の信号」)をオプトカプラ20へ送ることができる。
図1に示されているように、調整後の信号はLED22に送られるようになっている。LED22は調整後の信号に応答して光を放射する。第一のフォトダイオード24および第二のフォトダイオード26が放射された光を受け取る。LED22と第二のフォトダイオード26との間には隔離障壁28が設けられている。したがって、オプトカプラ20の出力部OUTは入力部INから電気的に隔離されている。第一のフォトダイオード24はアンプ回路12へフィードバック信号を送る。アンプ回路12はフィードバック信号を受け取って調整後の信号を調節する。したがって、LED22からの放射光がアンプ回路12により受け取られる信号に確実に比例するようにLED22からの放射光を制御することができるようになっている。しかしながら、オプトカプラ20が用いられたとしても、出力OUTと入力INとは線形関係を有していない。このことについては以下にさらに詳細に説明されている。
通常、安全規則では、LED22および第一のフォトダイオード24に印加可能な電圧が所定の最大電圧に制限されている。図2に示されている電圧リミッタ14、16はLED22および第一のフォトダイオード24に印加される電圧を制限することが可能である。電圧リミッタ14、16は、LED22または第一のフォトダイオード24に印加される電圧が電圧リミッタ14、16の降伏電圧よりも大きい場合には電流をグラウンド(アース)に流すように構成されている。電圧リミッタ14、16の降伏電圧は安全規則に指定の最大電圧未満とすることができる。
図3には電圧リミッタ14、16の典型的な構成が示されている。この典型的な構成では、電圧リミッタ14、16はツェナーダイオードD1、D2、D3である。ツェナーダイオードD1、D2、D3は、LED22および第一のフォトダイオード24と電気的に結合されている。さらに分かるように、オプトドライバ回路10はツェナーダイオードD1、D2、D3を保護する抵抗器R1、R2、R3およびヒューズF1、F2、F3をさらに有している。入力部INで受け取られる信号は低域フィルター(LPF)により濾過(filter)されるようになっている。
ツェナーダイオードD1、D2、D3は降伏電圧よも低い電圧では完全な絶縁体ではない。すなわち、ツェナーダイオードD1、D2、D3は動作電圧では漏洩電流を有しうる。漏洩電流はダイオード毎に異なりうる。たとえば、第一のツェナーダイオードD1は第三のツェナーダイオードD3の漏洩電流未満の漏洩電流を有しうる。このことによってLED22に与えられる調整後の信号が変動してしまう恐れがある。その結果、出力OUTと入力INとは線形関係を有しなくなる。
換言すれば、図3に示されているツェナーダイオードD1、D2、D3の構成に起因して入力INと出力OUTとの関係が線形ではなくなる。このような問題に対処するために、アナログ式オプトカプラ用の入力保護回路、とくにオプトカプラに与えられる調整後の信号を変動させない入力保護回路の提供が必要となる。
オプトカプラ用の入力保護回路が提供される。ある実施形態によれば、入力保護回路は、アンプ回路の入力端子と電気的に結合されている第一の端子を有する第一の電圧リミッタを備えている。アンプ回路の入力端子はPWM信号を受け取るように構成され、アンプ回路はオプトカプラに電圧を与えるように構成されている。
また、オプトドライバ回路が提供される。ある実施形態によれば、オプトドライバ回路は、オプトカプラおよび入力保護回路に電圧を与えるように構成されるアンプ回路を備えている。入力保護回路は、第一の端子を有する第一の電圧リミッタを備えている。この第一の端子はアンプ回路の入力端子と電気的に結合されている。アンプ回路の入力端子はPWM信号を受け取るように構成されている。
態様
ある態様によれば、オプトカプラ(20)用の入力保護回路(110)は、アンプ回路(120)の入力端子と電気的に結合されている第一の端子を有する第一の電圧リミッタ(D1)を備え、アンプ回路(120)の入力端子はPWM信号を受け取るように構成され、アンプ回路(120)はオプトカプラ(20)に電圧を与えるように構成されている。
好ましくは、入力保護回路(110)は、第一の電圧リミッタ(D1)の第一の端子と電気的に結合されている入力端子と、アンプ回路(120)の入力端子と電気的に結合されている出力端子とを有するバッファ(114)をさらに備えている。
好ましくは、入力保護回路(110)は、第一の端子を有する第二の電圧リミッタ(D2)をさらに備え、第二の電圧リミッタ(D2)の第一の端子は、オプトカプラ(20)およびアンプ回路(120)に保護基準電圧を与える電圧リファレンス(112)と電気的に結合されている。
好ましくは、第一の電圧リミッタ(D1)は第二の端子をさらに有し、第一の電圧リミッタ(D1)の第二の端子は保護グラウンド(GND_P)と結合され、第二の電圧リミッタ(D2)は第二の端子をさらに有し、第二の電圧リミッタ(D2)の第二の端子は保護グラウンド(GND_P)と結合されている。
好ましくは、入力保護回路(110)は、アンプ回路(120)に基準電圧を与えるためにアンプ回路(120)と電気的に結合されている電圧リファレンス(112)をさらに備えている。
好ましくは、入力保護回路(110)は、保護グラウンド(GND_P)とデジタルグラウンド(DGND)との間に結合されている第一のヒューズ(F1)をさらに備えている。
好ましくは、入力保護回路(110)は、アンプ回路(120)の入力端子と結合されている第二のヒューズ(F2)をさらに備えている。
好ましくは、アンプ回路(120)はオプトカプラ(20)内の発光ダイオード(22)および第一のフォトダイオード(24)と電気的に結合され、アンプ回路(120)は入力ピン(IN)に与えられる信号に基づいて第一のフォトダイオード(24)内の定電流を補償および維持するように発光ダイオード(22)に印加される電圧を制御する。
好ましくは、アンプ回路(120)は、アンプ回路(120)の入力端子で受け取られるパルス幅変調信号に比例する、濾過および増幅されたアナログ信号をオプトカプラ(20)に与える。
