WO2011082444A1 - Procédé pour la production de carbonate de lithium - Google Patents

Procédé pour la production de carbonate de lithium Download PDF

Info

Publication number
WO2011082444A1
WO2011082444A1 PCT/AU2010/001557 AU2010001557W WO2011082444A1 WO 2011082444 A1 WO2011082444 A1 WO 2011082444A1 AU 2010001557 W AU2010001557 W AU 2010001557W WO 2011082444 A1 WO2011082444 A1 WO 2011082444A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
lithium carbonate
product
spodumene
passing
Prior art date
Application number
PCT/AU2010/001557
Other languages
English (en)
Inventor
Ignatius Kim Seng Tan
Original Assignee
Galaxy Resources Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010900057A external-priority patent/AU2010900057A0/en
Application filed by Galaxy Resources Limited filed Critical Galaxy Resources Limited
Priority to AU2010341402A priority Critical patent/AU2010341402B2/en
Priority to CN201080065025.XA priority patent/CN102892708B/zh
Priority to CA2786317A priority patent/CA2786317C/fr
Publication of WO2011082444A1 publication Critical patent/WO2011082444A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes

Definitions

  • the present invention relates to a process for the production of lithium carbonate. More particularly, the process of the present invention is intended to provide a high purity or battery grade lithium carbonate product. The process of the present invention may also provide a sodium sulphate product.
  • Known processes for the production of lithium carbonate from lithium containing ores or concentrates typically utilise the thermal treatment of an alpha-spodumene ore or concentrate.
  • This thermal treatment can be referred as decrepitation and transforms the alpha-spodumene to beta-spodumene which is in turn able to be solubilised by acid.
  • the step in which the beta-spodumene is sulphated in acid takes place in a kiln and produces water soluble lithium sulphate.
  • the lithium sulphate is passed to one or more leaching tanks in which the lithium sulphate is leached with water.
  • the lithium carbonate precipitation step of the prior art results in a sodium sulphate solution in addition to the precipitated lithium carbonate.
  • the sodium sulphate solution has traditionally been treated to crystallise sodium sulphate decahydrate for drying and disposal or sale, with some liquor recirculated to the water leach of the lithium sulphate.
  • Such a process does not effectively utilise the sodium sulphate solution to produce a sodium sulphate product, the sodium decahydrate requiring drying/or heating before disposal.
  • the impurities removed from the pregnant leach solution including iron, alumina and silicates have simply passed to waste and have remained unutilised.
  • step (v) Adding sodium carbonate to the product of step (iv) by which calcium is precipitated;
  • step (vi) The product of step (v) is then passed to an ion exchange step in which residual calcium, magnesium and other remaining multivalent cations are substantially removed;
  • step (vii) Passing the purified product of step (vi) to a lithium carbonate precipitation step in which sodium carbonate is added to produce precipitated lithium carbonate and a sodium sulphate mother liquor.
  • the mother liquor from step (vii) is passed to an anhydrous sodium sulphate recovery process from which a solid sodium sulphate product is obtained.
  • a portion of the sodium sulphate mother liquor is preferably recirculated to the leach of step (iii).
  • the lithium carbonate precipitation step (vii) is preferably conducted in at least one draft tube baffled crystalliser with a residence time of about 90 minutes.
  • the lithium carbonate, precipitation step (vii) is conducted sequentially in two crystallisers.
  • the precipitated lithium carbonate of step (vii) is thickened prior to passing to a filter step.
  • the filter step is preferably followed by a repulp washing stage and a centrifuge step. Both the filter step and centrifuge step preferably incorporate a hot wash to reduce impurities.
  • the resulting product is preferably then milled to minus 6 pm.
  • the precipitated lithium carbonate of step (vii) is thickened prior to passing to a bicarbonate circuit, the bicarbonate circuit comprising digestion with carbon dioxide to produce a bicarbonate intermediate, and subsequent crystallisation to produce a lithium carbonate product of increased purity.
  • the sodium sulphate recovery process is fed from the thickening step after the lithium carbonate precipitation step (vii).
  • the sodium sulphate recovery process preferably comprises creating a supersaturated solution and passing this solution to a crystallisation step.
  • the crystallisation step is preferably conducted at a temperature of about 80°C to 90°C and a pressure of about 45 kPa(a).
  • the residence time is preferably about 60 minutes.
  • water evaporated from the solution in the creation of the supersaturated solution is recompressed, combined with make-up steam and utilised in the anhydrous sodium sulphate crystallisation step.
  • This crystallisation step preferably utilises a vacuum evaporative crystalliser.
  • the crystallisation step produces a crystal slurry that is preferably discharged to a centrifuge step.
  • This centrifuge step preferably further comprises a wash with water, the liquid product of which is recycled back to the leach step (iii).
  • the solid product of the centrifuge step and wash is then preferably dried.
  • the impurity removal steps of step (iv) comprise, in turn, the addition of lime/hydrated lime, hydrogen peroxide and sodium hydroxide.
  • the slurry is preferably thickened, the underflow of the thickening step then being filtered and dried to provide an alumina silicate product.
  • the beta-spodumene of step (i) is cooled and milled prior to the sulphating step (ii).
  • the beta-spodumene is preferably milled to less than about 300 pm.
  • the sulphating step (ii) is conducted in a sulphating kiln at about 250°C over a residence time of about 45 minutes.
  • the sulphated spodumene is cooled prior to feeding into the leach step (iii).
  • the bicarbonate circuit preferably further comprises a centrifuge/wash step and a repulp step prior to the digestion step.
  • the digestion step is preferably conducted at atmospheric pressure and at a temperature of less than about 20°C to 40°C.
  • the crystallisation step comprises the addition of steam to a lithium bicarbonate product of the digestion step, thereby producing both carbon dioxide and lithium carbonate products.
  • the crystallisation step is preferably conducted at about 95°C.
  • the lithium carbonate product of the crystallisation step is passed to a thickening step, the overflow from which is passed, at least in part, to the repulp step prior to the digestion step.
