WO2011081054A1 - 太陽電池セルの製造方法 - Google Patents

太陽電池セルの製造方法 Download PDF

Info

Publication number
WO2011081054A1
WO2011081054A1 PCT/JP2010/072960 JP2010072960W WO2011081054A1 WO 2011081054 A1 WO2011081054 A1 WO 2011081054A1 JP 2010072960 W JP2010072960 W JP 2010072960W WO 2011081054 A1 WO2011081054 A1 WO 2011081054A1
Authority
WO
WIPO (PCT)
Prior art keywords
antireflection film
forming solution
silicon substrate
film forming
type
Prior art date
Application number
PCT/JP2010/072960
Other languages
English (en)
French (fr)
Inventor
敬宏 橋本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10840911A priority Critical patent/EP2521186A1/en
Priority to CN2010800596151A priority patent/CN102687284A/zh
Priority to JP2011547552A priority patent/JPWO2011081054A1/ja
Priority to US13/515,045 priority patent/US20120301998A1/en
Publication of WO2011081054A1 publication Critical patent/WO2011081054A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar battery cell.
  • Solar cells take out current by separating electrons and holes generated in the semiconductor substrate by light incident on the semiconductor substrate at a pn junction.
  • an antireflection film can be formed on one main surface of the semiconductor substrate. It is done.
  • Patent Document 1 Japanese Patent Laid-Open No. 53-14695
  • a coating composition prepared by mixing n-butyl orthotitanate, acetic acid and ethyl alcohol is applied on a silicon substrate and heated in air.
  • a technique for forming an antireflection film made of a titanium oxide thin film on a silicon substrate is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 54-76629
  • a coating composition prepared by mixing ethyl alcohol, phosphorus pentoxide, isopropyl titanate and acetic acid is applied on a silicon substrate and is applied in the atmosphere.
  • a titanium oxide thin film containing phosphorus as an impurity is formed on the silicon substrate by heating with, and then phosphorus is diffused from the titanium oxide thin film to the silicon substrate by heating in a nitrogen atmosphere.
  • a technique for forming an antireflection film made of a thin film and forming a pn junction inside a silicon substrate is disclosed.
  • Patent Document 1 and Patent Document 2 described above when an antireflection film is formed on a silicon substrate by applying a solution on the silicon substrate and heating, it is formed on the silicon substrate. There was a problem that the antireflection film became clouded and the appearance of the solar battery cell was impaired.
  • an object of the present invention is to provide a method for manufacturing a solar cell that can stably manufacture a solar cell having an excellent appearance by suppressing the cloudiness of the antireflection film. is there.
  • the present invention includes a step of applying an antireflection film forming solution containing at least one of a metal oxide and a metal oxide precursor to one main surface of a semiconductor substrate, and a semiconductor coated with the antireflection film forming solution Heating the substrate, and applying the antireflection film forming solution in an atmosphere in which the water content is 0 g / m 3 or more and 9.4 g / m 3 or less.
  • an antireflection film forming solution containing at least one of a metal oxide and a metal oxide precursor to one main surface of a semiconductor substrate, and a semiconductor coated with the antireflection film forming solution Heating the substrate, and applying the antireflection film forming solution in an atmosphere in which the water content is 0 g / m 3 or more and 9.4 g / m 3 or less.
  • the antireflection film-forming solution contains a dopant for forming a pn junction in the semiconductor substrate.
  • the antireflection film forming solution contains a dopant for forming an n-type dopant diffusion layer in the semiconductor substrate.
  • the antireflection film forming solution is applied in an atmosphere containing a dry gas in the step of applying the antireflection film forming solution.
  • the antireflection film forming solution is applied while introducing a dry gas into the atmosphere.
  • the dry gas contains at least one selected from the group consisting of oxygen, nitrogen, helium, neon, argon, krypton, xenon and radon.
  • the antireflection film forming solution is preferably a solution containing titanium alkoxide.
  • the present invention it is possible to provide a method for manufacturing a solar cell that can stably manufacture a solar cell having an excellent appearance by suppressing the white turbidity of the antireflection film.
  • FIG. 6 is a photograph of the main surface of a p-type polycrystalline silicon substrate immediately after spin coating of an antireflection film forming solution in Example 2.
  • FIG. 6 is a photograph of the main surface of a p-type polycrystalline silicon substrate immediately after spin coating of an antireflection film forming solution in Example 3.
  • FIG. 6 is a photograph of the main surface of a p-type polycrystalline silicon substrate immediately after spin coating of an antireflection film forming solution in Example 3.
  • a p-type silicon substrate 1 made of p-type silicon crystal is prepared as a semiconductor substrate.
  • the p-type silicon substrate 1 is obtained by, for example, cutting a silicon ingot obtained by recrystallizing a raw material of p-type silicon crystal in a crucible and then cutting the silicon block with a wire saw. Obtainable.
  • the surface of the p-type silicon substrate 1 may be etched with, for example, an alkali solution or an acid solution to remove a damaged layer when the p-type silicon substrate 1 is sliced. Further, fine irregularities (not shown) may be formed on the surface of the p-type silicon substrate 1 by adjusting the etching conditions at this time. When such unevenness is formed on the surface of the p-type silicon substrate 1, the reflection of light incident on the p-type silicon substrate 1 is reduced, and the photoelectric conversion efficiency of the solar battery cell can be increased.
  • an antireflection film-forming solution 5 a is formed on one main surface (hereinafter referred to as “first main surface”) which is one surface of the p-type silicon substrate 1.
  • first main surface which is one surface of the p-type silicon substrate 1.
  • the antireflection film forming solution 5a contains at least one of a metal oxide and a metal oxide precursor in a solvent.
  • metal oxide for example, titanium oxide, tin oxide, aluminum oxide, silicon dioxide, silicon oxide, magnesium oxide and the like can be used.
  • the metal oxide precursor for example, a material that is a precursor of the above metal oxide such as titanium alkoxide such as titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ) is used. it can.
  • a solvent containing alcohol such as isopropyl alcohol or ethanol can be used.
  • the antireflection film forming solution 5a preferably contains a dopant for forming a pn junction in the semiconductor substrate. In this case, it is not necessary to perform a step of diffusing a dopant for forming a pn junction in the semiconductor substrate by applying the antireflection film forming solution 5a, so that the solar cell can be manufactured more efficiently. It tends to be possible.
  • diphosphorus pentoxide containing phosphorus which is an n-type dopant can be included in the antireflection film forming solution 5a.
  • a compound containing boron which is a p-type dopant, can be included in the antireflection film forming solution 5a.
  • FIG. 3 is a schematic diagram illustrating an example of a process of applying the antireflection film forming solution 5a.
  • a coating apparatus for the antireflection film forming solution 5a a conventionally known coating apparatus such as a spin coating apparatus, an ink jet coating apparatus, or a screen printing apparatus can be used. A method of spin coating the antireflection film forming solution 5a using a coating apparatus will be described.
  • the p-type silicon substrate 1 is installed on the rotating plate 8 installed inside the coating apparatus 11 so that the first main surface of the p-type silicon substrate 1 faces upward.
  • the antireflection film forming solution 5a is applied onto the surface of the p type silicon substrate 1 by the application nozzle 9 while rotating the p type silicon substrate 1 by rotating the rotating plate 8.
  • Spin coating 5a is performed.
  • the content of water is introduced by introducing the dry gas from the dry gas supply device 10 through the dry gas introduction tube 14 into the atmosphere in which the antireflection film forming solution 5a inside the coating device 11 is being spin-coated. Is applied by spin coating of the antireflection film-forming solution 5a in an atmosphere of 0 g / m 3 or more and 9.4 g / m 3 or less.
  • the present inventor has formed a solar cell using a titanium alkoxide (for example, Ti [OCH (CH 3 ) 2 ] 4 ) solution as the antireflection film forming solution. It has been found that the antireflection film becomes cloudy and the appearance of the solar battery cell may be impaired. Further, it has been found that such clouding of the antireflection film occurs relatively remarkably when diphosphorus pentoxide is mixed and used as the n-type dopant material in the antireflection film forming solution.
  • a titanium alkoxide for example, Ti [OCH (CH 3 ) 2 ] 4
  • the cause of white turbidity of the antireflection film is the hygroscopicity of the metal oxide and / or metal oxide precursor. That is, general metal oxides and metal oxide precursors used in the antireflection film forming solution have high hygroscopicity, and when applied in a high humidity atmosphere, the moisture in the atmosphere Reacts with and causes white turbidity of the antireflection film.
  • diphosphorus pentoxide is also highly hygroscopic and is considered to promote this cloudiness.
  • the antireflection film-forming solution 5a in an atmosphere having a water content of 0 g / m 3 or more and 9.4 g / m 3 or less, It has been found that the anti-reflection film formed from the anti-reflection film forming solution 5a can suppress white turbidity and can stably produce solar cells having an excellent appearance, thereby completing the present invention. It was.
  • FIG. 4 is a schematic diagram illustrating another example of the step of applying the antireflection film forming solution 5a.
  • the coating apparatus 11 is installed in the drying chamber 12, and an antireflection film is formed in the coating apparatus 11 while introducing the drying gas 7 from the drying gas introduction unit 13 into the atmosphere inside the drying chamber 12. It is characterized in that an application step of the solution 5a is performed.
  • the antireflection film is formed in an atmosphere having a water content of 0 g / m 3 or more and 9.4 g / m 3 or less by the dry gas 7 introduced from the dry gas introduction unit 13 into the atmosphere inside the drying chamber 12.
  • the solution 5a can be applied.