ある態様によれば、オプトドライバ回路(100)は、オプトカプラ(20)に電圧を与えるように構成されるアンプ回路(120)と、 第一の端子を有する第一の電圧リミッタ(D1)有する入力保護回路(110)とを備え、第一の端子はアンプ回路(120)の入力端子と電気的に結合され、アンプ回路(120)の入力端子はPWM信号を受け取るように構成されている。
好ましくは、オプトドライバ回路(100)は、第一の電圧リミッタ(D1)の第一の端子と電気的に結合されている入力端子と、アンプ回路(120)の入力端子と電気的に結合されている出力端子とを有するバッファ(114)をさらに備えている。
好ましくは、オプトドライバ回路(100)は、第一の端子を有する第二の電圧リミッタ(D2)をさらに備え、この第二の電圧リミッタ(D2)の第一の端子は、オプトカプラ(20)およびアンプ回路(120)に保護基準電圧を与える電圧リファレンス(112)と電気的に結合されている。
好ましくは、第一の電圧リミッタ(D1)は第二の端子をさらに有し、第一の電圧リミッタ(D1)の第二の端子は保護グラウンド(GND_P)と結合され、第二の電圧リミッタ(D2)は第二の端子をさらに有し、第二の電圧リミッタ(D2)の第二の端子は保護グラウンド(GND_P)と結合されている。
好ましくは、オプトドライバ回路(100)は、アンプ回路(120)に基準電圧を与えるためにアンプ回路(120)と電気的に結合されている電圧リファレンス(112)をさらに備えている。
好ましくは、アンプ回路(120)はオプトカプラ(20)内の発光ダイオード(22)および第一のフォトダイオード(24)と電気的に結合され、アンプ回路(120)は入力ピン(IN)に与えられる信号に基づいて第一のフォトダイオード(24)内の定電流を補償および維持するように発光ダイオード(22)に印加される電圧を制御するように構成されている。
好ましくは、アンプ回路(120)は、アンプ回路(120)の入力端子で受け取られるパルス幅変調信号に比例する濾過および増幅されたアナログ信号をオプトカプラ(20)に与える。
すべての図面において同一の参照番号は同一の部材を表わしている。また、図面は必ずしも同一の縮尺ではないことに留意されたい。
従来のオプトドライバ回路10と通信可能に結合されている従来のオプトカプラ20を示す図である。 電圧リミッタ14、16を有している従来のオプトドライバ回路10を示す図である。 従来のオプトドライバ回路10をさらに詳細に示す図である。 ある実施形態にかかるオプトカプラ用の入力保護回路110を備えているオプトドライバ回路100を示す図である。 図4に記載のオプトカプラ用のオプトドライバ回路100および入力保護回路110をさらに詳細に示す図である。 ある実施形態にかかるトランスミッタ内で用いられる入力保護回路110を示す図である。
図4〜図6および下記記載には、アナログ式オプトカプラ用の入力保護回路を最良のモードで作製および使用する方法を当業者に教示するための具体的な実施形態が示されている。本発明の原理を教示するために、従来技術の一部が単純化または省略されている。当業者にとって明らかなように、これらの実施形態の変形例もまた本発明の範囲に含まれる。また当業者にとって明らかなように、後述の構成要件をさまざまな方法で組み合わせることによりアナログ式オプトカプラ用の入力保護回路の複数の変形例を形成してもよい。したがって、後述の実施形態は、後述の具体的な実施例に限定されるものではなく、特許請求の範囲およびその均等物によってのみ限定されるものである。
図4には、ある実施形態にかかるオプトカプラ用の入力保護回路110を有するオプトドライバ回路100が示されている。オプトドライバ回路100は、先に記載のオプトカプラ20と通信可能に結合されている。しかしながら他の実施形態では、オプトドライバ回路100はいかなる適切なオプトカプラと通信可能に結合されるようになっていてもよい。図示されている実施形態では、入力保護回路110は、アンプ回路120およびデジタルグラウンドDGNDと電気的に結合されるようになっている。アンプ回路120はオプトカプラ20と電気的に結合されている。具体的にいえば、アンプ回路120は、通信経路を介してLED22および第一のフォトダイオード24と電気的に結合されている。オプトドライバ回路100は入力部INで信号を受け取り、その信号をアンプ回路120へ送り、アンプ回路120はオプトカプラ20を駆動するように構成されている。したがって、オプトカプラ20は、入力部INで受け取った信号に基づいて出力部OUTで信号を与えるようになっている。
オプトカプラ20は高線形性アナログ式オプトカプラであってもよいが、他の実施形態では、いかなる適切なオプトカプラが用いられるようになっていてもよい。オプトカプラ20では、LED22により放射されて第一のフォトダイオード24および第二のフォトダイオード26により受け取られる光が矢印により図示されている。いうまでもなく、LED22により放射される光の明るさはLED22により受け取られる信号に比例しうる。加えて、第二のフォトダイオード26により与えられる信号は第二のフォトダイオード26により受け取られる光の明るさに比例しうる。しかしながら、LED22の漂流特性および非線形特性に起因して、LED22により放射される光の明るさがLED22により受け取られる信号とは異なる場合もある。それにもかかわらず、オプトカプラ20の出力部OUTで与えられる信号とオプトドライバ回路100の入力部INで受け取られる信号とが線形関係を有することが可能である。このことについては以下にさらに詳細に説明されている。
LED22は、同LED22により消費されるパワーに比例する明るさを有する光を放射する。たとえば、図示されている実施形態では、LED22に印加される電圧がオプトドライバ回路100により変えられるようになっている。このことにより、LED22により引き込まれる電流(current drawn)が変わる。したがって、LED22により放射される光の明るさがLED22により消費されるパワーに比例しうる。