  • the overflow is preferably subjected to cooling prior to passing to the repulp step.
  • a lithium carbonate product of the thickening step provided after the crystallisation step is passed, or recirculated, to a point in the bicarbonate circuit prior to the digestion step so as to increase the purity of the ultimate lithium carbonate product.
  • the recirculated lithium carbonate is added to the centrifuge step prior to the repulp step.
  • step (v) Adding sodium carbonate to the product of step (iv) by which calcium is precipitated;
  • step (v) The product of step (v) is then passed to an ion exchange step in which residual calcium, magnesium and other remaining multivalent cations are substantially removed;
  • step (vii) Passing the purified product of step (vi) to a lithium carbonate precipitation step in which sodium carbonate is added to produce precipitated lithium carbonate and a sodium sulphate mother liquor;
  • step (viii) Passing the precipitated lithium carbonate of step (vii) to a bicarbonate circuit, the bicarbonate circuit comprising digestion with carbon dioxide to produce a bicarbonate intermediate, and subsequent crystallisation to produce a lithium carbonate product of increased purity.
  • Figure 2 is a schematic flow-sheet depicting a bicarbonate circuit that is provided as a substitute for a portion of the process of Figure T, in accordance with a second embodiment of the present invention.
  • FIG. 1 there is shown a process 10 for the production of lithium carbonate, in accordance with a first embodiment of the present invention. - All of the unit operations embodied in the process 10 are designed to operate continuously with full process instrumentation and control being provided for.
  • a concentrate stockpile and reclaim area 12 encompasses a 12 week capacity stockpile (30.000T) of alpha-spodumene concentrate 14.
  • Front end loaders 16 and belt conveyors 18 transport the alpha-spodumene concentrate to a calcining step, conducted in a direct fired rotary kiln calciner 20.
  • the alpha-spodumene concentrate is calcined at about 1080°G to convert the alpha-spodumene to the teachable beta-spodumene.
  • Off-gases from the calciner 20 are directed through a cyclone and an electrostatic precipitator specified to comply with known environmental emissions limits.
  • the hot calcine is indirectly cooled in a cooling step 22 and then dry-milled to less than 300 pm in a ball mill 24.
  • the beta-spodumene After storage in a surge bin, the beta-spodumene is mixed with a 40% excess of concentrated (98% w/w acid) sulphuric acid 26, and roasted at 250°C for about 30 to 45 minutes in an indirectly heated sulphating kiln 28. Off-gases from the sulphating kiln 28 are cleaned in a wet scrubber. The sulphated beta-spodumene is then cooled to 95°C in a bin that feeds a leach circuit 30. An excess of at least 20% acid (based on the lithium content of the ore), preferably at least 40% acid, is used to maximise the lithium extraction while minimising reagent use and any need for sulphate addition to the leach circuit 30.
  • the spodumene is leached in the leach circuit 30 in a recycled sodium sulphate solution 32.
  • the leach circuit 30 comprises a few leaching tanks operating at about 60°C to 80°C. About 95% of the lithium is leached from the beta- spodumene.
  • Soluble iron, aluminium and magnesium are removed in large part from the leach liquor through a series of impurity removal steps, including pH modification (raising) through the addition of hydrated lime 34, the addition of hydrogen peroxide 36 (to ensure iron is present in the ferric form), and precipitation of magnesium through the addition of hydrated lime 38 at a pH of about 10. Calcium is then removed in a calcium precipitation step 40 with the addition of sodium carbonate 42. The impurity precipitation occurs with the leached solids present in the slurry.
  • a thickening step 44 is provided prior to the addition of the hydrated lime 38.
  • the overflow from the thickening step 44 is passed to a filter step, for example a polishing sand filter 46.
  • the underflow from both the thickening step 44 and the filter 46 are passed to a filter step to be described hereinafter.
  • the product of the calcium precipitation step 40 is passed to a filtration step comprising a polishing filter 47.
  • a resulting filtrate 48 is passed through a polishing sand filter 47 and an ion exchange step 50, comprising an IX column 50 to remove residual calcium, magnesium and other multivalent cations.
  • the solution passing from the ion exchange step 50 is heated 52 and then reacted with a hot sodium carbonate solution 54 in a lithium carbonate crystalliser 56 operating at 85°C.
  • the crystalliser 56 is a draft tube baffled crystalliser and the solution flashed therein is highly supersaturated.
  • a secondary crystalliser 56 is also provided, to which the supersaturated solution is passed after the first crystalliser 56 so as to remove the super-saturation. The result is small, inclusion- free crystals of lithium carbonate readily amenable to milling.
  • the small crystals from the crystalliser 56 are thickened in a thickening step 58 before passing to a filter step, incorporating for example a belt filter 60.
  • the filter step 60 is followed by a repulp washing stage 62 (at 40% w/w solids) before the crystals are sent to a continuous centrifuge 66.
  • the filter step 60 and the centrifuge 66 use a hot wash 68, achieving an overall wash efficiency of 99%.
  • Solid crystals resulting from the centrifuge 66 are dried in an indirect-fired kiln 70 at 120°C. Resulting dry coarse lithium carbonate is air milled to less than 6 pm in a micronizer 72 and then pneumatically conveyed to storage bins, cooled to 50°C in a jacketed screw conveyor and then bagged 74.
  • the sodium sulphate in solution about 293 gpl, is precipitated or crystallised in, for example, a vacuum evaporative crystalliser operating at a temperature of about 80°C to 90°C and pressure of about 45 kPa(a). This allows the use of lower cost materials of construction for the crystalliser.
  • the residence time is about 60 minutes so as to achieve a coarse crystal product.
  • Super- saturation is achieved in the precipitation step 76 by evaporating approximately half the water from the overflow of the thickening step 58 in the evaporative crystallisation stage. The resulting water vapour is recompressed, combined with make-up steam 78 and used as the evaporative medium for the crystalliser.
  • a crystal slurry 80 is discharged to a single continuous centrifuge 82, where crystals are washed by cold water 84 achieving a wash efficiency of 99%.
