WO2011080972A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2011080972A1
WO2011080972A1 PCT/JP2010/070536 JP2010070536W WO2011080972A1 WO 2011080972 A1 WO2011080972 A1 WO 2011080972A1 JP 2010070536 W JP2010070536 W JP 2010070536W WO 2011080972 A1 WO2011080972 A1 WO 2011080972A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
carbon atoms
layer
indolocarbazole
Prior art date
Application number
PCT/JP2010/070536
Other languages
English (en)
French (fr)
Inventor
孝弘 甲斐
敏浩 山本
正樹 古森
めぐみ 松本
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201080059524.8A priority Critical patent/CN102696126B/zh
Priority to KR1020127019438A priority patent/KR101758865B1/ko
Priority to EP10840831.1A priority patent/EP2521196B1/en
Priority to US13/512,883 priority patent/US9260433B2/en
Priority to JP2011547407A priority patent/JP5596706B2/ja
Publication of WO2011080972A1 publication Critical patent/WO2011080972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an organic electroluminescent device containing an indolocarbazole compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 a green phosphorescent material typified by tris (2-phenylpyridine) iridium complex
  • CBP has a characteristic that it is easy to flow holes and electrons. The charge injection balance is lost, and excess holes flow out to the electron transport layer side. As a result, the light emission efficiency from Ir (ppy) 3 decreases.
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Document 3 an indolocarbazole compound as shown below is disclosed as a hole transport material.
  • Patent Document 4 an indolocarbazole compound as shown below is disclosed as a hole transport material.
  • Patent Document 5 discloses an indolocarbazole compound as shown below as a host material, and discloses that an organic EL device using the compound improves luminous efficiency and has high driving stability.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present invention relates to an organic electroluminescence device in which an anode, an organic layer including a phosphorescent light emitting layer and a cathode are laminated on a substrate, and a group consisting of a phosphorescent light emitting layer, a hole transport layer, an electron transport layer and a hole blocking layer.
  • An organic electroluminescent element comprising an indolocarbazole compound represented by the general formula (1) in at least one organic layer selected from:
  • L represents an (m + n + p + q) -valent aromatic hydrocarbon group having 6 to 50 carbon atoms or an (m + n + p + q) -valent aromatic heterocyclic group having 3 to 50 carbon atoms, Y 1 to Y
  • Each 4 is represented by any one of formulas (1a-1) to (1a-6), and at least one is a different group.
  • m is an integer of 1 to 3
  • n is an integer of 1 to 3
  • p is an integer of 0 to 3
  • q is an integer of 0 to 3
  • m + n + p + q is 2 to 6.
  • A is independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon group having 6 to 50 carbon atoms, or carbon.
  • An aromatic heterocyclic group having a number of 3 to 50 is shown.
  • R 1 to R 3 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic group having 3 to 11 carbon atoms. Represents a heterocyclic group.
  • R 3 may form a condensed ring together with the six-membered ring which R 3 is attached.
  • indolocarbazole compounds represented by general formula (1) indolocarbazole compounds represented by the following general formulas (2) to (7) are more preferred compounds.
  • L, A, R 1 to R 3 , m and n are the same as the general formula (1) and the formulas (1a-1) to (1a-6).
  • m and n are more preferably 1.
  • the organic electroluminescent element preferably has a light emitting layer containing the indolocarbazole compound and a phosphorescent dopant.
  • the indolocarbazole compound used in the organic electroluminescence device of the present invention is an indolocarbazole compound represented by the general formula (1).
  • L is an aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms, and is an (m + n + p + q) valent group.
  • Y 1 to Y 4 are groups represented by any of the different formulas (1a-1) to (1a-6).
  • m is an integer of 1 to 3
  • n is an integer of 1 to 3
  • p is an integer of 0 to 3
  • q is an integer of 0 to 3
  • m + n + p + q is 2 to 6.
  • Y 1 to Y 4 are monovalent groups in which R 1 to R 3 and A are substituted on the indolocarbazole skeleton, and a linking group bonded to L is generated from the N atom in the indolocarbazole skeleton.
  • the indolocarbazole skeleton is formed by condensing five rings, but there are isomers having different condensation positions.
  • Y 1 to Y 4 are groups represented by the formulas (1a-1) to (1a-6), and Y 1 to Y 4 are different groups. At least two of Y 1 to Y 4 are present as different groups.
  • L represents an aromatic hydrocarbon group having 6 to 50 carbon atoms and an aromatic heterocyclic group having 3 to 50 carbon atoms.
  • L include benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinoxaline, naphthyridine, carbazole, acridine, or an aromatic group in which a plurality of these aromatic rings are connected.
  • benzene, pyridine, pyrimidine, triazine, naphthalene, carbazole, or an (m + n + p + q) -valent group generated by removing hydrogen from an aromatic compound in which a plurality of these aromatic rings are connected is used.
  • a plurality of the aromatic rings are connected, they may be the same or different.
  • the group generated by removing hydrogen from the aromatic compound in which a plurality of aromatic rings are connected include, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, bistriazylbenzene, binaphthalene, phenylpyridine, diphenylpyridine, diphenylpyrimidine , Diphenyltriazine, phenylcarbazole, pyridylcarbazole and the like (m + n + p + q) -valent groups are included, and the connecting position of Y 1 , Y 2 , Y 3 and Y 4 is not limited, and even in the terminal ring, the central part
  • the ring may be
  • the aromatic hydrocarbon group or aromatic heterocyclic group may have a substituent, and when it has a substituent, preferred substituents include an alkyl group having 1 to 4 carbon atoms and a group having 3 to 6 carbon atoms.
  • a group generated from an aromatic compound in which a plurality of aromatic rings are linked is a divalent group, for example, represented by the following formulas (11) to (13).
  • Ar 1 to Ar 6 each represents an unsubstituted monocyclic or condensed aromatic ring.
  • the total number of substituents is 1 to 10. Preferably it is 1-6, more preferably 1-4. Further, when L, A and R 1 to R 3 have two or more substituents, they may be the same or different. In addition, in the calculation of the carbon number of L, A and R 1 to R 3 , when it has a substituent, the carbon number of the substituent is included.