加えて、第一のフォトダイオード24および第二のフォトダイオード26は光の明るさに比例する電圧または電流を提供しうる。たとえば、第一のフォトダイオード24および第二のフォトダイオード26は、与える電流が受け取った光の明るさに比例する電流源として動作しうる。加えて、第一のフォトダイオード24と第二のフォトダイオード26とが同等のものであってもよい。すなわち、LED22により放射される光の特定の明るさに対して第一のフォトダイオード24および第二のフォトダイオード26により与えられる電流が同じになるようになっていてもよい。
LED22に印加される特定の電圧に対してLED22により放射される光の明るさが変わってしまう場合、LED22に印加される電圧を調節するようにオプトカプラ20を用いることが可能である。たとえば、特定の電圧に対してLED22により放射される光の明るさが減少してしまう場合、その分だけ第一のフォトダイオード24により与えられる電流が減少しうる。アンプ回路120は、LED22に印加される電圧を調節しうる。たとえば、LED22に印加される電圧を降下させてもよい。こうすることにより、LED22により引き込まれる電流を上昇させることが可能となる。
このような理由により、LED22により放射される光の明るさをLED22に印加する電圧の調節前の明るさに戻すことが可能となり、したがって、入力部INへ印加される特定の信号に対するLED22により放射される光の明るさを同じままに留めることが可能となる。第二のフォトダイオード26により与えられる電流が受け取った光の明るさに比例するため、LED22に与えられる特定の電圧に対してLED22から放射される光の明るさが変わった場合であっても、入力部INで受け取る信号と出力部OUTにより与えられる信号との間の線形関係を維持することが可能となる。
加えて、図4から分かるように、入力保護回路110は、アンプ回路120とオプトカプラ20との間の通信経路と結合されているのではなくアンプ回路120の入力側と結合されている。したがって、入力保護回路110内に存在しうる漏洩電流がアンプ回路120とオプトカプラ20との間の通信経路から引き込まれたものである恐れはない。このことについては、図5を参照して以下にさらに詳細に説明されている。
図5は、オプトカプラ20用のオプトドライバ回路100および入力保護回路110を詳細に示す図である。図4を参照して先に記載されているように、オプトドライバ回路100はアンプ回路120と結合されている入力保護回路110を備えている。アンプ回路120は、信号を入力部INから入力保護回路110を経由してアンプ回路120の入力端子で受け取るようになっている。入力ピン1〜4および出力ピン5〜8を有するオプトカプラ20が図示されている。
図示されている実施形態では、入力保護回路110はオプトカプラ20の第二の入力ピン2と第四の入力ピン4とに電気的に結合されている。オプトカプラ20の第四の入力ピン4は入力保護回路110を経由してデジタルグラウンドDGNDと電気的に結合されている。アンプ回路120は通信経路を介してオプトカプラ20の第一の入力ピン1および第三の入力ピン3と通信可能に結合されている。
入力保護回路
入力保護回路110は、アンプ回路120およびオプトカプラ20と結合されている電圧リファレンス112を有している。図示されている実施形態では、電圧リファレンス112の出力端子はアンプ回路120の基準端子およびオプトカプラ20の第二の入力ピン2と結合されるようになっている。+3.3VREF電源(supply)もオプトカプラ20の第二の入力ピン2およびアンプ回路120の基準端子を介してLED22と結合されている。電圧リファレンス112のグラウンド端子は保護グラウンドGND_Pと結合されている。
入力保護回路110は、アンプ回路120の入力端子と結合されている第一の端子を有する第一の電圧リミッタD1と、電圧リファレンス112の出力端子と結合されている第一の端子を有する第二の電圧リミッタD2とをさらに備えている。第一の電圧リミッタD1および第二の電圧リミッタD2は保護グラウンドGND_Pとそれぞれ結合されている第二の端子をさらに有している。図示されているように、第一の電圧リミッタD1および第二の電圧リミッタD2はツェナーダイオードであるものの、他の実施形態では、いかなる適切な電圧リミッタが用いられるようになっていてもよい。
図5からさらに分かるように、入力保護回路110は保護グラウンドGND_P端子と直列に結合されている第一のヒューズF1および第一の抵抗器R1をさらに有している。アンプ回路120の入力端子に対して第二のヒューズF2および第二の抵抗器R2が直列となっている。ブロッキングダイオードD3は、電圧リファレンス112の入力端子と結合されている第一の端子と、+12.0 V_DIG電源と結合されている第二の端子とを有している。
図示されている実施形態では、バッファ114の入力が第一の電圧リミッタD1の第一の端子と電気的に結合されている。バッファ114の出力はアンプ回路120の入力と電気的に結合されている。バッファ114の第一の基準端子は+3.3のVREF電源と結合されている。バッファ114の第二の基準端子は保護グラウンドGND_Pと電気的に結合されている。図示されているように、バッファ114はシュミットトリガーバッファである。
図示されている実施形態では、アンプ回路120は、第一の通信経路を通ってオプトカプラ20の第一の入力ピン1を介してLED22と電気的に結合されている。また、アンプ回路120は、第二の通信経路を通ってオプトカプラ20の第三の入力ピン3を介して第一のフォトダイオード24と電気的に結合されている。第一のフォトダイオード24はオプトカプラ20の第四の入力ピン4を介して保護グラウンドGND_Pと電気的に結合されている。アンプ回路120の入力端子は第二のヒューズF2および第二の抵抗器R2を介して入力部INに通信可能に結合されている。他の実施形態では他の構成が採用されるようになっていてもよい。