  • FIG. 5 is a schematic diagram illustrating another example of the step of applying the antireflection film forming solution 5a.
  • the example shown in FIG. 5 is characterized in that the dry gas supply device 10 shown in FIG. 3 and the dry gas introduction unit 13 shown in FIG. 4 are used in combination.
  • water is supplied by the dry gas introduced from the dry gas supply device 10 through the dry gas introduction pipe 14 into the coating device 11 and the dry gas 7 introduced from the dry gas introduction unit 13 into the atmosphere inside the drying chamber 12.
  • the antireflection film-forming solution 5a can be applied as an atmosphere having a content of 0 g / m 3 to 9.4 g / m 3 .
  • the dry gas for example, a gas having a water content of 0 g or more and 9.4 g or less per 1 m 3 of the dry gas can be used. Further, as the dry gas, it is preferable to use a gas containing at least one selected from the group consisting of oxygen, nitrogen, helium, neon, argon, krypton, xenon and radon. In this case, since the reaction between the antireflection film forming solution 5a and the dry gas can be suppressed, the white turbidity of the antireflection film can be further effectively suppressed and a solar cell having an excellent appearance can be stably obtained. There is a tendency to be able to manufacture.
  • the p-type silicon substrate 1 coated with the antireflection film forming solution 5a is heated.
  • the antireflection film forming solution 5a contains an n-type dopant, for example, as shown in the schematic cross-sectional view of FIG. 6, the antireflection film forming solution is formed on the first main surface of the p-type silicon substrate 1.
  • the solution 5 a is heated to form the antireflection film 5, and n-type dopant diffuses from the antireflection film forming solution 5 a to the surface of the p-type silicon substrate 1 on the first main surface of the p-type silicon substrate 1.
  • the n-type dopant diffusion layer 4 is formed.
  • the p-type silicon substrate 1 coated with the antireflection film forming solution 5a is heated, for example, at a temperature of 800 ° C. to 950 ° C. for 5 to 30 minutes, for example.
  • silver containing silver powder, glass frit, resin, and organic solvent is formed on the surface of the antireflection film 5 on the first main surface of the p-type silicon substrate 1.
  • the paste 2a is printed by screen printing or the like, and aluminum containing, for example, aluminum powder, glass frit, resin and organic solvent on the second main surface which is the surface opposite to the first main surface of the p-type silicon substrate 1
  • a silver paste (not shown) is printed on the aluminum paste 3a.
  • FIG. 9 shows a photograph of the appearance of the main surface of the p-type polycrystalline silicon substrate immediately after the above spin coating. As shown in FIG. 9, when the antireflection film forming solution was spin-coated in an atmosphere having a water content of 9.4 g / m 3 , no cloudiness was generated in the antireflection film forming solution.
  • a commercially available silver paste is printed on the surface of the antireflection film on the main surface of the p-type polycrystalline silicon substrate, and the side opposite to the side on which the antireflection film is formed on the p-type polycrystalline silicon substrate.
  • a commercially available aluminum paste was printed on almost the entire main surface, and a silver paste was printed on a part of the surface of the aluminum paste, and the silver paste and the aluminum paste were each dried in a temperature atmosphere of about 150 ° C.
  • FIG. 10 shows a photograph of the appearance of the main surface of the p-type polycrystalline silicon substrate immediately after the spin coating. As shown in FIG. 10, even when the antireflection film forming solution is spin-coated in an atmosphere of 25 ° C. with a water content of 6.7 g / m 3 , the antireflection film forming solution is clouded. There wasn't.
  • the p-type polycrystalline silicon substrate after the application of the anti-reflection film forming solution is heated to reflect the titanium oxide film on the main surface of the p-type polycrystalline silicon substrate.
  • a protective film was formed, and an n-type dopant diffusion layer was formed on the main surface of the p-type polycrystalline silicon substrate.
  • no cloudiness was generated in the antireflection film.
  • Example 2 Thereafter, in the same manner as in Example 1, a solar battery cell of Example 2 was produced. Also in the solar cell of Example 2, the antireflection film was not clouded, and a solar cell excellent in appearance could be produced. Therefore, in the production method of Example 2, the antireflection film was also clouded. It is possible to stably produce a solar battery cell that has an excellent appearance by being suppressed.
  • FIG. 11 shows a photograph of the appearance of the main surface of the p-type polycrystalline silicon substrate immediately after the spin coating. As shown in FIG. 11, even when the antireflection film forming solution is spin-coated in an atmosphere of 25 ° C. with a water content of 6.4 g / m 3 , white turbidity is generated in the antireflection film forming solution. There wasn't.
  • Example 4 Instead of the p-type polycrystalline silicon substrate used in Examples 1 to 3, an n-type single crystal silicon substrate having two substantially square main surfaces each having a side of 156 mm and a thickness of 120 ⁇ m was produced.
  • the n-type single crystal silicon substrate was prepared by slicing an n-type single crystal silicon ingot with a wire saw and then etching with an alkaline solution to remove the damaged layer on the surface.
  • n is formed on the main surface of the n-type single crystal silicon substrate that is not covered with the diffusion mask. A type dopant diffusion layer was formed, and then the diffusion mask was removed.
  • n-type single crystal silicon not covered with the diffusion mask A p-type dopant diffusion layer was formed on the main surface of the substrate, and then the diffusion mask was removed.
  • a solution for forming an antireflection film was applied by spin coating.
  • the atmosphere inside the spin coating apparatus during spin coating of the antireflection film forming solution was an atmosphere of 25 ° C. with a water content of 9.4 g / m 3 .
  • an antireflection film made of a titanium oxide film is formed on the main surface of the n-type single crystal silicon substrate.
  • an n-type dopant diffusion layer was formed by diffusing phosphorus into the main surface of the n-type single crystal silicon substrate.
  • an etching mask is formed on a part of the silicon oxide film formed on one main surface of the n-type single crystal silicon substrate by an inkjet printing method, and the silicon oxide film part not covered with the etching mask is formed.
  • the n-type dopant diffusion layer and the p-type dopant diffusion layer were respectively exposed by etching. Thereafter, the etching mask was removed.
  • region by the etching of a silicon oxide film was made smaller than the area of each area
  • a silver paste was printed on each exposed region of the n-type dopant diffusion layer and the p-type dopant diffusion layer by a screen printing method, and dried in an atmosphere at about 150 ° C.
  • the area where the silver paste was printed was larger than the area of the silicon oxide film removal area and smaller than the area of each of the n-type dopant diffusion layer and the p-type dopant diffusion layer. That is, the silver paste was printed on each region of the n-type dopant diffusion layer and the p-type dopant diffusion layer so as to cover a part of the silicon oxide film.
  • a silver paste printed on one main surface of the n-type single crystal silicon substrate was baked in air at a temperature of 860 ° C. to form a silver electrode.
  • the solar battery cell of Example 4 was produced.
  • An antireflection film was formed on one main surface of the n-type single crystal silicon substrate of the solar battery cell of Example 4, and an n-type dopant diffusion layer was formed immediately below the antireflection film.
  • a silicon oxide film and a silver electrode are formed on the other main surface of the n-type single crystal silicon substrate of the solar battery cell of Example 4, and an n-type dopant diffusion is directly below each of the silicon oxide film and the silver electrode.
  • a layer and a p-type dopant diffusion layer were formed.
  • a solar battery cell was produced in the same manner as in Example 4 except that the content of water in the atmosphere inside the spin coating apparatus during spin coating of the antireflection film forming solution was 6.7 g / m 3. In this case, the cloudiness of the antireflection film did not occur.
  • a solar battery cell was produced in the same manner as in Example 4 except that the content of water in the atmosphere inside the spin coater during spin coating of the antireflection film forming solution was 6.4 g / m 3. In this case, the cloudiness of the antireflection film did not occur.
  • FIG. 12 shows a photograph of the appearance of the main surface of the p-type polycrystalline silicon substrate immediately after the spin coating.
  • the antireflection film forming solution is spin-coated in an atmosphere of 25 ° C. with a water content of 11.2 g / m 3 , white turbidity is generated in the antireflection film forming solution. It was.
  • the p-type polycrystalline silicon substrate after the application of the anti-reflection film forming solution is heated to reflect the titanium oxide film on the main surface of the p-type polycrystalline silicon substrate.
  • a protective film was formed, and an n-type dopant diffusion layer was formed on the main surface of the p-type polycrystalline silicon substrate.
  • white turbidity still occurred in the antireflection film.
  • Example 1 Thereafter, in the same manner as in Example 1, a solar battery cell of Comparative Example 1 was produced.
  • the antireflection film has white turbidity, and a solar battery cell having a deteriorated appearance is manufactured. Therefore, in the manufacturing method of Comparative Example 1, the white turbidity of the antireflection film is suppressed. A solar battery cell having an excellent appearance cannot be stably produced.
  • Example 2 Thereafter, in the same manner as in Example 1, a solar battery cell of Comparative Example 2 was produced.
  • a white turbidity was generated in the antireflection film, and a solar cell having a deteriorated appearance was manufactured. Therefore, in the manufacturing method of Comparative Example 2, the white turbidity of the antireflection film was suppressed. A solar battery cell having an excellent appearance cannot be stably produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 半導体基板(1)の一方の主面に金属酸化物および金属酸化物前駆体の少なくとも一方を含有する反射防止膜形成用溶液(5a)を塗布する工程と、反射防止膜形成用溶液(5a)が塗布された半導体基板(1)を加熱する工程と、を含み、反射防止膜形成用溶液(5a)を塗布する工程において、反射防止膜形成用溶液(5a)が水の含有量が0g/m3以上9.4g/m3以下の雰囲気で塗布される太陽電池セルの製造方法である。