  • Y 1 to Y 4 are represented by the formulas (1a-1) to (1a-6), respectively.
  • R 1 , R 2 and R 3 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, Represents a 6-12 aromatic hydrocarbon group or a C3-C11 aromatic heterocyclic group.
  • Preferred are hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a phenyl group, a naphthyl group, a carbazolyl group, a quinolyl group, and an isoquinolyl group.
  • they are hydrogen, a phenyl group, or a carbazolyl group.
  • R 3 forms a condensed ring with the central six-membered ring forming the indolocarbazole skeleton. May be.
  • R 3 may be a condensed ring.
  • an indole ring is preferable, and in this case, diindolocarbazole is formed. At this time, the indole ring may have a substituent.
  • the ring obtained by removing the six-membered ring from the condensed ring formed by condensation includes a pyrrole ring, a furan ring, a thiophene ring, an indole ring, a benzofuran ring, It can be a thiophene ring, a benzene ring, a naphthalene ring or the like. These rings may have a substituent, and are preferably indole rings which may have a substituent. In this case, when the 6-membered ring is included, a carbazole ring may be formed. If R 3 is condensed with the six-membered ring is a case where R 3 has a substitutable hydrogen atoms of the adjacent position is substituted position on the six-membered ring.
  • A is independently a monovalent alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon group having 6 to 50 carbon atoms, or an aromatic heterocyclic group having 3 to 50 carbon atoms. Show. Specific examples of preferred A include benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinoxaline, naphthyridine, carbazole, acridine, or aromatics in which a plurality of these are linked.
  • a monovalent group generated by removing hydrogen from a compound can be mentioned. More preferably, a monovalent group produced by removing hydrogen from benzene, pyridine, pyrimidine, triazine, naphthalene, carbazole or an aromatic compound in which a plurality of these are linked is used. When a plurality of the aromatic compounds are connected, they may be the same or different.
  • Specific examples of the group generated by removing hydrogen from the above-described aromatic compounds linked together include, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, bitriazine, bistriazylbenzene, phenylpyridine, diphenylpyridine, diphenylpyrimidine, diphenyltriazine, phenyl And monovalent groups derived from carbazole, pyridylcarbazole and the like.
  • the alkyl group, cycloalkyl group, aromatic hydrocarbon group or aromatic heterocyclic group may have a substituent, and when it has a substituent, preferred substituents include alkyl groups having 1 to 4 carbon atoms, An alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aryl group having 6 to 18 carbon atoms, and a heteroaryl group having 3 to 17 carbon atoms. More preferred are a phenyl group, a naphthyl group, a carbazolyl group, a quinolyl group, and an isoquinolyl group. Further, the substitution position of A with N in the formulas (1a-1) to (1a-6) is not limited.
  • n represents an integer of 1 to 3.
  • m is an integer from 1 to 2, and more preferably, m is 1.
  • n represents an integer of 1 to 3.
  • n is an integer from 1 to 2, more preferably n is 1.
  • p represents an integer of 0-3.
  • p is an integer from 0 to 2, more preferably, p is 0 or 1.
  • q represents an integer of 0-3.
  • q is an integer from 0 to 2, and more preferably q is 0 or 1.
  • the sum of m, n, p and q is an integer of 2-6. It is preferably 2 to 4, more preferably 2 or 3.
  • the indolocarbazole compounds represented by the general formula (1) are preferable compounds.
  • Indolocarbazole compounds represented by the general formulas (1) to (7) can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • Indolocarbazole compounds that give an indolocarbazole skeleton represented by the formula (1a-2) can be obtained by referring to the synthesis examples shown in Archiv der Pharmazie (Weinheim, Germany) 1987, 320 (3), p280-2. Can be synthesized by the following reaction formula.
  • indolocarbazole compounds that give an indolocarbazole skeleton represented by formula (1a-3) and formula (1a-4) are The Journal of Organic Chemistry, 2007,72 (15) 5886 and Tetrahedron, 1999, It can be synthesized by the following reaction formula with reference to the synthesis example shown in p.
  • indolocarbazole compound represented by the general formula (1) Specific examples of the indolocarbazole compound represented by the general formula (1) are shown below, but the indolocarbazole compound used in the organic electroluminescence device of the present invention is not limited thereto.
  • the indolocarbazole compound represented by the general formula (1) is excellent by being contained in at least one organic layer of an organic EL device in which an anode, a plurality of organic layers and a cathode are laminated on a substrate.
  • An organic electroluminescent device is provided.
  • a light emitting layer, a hole transport layer, an electron transport layer or a hole blocking layer is suitable. More preferably, it may be contained as a host material of a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and at least one organic layer contains the indolocarbazole compound.
  • the indolocarbazole compound is included in the light emitting layer together with a phosphorescent dopant.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emit light. It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a phosphorescent light emitting layer and includes a phosphorescent dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Such organometallic complexes are known in the prior art documents and the like, and these can be selected and used.
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as (Bt) 2 Iracac, and complexes such as (Btp) Ptacac. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent dopant contained in the light emitting layer is preferably in the range of 5 to 30% by weight.
  • the host material in the light emitting layer it is preferable to use an indolocarbazole compound represented by the general formula (1).
  • the material used for the light emitting layer may be a host material other than the indolocarbazole compound.
  • An indolocarbazole compound and another host material may be used in combination.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • metal complexes typified by metal complexes of Russianine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Examples thereof include polymer compounds such