  • the resulting solution 32 is recycled back to the leach circuit 30.
  • Solids from the centrifuge 82 are fed to an indirect-fired kiln 86, operating at about 120°C, which dries the crystals.
  • the crystal product is pneumatically conveyed to product bins 88, and cooled to less than 80°C in a jacketed screw conveyer as it is conveyed from the bins to bagging stations.
  • Condensate throughout the process 10 is used as make-up water for hot process water, cold process water and cooling water. As the process 10 does not return condensate there is an overall positive water balance and about 1 t/h of process water is discharged to a waste (not shown).
  • the thickening step 58 may be bypassed with certain draft tube baffled crystalliser designs. It is further envisaged that tantalite and alumina may also be recovered using the process 10 of the present invention.
  • the filter cake from the thickening step 44 may be discharged to a tantalite recovery plant (not shown). Discharge from the tantalite recovery plant may be fed onto a belt filter to remove water, which is returned to the tantalite recovery plant. The filter does not use washing and has a filtration area of 19 m 2 .
  • the filer cake from the belt filter is dried in a direct-fired kiln.
  • the dry alumina silicate is cooled to 50°C in a jacketed screw conveyor and then pneumatically conveyed to a storage bin prior to dispatch.
  • FIG. 2 there is shown a bicarbonate circuit 100 in accordance with a second embodiment of the present invention.
  • the bicarbonate circuit 100 is intended for use in combination with a significant proportion of the process 10 of the first embodiment of the present invention and reference to like numerals denotes like, parts or steps. However, this should not be understood to limit the generality of use of the bicarbonate circuit 100 as it is envisaged that the bicarbonate circuit 100 may have applications beyond that exemplified herein.
  • the small crystals from the crystalliser 56 that are thickened in the thickening step 58 are, rather than being passed to the belt filter 60 of Figure 1 , passed to the bicarbonate circuit 100 of Figure 2.
  • Underflow.from the thickening step 58 is passed, at a temperature of about 85°C, to a centrifuge 102 in which the lithium carbonate crystals are washed.
  • the lithium carbonate product is about 99.0% purity at this point.
  • the product of the centrifuge 102 has a moisture content of about 14% and is directed to a repulp step 104 to which a cooled recirculation liquor 108, to be described hereinafter, is added.
  • the temperature of the repulp step 104 is about 45°C.
  • the product of the repulp step 104 is about 2 to 5% w/w solids which are directed to a digestion step 110 at less than about 50°C, for example 40°C.
  • the digestion step 110 comprises the addition of a carbon dioxide feed stream 112 to the repulped lithium carbonate from the repulp step 104, with the addition of cooling, in a stirred reactor vessel at atmospheric pressure for a time of about 90 minutes, producing a lithium bicarbonate intermediate product 114 at less than about 50°C, for example 40°C.
  • the lithium bicarbonate intermediate product 114 is passed from the digestion step 110 to a filter step 116.
  • a filter bypass route 118 is available.
  • the lithium bicarbonate intermediate product 14 is in turn passed to a crystallisation step 120 comprising a multi-compartment agitated reactor vessel to which a steam feed 122 added.
  • the crystallisation step 120 is conducted at atmospheric pressure in three overflow stages at about 95°C, and produces lithium carbonate crystals 124 and carbon dioxide 126 products.
  • the carbon dioxide product 126 from the crystallisation step 120 is compressed 128, passed to a drying step 130 using a condenser, and produces a condensate 106 as a product.
  • This condensate 106 is combined with an overflow from a thickener 136, to be described hereinafter.
  • From the drying step 130 the carbon dioxide is passed to further compression 132. At least a portion of the carbon dioxide from the compression step 132 is utilised as the carbon dioxide 112 for use in the digestion step 110. Any excess carbon dioxide from compression may be stored in tank(s) 134. Alternatively, carbon dioxide may also be drawn from tanks 134 for use in the digestion step 134.
  • the lithium carbonate product 124 of the crystallisation step 120 is passed, at about 95°C, to a thickening step 136, from which the overflow 138 is recirculated either as the recirculation liquor 108 after a cooling step(s) 142, to the repulp step 104, or as a bleed 1 4 to the leach circuit 30 shown in Figure 1.
  • the cooling of the recirculation liquor 108 in the cooling step(s) 142 which may incorporate a chiller 146, reduces the temperature from about an initial 94°C to about 35°C prior to addition to the repulp step 104.
  • Lithium carbonate underflow i48 from the thickening step 136 is passed to a centrifuge 150 in which it is washed, with the subsequent lithium carbonate product then being passed to a dryer 70 as shown in Figure 1 , and the subsequent steps as described with reference to that Figure.
  • the lithium carbonate product so produced is about 99.9% purity, or battery grade. Additional purification may be achieved through a recycle 152 of all, or a portion of, the lithium carbonate product from the centrifuge step 150 to the centrifuge step 102. This can be expected to increase the purity of the ultimate lithium carbonate product to a target of above 99.9% purity.
  • Any available low grade lithium carbonate 154 may be fed to the repulp step 104 to be repulped, and purified via the bicarbonate circuit 100.
  • the bicarbonate circuit 100 may be by-passed should maintenance be required.
  • the lithium carbonate product so produced will be an "off-spec" material, typically of technical grade.
  • the process of the present invention provides a process by which a high purity or battery grade lithium carbonate product may be obtained from an alpha-spodumene ore or concentrate.
  • the purity of the lithium carbonate product may be improved further through incorporation of a bicarbonate circuit as described.
  • the process of the present invention also allows the production of a useful sodium sulphate product.
  • the process of the present invention as described herein is typically a simpler and more economic route to the production of a high purity lithium carbonate product when compared with processes that have been described in the prior art. Modifications and variations such as would be apparent to the skilled addressee are considered to fall within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