Description

太陽電池セルの製造方法
 本発明は、太陽電池セルの製造方法に関する。
 太陽光エネルギを直接電気エネルギに変換する太陽電池セルは、近年、特に地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。太陽電池セルとしては、化合物半導体または有機材料を用いたものなど様々な種類があるが、現在、主流となっているのは、半導体基板としてシリコン結晶を用いたものである。
 太陽電池セルは、半導体基板に光が入射することによって半導体基板の内部に発生した電子と正孔とをpn接合で分離することによって電流を取り出している。このような太陽電池セルにおいては、半導体基板に入射する光の反射率を低減させることによって光電変換効率を向上させることができることから、半導体基板の一方の主面に反射防止膜を形成することが行なわれている。
 たとえば特許文献1(特開昭53-146995号公報)には、オルトチタン酸nブチル、酢酸およびエチルアルコールを混合して作製した塗布体組成物をシリコン基板上に塗布して空気中で加熱することにより、シリコン基板上に酸化チタン薄膜からなる反射防止膜を形成する技術が開示されている。
 また、特許文献2(特開昭54-76629号公報)には、エチルアルコール、五酸化リン、チタン酸イソプロピル及び酢酸を混合して作製した塗布体組成物をシリコン基板上に塗布して大気中で加熱することによりリンを不純物として含む酸化チタン薄膜をシリコン基板上に形成し、その後、窒素雰囲気中で加熱することにより酸化チタン薄膜からリンをシリコン基板に拡散させて、シリコン基板上に酸化チタン薄膜からなる反射防止膜を形成するとともに、シリコン基板の内部にpn接合を形成する技術が開示されている。
特開昭53-146995号公報 特開昭54-76629号公報
 しかしながら、上記の特許文献1および特許文献2に記載されているように、シリコン基板上への溶液の塗布および加熱によりシリコン基板上に反射防止膜を形成した場合には、シリコン基板上に形成された反射防止膜が白濁して、太陽電池セルの外観を損なうという問題があった。
 上記の事情に鑑みて、本発明の目的は、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができる太陽電池セルの製造方法を提供することにある。
 本発明は、半導体基板の一方の主面に金属酸化物および金属酸化物前駆体の少なくとも一方を含有する反射防止膜形成用溶液を塗布する工程と、反射防止膜形成用溶液が塗布された半導体基板を加熱する工程と、を含み、反射防止膜形成用溶液を塗布する工程において、反射防止膜形成用溶液が水の含有量が0g/m3以上9.4g/m3以下の雰囲気で塗布される太陽電池セルの製造方法である。
 ここで、本発明の太陽電池セルの製造方法においては、反射防止膜形成用溶液が、半導体基板にpn接合を形成するためのドーパントを含むことが好ましい。
 また、本発明の太陽電池セルの製造方法においては、反射防止膜形成用溶液が、半導体基板にn型ドーパント拡散層を形成するためのドーパントを含むことが好ましい。
 また、本発明の太陽電池セルの製造方法においては、反射防止膜形成用溶液を塗布する工程において、乾燥気体を含む雰囲気で反射防止膜形成用溶液が塗布されることが好ましい。
 また、本発明の太陽電池セルの製造方法においては、雰囲気中に乾燥気体を導入しながら反射防止膜形成用溶液が塗布されることが好ましい。
 また、本発明の太陽電池セルの製造方法において、乾燥気体は、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンおよびラドンからなる群から選択された少なくとも1種を含むことが好ましい。
 また、本発明の太陽電池セルの製造方法において、反射防止膜形成用溶液は、チタンアルコキシドを含む溶液であることが好ましい。
 本発明によれば、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができる太陽電池セルの製造方法を提供することができる。
本発明の太陽電池セルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。 本発明の太陽電池セルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。 反射防止膜形成用溶液を塗布する工程の一例を図解する模式図である。 反射防止膜形成用溶液を塗布する工程の一例を図解する模式図である。 反射防止膜形成用溶液を塗布する工程の一例を図解する模式図である。 本発明の太陽電池セルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。 本発明の太陽電池セルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。 本発明の太陽電池セルの製造方法の一例により製造される太陽電池セルの一例の模式的な断面図である。 実施例1における反射防止膜形成用溶液のスピン塗布直後のp型多結晶シリコン基板の主面の写真である。 実施例2における反射防止膜形成用溶液のスピン塗布直後のp型多結晶シリコン基板の主面の写真である。 実施例3における反射防止膜形成用溶液のスピン塗布直後のp型多結晶シリコン基板の主面の写真である。 比較例1における反射防止膜形成用溶液のスピン塗布直後のp型多結晶シリコン基板の主面の写真である。 比較例2における反射防止膜形成用溶液のスピン塗布直後のp型多結晶シリコン基板の主面の写真である。
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 まず、図1の模式的断面図に示すように、半導体基板としてp型シリコン結晶からなるp型シリコン基板1を用意する。ここで、p型シリコン基板1は、たとえば、p型シリコン結晶の原料を坩堝で溶解した後に再結晶化して得られたシリコンインゴットをシリコンブロックに切断した後に、シリコンブロックをワイヤソーで切断することにより得ることができる。
 なお、p型シリコン基板1の表面は、たとえば、アルカリ溶液または酸溶液によってエッチングされて、p型シリコン基板1のスライス時のダメージ層が除去されていてもよい。また、このときのエッチング条件を調整することによって、p型シリコン基板1の表面に微小な凹凸(図示せず)を形成してもよい。p型シリコン基板1の表面にこのような凹凸が形成されている場合には、p型シリコン基板1に入射する光の反射が低減されて、太陽電池セルの光電変換効率を高めることができる。
 次に、図2の模式的断面図に示すように、p型シリコン基板1の片側の表面である一方の主面(以下、「第1主面」という)上に反射防止膜形成用溶液5aを塗布する。ここで、反射防止膜形成用溶液5aは、金属酸化物および金属酸化物前駆体の少なくとも一方を溶媒中に含んでいる。
 ここで、金属酸化物としては、たとえば、酸化チタン、酸化スズ、酸化アルミニウム、二酸化ケイ素、酸化ケイ素、酸化マグネシウムなどを用いることができる。
 また、金属酸化物前駆体としては、たとえば、チタンテトライソプロポキシド(Ti[OCH(CH324)などのチタンアルコキシドなどの上記の金属酸化物の前駆体となる材料を用いることができる。
 また、溶媒としては、たとえば、イソプロピルアルコールやエタノールなどのアルコールを含む溶媒などを用いることができる。