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the indolocarbazole compound represented by the general formula (1) for the hole blocking layer.
  • a known hole blocking layer is used. Materials may be used.
  • a hole-blocking layer material the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the indolocarbazole compound represented by the general formula (1) according to the present invention can be used.
  • the material for the hole transport layer described later is used as necessary. It can also be used.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • an indolocarbazole compound represented by the general formula (1) can be used as the material for the exciton blocking layer.
  • other materials for example, 1,3-dicarbazolylbenzene (mCP), Bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. Although it is preferable to use the indolocarbazole compound represented by General formula (1) for a positive hole transport layer, arbitrary things can be selected and used from a conventionally well-known compound.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, Examples include styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. Porphyrin compounds, aromatic tertiary amine compounds, and styryl. It is preferable to use an amine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material (which may also serve as a hole blocking material), it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any one of conventionally known compounds can be selected and used. For example, nitro-substituted fluorene Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • Concentrated hydrochloric acid 112.0 g (1.10 mol) was added dropwise over 21 hours to 211.7 g (2.16 mol) of concentrated sulfuric acid while stirring a solution of indium 20.0 g (0.17 mol) in 300 ml of dehydrated diethyl ether at room temperature in a nitrogen atmosphere. Injected hydrogen chloride gas. After stirring the reaction solution at room temperature for 15 hours, 121.0 g of ethyl acetate and 303.2 g of saturated aqueous sodium hydrogen carbonate solution were added.
  • the reaction solution was divided into an organic layer and an aqueous layer, and the organic layer was washed with distilled water (2 ⁇ 300 ml) and further washed once with a saturated saline solution, and then the organic layer was dehydrated with magnesium sulfate. After filtering off magnesium sulfate, the solvent was distilled off under reduced pressure. To the obtained viscous liquid, 1000 g of n-hexane was added, and the mixture was heated and stirred. Thereafter, hot filtration was performed to remove insoluble matters. The filtrate was cooled, and the precipitated needle crystals were collected by filtration and dried to obtain Intermediate D 73.3 g (0.32 mol, yield 75%).
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • compound 3-15 obtained in Synthesis Example 1 as a host material, tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) as a phosphorescent dopant, and Were co-deposited from different deposition sources to form a light emitting layer with a thickness of 40 nm.
  • the concentration of Ir (ppy) 3 in the light emitting layer was 10.0 wt%.
  • tris (8-hydroxyquinolinato) aluminum (III) (Alq3) was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • aluminum (Al) was formed as an electrode to a thickness of 70 nm to produce an organic EL element.
  • the organic EL element had the light emission characteristics as shown in Table 1.
  • Table 1 the luminance, voltage, and luminous efficiency show values at 10 mA / cm 2 . Further, the luminance half time is evaluated by constant current drive of 40 mA / cm 2 , and the result is converted into a value when the initial luminance is 1000 cd / m 2 . The maximum wavelength of the device emission spectrum was 520 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-31 was used as the host material for the light emitting layer.
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound 2-3 was used as the host material for the light emitting layer.
  • Example 4 An organic EL device was produced in the same manner as in Example 1 except that Compound 3-22 was used as the host material for the light emitting layer.
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that Compound 5-19 was used as the host material for the light emitting layer.
  • Example 6 An organic EL device was produced in the same manner as in Example 1 except that Compound 6-11 was used as the host material for the light emitting layer.
  • Example 7 An organic EL device was produced in the same manner as in Example 1 except that Compound 6-17 was used as the host material for the light emitting layer.
  • Example 8 An organic EL device was produced in the same manner as in Example 1 except that Compound 6-30 was used as the host material for the light emitting layer.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that the following compound H-1 was used as the host material for the light emitting layer.
  • the organic EL elements of Examples 1 to 8 have improved initial characteristics and lifetime characteristics as compared with Comparative Example 1. From this, a material having a different indolocarbazole skeleton in one molecule is used as a main component of the light emitting layer. This shows that the characteristics of the organic EL element are improved.
  • the indolocarbazole compound used in the organic electroluminescence device of the present invention has two or more types of indolocarbazole isomer skeleton in one molecule, or a bond having an asymmetric molecular structure even in the same isomer.
  • By having a mode it becomes possible to finely adjust the hole and electron transfer speeds and to control various energy values of IP, EA, and T1.
  • the optimum carrier balance in the light emitting layer is realized, and the effect characteristics can be greatly improved.
  • this indolocarbazole compound can improve stability in each active state of oxidation, reduction, and excitation, and at the same time has good amorphous characteristics, so it has a long driving life and high durability. An element can be realized.
  • a material design provided with functions such as improvement in solubility is possible, and a material more suitable for a wet process can be provided.
  • the organic EL device according to the present invention has practically satisfactory levels in terms of light emission characteristics, driving life and durability, flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission, etc. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