1. La présente invention a pour objet un procédé (10) pour la production de carbonate de lithium, le procédé étant caractérisé par les étapes consistant : (i) à calciner (20) un minerai ou un concentré d'alpha-spodumène (12) pour produire du bêta-spodumène ; (ii) à sulfater (28) le bêta-spodumène à température élevée ; (iii) à faire subir au bêta-spodumène sulfaté une étape de lixiviation (30) dans laquelle du sulfate de lithium est lixivié dans l'eau ; (iv) à faire subir à la solution de lixiviation enrichie issue de l'étape de lixiviation une série d'étapes d'élimination des impuretés dans lesquelles du fer, de l'alumine, des silicates et du magnésium sont, en grande partie, précipités et éliminés (34, 36 et 38) ; (v) à ajouter du carbonate de sodium (42) au produit de l'étape (iv) par laquelle le calcium est précipité (40) ; (vi) à faire subir ensuite au produit de l'étape (v) une étape d'échange d'ions (50) dans laquelle le calcium, le magnésium résiduels et d'autres cations multivalents restants sont pratiquement éliminés ; et (vii) à faire subir au produit purifié de l'étape (vi) une étape de précipitation du carbonate de lithium (56) dans laquelle du carbonate de sodium (54) est ajouté pour produire du carbonate de lithium précipité et une liqueur mère de sulfate de sodium.
PCT/AU2010/001557 2010-01-07 2010-11-19 Procédé pour la production de carbonate de lithium WO2011082444A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010341402A AU2010341402B2 (en) 2010-01-07 2010-11-19 Process for the production of lithium carbonate
CN201080065025.XA CN102892708B (zh) 2010-01-07 2010-11-19 用于制造碳酸锂的方法
CA2786317A CA2786317C (fr) 2010-01-07 2010-11-19 Procede pour la production de carbonate de lithium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2010900057 2010-01-07
AU2010900057A AU2010900057A0 (en) 2010-01-07 Process for the Production of Lithium Carbonate
AU2010904019A AU2010904019A0 (en) 2010-09-07 Process for the Production of Lithium Carbonate
AU2010904019 2010-09-07

