WO2011083597A1 - 試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置 - Google Patents

試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置 Download PDF

Info

Publication number
WO2011083597A1
WO2011083597A1 PCT/JP2010/066101 JP2010066101W WO2011083597A1 WO 2011083597 A1 WO2011083597 A1 WO 2011083597A1 JP 2010066101 W JP2010066101 W JP 2010066101W WO 2011083597 A1 WO2011083597 A1 WO 2011083597A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding container
reagent holding
reagent
bottom wall
container
Prior art date
Application number
PCT/JP2010/066101
Other languages
English (en)
French (fr)
Inventor
純 岡田
勝 二階堂
誠 小野寺
大二 廣澤
恵一 山本
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2011083597A1 publication Critical patent/WO2011083597A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers

Definitions

  • Embodiments described herein relate to a reagent holding container having a structure in which a reagent containing a nucleic acid, an enzyme, and the like is held and an internal reagent is sent to the outside at the time of inspection, a manufacturing method thereof, and a detection apparatus using the reagent holding container.
  • genetic diagnosis With the recent development of genetic engineering, diagnosis and prevention of diseases caused by genes is becoming possible in the medical field. This is called genetic diagnosis, and it is possible to diagnose and predict a disease before the onset of the disease or at an extremely early stage by detecting a human genetic defect or change that causes the disease.
  • genetic diagnosis In addition to the decoding of the human genome, research on the relationship between genotypes and epidemics is progressing, and treatment tailored to each individual's genotype (tailor-made medicine) is becoming a reality. Therefore, it is very important to easily detect genes and determine genotypes.
  • a device called ⁇ -TAS capable of sequentially performing a plurality of reactions involving a plurality of reagents in one device has been actively researched and developed. These are composed of a reagent holding region, a reaction region, a sensor region, and the like, and are characterized by having a flow path connecting them.
  • a detection apparatus for detecting a nucleic acid has also been developed. When nucleic acid detection is performed, it is necessary to perform a plurality of reactions using a plurality of reagents.
  • a reagent for nucleic acid amplification or detection for example, a labeling reagent such as a DNA primer, an enzyme or a fluorescent dye, or a buffer is generally used.
  • the points required for the reagent holding container in such a nucleic acid detection apparatus mainly include the following two items.
  • the first item is cost reduction of the container.
  • the reagent is injected into the reagent holding container in advance, but when a chemical reaction of the reagent is performed in the reagent holding container, the reagent inside the container is sent to another region in the detection device after the reaction. Moreover, when performing a chemical reaction in another area
  • the second item is that the configuration of the device for controlling the container is simplified as much as possible. Even with a device that can perform reliable control, a complicated configuration leads to higher costs and lower inspection reliability. It is required that reagent feeding and chemical reaction can be controlled with a simpler configuration.
  • FIG. 1 is a perspective view showing a reagent holding container according to the first embodiment.
  • FIG. 2A is a cross-sectional view showing an extended state of the reagent holding container.
  • FIG. 2B is a cross-sectional view showing a contracted state of the reagent holding container.
  • FIG. 3A is a cross-sectional view showing an extended state of the reagent holding container mounted on the detection device.
  • FIG. 3B is a cross-sectional view showing a contracted state of the reagent holding container mounted on the detection device.
  • FIG. 4A is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • FIG. 4B is a cross-sectional view showing the manufacturing process of the reagent holding container.
  • FIG. 4A is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • FIG. 5A is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • FIG. 5B is a cross-sectional view showing the manufacturing process of the reagent holding container.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • FIG. 7 is a perspective view showing a liquid feeding cassette and a reagent holding container of the sample detection apparatus according to the embodiment of the present invention.
  • FIG. 8 is a perspective view showing the back side of the liquid feeding cassette.
  • FIG. 9 is a cross-sectional view of the sample detection apparatus.
  • FIG. 10 is a perspective view showing a heater and a reagent holding container of a heating mechanism.
  • FIG. 11 is a graph showing the detection result of the sample by the sample detection apparatus.
  • FIG. 11 is a graph showing the detection result of the sample by the sample detection apparatus.
  • FIG. 12 is a perspective view showing a reagent holding container according to the second embodiment.
  • FIG. 13A is a cross-sectional view showing an extended state of the reagent holding container.
  • FIG. 13B is a cross-sectional view showing a contracted state of the reagent holding container.
  • FIG. 14A is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • FIG. 14B is a cross-sectional view showing the manufacturing process of the reagent holding container.
  • FIG. 15A is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • FIG. 15B is a cross-sectional view showing the manufacturing process of the reagent holding container.
  • FIG. 16 is a cross-sectional view showing a manufacturing process of the reagent holding container.
  • the reagent holding container is a reagent holding container formed by closing one axial end of the cylindrical part, and the one end has a bottom wall extending perpendicular to the axial direction of the cylindrical part.
  • the bottom wall is formed by a joint portion obtained by joining cylindrical parts flatly.
  • the detection device is connected to the liquid feeding cassette, the liquid feeding cassette having a testing section to which the tester can be mounted, a microchannel that extends through the testing section and flows the specimen, and is connected to the liquid feeding cassette. And the reagent holding container in communication therewith.
  • the reagent holding container 10 is formed in a cylindrical shape with the lower end closed and the upper end 10 b opened, and has a bellows structure portion 12 that can be expanded and contracted in the middle thereof. .
  • the lower end of the holding container 10 forms a seamless flat bottom wall 10a.
  • the bottom wall 10 a extends perpendicular to the axial direction of the holding container 10.
  • the reagent holding container 10 has a structure similar to a part of a general bellows-like straw.
  • the bottom wall 10a is continuously formed in a valley portion of the bellows structure 12, that is, a concave portion.
  • the bellows structure part 12 inclines outside so that a diameter may be gradually expanded from the bottom wall 10a.
  • the angle ⁇ formed by the bottom wall 10a and the bellows structure portion 12 is formed to be 90 degrees or more.
  • the bottom wall 10a of the holding container 10 is formed in a circular shape, and at least the flat portion has a diameter of 60 to 99% of the concave inner diameter of the bellows structure portion 12.
  • the material of the reagent holding container 10 is not particularly limited, polypropylene is preferable, and polystyrene, polyvinyl, polyethylene, polycarbonate, ABS, rubber, and the like can be used. Since the reagent holding container 10 is a device for detecting a biological substance, sterilization treatment is required in some cases.
  • the sterilization method is not limited, and examples thereof include gamma ray sterilization, electron beam sterilization, gas sterilization, and dry heat sterilization. When gamma sterilization of the reagent holding container 10 is performed, it is desirable that an anti-gamma ray additive is added to the container material.
  • the reagent held in the holding container 10 is a reagent that contains at least one of a nucleic acid and an enzyme.
  • a reagent to be heat-treated for example, a reagent that performs a nucleic acid amplification reaction, needs to be heat-treated at a temperature close to 100 ° C. Therefore, the material of the holding container 10 holding such a reagent is It is preferable to have heat resistance.
  • nucleic acid reagents such as primers, enzyme reagents and the like are decomposed by ultraviolet light. Therefore, when holding these reagents, the holding container 10 is preferably formed of a material having a light shielding rate of 90% or more with respect to the ultraviolet light in the incident light.
  • FIG. 2A shows a state in which the bellows structure portion 12 of the reagent holding container 10 is extended
  • FIG. 2B shows a state in which the bellows structure portion 12 is contracted.
  • the inner surfaces of the bellows structure portion 12 contract while overlapping each other.
  • the expansion and contraction of the bellows portion 12 is reversible.
  • the reagent holding container 10 is in the extended state shown in FIG. 2A when it is not subjected to a pressing load.
  • the bellows structure portion 12 contracts as shown in FIG. 2B.
  • the bellows structure portion 12 returns to the extended state due to its own elasticity.
  • 3A and 3B show a state in which the reagent holding container 10 configured as described above is mounted on a cassette of an inspection apparatus described later.
  • the holding container 10 is attached to the cassette by inserting a cylindrical boss formed in the cassette into the container and fitting the upper end 10b of the container into the boss.
  • the reagent is supplied into the extended holding container 10, and as shown in FIG. 3B, the bellows structure 12 contracts, so that the reagent in the holding container 10 flows in the cassette of the cassette. Pushed to the road.
  • the reagent holding container 10 is not limited to the cylindrical shape described above, and may have other shapes such as a polygonal cylindrical shape and an elliptical cylindrical shape. Moreover, it is good also as a structure provided with the several continuous unevenness
  • a method for manufacturing the reagent holding container 10 having the above configuration will be described.
  • a cylindrical part 11 having a bellows structure portion 12 in the middle is prepared.
  • a forming jig 44 having a substantially hemispherical recess 44a is prepared.
  • the component 11 has a cylindrical portion extending upward of the bellows structure and a cylindrical portion 10d extending downward.
  • the lower end 10d on the lower side of the component 11 is pushed into the recess 44a of the forming jig 44 to deform the cylindrical portion 10d inward.