アンプ回路およびオプトカプラの動作
動作時、電圧リファレンス112はアンプ回路120の基準電圧を維持しうる。たとえば、アンプ回路120は基準ピンを有するオペアンプを有していてもよい。電圧リファレンス112は、アンプ回路120により引き込まれる電流の範囲にわたって基準ピンの電圧を+3.3VREFボルトに維持しうる。すなわち、基準電圧が+3.3VREFボルトでありうる。また、電圧リファレンス112は、オプトカプラ20の第二の入力ピン2に保護電圧をさらに印加しうる。
したがって、オプトカプラ20の第一の入力ピン1に印加される電圧が0.0ボルトならば、LED22は基準電圧に相当する電流を流す。すなわち、流れる電流は、+3.3VREFをLED22の抵抗および電流経路内の他の抵抗、たとえばアンプ回路120内の抵抗で除算して得られる値に比例する。LED22が基準電流を流しているときに、LED22により放射される光の明るさが最大となるとしてよい。加えて、第一の入力ピン1の電圧が+3.3ボルトである場合、第一の入力ピン1とオプトカプラ20の第二の入力ピン2との間の電圧の差は0である。したがって、LED22には電流が流れず、光を放射することができない。
LED22により放射される光により、第一のフォトダイオード24が電流を与えることができるようになっている。たとえば、第一のフォトダイオード24がLED22により放射される光を受け取ると、第一のフォトダイオード24が電流源として動作してアンプ回路120から電流を引き込むようになっていてもよい。しかしながら、他の実施形態では、第一のフォトダイオード24は他のモードで動作するようになっていてもよい。図示されている実施形態では、第一のフォトダイオード24はオプトカプラ20の第三の入力ピン3を介してアンプ回路120から電流を引き込み、アンプ回路120は、第一のフォトダイオード24の定電流を補償して維持するように、LED22に与える電圧を変えうる。
アンプ回路120は、第一の入力ピン1の電圧を制御することによりLED22により引き込まれる電流を制御するようになっていてもよい。たとえば、アンプ回路120は、アンプ回路120の入力端子に与えられる信号電圧に応じて0と+3.3VREFとの間の電圧を第一の入力ピン1に印加するオペアンプを有していてもよい。アンプ回路120の入力端子の電圧の大きさは、オプトドライバ回路100の入力部INのPWM信号に比例しうる。したがって、LED22から放射される光の明るさが第一の入力ピン1に印加される特定の電圧の公称の明るさからドリフトする(ずれている)と、その分だけ第一の入力ピン1に印加される電圧が変更されるようになっている。
加えて、第一の入力ピン1、第三の入力ピン3および第四の入力ピン4は電圧リミッタと結合されていない。たとえば、第一の入力ピン1、第三の入力ピン3および第四の入力ピン4はツェナーダイオードを介してグランドと結合されていない。その結果、第一の入力ピン1の電圧と第一のフォトダイオード24により与えられる電流との間の関係には一貫性がある。加えて、入力保護回路110により、入力ピン1〜4の電圧が安全規制電圧を超えることがないように担保されている。このことについては以下にさらに詳細に説明されている。
入力保護回路の動作
先に説明されているように、安全規則には、入力ピン1〜4の電圧を安全規制電圧に制限することが規定されている。図示されている実施形態では、第二の電圧リミッタD2は、安全規制電圧未満である第二の電圧リミッタD2の降伏電圧を第二の入力ピン2の電圧が超えてしまうのを防止するようになっている。さらに詳細にいえば、第二の入力ピン2の電圧が降伏電圧を超えてしまうと、電流が第二の入力ピン2から保護グラウンドGND_Pへ、そして、保護グラウンドGND_Pから第一のヒューズF1および第一の抵抗器R1を通ってデジタルグラウンドDGNDまで流れるようになっている。
同様に、第一の電圧リミッタD1は、第二の電圧リミッタD2と共に、第一の入力ピン1および第三の入力ピン3が降伏電圧を超えてしまうのを防止するようになっている。たとえば、アンプ回路120の入力端子の電圧が第一の電圧リミッタD1の降伏電圧を超えてしまうと、第一の電圧リミッタD1は、電流をアンプ回路120の入力端子から保護グラウンドGND_Pへ、そして、保護グラウンドGND_Pから第一のヒューズF1および第一の抵抗器R1を通ってデジタルグラウンドDGNDまで流すようになっている。したがって、第一の入力ピン1および第三の入力ピン3の電圧は安全規制電圧を超えることはできないようになっている。
第一の電圧リミッタD1および第二の電圧リミッタD2を流れる電流が過剰になってしまうと、第一の電圧リミッタD1および第二の電圧リミッタD2が故障してしまう恐れがある。たとえば、第一の電圧リミッタD1により引き込まれる電流に起因して、ある期間にわたって、アンプ回路120の入力端子に降伏電圧が印加されると、第一の電圧リミッタD1の材料が過熱により破壊してしまう恐れがある。
このような故障の発生を第一のヒューズF1を用いて防止することができる。たとえば、電流がアンプ回路120の入力端子から第一の電圧リミッタD1を通ってデジタルグラウンドDGNDまで流れると、第一のヒューズF1が飛んでしまい、それにより、入力端子がデジタルグラウンドDGNDから電気的に切断される。同様に、電流が第二の電圧リミッタD2を通ってデジタルグラウンドDGNDまで流れて第一のヒューズF1の電流容量を超えてしまうと、第一のヒューズF1が飛んでしまい、それにより、第二の入力ピン2がデジタルグラウンドDGNDから電気的に切断される。
第二のヒューズF2は、アンプ回路120の入力端子から入力保護回路110の入力部INまでの過剰な電流の流れを防止するようになっていてもよい。たとえば、アンプ回路120の入力端子の電圧が+12.0V_DIGという高電圧であると、過剰な電流がアンプ回路120の入力端子から入力部INまで流れ、第二のヒューズF2が飛び、それにより、アンプ回路120の入力端子が入力部INから電気的に切断されるようになっていてもよい。