 素子の発光効率を改善し、駆動安定性を充分に確保し、かつ簡略な構成をもつ有機電界発光素子(有機EL素子)を提供する。 本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、発光層を有する有機電界発光素子であって、該発光層が、燐光発光性ドーパントと非対称インドロカルバゾール化合物をホスト材料として含有する有機電界発光素子である。非対称インドロカルバゾール化合物は、インドロカルバゾール構造を有する2以上の基が連結基によって連結した構造を有し、インドロカルバゾール構造を有する基の少なくとも1つは他の基と骨格が相違する異性体基である。非対称インドロカルバゾール化合物としては、下記式(2)で表される化合物があり、Aは置換基、R1~R3は水素又は置換基、Lは芳香族基からなる連結基である。

Description

有機電界発光素子
  本発明はインドロカルバゾール化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
  一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
  近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に燐光発光ドーパント材料の研究が多数行われている。
特表2003-515897号公報 特開2001-313178号公報 特開平11-162650号公報 特開平11-176578号公報 WO2007-063754号公報
  高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPは正孔を流し易く電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
  前述のように、有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
  特許文献3においては、正孔輸送材料として以下に示すようなインドロカルバゾール化合物が開示されている。

Figure JPOXMLDOC01-appb-I000004
 
  特許文献4においては、正孔輸送材料として以下に示すようなインドロカルバゾール化合物が開示されている。

Figure JPOXMLDOC01-appb-I000005
 
  しかしながら、これらはインドロカルバゾール骨格を有する化合物を正孔輸送材料としての使用を推奨するものの、蛍光発光素子においての実施例のみであり、燐光発光素子用材料としての使用を開示するものではない。
  特許文献5にはホスト材料として以下に示すようなインドロカルバゾール化合物が開示され、これを使用した有機EL素子は発光効率を改善し、高い駆動安定性を有するものとなることを開示する。

Figure JPOXMLDOC01-appb-I000006
 
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
  本発明者らは、鋭意検討した結果、特定構造のインドロカルバゾール骨格を有する化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
  本発明は、基板上に、陽極、燐光発光層を含む有機層及び陰極が積層されてなる有機電界発光素子において、燐光発光層、正孔輸送層、電子輸送層及び正孔阻止層からなる群れから選ばれる少なくとも一つの有機層中に、一般式(1)で表されるインドロカルバゾール化合物を含有することを特徴とする有機電界発光素子である。
Figure JPOXMLDOC01-appb-I000007
 
  一般式(1)中、Lは(m+n+p+q)価の炭素数6~50の芳香族炭化水素基、又は(m+n+p+q)価の炭素数3~50の芳香族複素環基を表し、Y1~Y4はそれぞれ式(1a-1)~(1a-6)のいずれかで表され、少なくとも1つは異なる基である。mは1~3の整数、nは1~3の整数、pは0~3の整数、qは0~3の整数を表し、m+n+p+qは2~6である。
Figure JPOXMLDOC01-appb-I000008
 
  式(1a-1)~(1a-6)中、Aは独立に炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示す。R1~R3はそれぞれ独立に、水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。ただし、(1a-1)、(1a-2)、(1a-4)及び(1a-6)において、R3はR3が結合する六員環と共に縮合環を形成しても良い。
  一般式(1)で表されるインドロカルバゾール化合物の中でも、下記一般式(2)~(7)で表されるインドロカルバゾール化合物が、より好ましい化合物として挙げられる。

Figure JPOXMLDOC01-appb-I000009
 
  一般式(2)~(7)中、L、A、R1~R3、m及びnは一般式(1)及び式(1a-1)~(1a-6)と同意である。
  一般式(2)~(7)で表されるインドロカルバゾール化合物において、m及びnは1であることが更に好ましい。
  また、上記有機電界発光素子は上記インドロカルバゾール化合物と燐光発光ドーパントを含有する発光層を有することが好ましい。
有機EL素子の一構造例を示す断面図である。 化合物3-15の1H-NMRチャートを示す。
  本発明の有機電界発光素子において使用されるインドロカルバゾール化合物は、前記一般式(1)で表されるインドロカルバゾール化合物である。一般式(1)中、Lは炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基であり、(m+n+p+q)価の基である。Y1~Y4はそれぞれ異なる式(1a-1)~(1a-6)のいずれかで表される基である。mは1~3の整数、nは1~3の整数、pは0~3の整数、qは0~3の整数を表し、m+n+p+qは2~6である。
  Y1~Y4は、インドロカルバゾール骨格にR1~R3、及びAが置換し、インドロカルバゾール骨格中のN原子からLと結合する結合基が生じている1価の基である。インドロカルバゾール骨格は、5つの環が縮合して生じているが、その縮合位置が相違する異性体が存在する。Y1~Y4は、式(1a-1)~(1a-6)で表される基であり、Y1~Y4は異なる基である。Y1~Y4の内、少なくとも2つは相互に異なる基として存在する。2つ以上の異なるインドロカルバゾール異性体骨格を特定の連結基で結合した構造、又は同一異性体であっても分子構造が非対称となる結合様式を有することにより、上記のような優れた効果をもたらすと考えられる。
  一般式(1)において、Lは炭素数6~50の芳香族炭化水素基、炭素数3~50の芳香族複素環基を表す。Lの具体例としてはベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、ピリジン、ピリミジン、トリアジン、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン又はこれら芳香環が複数連結された芳香族化合物から(m+n+p+q)個の水素を除いて生じる(m+n+p+q)価の基が挙げられる。好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、ナフタレン、カルバゾール又はこれら芳香環が複数連結された芳香族化合物から水素を除いて生じる(m+n+p+q)価の基が挙げられる。上記芳香環が複数連結される場合、それらは同一でも異なっていてもよい。上記芳香環が複数連結された芳香族化合物から水素を除いて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ビストリアジルベンゼン、ビナフタレン、フェニルピリジン、ジフェニルピリジン、ジフェニルピリミジン、ジフェニルトリアジン、フェニルカルバゾール、ピリジルカルバゾール等から生じる(m+n+p+q)価の基が挙げられ、Y1、Y2、Y3及びY4の連結位置は限定されず、末端の環であっても中央部の環であっても構わない。上記芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよく、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基、アセチル基又は炭素数6~24のジアリールアミノ基である。
  ここで、芳香環が複数連結された芳香族化合物から生じる基は、2価の基の場合、例えば、下記式(11)~(13)で表わされる。
  