  • the cylindrical portion 10d can be easily deformed by heating the forming jig 44 or using a solvent.
  • the deformed cylindrical portion 10d is pressed from both the upper and lower directions along the axial direction of the component 11 to be crimped, thereby forming a seamless bottom wall 10a.
  • a cylindrical pressing jig 48 with a flat tip is inserted into the component 11, and a flat support block 46 is disposed outside the deformed cylindrical portion 10 d, and the pressing jig 48 and the support block 46
  • the cylindrical portion 10d is deformed into a flat bottom wall by pressing the cylindrical portion 10d deformed inward from both sides.
  • the portion deformed inward is melted and pressed, and a seamless flat bottom wall 10a is formed.
  • the area of the portion that is deformed inward at the time of the first stage processing shown in FIG. 4B is preferably larger than the bottom area of the cylindrical shape. This is because if the area is smaller than the bottom area, the bottom part may not be closed by the second stage processing shown in FIG. 5B, and even if the bottom part can be closed, the bottom wall becomes thin. Therefore, as shown in FIG. 4A, it is desirable that the dimension of the cylindrical portion 10d to be deformed satisfies the following formula (1) when the radius is r and the axial length is a. a> r ⁇ (1/2)) (1) As described above, the reagent holding container 10 having the seamless flat bottom wall 10a is formed.
  • the diameter of the bottom wall 10a is preferably about the same as the inner diameter of the concave portion of the bellows structure portion 12. If the diameter is smaller than that, the flat area is reduced, and the liquid remaining reducing effect is reduced.
  • FIG. 7 shows a liquid feeding cassette 20 in a detection apparatus for nucleic acid detection, a plurality of reagent holding containers attached to the liquid feeding cassette, and a DNA chip 40 as a detector
  • FIG. 8 shows the back surface of the liquid feeding cassette
  • FIG. 9 shows a state in which the liquid feeding cassette is loaded in the drive mechanism.
  • the sample detection apparatus includes a liquid feeding cassette 20 and a driving mechanism 30 that drives the liquid feeding cassette, and the liquid feeding cassette 20 is connected to the driving mechanism 30. Are detachably connected.
  • the liquid feeding cassette 20 includes a base material 22 formed in a rectangular plate shape, for example.
  • the lower surface of the base material 22 forms a flat mounting surface.
  • an inspection part 24 made of a rectangular recess opened on the lower surface side of the base material 22 is formed.
  • An inspection device for example, a DNA chip 40 is mounted on the lower surface side of the base material 22 so as to cover the inspection portion 24.
  • a micro flow path 28 that is in airtight communication with the inspection unit 24 is formed.
  • One end of the microchannel 28 communicates with an inflow port 28 a that opens on the lower surface side of the base material 22, and the other end communicates with an outflow port 28 b that opens on the lower surface side of the base material 22.
  • the inspection unit 24 communicates with a midway part of the microchannel 28.
  • the microchannel 28 is formed with a diameter of 0.3 mm ⁇ 0.3 mm, for example.
  • the base material 22 is formed with an injection port 21 that is open on the upper surface of the base material.
  • the injection port 21 is positioned opposite to the inflow port 28a and is hermetically closed by a detachable sealing plug 23.
  • a plurality of, for example, one inlet / outlet port 28 c and three inlet / outlet ports 28 d communicating with the microchannel 28 are formed between the inlet port 28 a and the inspection unit 24.
  • cylindrical bosses 25 projecting downward are respectively formed at the positions of the inlet 28a, the outlet 28b, and the inlets 28c and 28d.
  • An extraction reagent holding container 32a, a waste liquid container 32b, an amplification reagent holding container 32c, a hybridization reagent holding container 32d, a cleaning reagent holding container 32e, and a detection are provided at the inlet 28a, outlet 28b, and inlets 28c and 28d of the liquid feeding cassette 20.
  • Reagent holding containers 32f are mounted and connected in an airtight manner. These containers are configured in the same manner as the reagent holding container 10 described above. That is, each container is formed in the cylindrical shape which has the bellows structure part 12, and is attached to the liquid feeding cassette 20 in the state which the boss
  • the containers 32a to 32f are mounted so as to be stretchable in a direction perpendicular to the lower surface of the liquid feeding cassette 20.
  • the containers 32a to 32f have different internal volumes depending on the amount of sample liquid and the amount of retained reagent. If there are many types of nucleic acids to be detected, it is possible to provide a plurality of amplification reagent holding containers 32c and prepare a plurality of types of amplification primers.
  • each of the containers 32a to 32f has the bellows structure part 12 that can be expanded and contracted, the internal volume changes by expanding and contracting the container, and can also function as a micro pump.
  • Four support legs 26 for supporting the base material 22 are erected at the four corners on the lower surface side of the base material 22.
  • the drive mechanism 30 of the sample detection apparatus is provided on the base 32 and the base, and the extraction reagent holding container 32a, the waste liquid container 32b, the amplification reagent holding container 32c, the hybridization reagent holding container 32d, and the washing, respectively.
  • the tip portions of the plungers 34a, 34b, 34c, and 34d are formed flat.
  • the liquid feeding cassette 20 is placed on the base 32 of the drive mechanism 30 by the support legs 26, and the bottom walls 10a of the containers 32a to 32f are opposed to the tip portions of the corresponding plungers 34a, 34b, 34c, 34d. .
  • the bellows structure portion 12 can be contracted by pushing the reagent holding container from below with a plunger, and the function as a micropump can be realized. At this time, the reagent holding container has irregularities and protrusions on the welded bottom wall 10a. Since there is no part, the reagent can be pushed out more uniformly without remaining liquid.
  • the drive mechanism 30 includes a heating mechanism for heat-treating the reagent or test liquid in the container and a nucleic acid detection mechanism (not shown).
  • a heating mechanism for heat-treating the reagent or test liquid in the container and a nucleic acid detection mechanism (not shown).
  • various forms of the heating mechanism can be considered, for example, as shown in FIGS. 9 and 10, a pair of heaters 47 having semi-cylindrical depressions are provided, and the reagent holding container 10 is sandwiched from both sides by these heaters 47.
  • the reagent in the container can be heated.
  • the heater 47 can be made to approach the holding container 10 more uniformly and can be heated more uniformly.
  • the DNA chip 40 is mounted and held on the lower surface side of the base material 22 so as to cover the inspection portion 24 of the base material 22.
  • a desired nucleic acid probe is formed on the DNA chip.
  • Such a liquid feeding cassette 20 is placed on the drive mechanism 30.
  • the extraction reagent holding container 32a is maintained in the extended state, and the other containers 32b to 32e are contracted by the corresponding plungers 34b to 34d.
  • the sealing plug 23 is removed, and a predetermined amount of sample (test liquid) is injected into the extraction reagent holding container 32a through the inlet 21 and the inlet 28a.
  • the extraction reagent is dried and held in advance in the extraction reagent holding container 32a. Thereby, the injected sample and the extraction reagent are mixed.
  • the sample that has entered the concave portion at the bottom is difficult to be mixed with the extraction reagent, but in the case of the flat bottom shape as in the present invention, it is easily mixed.
  • the sample and the extraction reagent in the extraction reagent holding container 32a are boiled by the heating mechanism of the drive mechanism 30, and an extraction reaction is performed.
  • the extraction reaction may be performed in advance outside the liquid feeding cassette 20 and the extracted sample may be injected into the reagent holding container of the liquid feeding cassette.
  • the extraction reagent holding container 32a is pressed from below by the plunger 34a to be contracted.
  • a predetermined amount of the sample in the extraction reagent holding container 32 a is pushed out and moved into the amplification reagent holding container 32 c through the microchannel 28.
  • the microchannel 28 has a sealed structure, and the volume inside the channel needs to be constant. Therefore, for the amplification reagent holding container 32c, the plunger 34c of the drive mechanism 30 is lowered.
  • the bellows structure portion 12 extends in synchronization with the contraction operation of the extraction reagent holding container 32a.
  • the volume inside the flow path including the internal volumes of the extraction reagent holding container 32a and the amplification reagent holding container 32c is kept constant.
  • a primer set, an enzyme, and a buffer for amplification reaction are held in advance and mixed with the fed sample.
  • the sample is heated by a heating mechanism (not shown) to perform a nucleic acid amplification reaction.
  • the nucleic acid amplification reaction is not particularly limited, and PCR, LAMP, SMAP method and the like are used.
  • the amplification reagent holding container 32c is pressed and contracted from below by the plunger 34c, and the plunger 34d is lowered to extend the hybridization reagent holding container 32d.
  • a predetermined amount of the sample in the amplification reagent holding container 32 c is pushed out and moved into the hybridization reagent holding container 32 d through the microchannel 28.
  • a hybridization reaction buffer is dried and held in advance in the hybridization reagent holding container 32d and mixed with the fed sample.
  • the hybridization reagent holding container 32d is pressed from below by the plunger 34d to be contracted. As a result, a predetermined amount of the sample in the hybridization reagent holding container 32 d is pushed out, sent to the inspection unit 24 through the microchannel 28, and supplied to the DNA chip 40.
  • a nucleic acid probe for nucleic acid detection is immobilized on the DNA chip 40 for nucleic acid detection in advance. Then, the DNA chip 40 is heated by a heating mechanism to perform a hybridization reaction with the sample.
  • the waste liquid container 32b is extended by lowering the plunger 34b, and the sample is moved from the inspection unit 24 to the waste liquid container 32b through the microchannel 28 while performing the inspection.