図示されている実施形態では、入力INは不必要に変動する振幅を有するPWM信号でありうる。それに加えてまたはそれに代えて、入力部INで受け取られるPWM信号の変調が第二の抵抗器R2および第一の電圧リミッタD1により悪い影響を及ぼされてしまう恐れもある。バッファ114は、不必要に変動する振幅を有するPWM信号を望ましいPWM信号に変換するしきい値またはトリガーを有するようになっていてもよい。たとえば、+3.0から+2.4VDCまで変動するパルス電圧および0.0から+1.2VDCまで変動するグラウンド電圧を有するPWM信号がバッファ114により受け取られるようになっていてもよい。バッファ114は、+2.5VDCに設定されたポジティブ(正側)しきい値および+1.0VDCに設定されたネガティブ(負側)しきい値を有するようになっていてもよい。バッファ114の入力端子で受け取られるPWM信号がしきい値電圧を超えると、出力は+3.3VDCのパルス電圧および0.0VDCのグラウンド電圧を有するPWM信号であってもよい。したがって、アンプ回路120の入力端子で受け取られるPWM信号は望ましくない振幅を有しえない。
上記の記載には、オプトドライバ回路100および入力保護回路110の構造および動作が説明されている。下記の記載には、流量計(フローメーター)の如き流量測定デバイスと結合されうる例示的なトランスミッタに用いられる入力保護回路110が説明されている。
入力保護回路図の例示的な用途
図6には、ある実施形態にかかるトランスミッタ5内で用いられる入力保護回路110が示されている。トランスミッタ5は、たとえばマイクロモーション社により製造されるフローメーターであってもよい。トランスミッタ5は、非本質安全部15と、オプトカプラ20と、本質安全部30とで構成されている。非本質安全部15は、入力保護回路110と、先に記載のアンプ回路120とを有している。非本質安全部15はマイクロプロセッサ130をさらに有している。入力保護回路110はオプトドライバ回路100内に設けられており、オプトドライバ回路100はオプトカプラ20を介してトランスミッタ5の本質安全部30と結合されている。非本質安全部15と本質安全部30とはオプトカプラ20の絶縁障壁28により分離されている。
図6に示されているように、非本質安全部15は電源からACパワーを受け取る整流器140を有している。整流器140は12ボルトのデジタル部供給電圧+12.0_DIGを与える。整流器140は電圧調整器150と結合されており、電圧調整器150は+3.3VDC電源となる。+3.3VDC電源はオプトドライバ回路100以外の非本質安全部15にパワーを供給するために用いられる。電圧リファレンス112は、入力保護回路110内に設けられ、12ボルトのデジタル部供給電圧+12.0_DIGと結合されている。加えて、入力保護回路110は先に記載のアンプ回路120と結合されている。具体的にいえば、入力保護回路110がフィルタ122と結合され、フィルタ122がオペアンプ124と結合されている。オペアンプ124は、オプトカプラ20と通信可能に結合されている。したがって、入力保護回路110はアンプ回路120とオプトカプラ20との間の通信経路と結合されていない。入力保護回路110はマイクロプロセッサ130と通信可能にさらに結合されている。図示されている実施形態では、入力保護回路110はマイクロプロセッサ130からPWM信号を受け取るようになっている。
特筆すべきことは、PWM信号はフィルタ122により濾過(フィルタリング)され、オペアンプ124により増幅されるという点にある。たとえば、フィルタ122は、PWM信号から雑音成分または高周波成分を濾過してPWM信号に比例する電圧を生成する低域フィルタであってもよい。このPWM信号に比例する電圧はオペアンプ124に与えられる。オペアンプ124はこの電圧をさらに増幅するようになっていてもよい。この電圧は0.0〜+3.3VDCの範囲のものであってもよい。
先に記載されているように、オプトカプラ20は濾過されたPWM信号を受け取り光に変換する。光はオプトカプラ20の非本質安全部から本質安全部へと絶縁障壁28を超えて伝達される。したがって、本質安全部30は、非本質安全部15と電気的に結合されることなくマイクロプロセッサ130により与えられるPWM信号を受け取ることができる。その結果、非本質安全部15のパワーが本質安全部30まで伝達される恐れはなくなる。
本質安全部30は、オプトカプラ20および電圧電流変換器34と通信可能に結合されているオペアンプ32を有するものとして図示されている。電圧電流変換器34はたとえばマイクロプロセッサ130により生成されるPWM信号に比例する4〜20mA電流を与えるようになっていてもよい。したがって、トランスミッタ5は本質安全部30内の4〜20mAループ電流を設定することができる。加えて、入力保護回路110がアンプ回路120とオプトカプラ20との間にある通信経路と結合されていないため、マイクロプロセッサ130により与えられるPWM信号はオプトカプラ20によりオペアンプ32に与えられる信号に対して線形関係を有することが可能となる。このような理由により、電圧電流変換器34により設定される4〜20mAをマイクロプロセッサ130により与えられるPWM信号に比例させることができる。
上記の記載はオプトカプラ20用の入力保護回路110について説明している。入力保護回路110は、オプトカプラ20の入力ピン1〜4の電圧が安全規制電圧を超えるのを防止することができるようになっている。加えて、入力保護回路110は、オプトカプラ20の第一の入力ピン1および第三の入力ピン3からの電流を引き込む恐れがない。たとえば、先に記載の実施形態では、LED22に印加される電圧を調節するために用いられる電圧リミッタD1、D2は第一の入力ピン1および第三の入力ピン3と電気的に結合されていない。