Figure JPOXMLDOC01-appb-I000010
 
(式(11)~(13)中、Ar1~Ar6は無置換の単環又は縮合環の芳香環を表す。)
  L、A及びR1~R3が置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、L、A及びR1~R3が2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。また、L、A及びR1~R3の炭素数の計算において、置換基を有する場合、その置換基の炭素数を含む。
  一般式(1)において、Y1~Y4はそれぞれ式(1a-1)~(1a-6)で表される。式(1a-1)~(1a-6)において、R1、R2及びR3はそれぞれ独立して水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を表す。好ましくは水素、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、フェニル基、ナフチル基、カルバゾリル基、キノリル基、イソキノリル基である。そして、より好ましくは水素、フェニル基又はカルバゾリル基である。
  また、式(1a-1)、(1a-2)、(1a-4)及び(1a-6)において、R3はインドロカルバゾール骨格を形成する中央の六員環とで縮合環を形成しても良い。上記六員環とR3が縮合する場合、R3は縮合環であってもよい。縮合環である場合はインドール環が好ましく、この場合、ジインドロカルバゾールを形成することになる。このとき、該インドール環は置換基を有してもよい。R3が上記六員環に縮合する基である場合、縮合し形成された縮合環から上記六員環を除いた環としては、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、ベンゼン環、ナフタレン環等であることができる。これらの環は置換基を有しても良く、好ましくは、置換基を有してもよいインドール環であり、その場合上記六員環を含めるとカルバゾール環を形成することがよい。R3が上記六員環と縮合する場合は、R3が上記六員環に置換する位置の隣接位の炭素が置換可能な水素を有する場合である。
  Aは独立に1価の炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示す。好ましいAの具体例としては、ベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、ピリジン、ピリミジン、トリアジン、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン又はこれらが複数連結された芳香族化合物から水素を除いて生じる1価の基が挙げられる。より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、ナフタレン、カルバゾール又はこれらが複数連結された芳香族化合物から水素を除いて生じる1価の基が挙げられる。上記芳香族化合物が複数連結される場合、それらは同一でも異なっていてもよい。上記複数連結された芳香族化合物から水素を除いて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ビストリアジルベンゼン、フェニルピリジン、ジフェニルピリジン、ジフェニルピリミジン、ジフェニルトリアジン、フェニルカルバゾール、ピリジルカルバゾール等から生じる1価の基が挙げられる。上記アルキル基、シクロアルキル基、芳香族炭化水素基又は芳香族複素環基は置換基を有してもよく、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~18のアリール基、炭素数3~17のヘテロアリール基である。より好ましくは、フェニル基、ナフチル基、カルバゾリル基、キノリル基、イソキノリル基である。また、式(1a-1)~(1a-6)のNとのAの置換位置は限定されない。
  一般式(1)において、mは1~3の整数を表す。好ましくは、mは1~2の整数であり、より好ましくは、mは1である。
  一般式(1)において、nは1~3の整数を表す。好ましくは、nは1~2の整数であり、より好ましくは、nは1である。
  一般式(1)において、pは0~3の整数を表す。好ましくは、pは0~2の整数であり、より好ましくは、pは0又は1である。
  一般式(1)において、qは0~3の整数を表す。好ましくは、qは0~2の整数であり、より好ましくは、qは0又は1である。
  一般式(1)において、m、n、p及びqの総和は2~6の整数である。好ましくは2~4であり、より好ましくは2又は3である。
  一般式(1)で表されるインドロカルバゾール化合物の中でも、上記一般式(2)~(7)で表されるインドロカルバゾール化合物が好ましい化合物として挙げられる。
  一般式(1)~(7)及び式(1a-1)~(1a-6)において、それぞれ同一の記号及び式は特に断らない限り同一の意味を有すると解される。一般式(2)~(7)において、m及びnはそれぞれ1又は2であることが好ましく、m及びnがそれぞれ1であることがより好ましい。
  一般式(1)~(7)で表されるインドロカルバゾール化合物は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
  例えば、式(1a-1)で表されるインドロカルバゾール骨格Synlett,2005,No.1,p42-48に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000011
 
  また、式(1a-2)で表されるインドロカルバゾール骨格を与えるインドロカルバゾール化合物は、Archiv der Pharmazie (Weinheim, Germany) 1987, 320(3), p280-2に示される合成例を参考にして以下の反応式により合成することができる。
  
Figure JPOXMLDOC01-appb-I000012
 
  更に、式(1a-3)及び式(1a-4)で表されるインドロカルバゾール骨格を与えるインドロカルバゾール化合物は、The Journal of Organic Chemistry,2007,72(15)5886並びに、Tetrahedron, 1999, 55, p2371に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000013
 