  • the cleaning reagent holding container 32e is pushed up and contracted by the plunger, and the cleaning reagent previously stored in the cleaning reagent holding container 32e is moved onto the DNA chip 40 through the microchannel 28.
  • the DNA chip 40 is heated by a heating mechanism, so that the nonspecifically adsorbed sample is removed by the cleaning reagent.
  • the plunger 34b is lowered to extend the waste liquid container 32b, and the cleaning reagent on the DNA chip 40 is moved to the waste liquid container 32b.
  • the detection reagent holding container 32 f is pushed up and contracted by the plunger, and the detection reagent previously stored in the cleaning reagent holding container 32 e is moved onto the DNA chip 40 through the microchannel 28.
  • the type of nucleic acid contained in the sample can be specified by detecting a signal from the detection reagent.
  • the nucleic acid detection method is not particularly limited, and includes a fluorescence detection method using a fluorescent reagent, a current detection method using an electrochemically active reagent, and the like.
  • the liquid feeding cassette 20 is removed from the base 32 of the drive mechanism 30, and after the DNA chip 40 is further removed from the substrate 22, the liquid feeding cassette 20 is discarded if necessary.
  • Example 1 Below, the usage example of the nucleic acid detection using the liquid feeding cassette of the said embodiment is demonstrated concretely. 1. Preparation of sample detection device 1-1. Preparation of reagent holding container Hereinafter, the reagent was injected into each of the five reagent holding containers.
  • Extraction reagent holding container buffer for extraction
  • Amplification reagent holding container mouse 2C39 amplification LAMP primer (sequence AD), enzyme, amplification buffer 3)
  • Detection reagent holding container: Hoechst 33258 Next, about said 1), 2), and 3), the vacuum drying process was performed and the reagent was dried and fixed to the bellows structure part of the container.
  • nucleic acid detection chip Preparation of nucleic acid detection chip The following three types of nucleic acid detection probes (sequences E to G) were immobilized on each electrode on a current detection type nucleic acid detection chip. 1) For mouse 2C39 detection (sequence E) 2) For detection of mouse 2C29 (sequence F) 3) For detection of mouse NAT1 (sequence G) 1-3. Assembly of nucleic acid detection device As shown in FIGS. 7 and 8, the five reagent holding containers, the waste liquid container, and the nucleic acid detection chip were attached to the liquid feeding cassette 20.
  • nucleic acid detection using nucleic acid detection device First, a sample having a roughly extracted mouse 2C39 sequence is injected from the sample inlet 21, mixed with an extraction buffer in the extraction reagent holding container 32a, and then held at 95 ° C. for 5 minutes to perform an extraction reaction. It was. The extracted sample was sent to the amplification reagent holding container 32c, mixed with the amplification reagent, and then held at 63 ° C. for 40 minutes to carry out an amplification reaction.
  • the amplified sample was sent to the DNA chip 40 for nucleic acid detection, and held at 45 ° C. for 10 minutes to carry out a hybridization reaction with the nucleic acid detection probe on the chip.
  • the cleaning reagent is fed from the cleaning reagent holding container 32e onto the nucleic acid detection chip and held at 30 ° C. for 5 minutes, whereby non-specifically adsorbed nucleic acid is removed. Removed.
  • the detection reagent was sent from the detection reagent holding container 32f onto the nuclear DNA chip 40 and held at room temperature for 3 minutes to react the detection reagent with the nucleic acid. Finally, nucleic acid detection was performed by measuring the current value obtained from each electrode of the DNA chip 40.
  • the drive mechanism that controls the expansion and contraction of the holding container can be configured simply by pushing up the holding container. Since the alignment of the XY axes and the rotation direction does not need to be precise, a very simple drive mechanism can be obtained.
  • the reagent holding container can be used as a micropump, and a small amount of test liquid can be stabilized without being affected by the expansion and contraction of air in the flow path. Can be sent.
  • the amount of liquid to be fed can be determined by the amount of contraction of the micropump, and an accurate amount of liquid can be sent stably.
  • the drive mechanism and heating mechanism for operating the micropump are not part of the flow path component, and can be easily separated.
  • FIGS. 12, 13A, and 13B show a reagent holding container according to the second embodiment.
  • the reagent holding container 10 is formed in a cylindrical shape with the lower end closed and the upper end portion 10b opened, and has a bellows structure portion 12 that can be expanded and contracted in the middle thereof.
  • the lower end of the holding container 10 forms a seamless flat bottom wall 10a, and an excess portion 10c in which the lower end is joined exists around the bottom.
  • the bottom wall 10a extends perpendicular to the axial direction of the holding container 10, and similarly, the surplus portion 10c extends from the lower end of the holding container 10 in a direction orthogonal to the axial direction.
  • the reagent holding container 10 has a structure similar to a part of a general bellows-like straw.
  • the bottom wall 10a is continuously formed in a valley portion of the bellows structure 12, that is, a concave portion.
  • the bellows structure part 12 inclines outside so that a diameter may be gradually expanded from the bottom wall 10a.
  • the angle ⁇ formed by the bottom wall 10a and the bellows structure portion 12 is formed to be 90 degrees or more.
  • the bottom wall 10a of the holding container 10 is formed in a circular shape, and at least the flat portion has a diameter of 60 to 99% of the concave inner diameter of the bellows structure portion 12.
  • the material of the reagent holding container 10 is not particularly limited, polypropylene is preferable, and polystyrene, polyvinyl, polyethylene, polycarbonate, ABS, rubber, and the like can be used. Since the reagent holding container 10 is a device for detecting a biological substance, sterilization treatment is required in some cases.
  • the sterilization method is not limited, and examples thereof include gamma ray sterilization, electron beam sterilization, gas sterilization, and dry heat sterilization. When gamma sterilization of the reagent holding container 10 is performed, it is desirable that an anti-gamma ray additive is added to the container material.
  • the reagent held in the holding container 10 is a reagent that contains at least one of a nucleic acid and an enzyme.
  • a reagent to be heat-treated for example, a reagent that performs a nucleic acid amplification reaction, needs to be heat-treated at a temperature close to 100 ° C. Therefore, the material of the holding container 10 holding such a reagent is It is preferable to have heat resistance.
  • nucleic acid reagents such as primers, enzyme reagents and the like are decomposed by ultraviolet light. Therefore, when holding these reagents, the holding container 10 is preferably formed of a material having a light shielding rate of 90% or more with respect to the ultraviolet light in the incident light.
  • FIG. 13A shows a state in which the bellows structure portion 12 of the reagent holding container 10 is expanded
  • FIG. 13B shows a state in which the bellows structure portion 12 is contracted.
  • the inner surfaces of the bellows structure portion 12 contract while overlapping each other.
  • the expansion and contraction of the bellows portion 12 is reversible.
  • the reagent holding container 10 is in the extended state shown in FIG. 13A when not subjected to a pressing load.
  • the bellows structure part 12 will shrink
  • the bellows structure portion 12 returns to the extended state due to its own elasticity.
  • the reagent holding container 10 is not limited to the cylindrical shape described above, and may have other shapes such as a polygonal cylindrical shape and an elliptical cylindrical shape. Moreover, it is good also as a structure provided with the several continuous unevenness
  • a method for manufacturing the reagent holding container 10 having the above configuration will be described.
  • a cylindrical part 11 having a bellows structure portion 12 in the middle is prepared.
  • the lower end portion of the component 11 is pressed and pressed so as to be sandwiched from two directions orthogonal to the axial direction of the cylinder, and joined.
  • the lower end portion of the component 11 is sandwiched between a pair of rectangular blocks 50a and 50b, and is crimped using ultrasonic waves, heat, and a solvent.
  • FIG. 14B the lower end portion of the component 11 is closed, and the bottom wall 10a and the first joint portion 14 flat in the axial direction of the cylinder are formed.
  • the first joint portion 14 is bent from its root in a direction perpendicular to the axis of the cylinder and overlapped with the bottom wall 10a.
  • the bottom wall 10a and the first joint portion 14 are pressed from both directions along the axial direction of the cylinder and are crimped so that there is no seam, and the flatness has a uniform thickness.
  • the second joint portion 15, here, the bottom wall 10 a is formed.
  • a cylindrical core member 52 having a flat tip is inserted into the component 11
  • a flat support block 54 is disposed outside the bottom wall 10 a, and the bottom wall 10 a and the support block 54 are formed by the core member 52 and the support block 54.
  • the 1st junction part 14 is crimped
  • the bottom wall 10a remains depressed, but as shown in FIG.
  • the bottom wall 10a and the 1st junction part 14 are pressed from both directions along the axial direction of a cylinder, and are crimped
  • the reagent holding container 10 is manufactured.
  • the diameter of the bottom wall 10 a is approximately the same as the inner diameter of the concave portion of the bellows structure portion 12.
  • the reagent holding container configured as described above, since the bottom wall of the holding container is formed by a flat joint having no depression, when the reagent is supplied from the holding container, the liquid residue is as much as possible. Can be reduced. Thereby, a comparatively expensive reagent can be used without waste, and as a result, cost reduction can be achieved.
  • the reagent holding container for the above-described inspection apparatus, the same operational effects as those of the first embodiment described above can be obtained.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the shape, size, material, and the like of each component of the detection device are not limited to the above-described embodiment, and can be changed as necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 筒状部品の軸方向一端を閉じることにより形成される試薬保持容器10であって、筒状部品の一端は、軸方向と直交して延びる底壁を有し、この底壁は、筒状部品を平坦に接合した接合部により形成されている試薬保持容器。