 また、反射防止膜形成用溶液5aは、上記以外にも、半導体基板にpn接合を形成するためのドーパントを含んでいることが好ましい。この場合には、反射防止膜形成用溶液5aの塗布によって、半導体基板にpn接合を形成するためのドーパントを拡散させる工程を行なう必要がないため、より効率的に太陽電池セルを製造することができる傾向にある。たとえば、本実施の形態においては、n型ドーパントであるリンを含む五酸化二リンなどが反射防止膜形成用溶液5a中に含めることができる。なお、半導体基板がn型の導電型を有する場合には、p型ドーパントであるボロンを含む化合物などを反射防止膜形成用溶液5a中に含めることができる。
 図3に、反射防止膜形成用溶液5aを塗布する工程の一例を図解する模式図を示す。なお、反射防止膜形成用溶液5aの塗布装置としては、スピン塗布装置、インクジェット塗布装置、またはスクリーン印刷装置などの従来から公知の塗布装置を用いることができるが、本実施の形態においては、スピン塗布装置を用いて反射防止膜形成用溶液5aをスピン塗布する方法について説明する。
 まず、塗布装置11の内部に設置された回転板8上にp型シリコン基板1の第1主面が上方を向くようにp型シリコン基板1を設置する。
 そして、回転板8を回転させることによってp型シリコン基板1を回転させながら塗布ノズル9により反射防止膜形成用溶液5aをp型シリコン基板1の表面上に塗布することによって反射防止膜形成用溶液5aのスピン塗布を行なう。このとき、乾燥気体供給装置10から乾燥気体を乾燥気体導入管14を通して塗布装置11の内部の反射防止膜形成用溶液5aのスピン塗布が行なわれている雰囲気に導入することによって、水の含有量が0g/m3以上9.4g/m3以下の雰囲気で反射防止膜形成用溶液5aのスピン塗布を行なう。
 本発明者は、反射防止膜形成用溶液として、チタンアルコキシド(たとえばTi[OCH(CH324)溶液を使用した太陽電池セルの製造において、当該反射防止膜形成用溶液から形成された反射防止膜が白濁し、太陽電池セルの外観が損なわれてしまう場合があることを見い出した。また、このような反射防止膜の白濁は、反射防止膜形成用溶液にn型ドーパント材料として五酸化二リンを混合して使用する場合に、比較的顕著に発生することを見い出した。
 そして、本発明者が鋭意検討した結果、反射防止膜の白濁の原因が金属酸化物および/または金属酸化物前駆体の吸湿性にあることを見い出した。すなわち、反射防止膜形成用溶液に使用される、一般的な金属酸化物および金属酸化物前駆体はそれぞれ吸湿性が高く、湿度の高い雰囲気で塗布が行なわれた場合には、雰囲気中の水分と反応して、反射防止膜の白濁の原因となる。また、五酸化二リンも吸湿性が高いため、この白濁を助長するものと考えられる。
 そして、本発明者がさらに鋭意検討した結果、上記のように、水の含有量が0g/m3以上9.4g/m3以下の雰囲気で反射防止膜形成用溶液5aを塗布することによって、反射防止膜形成用溶液5aから形成される反射防止膜の白濁を抑制することができ、優れた外観を有する太陽電池セルを安定して製造することができることを見い出し、本発明を完成するに至った。
 図4に、反射防止膜形成用溶液5aを塗布する工程の他の一例を図解する模式図を示す。図4に示す例においては、塗布装置11を乾燥室12内に設置し、乾燥気体導入部13から乾燥室12の内部の雰囲気に乾燥気体7を導入しながら、塗布装置11において反射防止膜形成用溶液5aの塗布工程を行なうことを特徴としている。この例においては、乾燥気体導入部13から乾燥室12の内部の雰囲気に導入される乾燥気体7によって水の含有量が0g/m3以上9.4g/m3以下の雰囲気として反射防止膜形成用溶液5aを塗布することができる。
 図5に、反射防止膜形成用溶液5aを塗布する工程の他の一例を図解する模式図を示す。図5に示す例においては、図3に示される乾燥気体供給装置10と、図4に示される乾燥気体導入部13とを併用していることを特徴としている。この例においては、乾燥気体供給装置10から乾燥気体導入管14を通して塗布装置11に導入される乾燥気体、および乾燥気体導入部13から乾燥室12の内部の雰囲気に導入される乾燥気体7によって水の含有量が0g/m3以上9.4g/m3以下の雰囲気として反射防止膜形成用溶液5aを塗布することができる。
 なお、乾燥気体としては、たとえば水の含有量が乾燥気体1m3当たり0g以上9.4g以下である気体を用いることができる。また、乾燥気体としては、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンおよびラドンからなる群から選択された少なくとも1種を含むものを用いることが好ましい。この場合には、反射防止膜形成用溶液5aと乾燥気体との反応を抑制することができるため、反射防止膜の白濁をさらに有効に抑制して優れた外観を有する太陽電池セルを安定して製造することができる傾向にある。
 上記のように反射防止膜形成用溶液5aをp型シリコン基板1の第1主面上に塗布した後に、反射防止膜形成用溶液5aが塗布されたp型シリコン基板1を加熱する。これにより、反射防止膜形成用溶液5aがn型ドーパントを含む場合には、たとえば図6の模式的断面図に示すように、p型シリコン基板1の第1主面上に反射防止膜形成用溶液5aが加熱されて反射防止膜5が形成されるとともに、p型シリコン基板1の第1主面に反射防止膜形成用溶液5aからn型ドーパントがp型シリコン基板1の表面に拡散することによってn型ドーパント拡散層4が形成される。ここで、反射防止膜形成用溶液5aが塗布されたp型シリコン基板1は、たとえば800℃~950℃の温度でたとえば5~30分間加熱される。
 次に、図7の模式的断面図に示すように、p型シリコン基板1の第1主面上の反射防止膜5の表面上にたとえば、銀粉末、ガラスフリット、樹脂および有機溶剤を含む銀ペースト2aをスクリーン印刷などにより印刷するとともに、p型シリコン基板1の第1主面とは反対側の表面となる第2主面上にたとえば、アルミニウム粉末、ガラスフリット、樹脂および有機溶剤を含むアルミニウムペースト3aをスクリーン印刷などにより印刷した後にアルミニウムペースト3a上に銀ペースト(図示せず)を印刷する。
 その後、上記の銀ペーストおよびアルミニウムペーストの塗布後のp型シリコン基板1を加熱することによって、図8の模式的断面図に示すように、p型シリコン基板1の第1主面上の反射防止膜5の表面上の銀ペースト2aがファイヤースルーしてp型シリコン基板1の第1主面のn型ドーパント拡散層4に電気的に接続する銀電極2が形成される。また、p型シリコン基板1の第2主面にはアルミニウムペースト3aからアルミニウムが拡散してp型ドーパント拡散層6が形成されるとともに、p型ドーパント拡散層6に電気的に接続するアルミニウム電極3が形成され、さらにはアルミニウムペースト3a上の銀ペーストが焼成することによってアルミニウム電極3上に銀電極(図示せず)が形成される。
 上記のようにして作製された図8に示される太陽電池セルにおいては、p型シリコン基板1の第1の主面にn型ドーパント拡散層4が形成されることによって、p型シリコン基板1とn型ドーパント拡散層4とによりpn接合が形成され、p型シリコン基板1の第1の主面上には反射防止膜5と銀電極2とがそれぞれ形成されている。また、p型シリコン基板1の第2主面には、p型ドーパント拡散層6が形成されており、p型ドーパント拡散層6上にはアルミニウム電極3が形成され、アルミニウム電極3上には銀電極(図示せず)が形成されている。