  前述の反応式で得られる各インドロカルバゾール化合物の窒素に結合する水素を、定法に従い、対応する芳香族基に置換させ、カップリングすることで、一般式(1)又は(2)~(7)で表される化合物群を合成することができる。
  一般式(1)で表されるインドロカルバゾール化合物の具体例を以下に示すが、本発明の有機電界発光素子において使用されるインドロカルバゾール化合物はこれらに限定されない。
  
Figure JPOXMLDOC01-appb-I000014
 
Figure JPOXMLDOC01-appb-I000015
 
  
Figure JPOXMLDOC01-appb-I000016
 
  
Figure JPOXMLDOC01-appb-I000017
 
  
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-I000019
 
Figure JPOXMLDOC01-appb-I000020
 
Figure JPOXMLDOC01-appb-I000021
 
Figure JPOXMLDOC01-appb-I000022
 
Figure JPOXMLDOC01-appb-I000023
 
Figure JPOXMLDOC01-appb-I000024
 
Figure JPOXMLDOC01-appb-I000025
 
Figure JPOXMLDOC01-appb-I000026
 

Figure JPOXMLDOC01-appb-I000027
 
Figure JPOXMLDOC01-appb-I000028
 
Figure JPOXMLDOC01-appb-I000029
 
Figure JPOXMLDOC01-appb-I000030
 

Figure JPOXMLDOC01-appb-I000031
 

Figure JPOXMLDOC01-appb-I000032
 
Figure JPOXMLDOC01-appb-I000033
 
  上記一般式(1)で表されるインドロカルバゾール化合物は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては、発光層、正孔輸送層、電子輸送層又は正孔阻止層が適する。より好ましくは、燐光発光ドーパントを含有する発光層のホスト材料として含有させることがよい。
  次に、本発明の有機EL素子について説明する。
  本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ少なくとも一つの有機層は、上記インドロカルバゾール化合物を含む。有利には、燐光発光ドーパントと共に上記インドロカルバゾール化合物を発光層中に含む。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
  図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
  なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
  本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
  有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
  一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
  発光層は燐光発光層であり、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、(Bt)2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-I000034
 
Figure JPOXMLDOC01-appb-I000035
 
  前記燐光発光ドーパントが発光層中に含有される量は、5~30重量%の範囲にあることが好ましい。
  発光層におけるホスト材料としては、前記一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましい。しかし、該インドロカルバゾール化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料はインドロカルバゾール化合物以外の他のホスト材料であってもよい。また、インドロカルバゾール化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましいが、インドロカルバゾール化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
  電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、本発明に係る一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、他の材料として、後述する正孔輸送層の材料を必要に応じて用いることもできる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、他の材料として、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には本発明に係る一般式(1)で表される材料を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
  以下に示すルートによりインドロカルバゾール化合物を合成した。尚、化合物番号は、上記化学式に付した番号に対応する。
合成例1
化合物3-15の合成
Figure JPOXMLDOC01-appb-I000036
 
  窒素雰囲気下、1,2-シクロヘキサンジオン33.3 g (0.30 mol)、フェニルヒドラジン塩酸塩86.0 g (0.60 mol)とエタノール1000 mlを室温で撹拌しながら、濃硫酸3.0 g (0.031 mol)を5分かけて滴下した後に、65℃で加熱しながら4時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、エタノール(2 × 500 ml)を用いて洗浄を行い、紫茶色結晶80.0 gを得た。この結晶72.0 g (0.26 mol)、トリフルオロ酢酸72.0 gと酢酸720.0 gを100℃で加熱しながら15時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、酢酸(200 ml)で洗浄した。リスラリー精製を行い、白色結晶として5,12‐ジヒドロインドロ[2,3‐a]カルバゾール(IC-1) 30.0 g (収率45 %)を得た。
Figure JPOXMLDOC01-appb-I000037
 
  窒素雰囲気下、インドール20.0 g (0.17 mol)の脱水ジエチルエーテル300 ml溶液を室温で撹拌しながら、濃硫酸211.7 g (2.16 mol)に濃塩酸112.0 g (1.10 mol)を1時間かけて滴下し発生させた塩化水素ガスを吹き込んだ。反応溶液を室温で15時間撹拌した後に、酢酸エチル121.0 gと飽和炭酸水素ナトリウム水溶液303.2 gを加えた。水層を酢酸エチル(2 × 100 ml)で抽出した後に、有機層を飽和炭酸水素ナトリウム水溶液(100 ml)と蒸留水(2 × 100 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をトルエン150 mlに溶解し、パラジウム/活性炭2.5 gを加えた後に、111℃で加熱還流しながら3時間撹拌した。反応溶液を室温まで冷却した後に、パラジウム/活性炭をろ別し、溶媒を減圧留去した。再結晶により精製を行い、白色結晶として中間体A14.7 g(収率37 %)を得た。
  
Figure JPOXMLDOC01-appb-I000038
 
  窒素雰囲気下、中間体A 14.1 g (0.061 mol)、N,N'-ジメチルアミノアセトアルデヒドジエチルアセタール11.4 g (0.071 mol)と酢酸110.0 gを118℃で加熱還流しながら8時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、酢酸(30 ml)で洗浄した。得られた結晶をリスラリー精製し、白色結晶として5,12‐ジヒドロインドロ[3,2‐a]カルバゾール(IC-2) 10.4 g (収率67 %)を得た。
  