Publications (1)

Publication Number Publication Date
WO2011082444A1 true WO2011082444A1 (fr) 2011-07-14

Family

ID=44305123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2010/001557 WO2011082444A1 (fr) 2010-01-07 2010-11-19 Procédé pour la production de carbonate de lithium

Country Status (4)

Country Link
CN (1) CN102892708B (fr)
AU (1) AU2010341402B2 (fr)
CA (1) CA2786317C (fr)
WO (1) WO2011082444A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013036983A1 (fr) * 2011-09-15 2013-03-21 Orocobre Limited Procédé de production de carbonate de lithium à partir de saumure de lithium
CN104030324A (zh) * 2014-06-06 2014-09-10 无锡市崇安区科技创业服务中心 一种盐湖卤水提取碳酸锂的方法
EP2875869A1 (fr) * 2013-11-20 2015-05-27 K+S Aktiengesellschaft Procédé de préparation de sels de lithium à partir de sels bruts
JP2015531826A (ja) * 2012-08-13 2015-11-05 リード インダストリアル ミネラルズ プロプライエタリー リミテッド リチウム含有材料の処理
US9255012B2 (en) 2012-03-19 2016-02-09 Outotec (Finland) Oy Method for recovering lithium carbonate
WO2017106925A1 (fr) * 2015-12-22 2017-06-29 Richard Hunwick Récupération de lithium à partir de minéraux silicatés
WO2018087697A1 (fr) * 2016-11-09 2018-05-17 Avalon Advanced Materials Inc. Méthodes et systèmes de préparation d'hydroxyde de lithium
EP3204528A4 (fr) * 2014-10-10 2018-05-23 Li-Technology Pty Ltd. Procédé de récupération
JP2020035723A (ja) * 2018-08-31 2020-03-05 Jx金属株式会社 炭酸リチウムの製造方法
CN110898516A (zh) * 2019-12-04 2020-03-24 青海东台吉乃尔锂资源股份有限公司 从碳酸锂浆料中去除磁性物的装置
EP3517641B1 (fr) 2018-01-30 2020-03-25 Duesenfeld GmbH Procédé de valorisation de batteries au lithium
CN111334664A (zh) * 2020-03-07 2020-06-26 江苏北矿金属循环利用科技有限公司 一种基于镁盐循环的三元锂电池正极材料综合回收有价金属的方法
US20200263277A1 (en) * 2017-11-09 2020-08-20 US Borax, Inc. Mineral Recovery Process
WO2020206567A1 (fr) * 2019-04-12 2020-10-15 Universidad De Concepcion Procédé pour obtenir du carbonate de lithium à partir du minerai de spodumène par sulfatation avec du sulfate ferreux à haute température
CN112456520A (zh) * 2020-12-23 2021-03-09 广西天源新能源材料有限公司 一种用锂辉石、锂聚合物和盐湖矿石混合生产单水氢氧化锂的工艺
WO2021053514A1 (fr) 2019-09-16 2021-03-25 InCoR Lithium Extraction sélective de lithium à partir de saumures
CN112573540A (zh) * 2020-12-30 2021-03-30 广西天源新能源材料有限公司 一种基于盐湖矿石与锂辉石的元明粉制备方法
CN112645361A (zh) * 2020-12-23 2021-04-13 广西天源新能源材料有限公司 一种用锂辉石和锂聚合物生产单水氢氧化锂的工艺
CN112661175A (zh) * 2021-01-21 2021-04-16 广西天源新能源材料有限公司 一种基于盐湖矿石、锂聚合物以及锂辉石组合的碳酸锂制备方法
CN114349031A (zh) * 2020-03-16 2022-04-15 东北大学 一种锂辉石精矿悬浮焙烧的方法、一种锂辉石精矿悬浮焙烧提锂的方法
CN115417435A (zh) * 2022-10-18 2022-12-02 陆植才 硫酸铵闭路循环碳酸锂生产工艺
WO2023079208A1 (fr) * 2021-11-04 2023-05-11 Metso Outotec Finland Oy Circulations de solution dans un procédé de calcination et de lixiviation d'un minéral contenant du lithium
WO2023204761A1 (fr) * 2022-04-18 2023-10-26 Green Li-Ion Pte. Ltd Processus et système de récupération de lithium à partir de batteries au lithium-ion
GB2623593A (en) * 2022-10-21 2024-04-24 Res By British Lithium Limited Impurity removal and leaching of lithium material