したがって、第一の入力ピン1および第三の入力ピン3から引き込まれる漏洩電流はない。その結果、LED22を流れる電流およびアンプ回路120により第一の入力ピン1に印加される電圧は、入力保護回路110内の漏洩電流が原因で変わってしまう恐れはない。アンプ回路120により印加される電圧はオペアンプ124の入力ピンの電圧に比例しうる。アンプ回路120は、オペアンプ124の入力ピンの電圧に比例する第一のフォトダイオード24の定電流を補償、維持しうる。このことにより、オプトカプラ20からの出力OUTがオプトドライバ回路100への入力INと確実に線形関係を有することが可能となる。
上述の実施形態の詳細な記載は、本発明者らにより本発明に含まれると考えられている実施形態をすべて網羅するものではない。もっと正確にいえば、当業者にとって明らかなように、上述の実施形態のうちのいくつかの構成要素をさまざまに組み合わせてまたは除去してさらなる実施形態を創出することができ、このようなさらなる実施形態も本明細書の技術範囲内および教示範囲内に含まれる。また当業者にとって明らかなように、上述の実施形態を全体的にまたは部分的に組み合わせてさらなる実施形態を創出することができ、これらのさらなる実施形態も本明細書の技術および教示の範囲に含まれる。
以上のように、特定の実施形態が例示の目的で本明細書に記載されているが、当業者にとって明らかなように、本明細書の技術範囲内においてさまざまな変更が可能である。本明細書に記載の教示を上述のおよびそれに対応する図面に記載の実施形態のみでなく他のオプトカプラ用の入力保護回路にも適用することができる。したがって、上述の実施形態の範囲は添付の特許請求の範囲により決定されるべきものである。

Claims (12)

  1. オプトカプラ(20)用の入力保護回路(110)であって、
    アンプ回路(120)の入力端子と電気的に結合されている第一の端子を有する第一の電圧リミッタ(D1)と、第一の端子を有する第二の電圧リミッタ(D2)と、を備えており、
    前記アンプ回路(120)の前記入力端子がPWM信号を受け取るように構成され、
    前記アンプ回路(120)が前記オプトカプラ(20)に電圧を与えるように構成されてなり、
    前記第二の電圧リミッタ(D2)の前記第一の端子が、電圧リファレンス(112)と電気的に結合されてなり、且つ、
    前記電圧リファレンス(112)が、電気結合によって、前記オプトカプラ(20)および前記アンプ回路(120)に保護基準電圧を与える、入力保護回路(110)。
  2. 前記第一の電圧リミッタ(D1)の前記第一の端子と電気的に結合されている入力端子と、前記アンプ回路(120)の前記入力端子と電気的に結合されている出力端子とを有するバッファ(114)をさらに備えてなる、請求項1に記載の入力保護回路(110)。
  3. 前記第一の電圧リミッタ(D1)が第二の端子をさらに有し、前記第一の電圧リミッタ(D1)の前記第二の端子が保護グラウンド(GND_P)と結合され、前記第二の電圧リミッタ(D2)が第二の端子をさらに有し、前記第二の電圧リミッタ(D2)の前記第二の端子が保護グラウンド(GND_P)と結合されてなる、請求項に記載の入力保護回路(110)。
  4. 保護グランド(GND_P)とデジタルグランド(DGND)との間に結合されている第一のヒューズ(F1)をさらに備えてなる、請求項1乃至のうちのいずれか一項に記載の入力保護回路(110)。
  5. 前記アンプ回路(120)の入力端子と結合されている第二のヒューズ(F2)をさらに備えてなる、請求項1乃至のうちのいずれか一項に記載の入力保護回路(110)。
  6. 前記アンプ回路(120)が前記オプトカプラ(20)内の発光ダイオード(22)および第一のフォトダイオード(24)と電気的に結合され、前記アンプ回路(120)が入力ピン(IN)を介して前記入力端子に与えられる前記PWM信号に基づいて前記第一のフォトダイオード(24)内の定電流を補償、維持するように前記発光ダイオード(22)に印加される電圧を制御するように構成されてなる、請求項1乃至のうちのいずれか一項に記載の入力保護回路(110)。
  7. 前記アンプ回路(120)が前記アンプ回路(120)の前記入力端子で受け取られる前記PWM信号に比例する、濾過および増幅されたアナログ信号を前記オプトカプラ(20)に与えるように構成されてなる、請求項1乃至のうちのいずれか一項に記載の入力保護回路(110)。
  8. オプトカプラ(20)に電圧を与えるように構成されたアンプ回路(120)と、
    第一の端子を有する第一の電圧リミッタ(D1)と、第一の端子を有する第二の電圧リミッタ(D2)と、を有している入力保護回路(110)と、を備えており、
    前記第一の電圧リミッタ(D1)の前記第一の端子が前記アンプ回路(120)の入力端子と電気的に結合され、前記アンプ回路(120)の前記入力端子がPWM信号を受け取るように構成されてなり、
    前記第二の電圧リミッタ(D2)の前記第一の端子が、電圧リファレンス(112)と電気的に結合されてなり、且つ、
    前記電圧リファレンス(112)が、電気結合によって、前記オプトカプラ(20)および前記アンプ回路(120)に保護基準電圧を与える、
    オプトドライバ回路(100)。
  9. 前記第一の電圧リミッタ(D1)の前記第一の端子と電気的に結合されている入力端子と、前記アンプ回路(120)の前記入力端子と電気的に結合されている出力端子とを有するバッファ(114)をさらに備えてなる、請求項に記載のオプトドライバ回路(100)。
  10. 前記第一の電圧リミッタ(D1)が第二の端子をさらに有し、前記第一の電圧リミッタ(D1)の前記第二の端子が保護グラウンド(GND_P)と結合され、前記第二の電圧リミッタ(D2)が第二の端子をさらに有し、前記第二の電圧リミッタ(D2)の前記第二の端子が保護グラウンド(GND_P)と結合されてなる、請求項に記載のオプトドライバ回路(100)。