 本実施の形態においては、上述したように、水の含有量が0g/m3以上9.4g/m3以下の雰囲気でp型シリコン基板1の第1の主面上に反射防止膜5の前駆体となる反射防止膜形成用溶液5aが塗布されている。そのため、図8に示される太陽電池セルは、反射防止膜5における白濁の発生が抑制され、量産した場合でも安定して優れた外観を有するものとすることができる。
 なお、上記のようにして作製された図8に示される太陽電池セルは、その複数が直列に接続されて太陽電池ストリングとされた後、太陽電池ストリングを封止材によって封止して太陽電池モジュールとすることもできる。
 <実施例1>
 まず、1辺が156mmの正方形状の2つの主面を有し、かつ厚さ200μmのp型多結晶シリコン基板を作製した。ここで、p型多結晶シリコン基板は、p型多結晶シリコンインゴットをワイヤソーでスライスした後にアルカリ溶液でエッチングして表面のダメージ層を除去することによって作製した。
 次に、p型多結晶シリコン基板の一方の主面上に、チタンテトライソプロポキシドを5質量%含むとともに五酸化二リンを3質量%含むイソプロピルアルコール溶液を反射防止膜形成用溶液として塗布した。ここで、反射防止膜形成用溶液の塗布装置としてはスピン塗布装置を用いた。そして、スピン塗布装置の内部に乾燥空気を導入してスピン塗布装置の内部の雰囲気を水の含有量が9.4g/m3である25℃の雰囲気とし、当該雰囲気中でp型多結晶シリコン基板の主面上に上記組成の反射防止膜形成用溶液をスピン塗布した。なお、スピン塗布装置の内部の雰囲気の水の含有量の測定は、佐藤計量器製作所製の湿度測定器(THERMO/HYGROMETER MODEL SK-140TRH)を用いて当該雰囲気の25℃における相対湿度(%)を測定し、25℃における飽和水蒸気量である23.0(g/m3)と当該相対湿度(%)との積から雰囲気中の水の含有量を算出した。
 図9に、上記のスピン塗布直後のp型多結晶シリコン基板の主面の外観の写真を示す。図9に示すように、水の含有量が9.4g/m3の雰囲気で反射防止膜形成用溶液をスピン塗布した場合には、反射防止膜形成用溶液に白濁が生じていなかった。
 次に、反射防止膜形成用溶液の塗布後のp型多結晶シリコン基板を900℃で30分間加熱することによって、p型多結晶シリコン基板の主面上に酸化チタン膜からなる反射防止膜を形成するとともに、p型多結晶シリコン基板の主面にリンを拡散することによってn型ドーパント拡散層を形成した。ここで、反射防止膜の状態を目視で確認したところ反射防止膜に白濁は生じていなかった。
 次に、p型多結晶シリコン基板の主面上の反射防止膜の表面上に市販の銀ペーストを印刷するとともに、p型多結晶シリコン基板の反射防止膜が形成されている側とは反対側の主面のほぼ全面に市販のアルミニウムペーストを印刷し、さらにアルミニウムペーストの表面の一部に銀ペーストを印刷して、銀ペーストおよびアルミニウムペーストをそれぞれ150℃程度の温度雰囲気で乾燥させた。
 その後、p型多結晶シリコン基板の一方の主面上に塗布された銀ペースト、p型多結晶シリコン基板の他方の主面上に塗布されたアルミニウムペーストおよび銀ペーストを空気中で860℃の温度で焼成した。
 これにより、p型多結晶シリコン基板の一方の主面上においては、銀ペーストがファイヤースルーすることによって反射防止膜を貫通してn型ドーパント拡散層に電気的に接続した銀ペーストの焼成物である銀電極が形成された。また、p型多結晶シリコン基板の他方の主面にはアルミニウムペーストからアルミニウムが拡散することによってp型ドーパント拡散層が形成されるとともに、アルミニウムペーストの焼成物であるアルミニウム電極と、銀ペーストの焼成物である銀電極とが形成され、実施例1の太陽電池セルが作製された。
 実施例1においては、反射防止膜に白濁が生じておらず、外観に優れた太陽電池セルを製造することができたため、実施例1の製造方法においては、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができる。
 <実施例2>
 雰囲気中の水の含有量を6.7g/m3としたこと以外は実施例1と同様にして、p型多結晶シリコン基板の一方の主面上に反射防止膜形成用溶液をスピン塗布した。
 図10に、上記のスピン塗布直後のp型多結晶シリコン基板の主面の外観の写真を示す。図10に示すように、水の含有量が6.7g/m3である25℃の雰囲気中で反射防止膜形成用溶液をスピン塗布した場合にも反射防止膜形成用溶液に白濁が生じていなかった。
 次に、実施例1と同様にして、反射防止膜形成用溶液の塗布後のp型多結晶シリコン基板を加熱することによって、p型多結晶シリコン基板の主面上に酸化チタン膜からなる反射防止膜を形成するとともに、p型多結晶シリコン基板の主面にn型ドーパント拡散層を形成した。ここで、反射防止膜の状態を目視で確認したところ反射防止膜に白濁は生じていなかった。
 その後、実施例1と同様にして、実施例2の太陽電池セルを作製した。実施例2の太陽電池セルにおいても反射防止膜に白濁が生じておらず、外観に優れた太陽電池セルを製造することができたため、実施例2の製造方法においても、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができる。
 <実施例3>
 雰囲気中の水の含有量を6.4g/m3としたこと以外は実施例1と同様にして、p型多結晶シリコン基板の一方の主面上に反射防止膜形成用溶液をスピン塗布した。
 図11に、上記のスピン塗布直後のp型多結晶シリコン基板の主面の外観の写真を示す。図11に示すように、水の含有量が6.4g/m3である25℃の雰囲気中で反射防止膜形成用溶液をスピン塗布した場合にも反射防止膜形成用溶液に白濁が生じていなかった。
 次に、実施例1と同様にして、反射防止膜形成用溶液の塗布後のp型多結晶シリコン基板を加熱することによって、p型多結晶シリコン基板の主面上に酸化チタン膜からなる反射防止膜を形成するとともに、p型多結晶シリコン基板の主面にn型ドーパント拡散層を形成した。ここで、反射防止膜の状態を目視で確認したところ反射防止膜に白濁は生じていなかった。
 その後、実施例1と同様にして、実施例3の太陽電池セルを作製した。実施例3の太陽電池セルにおいても反射防止膜に白濁が生じておらず、外観に優れた太陽電池セルを製造することができたため、実施例3の製造方法においても、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができる。
 <実施例4>
 実施例1~3で用いたp型多結晶シリコン基板の代わりに、1辺が156mmの略正方形状の2つの主面を有し、かつ厚さ120μmのn型単結晶シリコン基板を作製した。ここで、n型単結晶シリコン基板は、n型単結晶シリコンインゴットをワイヤソーでスライスした後にアルカリ溶液でエッチングして表面のダメージ層を除去することによって作製した。
 次に、n型単結晶シリコン基板の一方の主面の一部に、インクジェット印刷法によって拡散マスクを形成した後に、拡散マスクで覆われていないn型単結晶シリコン基板の主面の箇所にn型ドーパント拡散層を形成し、その後拡散マスクを除去した。
 次に、n型単結晶シリコン基板のn型ドーパント拡散層形成側の主面の他の一部に、インクジェット印刷法によって拡散マスクを形成した後に、拡散マスクで覆われていないn型単結晶シリコン基板の主面の箇所にp型ドーパント拡散層を形成し、その後拡散マスクを除去した。