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3824991T3 (da) 2012-04-23 2022-10-31 Nemaska Lithium Inc Fremgangsmåde til forberedelse af lithiumsulfat
AU2013270412C1 (en) 2012-05-30 2017-04-06 Nemaska Lithium Inc. Processes for preparing lithium carbonate
PL2971252T3 (pl) 2013-03-15 2021-07-12 Nemaska Lithium Inc. Procesy dla sporządzania wodorotlenku litu
KR102445712B1 (ko) 2013-10-23 2022-09-20 네마스카 리튬 인코포레이션 리튬 카보네이트의 제조방법
JP6368374B2 (ja) 2013-10-23 2018-08-01 ネマスカ リチウム インコーポレーテッド 水酸化リチウムを調製するための方法およびシステム
CN106103806B (zh) 2014-02-24 2019-07-12 内玛斯卡锂业有限公司 处理含锂材料的方法
US10167531B2 (en) 2014-03-13 2019-01-01 Reed Advanced Materials Pty Ltd Processing of lithium containing material
AR100672A1 (es) * 2015-01-27 2016-10-26 Reed Advanced Mat Pty Ltd PROCESAMIENTO DE MATERIAL QUE CONTIENE LITIO INCLUYENDO INYECCIÓN DE HCl
CA2996651C (fr) 2015-08-27 2021-06-01 Nemaska Lithium Inc. Methode pour preparer de l'hydroxyde de lithium et du monohydrate de sulfate de lithium au moyen d'une anode depolarisee d'hydrogene
CN105502441B (zh) * 2016-01-14 2017-05-24 天齐锂业股份有限公司 连续化生产电池级碳酸锂的方法
CN106044804B (zh) * 2016-05-26 2017-10-24 四川思达能环保科技有限公司 一种硫酸法锂盐生产新工艺
CN106064824A (zh) * 2016-05-26 2016-11-02 四川思达能环保科技有限公司 一种硫酸法锂盐的生产工艺
CA2940509A1 (fr) 2016-08-26 2018-02-26 Nemaska Lithium Inc. Procede de traitement de compositions aqueuses comprenant du sulfate de lithium et de l'acide sulfurique
CN106430259B (zh) * 2016-12-13 2017-11-17 宜春银锂新能源有限责任公司 一种应用于锂云母制碳酸锂加工装置
CN107815557A (zh) * 2017-10-16 2018-03-20 福州大学 一种锂辉石管道反应提锂工艺
CN107640779A (zh) * 2017-11-15 2018-01-30 天元锂电材料河北有限公司 锂辉石制取碳酸锂工艺
CA3083136C (fr) 2017-11-22 2022-04-12 Nemaska Lithium Inc. Procedes de preparation d'hydroxydes et d'oxydes de divers metaux et leurs derives
CN110407235B (zh) * 2018-04-26 2022-01-25 天齐锂业股份有限公司 电动汽车级单水氢氧化锂的制备方法
CN110817906A (zh) * 2018-08-09 2020-02-21 戴艾霖 大幅度降低锂辉石硫酸法各级碳酸锂中硫酸根含量的技术
CN109576499A (zh) * 2019-01-30 2019-04-05 广东省稀有金属研究所 一种从电池电极材料浸出液中回收锂的方法
CN110694788B (zh) * 2019-10-30 2021-11-05 中蓝长化工程科技有限公司 一种高钙镁型低品位锂辉石矿的选矿方法
CN110898515B (zh) * 2019-12-04 2021-06-25 青海东台吉乃尔锂资源股份有限公司 从碳酸锂浆料中去除磁性物的方法
CN116018710B (zh) 2020-08-24 2024-05-03 绿色锂离子私人有限公司 用于锂离子电池回收中去除杂质的方法
CN114590826B (zh) * 2022-04-18 2023-07-18 四川兴晟锂业有限责任公司 一种氢氧化锂生产系统富钾母液的处理工艺及装备
CN115520884A (zh) * 2022-10-24 2022-12-27 唐山鑫丰锂业有限公司 一种锂辉石通过硫酸法生产碳酸锂的工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB770812A (en) * 1955-06-06 1957-03-27 Borax Cons Ltd Method of lithium extraction
CA1297265C (fr) * 1986-07-02 1992-03-17 Paul Brodermann Procede de fabrication de carbonate de lithium
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
US6592832B1 (en) * 1998-03-05 2003-07-15 Basf Aktiengesellschaft Method for producing highly pure lithium salts
US20040005267A1 (en) * 1998-07-16 2004-01-08 Boryta Daniel Alfred Production of lithium compounds directly from lithium containing brines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR001917A1 (es) * 1996-03-28 1997-12-10 Minera Salar De Atacama S A So Producción de carbonato de litio de alta pureza desde salmueras naturales o industriales
CN101177288B (zh) * 2007-10-30 2010-08-11 中国科学院青海盐湖研究所 一种利用盐湖锂资源制取高纯碳酸锂的工艺方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB770812A (en) * 1955-06-06 1957-03-27 Borax Cons Ltd Method of lithium extraction
CA1297265C (fr) * 1986-07-02 1992-03-17 Paul Brodermann Procede de fabrication de carbonate de lithium
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
US6592832B1 (en) * 1998-03-05 2003-07-15 Basf Aktiengesellschaft Method for producing highly pure lithium salts
US20040005267A1 (en) * 1998-07-16 2004-01-08 Boryta Daniel Alfred Production of lithium compounds directly from lithium containing brines