Description

試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置
 ここで述べる実施形態は、核酸、酵素等を含む試薬を保持し、検査時には内部の試薬が外部に送り込まれる構造の試薬保持容器、その製造方法、および試薬保持容器を用いる検出装置に関する。
 近年の遺伝子工学の発展に伴い、医療分野では、遺伝子による病気の診断或いは予防が可能となりつつある。これは遺伝子診断と呼ばれ、病気の原因となるヒトの遺伝子欠陥、変化を検出することで病気の発症前もしくは極めて初期段階での病気の診断や予測をすることが出来る。また、ヒトゲノムの解読とともに、遺伝子型と疫病との関連に関する研究が進み、各個人の遺伝子型に合わせた治療(テーラーメイド医療)も現実化しつつある。従って、遺伝子の検出並びに遺伝子型の決定を簡便に行うことは非常に重要となっている。
 一方、1つのデバイス内において、複数の試薬が関わる複数の反応を順次行うことのできるμ-TASと呼ばれるデバイスが盛んに研究開発されている。これらは試薬保持領域、反応領域、センサー領域などから成り、それらをつなぐ流路を備えることが特徴である。これを応用し、核酸を検出するための検出装置も開発されている。核酸検出を行う場合、複数の試薬を使用し、複数の反応を行う必要がある。試薬として、一般に、核酸の増幅や検出のための試薬、例えばDNAプライマー、酵素、蛍光色素などの標識試薬、あるいは、バッファ等が用いられる。
 このような核酸検出装置における試薬保持容器に関して要求される点は主に以下の2項目が挙げられる。1つ目の項目は、容器の低コスト化である。試薬は、予め試薬保持容器内に注入されているが、試薬保持容器内にて試薬の化学反応を行う場合は、反応後、容器内部の試薬を検出装置内の別な領域に送液する。また、検出装置内の別な領域で化学反応を行う場合は、反応前に、容器内部の試薬を反応領域に送液する。DNAプライマーや酵素、蛍光色素等の試薬は高価であるため、上記のような送液の際、容器内の液残りを極力少なくすることが低コスト化のために要求される。
 2つ目の項目は、容器を制御する装置の構成が極力簡略化されることである。確実な制御ができる装置であっても、構成が複雑になると高コスト化、検査の信頼性低下につながる。より簡易な構成で試薬の送液や化学反応の制御ができることが要求される。
 例えば、特許文献3に開示されている形状の試薬保持容器では、試薬保持容器に把持部が形成されるため、内部の液残りが大きくなり、さらに装置構成も複雑となっている。
特許第4127679号 特開2008-263959号公報 特開2010-78508号公報
図1は、第1の実施形態に係る試薬保持容器を示す斜視図。 図2Aは、前記試薬保持容器の伸長状態を示す断面図。 図2Bは、前記試薬保持容器の収縮状態を示す断面図。 図3Aは、検出装置に装着された前記試薬保持容器の伸長状態を示す断面図。 図3Bは、検出装置に装着された前記試薬保持容器の収縮状態を示す断面図。 図4Aは、前記試薬保持容器の製造工程を示す断面図。 図4Bは、前記試薬保持容器の製造工程を示す断面図。 図5Aは、前記試薬保持容器の製造工程を示す断面図。 図5Bは、前記試薬保持容器の製造工程を示す断面図。 図6は、前記試薬保持容器の製造工程を示す断面図。 図7は、この発明の実施形態に係る検体検出装置の送液カセットおよび試薬保持容器を示す斜視図。 図8は、前記送液カセットの裏面側を示す斜視図。 図9は、前記検体検出装置の断面図。 図10は、加熱機構のヒータおよび試薬保持容器を示す斜視図。 図11は、前記検体検出装置による検体の検出結果を示すグラフ。 図12は、第2の実施形態に係る試薬保持容器を示す斜視図。 図13Aは、前記試薬保持容器の伸長状態を示す断面図。 図13Bは、前記試薬保持容器の収縮状態を示す断面図。 図14Aは、前記試薬保持容器の製造工程を示す断面図。 図14Bは、前記試薬保持容器の製造工程を示す断面図。 図15Aは、前記試薬保持容器の製造工程を示す断面図。 図15Bは、前記試薬保持容器の製造工程を示す断面図。 図16は、前記試薬保持容器の製造工程を示す断面図。
 実施形態によれば、試薬保持容器は、筒状部品の軸方向一端を閉じることにより形成される試薬保持容器であって、前記一端は、筒状部品の軸方向と直交して延びる底壁を有し、この底壁は、筒状部品を平坦に接合した接合部により形成されている。
 実施態様によれば、検出装置は、検査器を装着可能な検査部、およびこの検査部を通って延び検体を流す微小流路を有する送液カセットと、送液カセットに接続され、微小流路に連通する前記試薬保持容器と、を備えている。
 以下、図面を参照しながら、実施形態に係る試薬保持容器およびこれを備えた検体検出装置について詳細に説明する。 
 図1、図2、図3は、第1の実施形態に係る試薬保持容器を示している。図1および図2に示すように、試薬保持容器10は、下端が閉塞し、上端部10bが開口した円筒形状に形成され、その中途部に、伸縮可能な蛇腹構造部12を有している。保持容器10の下端は、継ぎ目のない平坦な底壁10aを形成している。底壁10aは、保持容器10の軸方向に対して直交して延びている。試薬保持容器10は、一般的な蛇腹付きストローなどの一部と類似した構造を有している。
 底壁10aは、蛇腹構造12の谷部、つまり、凹部に連続して形成されている。これにより、蛇腹構造部12は、底壁10aから徐々に拡径するように外側に傾斜している。これにより、底壁10aと蛇腹構造部12との成す角度θは、90度以上に形成されている。本実施形態において、保持容器10の底壁10aは円形に形成され、少なくとも平坦部分の直径は、蛇腹構造部12の凹部内径の60~99%に形成されている。
 試薬保持容器10の材質は特に限定されないが、ポリプロピレンが好ましく、その他、ポリスチレン、ポリビニル、ポリエチレン、ポリカーボネート、ABS、ゴムなどを用いることができる。試薬保持容器10は、生体物質を検出するデバイスであるため、場合によっては滅菌処理が必要となる。滅菌の手法は限定されないが、ガンマ線滅菌、電子線滅菌、ガス滅菌、乾熱滅菌等が挙げられる。試薬保持容器10のガンマ線滅菌を行う場合、容器材料に耐ガンマ線添加剤が添加されていることが望ましい。
 本実施形態において、保持容器10に保持される試薬は、核酸あるいは酵素の少なくとも一方を含む試薬を保持対象としている。試薬として、加熱処理される試薬、例えば、核酸増幅反応を行う試薬は、100℃近い加熱処理が必要であるため、このような試薬を保持する保持容器10の材料は、例えば、120℃までの耐熱性を持つことが好ましい。また、プライマー等の核酸試薬や酵素試薬等は紫外光により分解されてしまう。そのため、これらの試薬を保持する場合、保持容器10は、入射光中の紫外光に対して90%以上の遮光率を持つ材質で形成されていることが好ましい。
 図2Aは、試薬保持容器10の蛇腹構造部12が伸長した状態を示し、図2Bは、蛇腹構造部12が収縮した状態を示している。収縮状態において、蛇腹構造部12の内面は、互いに重なりながら収縮している。蛇腹部12の伸長、収縮は可逆性がある。本実施形態において、試薬保持容器10は、押圧負荷を受けていない状態では、図2Aに示す伸長状態となっている。そして、後述する駆動機構により、下端10aが上端側に向かって押されることにより、図2Bに示すように、蛇腹構造部12が収縮する。押圧力が除かれると、蛇腹構造部12は自身の弾性により伸長状態に復帰する。