  11. 前記アンプ回路(120)が前記オプトカプラ(20)内の発光ダイオード(22)および第一のフォトダイオード(24)と電気的に結合され、前記アンプ回路(120)が入力ピン(IN)を介して前記入力端子に与えられる前記PWM信号に基づいて前記第一のフォトダイオード(24)内の定電流を補償および維持するように前記発光ダイオード(22)に印加される電圧を制御するように構成されてなる、請求項乃至10のうちのいずれか一項に記載のオプトドライバ回路(100)。
  12. 前記アンプ回路(120)が前記アンプ回路(120)の前記入力端子で受け取られる前記PWM信号に比例する、濾過および増幅されたアナログ信号を前記オプトカプラ(20)に与えるように構成されてなる、請求項乃至11のうちのいずれか一項に記載のオプトドライバ回路(100)。
JP2017566646A 2015-06-25 2015-06-25 アナログ式オプトカプラ用の入力保護回路 Active JP6619029B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/037734 WO2016209239A1 (en) 2015-06-25 2015-06-25 Input protection circuit for an analog optocoupler

Publications (2)

Publication Number Publication Date
JP2018518914A JP2018518914A (ja) 2018-07-12
JP6619029B2 true JP6619029B2 (ja) 2019-12-11

Family

ID=53541942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017566646A Active JP6619029B2 (ja) 2015-06-25 2015-06-25 アナログ式オプトカプラ用の入力保護回路

Country Status (5)

Country Link
US (1) US10425045B2 (ja)
EP (1) EP3314757A1 (ja)
JP (1) JP6619029B2 (ja)
CN (1) CN107820676A (ja)
WO (1) WO2016209239A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118647A1 (de) * 2018-08-01 2020-02-06 Ifm Electronic Gmbh Einzelfehlersichere elektronische Sicherheitsschaltung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117411A (en) * 1977-09-26 1978-09-26 Moore Products Co. Isolation circuit with duty cycle feedback
US4376277A (en) 1980-10-17 1983-03-08 Honeywell Inc. Dynamic contact checking circuit
US4420841A (en) 1981-05-29 1983-12-13 Westinghouse Electric Corp. Optically coupled bidirectional transceiver
JPS58111515U (ja) * 1982-01-25 1983-07-29 株式会社アドバンテスト 平衡入力回路
DE3305627C2 (de) * 1983-02-18 1985-07-11 Standard Elektrik Lorenz Ag, 7000 Stuttgart Schaltungsanordnung zur Überwachung des Arbeitsbereiches eines Operationsverstärkers
JPS62177116U (ja) * 1986-04-25 1987-11-10
US5245654A (en) * 1991-10-10 1993-09-14 Cermetek Microelectronics, Inc. Solid state isolation device using opto-isolators
US5218315A (en) * 1992-01-06 1993-06-08 Infinity Systems, Inc. Switching amplifier
US6031825A (en) 1992-08-18 2000-02-29 Nokia Mobile Phones Limited Infrared audio link in mobile phone
US5734261A (en) * 1996-11-05 1998-03-31 National Instruments Corporation Input protection circuit which includes optocoupler protection during over-voltage conditions
US5760730A (en) 1997-04-03 1998-06-02 Advanced Micro Devices, Inc. Method and system for analog-to-digital signal conversion with simultaneous analog signal compression
AT410619B (de) * 2000-07-14 2003-06-25 Siemens Ag Oesterreich Verfahren zum erkennen und/oder begrenzen von kurzschlusszuständen eines schaltwandlers
DE10108131A1 (de) * 2001-02-21 2002-09-05 Infineon Technologies Ag Halbleiterschaltung und Schaltnetzteil