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994930B2 (en) 2011-09-15 2018-06-12 Orocobre Limited Process for producing lithium carbonate from concentrated lithium brine
WO2013036983A1 (fr) * 2011-09-15 2013-03-21 Orocobre Limited Procédé de production de carbonate de lithium à partir de saumure de lithium
US9255012B2 (en) 2012-03-19 2016-02-09 Outotec (Finland) Oy Method for recovering lithium carbonate
JP2015531826A (ja) * 2012-08-13 2015-11-05 リード インダストリアル ミネラルズ プロプライエタリー リミテッド リチウム含有材料の処理
CN111519042A (zh) * 2012-08-13 2020-08-11 瑞德高级材料有限公司 含锂材料的处理工艺
EP2875869A1 (fr) * 2013-11-20 2015-05-27 K+S Aktiengesellschaft Procédé de préparation de sels de lithium à partir de sels bruts
CN104030324A (zh) * 2014-06-06 2014-09-10 无锡市崇安区科技创业服务中心 一种盐湖卤水提取碳酸锂的方法
EP3204528A4 (fr) * 2014-10-10 2018-05-23 Li-Technology Pty Ltd. Procédé de récupération
US10131968B2 (en) 2015-12-22 2018-11-20 Richard Hunwick Recovery of lithium from silicate minerals
KR20180098345A (ko) * 2015-12-22 2018-09-03 리차드 헌윅 규산염 광물로부터 리튬의 회수
KR102537727B1 (ko) 2015-12-22 2023-05-30 아이씨에스아이피 피티와이 리미티드 규산염 광물로부터 리튬의 회수
WO2017106925A1 (fr) * 2015-12-22 2017-06-29 Richard Hunwick Récupération de lithium à partir de minéraux silicatés
US10883156B2 (en) 2015-12-22 2021-01-05 ICSIP Pty Ltd Recovery of lithium from silicate minerals
WO2018087697A1 (fr) * 2016-11-09 2018-05-17 Avalon Advanced Materials Inc. Méthodes et systèmes de préparation d'hydroxyde de lithium
US20200263277A1 (en) * 2017-11-09 2020-08-20 US Borax, Inc. Mineral Recovery Process
EP3517641B2 (fr) 2018-01-30 2023-03-29 Duesenfeld GmbH Procédé de valorisation de batteries au lithium
EP3517641B1 (fr) 2018-01-30 2020-03-25 Duesenfeld GmbH Procédé de valorisation de batteries au lithium
JP2020035723A (ja) * 2018-08-31 2020-03-05 Jx金属株式会社 炭酸リチウムの製造方法
WO2020045596A1 (fr) * 2018-08-31 2020-03-05 Jx金属株式会社 Procédé de production de carbonate de lithium
US11970405B2 (en) 2018-08-31 2024-04-30 Jx Metals Corporation Method for producing lithium carbonate
WO2020206567A1 (fr) * 2019-04-12 2020-10-15 Universidad De Concepcion Procédé pour obtenir du carbonate de lithium à partir du minerai de spodumène par sulfatation avec du sulfate ferreux à haute température
WO2021053514A1 (fr) 2019-09-16 2021-03-25 InCoR Lithium Extraction sélective de lithium à partir de saumures
US11634789B2 (en) 2019-09-16 2023-04-25 InCoR Lithium Selective lithium extraction from brines
CN110898516B (zh) * 2019-12-04 2021-05-14 青海东台吉乃尔锂资源股份有限公司 从碳酸锂浆料中去除磁性物的装置
CN110898516A (zh) * 2019-12-04 2020-03-24 青海东台吉乃尔锂资源股份有限公司 从碳酸锂浆料中去除磁性物的装置
CN111334664A (zh) * 2020-03-07 2020-06-26 江苏北矿金属循环利用科技有限公司 一种基于镁盐循环的三元锂电池正极材料综合回收有价金属的方法
CN114349031A (zh) * 2020-03-16 2022-04-15 东北大学 一种锂辉石精矿悬浮焙烧的方法、一种锂辉石精矿悬浮焙烧提锂的方法
CN112645361A (zh) * 2020-12-23 2021-04-13 广西天源新能源材料有限公司 一种用锂辉石和锂聚合物生产单水氢氧化锂的工艺
CN112456520A (zh) * 2020-12-23 2021-03-09 广西天源新能源材料有限公司 一种用锂辉石、锂聚合物和盐湖矿石混合生产单水氢氧化锂的工艺
CN112573540A (zh) * 2020-12-30 2021-03-30 广西天源新能源材料有限公司 一种基于盐湖矿石与锂辉石的元明粉制备方法
CN112661175A (zh) * 2021-01-21 2021-04-16 广西天源新能源材料有限公司 一种基于盐湖矿石、锂聚合物以及锂辉石组合的碳酸锂制备方法
WO2023079208A1 (fr) * 2021-11-04 2023-05-11 Metso Outotec Finland Oy Circulations de solution dans un procédé de calcination et de lixiviation d'un minéral contenant du lithium
WO2023204761A1 (fr) * 2022-04-18 2023-10-26 Green Li-Ion Pte. Ltd Processus et système de récupération de lithium à partir de batteries au lithium-ion
CN115417435A (zh) * 2022-10-18 2022-12-02 陆植才 硫酸铵闭路循环碳酸锂生产工艺
CN115417435B (zh) * 2022-10-18 2024-01-26 陆植才 硫酸铵闭路循环碳酸锂生产工艺
GB2623593A (en) * 2022-10-21 2024-04-24 Res By British Lithium Limited Impurity removal and leaching of lithium material
WO2024084229A1 (fr) * 2022-10-21 2024-04-25 Research By British Lithium Ltd Élimination et lixiviation d'impuretés de matériau au lithium