 図3A、図3Bは、上記のように構成された試薬保持容器10を、後述する検査装置のカセットに装着した状態を示している。保持容器10は、カセットに形成された円柱形状のボス部を容器内に挿入し、かつ、容器の上端部10bをボス部に嵌合することにより、カセットに装着される。図3Aに示すように、伸長状態の保持容器10内に試薬が供給され、図3Bに示すように、蛇腹構造部12が収縮することで、保持容器10内の試薬がカセットのカセット内の流路に押し出される。
 なお、試薬保持容器10は、上述した円筒形状に限らず、多角筒形状、楕円筒形状等、他の形状としてもよい。また、蛇腹構造部を備えている場合に限らず、試薬保持容器10の内面に複数の連続した凹凸を備えた構造としてもよい。
 次に、上記の構成を有する試薬保持容器10の製造方法について説明する。まず、図4Aに示すように、中途部に蛇腹構造部12を有する円筒形状の部品11を用意する。また、ほぼ半球形状の凹所44aを有する成形治具44を用意する。部品11は、蛇腹構造の上側に伸びる円筒部と、下側に延びる円筒部10dとを有している。
 図4Bに示すように、この部品11の下側の下端部10dを成形治具44の凹所44aに上から押し込むことにより、円筒部10dを内側に変形させる。その際、成形治具44を加熱する、或いは溶剤を用いることにより、円筒部10dを容易に変形させることができる。
 次に、図5A、図5Bに示すように、変形した円筒部10dを部品11の軸方向に沿って上下両方向から押圧して圧着することにより、継目の無い平坦な底壁10aを形成する。例えば、先端が平坦な円柱形状の押圧治具48を部品11に挿入し、また、変形した円筒部10dの外側に平坦な支持ブロック46を配置し、これら押圧治具48と支持ブロック46とで、内側に変形した円筒部10dを両側から押圧することにより、円筒部10dを平坦な底壁に変形させる。その際、超音波、熱、溶剤等を用いて圧着することにより、図6に示すように、内側に変形した部分が溶融し、かつ、押圧され、継目の無い平坦な底壁10aが形成される。底部からのはみ出し部分がないため、後述するジャバラ部分の伸縮や、加熱の際に均一に処理することができる。
 なお、図4Bに示した一段階目の加工の時点で内側に変形させる部分の面積は、円筒形の底面積よりも大きいことが望ましい。底面積よりも小さい場合、図5Bに示す二段階目の加工で底部を閉塞できない可能性があり、仮に閉塞できた場合でも底壁が肉薄になってしまうためである。従って、図4Aに示すように、変形される円筒部10dの寸法は、半径r、軸方向長さaとした場合、以下の式(1)を満たすことが望ましい。 
  a>r×(1/2))・・・(1)
 以上により、継目の無い平坦な底壁10aを有する試薬保持容器10が形成される。保持容器10の底部に窪みがないことから、保持容器10内の試薬を流路に供給する際、薬液残りが低減される。この際、底壁10aの直径は蛇腹構造部12の凹部の内径と同程度であることが好ましく、それよりも小さいと平坦な領域が少なくなり、液残り低減効果が少なくなってしまう。
 次に、上述した試薬保持容器10を用いる検体検出装置について説明する。図7は、核酸検出用の検出装置における送液カセット20、この送液カセットに装着される複数の試薬保持容器、および検知器としてのDNAチップ40を示し、図8は、送液カセットの裏面側を示し、図9は、送液カセットを駆動機構に装填した状態を示している。
 図7、図8、および図9に示すように、検体検出装置は、送液カセット20と、この送液カセットを駆動する駆動機構30とを備え、送液カセット20は、駆動機構30に対して脱着自在に接続されている。
 送液カセット20は、例えば、矩形板状に形成された基材22を備えている。基材22の下面は、平坦な装着面を形成している。基材22の中央部には、基材22の下面側に開口した矩形状の凹所からなる検査部24が形成されている。この検査部24を覆うように、検査器、例えば、DNAチップ40が基材22の下面側に装着されている。
 基材22には、検査部24に気密に連通した微小流路28が形成されている。微小流路28の一端は、基材22の下面側に開口した流入口28aに連通し、他端は、基材22の下面側に開口した流出口28bに連通している。検査部24は、微小流路28の中途部に連通している。微小流路28は、例えば、0.3mm×0.3mmの径に形成されている。また、基材22には、基材の上面に開口した注入口21が形成されている。注入口21は、流入口28aと対向して位置しているとともに、脱着自在な封止栓23によって気密に閉じられている。
 また、基材22の下面側には、流入口28aと検査部24との間で、微小流路28にそれぞれ連通する複数、例えば、1つの出入口28c、および3つの出入口28dが形成されている。基材22の下面において、流入口28a、流出口28b、出入口28c、28dの位置には、下方に突出する円柱形状のボス25がそれぞれ形成されている。
 送液カセット20の流入口28a、流出口28b、出入口28c、28dには、抽出試薬保持容器32a、廃液容器32b、増幅試薬保持容器32c、ハイブリダイゼーション試薬保持容器32d、洗浄試薬保持容器32e、検出試薬保持容器32fがそれぞれ装着され、気密に接続されている。これらの容器は、前述した試薬保持容器10と同様に構成されている。すなわち、各容器は、蛇腹構造部12を有する円筒形状に形成され、その上端開口に送液カセット20のボス25が気密に嵌合された状態で、送液カセット20に取り付けられている。これらの容器は、送液カセット20内の微小流路28を通じて接続されている。
 各容器32a~32fは、送液カセット20の下面に対して垂直な方向に伸縮自在に装着されている。これらの容器32a~32fは、サンプル液量及び保持試薬量等によって内容積が互いに異なっている。また、検出する核酸の種類が多い場合は、増幅試薬保持容器32cを複数設け、複数種類の増幅用プライマーを用意することも可能である。
 容器32a~32fは、それぞれ伸縮自在な蛇腹構造部12を有していることから、この容器を伸縮することにより内部容積が変化し、マイクロポンプとしても機能することができる。基材22の下面側の四隅には、基材22を支持する4本の支持脚26が立設されている。
 図9に示すように、検体検出装置の駆動機構30は、ベース32と、ベースに設けられ、それぞれ抽出試薬保持容器32a、廃液容器32b、増幅試薬保持容器32c、ハイブリダイゼーション試薬保持容器32d、洗浄試薬保持容器32e、検出試薬保持容器32fを収縮させる昇降自在なプランジャ34a、34b、34c、34dを有している。プランジャ34a、34b、34c、34dの先端部は平坦に形成されている。
 送液カセット20は、支持脚26により駆動機構30のベース32上に載置され、容器32a~32fの底壁10aは、対応するプランジャ34a、34b、34c、34dの先端部に対向している。
 プランジャにより試薬保持容器を下から押すことにより蛇腹構造部12を収縮させることができ、マイクロポンプとしての機能を実現できるが、この際、試薬保持容器では溶着された底壁10a部分に凹凸やはみ出し部がないため、より均一に液残りなく試薬を押し出すことができる。
 また、駆動機構30は、容器内の試薬あるいは検査液を加熱処理するための加熱機構、および図示しない核酸検出機構を備えている。加熱機構は様々な形態が考えられるが、例えば、図9および図10に示すように、半円筒形の窪みを持つ一対のヒータ47を備え、これらのヒータ47によって試薬保持容器10を両側から挟むことにより、容器内の試薬を加熱することができる。この際、試薬保持容器10では溶着部(底壁10a)に凹凸やはみ出し部がないため、ヒータ47をより均一に保持容器10に接近させることができ、より均一に加熱することができる。