Figure JPOXMLDOC01-appb-I000039
 
  窒素雰囲気下、化合物(IC-2) 10.0 g(0.039 mol)、ヨードベンゼン39.8 g(0.20 mol)、銅6.2g(0.098 mol)、炭酸カリウム8.1 g(0.059 mol)、テトラグライム200 mlを加えて撹拌した。その後190 ℃まで加熱し、24時間撹拌した。反応溶液を室温まで冷却した後に、銅、無機物をろ別した。ろ液に蒸留水200 mlを加えて撹拌し、析出した結晶をろ別した。これを減圧乾燥した後、カラムクロマトグラフィーで精製して白色粉末の中間体B 9.7 g(0.029 mol、収率75 %)を得た。

Figure JPOXMLDOC01-appb-I000040
 
  窒素雰囲気下、化合物(IC-1) 26.0 g (0.10 mol)、ヨードベンゼン122.7 g (0.60 mol)、ヨウ化銅54.7 g (0.29 mol)、炭酸カリウム66.7 g (0.48 mol)とキノリン800 mlを190℃で加熱しながら72時間撹拌した。反応溶液を室温まで冷却した後に、蒸留水(500 ml)とジクロロメタン(500 ml)を撹拌しながら加えた。析出した結晶をろ別した後に、有機層を蒸留水(3 × 500 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体C 13.7 g (収率41 %)を得た。
Figure JPOXMLDOC01-appb-I000041
 
  窒素雰囲気下、塩化シアヌル85.4g(0.46 mol)、脱水テトラヒドロフラン500 mlを加え、撹拌した。反応溶液の温度を-20℃以下に保ちながら1.1 mol/l臭化フェニルマグネシウム、テトラヒドロフラン溶液600 mlを1時間かけて滴下した後、1.5時間撹拌を続けた。その後、トルエン300 ml、2N HCl 500 mlを、反応溶液の温度を5 ℃以下に保ちながら加えた。反応溶液を有機層と水層に分画し、有機層を蒸留水(2×300ml)で洗浄し、更に飽和食塩水で一回洗浄した後、有機層を硫酸マグネシウムで脱水を行った。硫酸マグネシウムをろ別した後、溶媒を減圧留去した。得られた粘性のある液体にn-ヘキサン1000 gを加え、加熱、撹拌を行った。その後、熱時濾過を行い、不溶分を除去した。ろ液を冷却し、析出した針状結晶をろ取、乾燥し中間体D 73.3 g(0.32 mol、収率75 %)を得た。
Figure JPOXMLDOC01-appb-I000042
 
  窒素雰囲気下、56 %水素化ナトリウム1.6 g、脱水N,N-ジメチルホルムアミド50 mlを加え、撹拌を行った。次に中間体C  10.0 g(0.030 mol)を脱水N,N-ジメチルホルムアミド60 mlに溶解させた溶液を30分かけて滴下した。その後、1時間撹拌を続けた。次に中間体D 7.0 g(0.031 mol) を脱水N,N-ジメチルホルムアミド60 mlに溶解させた溶液を30分かけて滴下した。その後、一昼夜撹拌を続けた。次に同フラスコ内に蒸留水300 gを加え、析出した黄色結晶をろ取した。ろ取した黄色結晶をリスラリー精製し、乾燥させ中間体E 15.0 g(0.029 mol、収率96 %)を得た。
APCI-TOFMS, m/z 523 [M+H]+
Figure JPOXMLDOC01-appb-I000043
 
  窒素雰囲気下、56 %水素化ナトリウム2.4 g、脱水N,N-ジメチルホルムアミド130 mlを加え、撹拌を行った。次に中間体B 15.4 g(0.046 mol)を脱水N,N-ジメチルホルムアミド154 mlに溶解させた溶液を30分かけて滴下した。その後、1時間撹拌を続けた。次に中間体E 22.0 g(0.042 mol) を脱水N,N-ジメチルホルムアミド220 mlに溶解させた溶液を30分かけて滴下した。その後、4時間撹拌を続けた。次に同フラスコ内に蒸留水500 gを加え、析出した黄色結晶をろ取した。ろ取した黄色結晶を、リスラリーを行い、乾燥した。その後、シリカゲルカラムにて精製を行い、化合物3-15 9.2 g(0.011 mol、収率27 %)を得た。
APCI-TOFMS, m/z 818 [M+H]+1H -NMR測定結果(測定溶媒:THF-d8)を図2に示す。
  また、上記と同様にして、化合物1-31、2-3、3-22、5-19、6-11、6-17及び6-30を合成した。
実施例1
  膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5 Paで積層させた。まず、ITO上に銅フタロシアニン(CuPC)を25 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての合成例1で得た化合物3-15と、燐光発光ドーパントとしてのトリス(2‐フェニルピリジン)イリジウム(III)(Ir(ppy)3)とを異なる蒸着源から、共蒸着し、40 nmの厚さに発光層を形成した。発光層中のIr(ppy)3の濃度は10.0 wt%であった。次に、電子輸送層としてトリス(8-ヒドロキシキノリナト)アルミニウム(III)(Alq3)を20 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1のような発光特性を有することが確認された。表1において、輝度、電圧及び発光効率は、10mA/cm2での値を示す。また、輝度半減時間は、40 mA/cm2の一定電流駆動で評価し、この結果を初期輝度1000 cd/m2の場合に換算した値を示す。なお、素子発光スペクトルの極大波長は520 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
実施例2
  発光層のホスト材料として、化合物1-31を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例3
  発光層のホスト材料として、化合物2-3を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例4
  発光層のホスト材料として、化合物3-22を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例5
  発光層のホスト材料として、化合物5-19を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例6
  発光層のホスト材料として、化合物6-11を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例7
  発光層のホスト材料として、化合物6-17を用いた以外は実施例1と同様にして有機EL素子を作製した。
実施例8
  発光層のホスト材料として、化合物6-30を用いた以外は実施例1と同様にして有機EL素子を作製した。
比較例1
  発光層のホスト材料として、下記化合物H-1を用いた以外は実施例1と同様にして有機EL素子を作製した。