Also Published As

Publication number Publication date
CN102892708B (zh) 2015-04-22
AU2010341402A1 (en) 2012-07-26
CA2786317C (fr) 2020-07-07
CN102892708A (zh) 2013-01-23
CA2786317A1 (fr) 2011-07-14
AU2010341402B2 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
AU2010341402B2 (en) Process for the production of lithium carbonate
US20220169521A1 (en) Processing of lithium containing material including hcl sparge
AU2013201833B2 (en) Processing of Lithium Containing Ore
US10131968B2 (en) Recovery of lithium from silicate minerals
US10167531B2 (en) Processing of lithium containing material
EP3640211A1 (fr) Procédé de préparation d'alumine
AU2022100055A4 (en) A Method for the Preparation of Alumina
US20200263277A1 (en) Mineral Recovery Process
CN111655876A (zh) 矿物回收工艺
AU2019310188B2 (en) Caustic conversion process
WO2024065003A1 (fr) Procédé de production d'un sel de lithium
US3664809A (en) Recovery of alumina from aluminosilicates
WO2024089394A1 (fr) Fabrication de produits chimiques pour batterie
WO2024084233A1 (fr) Production de produits chimiques de qualité pour batterie
Bengtson A Technological Comparison of Six Processes for the Production of Reduction-Grade Alumina from Non-Bauxitic Raw Materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065025.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841828

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010341402

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2786317

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010341402

Country of ref document: AU

Date of ref document: 20101119

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10841828

Country of ref document: EP

Kind code of ref document: A1