 次に、上記のように構成された検体検出装置を用いて核酸検出を行う手順について説明する。 
 まず、基材22の検査部24を覆うように、例えば、DNAチップ40を基材22の下面側に装着し、保持する。DNAチップには、所望の核酸プローブが形成されている。このような送液カセット20を駆動機構30上に載置する。抽出試薬保持容器32aは伸張した状態に維持され、他の容器32b~32eは、対応するプランジャ34b~34dにより収縮した状態としておく。
 続いて、封止栓23を取り外し、注入口21および流入口28aを通して、所定量のサンプル(検査液体)を抽出試薬保持容器32aに注入する。抽出試薬保持容器32aには予め抽出試薬が乾燥保持されている。これにより、注入されたサンプルと抽出試薬とが混合される。このとき、特許文献3記載の試薬保持容器形状の場合は底部の凹部に入り込んだサンプルは抽出試薬と混合されにくいが、本発明のような平坦な底部形状の場合は混合されやすい。次に駆動機構30の加熱機構によって抽出試薬保持容器32a内のサンプルおよび抽出試薬を煮沸し、抽出反応を行う。なお、抽出反応は送液カセット20外で予め行い、抽出済みのサンプルを送液カセットの試薬保持容器に注入しても構わない。
 続いて、プランジャ34aにより抽出試薬保持容器32aを下から押圧して収縮させる。これにより、抽出試薬保持容器32a内のサンプルを所定量、押し出し、微小流路28を通して増幅試薬保持容器32c内に移動させる。この際、微小流路28は密閉構造であり、流路内部の体積を一定とする必要がある。そのため、増幅試薬保持容器32cについては、駆動機構30のプランジャ34cを下降させる。増幅試薬保持容器32cは、抽出試薬保持容器32aの収縮動作に同期して、蛇腹構造部12が伸長する。これにより、抽出試薬保持容器32a、および増幅試薬保持容器32cの内部容積を含む、流路内部の体積を一定に維持する。 
 増幅試薬保持容器32c内には増幅反応用のプライマーセット、酵素、バッファが予め乾燥保持されており、送液されたサンプルと混合される。次いで、図示しない加熱機構によってサンプルを加熱し、核酸増幅反応を行う。核酸増幅反応は、特に限定されないが、PCR、LAMP、SMAP法などを用いる。
 続いて、プランジャ34cにより増幅試薬保持容器32cを下から押圧して収縮させるとともに、プランジャ34dを下降させてハイブリダイゼーション試薬保持容器32dを伸張させる。これにより、増幅試薬保持容器32c内のサンプルを所定量、押し出し、微小流路28を通してハイブリダイゼーション試薬保持容器32d内に移動させる。ハイブリダイゼーション試薬保持容器32d内にはハイブリダイゼーション反応用バッファが予め乾燥保持されており、送液されたサンプルと混合される。
 次に、プランジャ34dによりハイブリダイゼーション試薬保持容器32dを下から押圧して収縮させる。これにより、ハイブリダイゼーション試薬保持容器32d内のサンプルを所定量、押し出し、微小流路28を通して検査部24に送液し、DNAチップ40に供給する。核酸検出用のDNAチップ40には予め核酸検出用の核酸プローブが固定化されている。そして、加熱機構によってDNAチップ40を加熱することにより、サンプルとハイブリダイゼーション反応を行う。
 これに同期して、プランジャ34bを下降させることにより廃液容器32bを伸張させ、検査を行いながら、サンプルを、検査部24から微小流路28を通して廃液容器32bに移動させる。次に、プランジャにより洗浄試薬保持容器32eを押し上げて収縮させ、予め洗浄試薬保持容器32e内に収容されていた洗浄試薬を微小流路28を通してDNAチップ40上に移動させる。更に、加熱機構によってDNAチップ40を加熱することにより、非特異的に吸着したサンプルを洗浄試薬により除去する。
 続いて、プランジャ34bを下降させて廃液容器32bを伸張させ、DNAチップ40上の洗浄試薬を廃液容器32bに移動させる。更に、プランジャにより検出試薬保持容器32fを押し上げて収縮させ、予め洗浄試薬保持容器32e内に収容されていた検出試薬を微小流路28を通してDNAチップ40上に移動させる。DNAチップ40上のサンプルと検出試薬を反応させた後、検出試薬からの信号を検出することによってサンプル中に含まれる核酸の種類を特定することができる。核酸検出法は特に限定されないが、蛍光試薬を用いた蛍光検出法や、電気化学活性試薬を用いた電流検出法などである。
 検査終了後、送液カセット20を駆動機構30のベース32から取り外し、更に、DNAチップ40を基材22から取り外した後、必要であれば、送液カセット20を破棄する。
(実施例1) 
 以下に、上記実施形態の送液カセットを用いた核酸検出の使用例を具体的に説明する。 
 1.検体検出装置の準備 
 1-1.試薬保持容器の準備 
 以下、5つの試薬保持容器にそれぞれ試薬を注入した。 
1)抽出試薬保持容器:抽出用バッファ 
2)増幅試薬保持容器:マウス2C39増幅用LAMPプライマー(配列A~D)、酵素、増幅用バッファ 
3)ハイブリダイゼーション試薬保持容器:SSC 
4)洗浄試薬保持容器:SSC 
5)検出試薬保持容器:ヘキスト33258 
 次に、上記1)、2)、3)については、真空乾燥処理を行い、容器の蛇腹構造部に試薬を乾燥固定させた。
 1-2.核酸検出用チップの準備 
 電流検出式の核酸検出用チップ上の各電極に、以下に示す3種類の核酸検出用プローブ(配列E~G)を固定化した。 
1)マウス2C39検出用(配列E) 
2)マウス2C29検出用(配列F) 
3)マウスNAT1検出用(配列G)
 1-3.核酸検出用デバイスの組立 
 送液カセット20に対し、図7および図8に示すように、上記5つの試薬保持容器、廃液容器、核酸検出用チップを装着した。
 2.核酸検出用デバイスを用いた核酸検出 
 まず、粗抽出済みのマウス2C39配列を持つサンプルをサンプル注入口21から注入し、抽出試薬保持容器32a内で抽出用バッファと混合させたのち、95℃で5分保持することで抽出反応を行った。抽出済みサンプルを増幅試薬保持容器32cに送液し、増幅試薬と混合した後、63℃で40分保持することで増幅反応を行った。
 増幅済みサンプルを核酸検出用のDNAチップ40に送液し、45℃で10分保持することでチップ上の核酸検出用プローブとハイブリダイゼーション反応を行った。増幅済みサンプルを廃液容器32bに移動させた後、洗浄試薬保持容器32eから洗浄試薬を核酸検出用チップ上へ送液し、30℃で5分保持することで、非特異的に吸着した核酸を除去した。
 洗浄試薬を廃液容器32bに送液したのち、検出試薬保持容器32fから検出試薬を核DNAチップ40上に送液し、室温で3分保持することで検出試薬を核酸と反応させた。最後にDNAチップ40の各電極から得られる電流値を測定することによって核酸検出を行った。
 3.結果 
 各電極から得られた電流値を図11に示す。2C39検出用のプローブが固定化された電極からは、他の電極と比較して有意に大きな電流値が得られていることから、サンプル中の2C39配列が以下の通りに検出されたことがわかった。
A:TCAAAACGATCCTGGAAAATAATGGACATTCATTCTGAGCTGTGC 
B:GGAAAAACTAAATGAGAATGTCAAGGAGAAAAAACATTCTTGACTTC 
C:TTCAGGCTCACCTTGTGA 