JP4015903B2 (ja) * 2002-08-02 2007-11-28 Necエレクトロニクス株式会社 入力保護回路
US7671778B2 (en) 2003-06-18 2010-03-02 General Instrument Corporation Digital signal processing scheme for high performance HFC digital return path system with bandwidth conservation
US7359640B2 (en) 2003-09-30 2008-04-15 Stmicroelectronics Sa Optical coupling device and method for bidirectional data communication over a common signal line
US7142145B1 (en) 2004-11-23 2006-11-28 The United States Of America As Represented By The Secretary Of The Navy Analog-to-digital converter
US8416956B2 (en) * 2006-07-26 2013-04-09 International Rectifier Corporation Protected digital audio driver
CN101895207A (zh) * 2010-06-28 2010-11-24 华为技术有限公司 控制电路及方法、电源装置
DE102010062310A1 (de) * 2010-12-01 2012-06-06 Siemens Aktiengesellschaft Schaltungsanordnung zur Übertragung eines Digitalsignals mit einem Optokoppler
DE102012218604A1 (de) * 2012-10-12 2014-04-17 Conti Temic Microelectronic Gmbh Schaltungsanordnung zum Entladen eines elektrischen Energiespeichers und Stromrichter mit einer derartigen Schaltungsanordnung
DE102012111278B4 (de) * 2012-11-22 2021-11-25 Wago Verwaltungsgesellschaft Mbh Schaltungsanordnung mit einem Überlastschutz für galvanische Trenneinheiten
CN204350428U (zh) * 2014-12-11 2015-05-20 深圳市固特亮照明有限公司 Dali输入保护电路

Also Published As

Publication number Publication date
EP3314757A1 (en) 2018-05-02
WO2016209239A1 (en) 2016-12-29
JP2018518914A (ja) 2018-07-12
US10425045B2 (en) 2019-09-24
US20180175810A1 (en) 2018-06-21
CN107820676A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6583792B2 (ja) 本質安全電圧クランプ装置及びプロセス制御装置
US9974129B1 (en) Circuit and method for LED current regulation and ripple control
EP3177112B1 (en) Temperature adaptive control circuit for a light emitting diode, lighting and/or signaling apparatus
KR20120087840A (ko) 전압 조정기
EP2432299A1 (en) Temperature compensated LED constant current source
JP6619029B2 (ja) アナログ式オプトカプラ用の入力保護回路
JP6548741B2 (ja) 飽和制御型ループ電流レギュレータ
US7211990B2 (en) 4-20 mA interface circuit
US9641171B2 (en) Large-range input circuit
US9645188B2 (en) Arrangement to monitor DC circuit condition
US20160211887A1 (en) Network fieldbus power supply
CN107210599B (zh) 前端保护功率控制器
JP4263107B2 (ja) 調整可能な出力特性曲線を生成するためのスイッチング回路
KR102226404B1 (ko) 게이트 드라이버
WO2020213316A1 (ja) 負荷駆動装置
KR101349462B1 (ko) 출력 전압 조절 회로
KR20090082021A (ko) 전류 제한회로
JP2016218524A (ja) 電源制御装置
CZ301819B6 (cs) Vysoce lineární adaptivní zesilovac s velkým rozsahem regulace zisku

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6619029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250