 以上により、n型単結晶シリコン基板の主面の一部にn型ドーパント拡散層が形成されるとともに、n型単結晶シリコン基板の主面のn型ドーパント拡散層とは異なる箇所にp型ドーパント拡散層が形成された。
 次に、n型単結晶シリコン基板のn型ドーパント拡散層およびp型ドーパント拡散層の形成側とは反対側の主面上に、実施例1~3と同様にして、反射防止膜形成用溶液をスピン塗布した。ここで、反射防止膜形成用溶液のスピン塗布時のスピン塗布装置の内部の雰囲気は、水の含有量が9.4g/m3である25℃の雰囲気とされた。スピン塗布直後のn型単結晶シリコン基板の表面を目視で確認したところ、反射防止膜形成用溶液に白濁が生じていなかった。
 次に、反射防止膜形成用溶液の塗布後のn型単結晶シリコン基板を900℃で30分間加熱することによって、n型単結晶シリコン基板の主面上に酸化チタン膜からなる反射防止膜を形成するとともに、n型単結晶シリコン基板の当該主面にリンを拡散することによってn型ドーパント拡散層を形成した。ここで、反射防止膜の状態を目視で確認したところ反射防止膜に白濁は生じていなかった。
 次に、酸素を含む雰囲気中で、n型単結晶シリコン基板を加熱することによって、n型単結晶シリコン基板のn型ドーパント拡散層およびp型ドーパント拡散層の形成側の主面上に酸化シリコン膜を形成した。
 次に、n型単結晶シリコン基板の一方の主面上に形成された酸化シリコン膜の一部に、インクジェット印刷法によってエッチングマスクを形成し、エッチングマスクで覆われていない酸化シリコン膜の部分をエッチングにより除去してn型ドーパント拡散層およびp型ドーパント拡散層をそれぞれ露出させた。その後、エッチングマスクを除去した。なお、酸化シリコン膜のエッチングによる除去領域の面積は、n型ドーパント拡散層およびp型ドーパント拡散層のそれぞれの領域の面積よりも小さくされた。
 次に、n型ドーパント拡散層およびp型ドーパント拡散層のそれぞれの露出領域に銀ペーストをスクリーン印刷法により印刷し、約150℃の雰囲気中で乾燥させた。銀ペーストを印刷した領域は、酸化シリコン膜の除去領域の面積よりも大きく、n型ドーパント拡散層およびp型ドーパント拡散層のそれぞれの領域の面積よりも小さくされた。すなわち、銀ペーストは、酸化シリコン膜の一部を覆うように、n型ドーパント拡散層およびp型ドーパント拡散層のそれぞれの領域上に印刷された。
 その後、n型単結晶シリコン基板の一方の主面上に印刷された銀ペーストを空気中で860℃の温度で焼成して銀電極を形成した。
 以上により、実施例4の太陽電池セルを作製した。実施例4の太陽電池セルのn型単結晶シリコン基板の一方の主面上には反射防止膜が形成され、反射防止膜の直下にはn型ドーパント拡散層が形成された。また、実施例4の太陽電池セルのn型単結晶シリコン基板の他方の主面上には酸化シリコン膜および銀電極が形成され、酸化シリコン膜および銀電極のそれぞれの直下にはn型ドーパント拡散層およびp型ドーパント拡散層が形成された。
 実施例4においては、反射防止膜に白濁が生じておらず、外観に優れた太陽電池セルを製造することができたため、実施例4の製造方法においては、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができる。
 また、反射防止膜形成用溶液のスピン塗布時のスピン塗布装置の内部の雰囲気中の水の含有量を6.7g/m3としたこと以外は実施例4と同様にして太陽電池セルを作製した場合にも、反射防止膜の白濁は生じていなかった。
 さらに、反射防止膜形成用溶液のスピン塗布時のスピン塗布装置の内部の雰囲気中の水の含有量を6.4g/m3としたこと以外は実施例4と同様にして太陽電池セルを作製した場合にも、反射防止膜の白濁は生じていなかった。
 <比較例1>
 雰囲気中の水の含有量を11.2g/m3としたこと以外は実施例1と同様にして、p型多結晶シリコン基板の一方の主面上に反射防止膜形成用溶液をスピン塗布した。
 図12に、上記のスピン塗布直後のp型多結晶シリコン基板の主面の外観の写真を示す。図12に示すように、水の含有量が11.2g/m3である25℃の雰囲気中で反射防止膜形成用溶液をスピン塗布した場合には反射防止膜形成用溶液に白濁が生じていた。
 次に、実施例1と同様にして、反射防止膜形成用溶液の塗布後のp型多結晶シリコン基板を加熱することによって、p型多結晶シリコン基板の主面上に酸化チタン膜からなる反射防止膜を形成するとともに、p型多結晶シリコン基板の主面にn型ドーパント拡散層を形成した。ここで、反射防止膜の状態を目視で確認したところ、反射防止膜に白濁が依然として生じていた。
 その後、実施例1と同様にして、比較例1の太陽電池セルを作製した。比較例1の太陽電池セルにおいては反射防止膜に白濁が生じており、外観が損なわれた太陽電池セルが製造されたため、比較例1の製造方法においては、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができない。
 <比較例2>
 雰囲気中の水の含有量を9.7g/m3としたこと以外は実施例1と同様にして、p型多結晶シリコン基板の一方の主面上に反射防止膜形成用溶液をスピン塗布した。
 図13に、上記のスピン塗布直後のp型多結晶シリコン基板の主面の外観の写真を示す。図13に示すように、水の含有量が9.7g/m3である25℃の雰囲気中で反射防止膜形成用溶液をスピン塗布した場合には反射防止膜形成用溶液に白濁が生じていた。
 次に、実施例1と同様にして、反射防止膜形成用溶液の塗布後のp型多結晶シリコン基板を加熱することによって、p型多結晶シリコン基板の主面上に酸化チタン膜からなる反射防止膜を形成するとともに、p型多結晶シリコン基板の主面にn型ドーパント拡散層を形成した。ここで、反射防止膜の状態を目視で確認したところ、反射防止膜に白濁が依然として生じていた。
 その後、実施例1と同様にして、比較例2の太陽電池セルを作製した。比較例2の太陽電池セルにおいては反射防止膜に白濁が生じており、外観が損なわれた太陽電池セルが製造されたため、比較例2の製造方法においては、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができない。
 <まとめ>
 以上の実施例1~3および比較例1~2の結果を検討すると、水の含有量が9.4g/m3以下の雰囲気でp型多結晶シリコン基板の一方の主面上に反射防止膜形成用溶液を塗布した場合には、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができ、水の含有量が低下してもその傾向は変わらなかったことから、水の含有量が0g/m3以上9.4g/m3以下の雰囲気で反射防止膜形成用溶液を塗布すれば、反射防止膜の白濁を抑制して優れた外観を有する太陽電池セルを安定して製造することができると考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、太陽電池セルの製造方法に好適に利用することができる。
 1 p型シリコン基板、2 銀電極、2a 銀ペースト、3 アルミニウム電極、3a アルミニウムペースト、4 n型ドーパント拡散層、5 反射防止膜、5a 反射防止膜形成用溶液、6 p型ドーパント拡散層、7 乾燥気体、8 回転板、9 塗布ノズル、10 乾燥気体供給装置、11 塗布装置、12 乾燥室、13 乾燥気体導入部、14 乾燥気体導入管。