D:CTGTGGCAATAAAGCACC 
E:CTCCCCATGATTGCAGGTGA 
F:GTCCAGAGATTCATCGACCTCCTC 
G:CAGGTGACCATCAGTGACAGG
 以上のように構成された試薬保持容器およびこれを用いる検出装置によれば、保持容器の底壁は窪みのない平坦な接合部によって形成されていることから、保持容器内から試薬等を供給する際、液残りを極力少なくすることができる。これにより、比較的高価な試薬を無駄なく使用することができ、結果として、低コスト化を図ることができる。
 保持容器の底壁は平坦に形成されているため、この保持容器の伸縮を制御する駆動機構は、保持容器を押上げるだけの簡単な構成とすることができる。XY軸、回転方向の位置合わせも厳密である必要がないことから、非常に簡易な駆動機構とすることができる。
 上記のように構成された検体検出装置によれば、試薬保持容器をマイクロポンプとして用いることができ、流路内の空気の膨張、収縮に影響されることなく、微小量の検査液体を安定して送液することができる。マイクロポンプの収縮量により送液量を決めることができ、正確な量の液体を安定して送ることが可能となる。
 送液カセットについては、使用目的にもよるが、使い捨てが望まれる場合が多い。そのため、流路部品の価格は可能な限り安価が望ましい。本実施形態によれば、マイクロポンプを動作させるための駆動機構や加熱機構は、流路部品の一部ではなく、容易に切り離すことを可能としている。
 以上のことから、送液時の液残りを低減し、制御装置の構成を簡略にすることが可能な試薬保持容器、その製造方法、および試薬保持容器を用いた検出装置が得られる。
 次に、第2の実施形態に係る試薬保持容器およびその製造方法について説明する。 
 図12、図13A、図13Bは、第2の実施形態に係る試薬保持容器を示している。試薬保持容器10は、下端が閉塞し、上端部10bが開口した円筒形状に形成され、その中途部に、伸縮可能な蛇腹構造部12を有している。保持容器10の下端は、継ぎ目のない平坦な底壁10aを形成し、周囲には下端部を接合した余剰部10cが存在している。底壁10aは、保持容器10の軸方向に対して直交して延び、同様に、余剰部10cは、保持容器10の下端から軸方向と直交する方向に延出している。試薬保持容器10は、一般的な蛇腹付きストローなどの一部と類似した構造を有している。
 底壁10aは、蛇腹構造12の谷部、つまり、凹部に連続して形成されている。これにより、蛇腹構造部12は、底壁10aから徐々に拡径するように外側に傾斜している。これにより、底壁10aと蛇腹構造部12との成す角度θは、90度以上に形成されている。本実施形態において、保持容器10の底壁10aは円形に形成され、少なくとも平坦部分の直径は、蛇腹構造部12の凹部内径の60~99%に形成されている。
 試薬保持容器10の材質は特に限定されないが、ポリプロピレンが好ましく、その他、ポリスチレン、ポリビニル、ポリエチレン、ポリカーボネート、ABS、ゴムなどを用いることができる。試薬保持容器10は、生体物質を検出するデバイスであるため、場合によっては滅菌処理が必要となる。滅菌の手法は限定されないが、ガンマ線滅菌、電子線滅菌、ガス滅菌、乾熱滅菌等が挙げられる。試薬保持容器10のガンマ線滅菌を行う場合、容器材料に耐ガンマ線添加剤が添加されていることが望ましい。
 本実施形態において、保持容器10に保持される試薬は、核酸あるいは酵素の少なくとも一方を含む試薬を保持対象としている。試薬として、加熱処理される試薬、例えば、核酸増幅反応を行う試薬は、100℃近い加熱処理が必要であるため、このような試薬を保持する保持容器10の材料は、例えば、120℃までの耐熱性を持つことが好ましい。また、プライマー等の核酸試薬や酵素試薬等は紫外光により分解されてしまう。そのため、これらの試薬を保持する場合、保持容器10は、入射光中の紫外光に対して90%以上の遮光率を持つ材質で形成されていることが好ましい。
 図13Aは、試薬保持容器10の蛇腹構造部12が伸長した状態を示し、図13Bは、蛇腹構造部12が収縮した状態を示している。収縮状態において、蛇腹構造部12の内面は、互いに重なりながら収縮している。蛇腹部12の伸長、収縮は可逆性がある。本実施形態において、試薬保持容器10は、押圧負荷を受けていない状態では、図13Aに示す伸長状態となっている。そして、前述した駆動機構により、下端10aが上端側に向かって押されることにより、図13Bに示すように、蛇腹構造部12が収縮する。押圧力が除かれると、蛇腹構造部12は自身の弾性により伸長状態に復帰する。
 なお、試薬保持容器10は、上述した円筒形状に限らず、多角筒形状、楕円筒形状等、他の形状としてもよい。また、蛇腹構造部を備えている場合に限らず、試薬保持容器10の内面に複数の連続した凹凸を備えた構造としてもよい。
 次に、上記の構成を有する試薬保持容器10の製造方法について説明する。まず、図14Aに示すように、中途部に蛇腹構造部12を有する円筒形状の部品11を用意する。この部品11の下端部を、円筒の軸方向と直交する2方向から挟み込むように押圧して圧着し、接合する。例えば、一対の矩形状のブロック50a、50bにより部品11の下端部を挟み込み、超音波、熱、溶剤を用いて圧着する。これにより、図14Bに示すように、部品11の下端部は閉塞され、底壁10a、および円筒の軸方向に平坦な第1接合部14が形成される。
 続いて、図15Aに示すように、第1接合部14をその根元から筒の軸に垂直な方向に折曲げ、底壁10aに重ねる。この状態で、図15Bに示すように、底壁10aおよび第1接合部14を、筒の軸方向に沿って両方向から押圧して圧着することにより、継ぎ目がなく、均一な厚さの平坦な第2接合部15、ここでは、底壁10aを形成する。例えば、先端が平坦な円柱形状の芯部材52を部品11に挿入し、また、底壁10aの外側に平坦な支持ブロック54を配置し、これら芯部材52と支持ブロック54とで底壁10aおよび第1接合部14を両側から圧着する。その際、超音波、熱、溶剤等を用いて圧着することにより、図16に示すように、底壁10aおよび第1接合部14が溶融し、かつ、押圧され、継目の無い平坦な底壁10aが形成される。
 図14Bに示す、第1接合部14を形成した状態、および図15Aに示す、第1接合部14を折り曲げた状態では、いずれも、底壁10aに窪みが残っているが、図16に示すように、底壁10aおよび第1接合部14を、筒の軸方向に沿って両方向から押圧して圧着することにより、継ぎ目がなく、均一な厚さの平坦な底壁10aが得られる。これにより、試薬保持容器10が製造される。
 保持容器10の底部に窪みがないことから、保持容器内の試薬を流路に供給する際、薬液残りが低減される。この際、底壁10aの直径は蛇腹構造部12の凹部の内径と同程度であることが好ましい。
 以上のように構成された試薬保持容器によれば、保持容器の底壁は窪みのない平坦な接合部によって形成されていることから、保持容器内から試薬等を供給する際、液残りを極力少なくすることができる。これにより、比較的高価な試薬を無駄なく使用することができ、結果として、低コスト化を図ることができる。上記試薬保持容器を前述した検査装置に用いることにより、前述した第1の実施形態と同様の作用効果を得ることができる。
 この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 
 検出装置の各構成部材の形状、寸法、材質等は、前述した実施形態に限定されることなく、必要に応じて、変更可能である。