Claims (7)

  1.  半導体基板(1)の一方の主面に金属酸化物および金属酸化物前駆体の少なくとも一方を含有する反射防止膜形成用溶液(5a)を塗布する工程と、
     前記反射防止膜形成用溶液(5a)が塗布された前記半導体基板(1)を加熱する工程と、を含み、
     前記反射防止膜形成用溶液(5a)を塗布する工程において、前記反射防止膜形成用溶液(5a)は、水の含有量が0g/m3以上9.4g/m3以下の雰囲気で塗布される、太陽電池セルの製造方法。
  2.  前記反射防止膜形成用溶液(5a)が、前記半導体基板(1)にpn接合を形成するためのドーパントを含む、請求項1に記載の太陽電池セルの製造方法。
  3.  前記反射防止膜形成用溶液(5a)が、前記半導体基板(1)にn型ドーパント拡散層(4)を形成するためのドーパントを含む、請求項1または2に記載の太陽電池セルの製造方法。
  4.  前記反射防止膜形成用溶液(5a)を塗布する工程において、前記反射防止膜形成用溶液(5a)は、前記雰囲気が乾燥気体(7)を含む雰囲気で塗布される、請求項1から3のいずれかに記載の太陽電池セルの製造方法。
  5.  前記反射防止膜形成用溶液(5a)を塗布する工程において、前記反射防止膜形成用溶液(5a)は、前記雰囲気中に乾燥気体(7)を導入しながら塗布される、請求項1から4のいずれかに記載の太陽電池セルの製造方法。
  6.  前記乾燥気体(7)は、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンおよびラドンからなる群から選択された少なくとも1種を含む、請求項4または5に記載の太陽電池セルの製造方法。
  7.  前記反射防止膜形成用溶液(5a)は、チタンアルコキシドを含む溶液である、請求項1から6のいずれかに記載の太陽電池セルの製造方法。
PCT/JP2010/072960 2009-12-28 2010-12-21 太陽電池セルの製造方法 WO2011081054A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10840911A EP2521186A1 (en) 2009-12-28 2010-12-21 Method for manufacturing a solar cell
CN2010800596151A CN102687284A (zh) 2009-12-28 2010-12-21 太阳能电池单元的制造方法
JP2011547552A JPWO2011081054A1 (ja) 2009-12-28 2010-12-21 太陽電池セルの製造方法
US13/515,045 US20120301998A1 (en) 2009-12-28 2010-12-21 Method for manufacturing solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-297479 2009-12-28
JP2009297479 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011081054A1 true WO2011081054A1 (ja) 2011-07-07

Family

ID=44226461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072960 WO2011081054A1 (ja) 2009-12-28 2010-12-21 太陽電池セルの製造方法

Country Status (6)

Country Link
US (1) US20120301998A1 (ja)
EP (1) EP2521186A1 (ja)
JP (1) JPWO2011081054A1 (ja)
KR (1) KR20120085333A (ja)
CN (1) CN102687284A (ja)
WO (1) WO2011081054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026693A (ja) * 2013-07-25 2015-02-05 株式会社ユーテック 膜の製造方法及びマルチチャンバー装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810252B (zh) * 2014-01-24 2018-07-06 中芯国际集成电路制造(上海)有限公司 底部抗反射涂层的涂布方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146995A (en) 1977-05-27 1978-12-21 Sharp Corp Production of titanium oxide film
JPS5476629A (en) 1977-11-30 1979-06-19 Sharp Corp Coating composition
JP2005033063A (ja) * 2003-07-08 2005-02-03 Sharp Corp 太陽電池用反射防止膜およびその作製方法
JP2010065174A (ja) * 2008-09-12 2010-03-25 Mitsubishi Chemicals Corp 組成物、反射防止膜基板、並びに、太陽電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251285A (en) * 1979-08-14 1981-02-17 Westinghouse Electric Corp. Diffusion of dopant from optical coating and single step formation of PN junction in silicon solar cell and coating thereon
US6632535B1 (en) * 2000-06-08 2003-10-14 Q2100, Inc. Method of forming antireflective coatings
US7193237B2 (en) * 2002-03-27 2007-03-20 Mitsubishi Chemical Corporation Organic semiconductor material and organic electronic device
AU2003281895A1 (en) * 2002-12-05 2004-06-23 Unaxis Balzers Ag Method and apparatus for control of layer thicknesses
JP4424307B2 (ja) * 2003-04-18 2010-03-03 日立化成工業株式会社 枝分れ構造を有するポリキノリン共重合体およびこれを用いた有機エレクトロルミネセンス素子
KR101256301B1 (ko) * 2006-07-19 2013-04-18 히타치가세이가부시끼가이샤 유기 일렉트로닉스용 재료, 유기 일렉트로닉스 소자 및 유기 일렉트로루미네센스 소자
CN101490864A (zh) * 2006-07-19 2009-07-22 日立化成工业株式会社 有机电子材料、有机电子元件和有机电致发光元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146995A (en) 1977-05-27 1978-12-21 Sharp Corp Production of titanium oxide film
JPS5476629A (en) 1977-11-30 1979-06-19 Sharp Corp Coating composition
JP2005033063A (ja) * 2003-07-08 2005-02-03 Sharp Corp 太陽電池用反射防止膜およびその作製方法
JP2010065174A (ja) * 2008-09-12 2010-03-25 Mitsubishi Chemicals Corp 組成物、反射防止膜基板、並びに、太陽電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026693A (ja) * 2013-07-25 2015-02-05 株式会社ユーテック 膜の製造方法及びマルチチャンバー装置

Also Published As

Publication number Publication date
JPWO2011081054A1 (ja) 2013-05-09
EP2521186A1 (en) 2012-11-07
US20120301998A1 (en) 2012-11-29
KR20120085333A (ko) 2012-07-31
CN102687284A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2626908B1 (en) Solar cell element and method for manufacturing same
TWI408816B (zh) A solar cell manufacturing method, a solar cell, and a method of manufacturing a semiconductor device
WO2012008061A1 (ja) ボロン拡散層を有するシリコン太陽電池セル及びその製造方法
EP3151286B1 (en) Solar cell element, method for manufacturing same and solar cell module
KR20090088860A (ko) 표면 패시베이션이 향상된 결정성 실리콘 태양 전지의 제조 방법
TWI502753B (zh) 半導體基板及其製造方法、太陽電池元件以及太陽電池
US20120325291A1 (en) Method for producing back electrode type, solar cell, back electrode type solar cell and back electrode type solar cell module
EP2355137B1 (en) Use of a composition for forming p-type diffusion layer and method for forming p-type diffusion layer
JP5539299B2 (ja) 太陽電池モジュールの製造方法
JP2014220276A (ja) 太陽電池の製造方法及び太陽電池
WO2014196247A1 (ja) 太陽電池および太陽電池モジュール
Richards et al. Potential cost reduction of buried-contact solar cells through the use of titanium dioxide thin films
TWI650872B (zh) 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統
EP3381058B1 (en) Preparation of anti-reflection and passivation layers of silicon surface
JP6688244B2 (ja) 高効率太陽電池の製造方法及び太陽電池セルの製造システム
WO2011081054A1 (ja) 太陽電池セルの製造方法
JP2006344883A (ja) 太陽電池の製造方法
US9520529B2 (en) Composition for forming P-type diffusion layer, method of forming P-type diffusion layer, and method of producing photovoltaic cell
JP5754411B2 (ja) 太陽電池の製造方法
US10312402B2 (en) P-type diffusion layer forming composition
JP5097617B2 (ja) 太陽電池およびその製造方法、それを備えた太陽電池システム
EP3702048B1 (en) Method for drying polyimide paste and method for producing solar cells capable of highly-efficient photoelectric conversion
JP4237435B2 (ja) 太陽電池の製造方法および太陽電池
TW201530791A (zh) n型擴散層形成組成物、n型擴散層的製造方法及太陽電池單元的製造方法
JP2010092961A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059615.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547552

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13515045

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127016284

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010840911

Country of ref document: EP