Claims (11)

  1.  筒状部品の軸方向一端を閉じることにより形成される試薬保持容器であって、
     前記一端は、筒状部品の軸方向と直交して延びる底壁を有し、この底壁は、筒状部品を平坦に接合した接合部により形成されている試薬保持容器。
  2.  前記筒状部品の軸方向中途部に形成された蛇腹構造部を有し、軸方向に沿って収縮可能な請求項1に記載の試薬保持容器。
  3.  前記接合部は円形に形成され、その直径は前記蛇腹構造部の凹部内径の60~99%に形成されている請求項2に記載の試薬保持容器。
  4.  前記底壁と前記蛇腹構造部との成す角度は、90度以上に形成されている請求項2に記載の試薬保持容器。
  5.  試薬保持容器の製造方法であって、
     筒状部品の一端部を筒内側方向に変形させ、
     前記変形された一端部を筒状部品の軸方向に沿って両方向から押圧して圧着し、平坦に接合された接合部を形成する試薬保持容器の製造方法。
  6.  前記変形される筒部の端部の長さをa、筒部の半径をrとしたとき、
     a>r×(1/2)を満たしている請求項5に記載の試薬保持容器の製造方法。
  7.  半球状の凹所を有する成形治具の前記凹所に、前記筒状部品の一端部を押し当てて変形させる請求項5に記載の試薬保持容器の製造方法。
  8.  前記筒状部品の一端部を熱、あるいは溶剤を用いて変形させる請求項5又は7に記載の試薬保持容器の製造方法。
  9.  前記接合部は超音波、熱、あるいは溶剤を用いて圧着する請求項5に記載の試薬保持容器の製造方法。
  10.  検査器を装着可能な検査部、およびこの検査部を通って延び検体を流す微小流路を有する送液カセットと、
     前記送液カセットに接続され、前記微小流路に連通する請求項1ないし4のいずれか1項に記載の試薬保持容器と、
     を備える検出装置。
  11.  前記試薬保持容器を伸縮させ、液体を前記試薬保持容器内と前記微小流路との間で押し出しあるいは引き込みする駆動機構を備えている請求項10に記載の検出装置。
PCT/JP2010/066101 2010-01-06 2010-09-16 試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置 WO2011083597A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010001498 2010-01-06
JP2010-001498 2010-01-06

Publications (1)

Publication Number Publication Date
WO2011083597A1 true WO2011083597A1 (ja) 2011-07-14

Family

ID=44305339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066101 WO2011083597A1 (ja) 2010-01-06 2010-09-16 試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置

Country Status (2)

Country Link
JP (1) JP5702976B2 (ja)
WO (1) WO2011083597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630696A (zh) * 2012-08-22 2014-03-12 希森美康株式会社 试剂容器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266318B2 (ja) * 2013-11-18 2018-01-24 セイコーインスツル株式会社 Qcmセンサおよびカートリッジ
JP6322986B2 (ja) 2013-12-09 2018-05-16 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
WO2018002693A1 (en) * 2016-07-01 2018-01-04 Tubitak Mobile hand-held device with reusable biosensor cartridge
JP7334363B2 (ja) * 2020-09-29 2023-08-28 富士フイルム株式会社 検査容器、検査装置及び核酸検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118481A (en) * 1977-02-22 1978-10-16 Greenspan Donald J Method and apparatus for making bottommhaving tube from enddopening tube
JP2006030089A (ja) * 2004-07-20 2006-02-02 Toshiba Corp 生体物質処理キット
JP2008209331A (ja) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp 自動分析装置
WO2008152980A1 (ja) * 2007-06-12 2008-12-18 Olympus Corporation 生物学的試料と試薬との混合用容器及び生物学的試料と試薬との混合方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078774A (ja) * 2000-09-07 2002-03-19 Otsuka Pharmaceut Factory Inc 薬剤容器連結体
US20080038738A1 (en) * 2006-05-10 2008-02-14 The Board Of Regents Of The University Of Texas System Detecting tumor biomarker in oral cancer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118481A (en) * 1977-02-22 1978-10-16 Greenspan Donald J Method and apparatus for making bottommhaving tube from enddopening tube
JP2006030089A (ja) * 2004-07-20 2006-02-02 Toshiba Corp 生体物質処理キット
JP2008209331A (ja) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp 自動分析装置
WO2008152980A1 (ja) * 2007-06-12 2008-12-18 Olympus Corporation 生物学的試料と試薬との混合用容器及び生物学的試料と試薬との混合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630696A (zh) * 2012-08-22 2014-03-12 希森美康株式会社 试剂容器

Also Published As

Publication number Publication date
JP2011158463A (ja) 2011-08-18
JP5702976B2 (ja) 2015-04-15

Similar Documents

Publication Publication Date Title
US10563253B2 (en) Cartridge interface module
JP5702976B2 (ja) 検体検出装置
JP4766046B2 (ja) マイクロ総合分析システム、検査用チップ、及び検査方法
JP4084752B2 (ja) 流体注入用のスライドカセット
TWI447393B (zh) 反應晶片及其製造方法
KR20190069302A (ko) 중합효소 연쇄반응 시스템
JP3654481B2 (ja) 生化学反応用マイクロリアクタ
US20050196779A1 (en) Self-contained microfluidic biochip and apparatus
US20080233634A1 (en) Nucleic acid detection device
JP2005065607A (ja) 遺伝子処理チップおよび遺伝子処理装置
US8092999B2 (en) Biological sample reaction chip and biological sample reaction method
WO2007111274A1 (ja) 核酸検出カセット及び核酸検出装置
JP6216451B2 (ja) 生化学用試薬類保存デバイス、及び生化学用分析装置
US20200216884A1 (en) Diagnostic device and system
JP2005504974A (ja) 物質ライブラリー基板保持装置
US20140073042A1 (en) Fluidic device, chemical reaction system, and nucleic-acid analyzing system
EP1666887A2 (en) Hybridization system using the control of pump and valves in closed system
JP5131538B2 (ja) 反応液充填方法
JP5242465B2 (ja) 検体検出装置
TW201928045A (zh) 一種熱對流式聚合酶鏈式反應裝置
JP2007217060A (ja) 容器、マイクロチューブ、容器製造方法並びに試験または検査方法
JP2011182728A (ja) 反応容器及び反応方法
JP5973350B2 (ja) マイクロチップ
JP2011203181A (ja) マイクロ流体チップ
TWI638049B (zh) 兩階段操作核酸反應檢測管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842112

Country of ref document: EP

Kind code of ref document: A1