Figure JPOXMLDOC01-appb-I000044
 
 実施例2~8及び比較例1で得た有機EL素子の素子発光スペクトルの極大波長はいずれも520 nmであり、Ir(ppy)3からの発光が得られていることがわかった。発光特性ならびに寿命特性を表1に示す。
Figure JPOXMLDOC01-appb-T000045
 
  実施例1~8の有機EL素子は比較例1に対して初期特性ならびに寿命特性が向上しており、これより、一分子中に異なるインドロカルバゾール骨格を有する材料を発光層主成分に使用することで、有機EL素子特性が改善することが判る。
産業上の利用の可能性
  本発明の有機電界発光素子において使用されるインドロカルバゾール化合物は、一分子中に二種類以上のインドロカルバゾール異性体骨格を有するか、または同一異性体であっても分子構造が非対称となる結合様式を有することにより、正孔、電子移動速度の微調整、並びにIP、EA、T1の各種エネルギー値の制御が可能となる。その結果、該インドロカルバゾール化合物を用いた有機EL素子において発光層中の最適なキャリアバランスを実現し、発効特性の大幅な改善が可能となる。さらに、このインドロカルバゾール化合物は酸化、還元、励起の各活性状態で安定性を向上させることが可能であり、同時に良好なアモルファス特性を有することから、駆動寿命が長く、耐久性の高い有機EL素子を実現できる。また、溶解性の向上等の機能を付与させた材料設計が可能であり、ウェットプロセスにより適した材料を与えることができる。
  本発明による有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (4)

  1.   基板上に、陽極、燐光発光層を含む有機層及び陰極が積層されてなる有機電界発光素子において、燐光発光層、正孔輸送層、電子輸送層及び正孔阻止層からなる群れから選ばれる少なくとも一つの有機層中に、一般式(1)で表されるインドロカルバゾール化合物を含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
     
      一般式(1)中、Lは(m+n+p+q)価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を表し、Y1~Y4はそれぞれ式(1a-1)~(1a-6)のいずれかで表される基であり、少なくとも1つは異なる基である。mは1~3の整数、nは1~3の整数、pは0~3の整数、qは0~3の整数を表し、m+n+p+qは2~6である。
    Figure JPOXMLDOC01-appb-I000002
     
      式(1a-1)~(1a-6)中、Aは独立に炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示す。R1~R3はそれぞれ独立に、水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。ただし、式(1a-1)、(1a-2)、(1a-4)及び(1a-6)において、R3はR3が結合する六員環と共に縮合環を形成しても良い。
  2.   一般式(1)で表されるインドロカルバゾール化合物が、一般式(2)~(7)のいずれかで表されるインドロカルバゾール化合物である請求項1に記載の有機電界発光素子。

    Figure JPOXMLDOC01-appb-I000003
     
      一般式(2)~(7)中、L、A、R1~R3、m及びnは一般式(1)及び式(1a-1)~(1a-6)と同意である。
  3.   一般式(2)~(7)で表されるインドロカルバゾール化合物において、m及びnがそれぞれ1である請求項2に記載の有機電界発光素子。
  4.   インドロカルバゾール化合物を含む有機層が、燐光発光ドーパントを含有する発光層であることを特徴とする請求項1~3のいずれかに記載の有機電界発光素子。
PCT/JP2010/070536 2009-12-28 2010-11-18 有機電界発光素子 WO2011080972A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080059524.8A CN102696126B (zh) 2009-12-28 2010-11-18 有机场致发光元件
KR1020127019438A KR101758865B1 (ko) 2009-12-28 2010-11-18 유기 전계 발광 소자
EP10840831.1A EP2521196B1 (en) 2009-12-28 2010-11-18 Organic electroluminescent element
US13/512,883 US9260433B2 (en) 2009-12-28 2010-11-18 Organic electroluminescent device
JP2011547407A JP5596706B2 (ja) 2009-12-28 2010-11-18 有機電界発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-297903 2009-12-28
JP2009297903 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080972A1 true WO2011080972A1 (ja) 2011-07-07

Family

ID=44226392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070536 WO2011080972A1 (ja) 2009-12-28 2010-11-18 有機電界発光素子

Country Status (7)

Country Link
US (1) US9260433B2 (ja)
EP (1) EP2521196B1 (ja)
JP (1) JP5596706B2 (ja)
KR (1) KR101758865B1 (ja)
CN (1) CN102696126B (ja)
TW (1) TWI485228B (ja)
WO (1) WO2011080972A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416397A1 (en) * 2009-03-31 2012-02-08 Nippon Steel Chemical Co., Ltd. Material for phosphorescent light-emitting element and organic electroluminescent element using same
JP2013040105A (ja) * 2011-07-15 2013-02-28 Idemitsu Kosan Co Ltd 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
WO2013109045A1 (en) * 2012-01-16 2013-07-25 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101401620B1 (ko) 2012-07-17 2014-06-02 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
CN104271582A (zh) * 2012-05-02 2015-01-07 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
WO2015133353A1 (ja) * 2014-03-07 2015-09-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び発光性組成物
WO2015137472A1 (ja) * 2014-03-12 2015-09-17 出光興産株式会社 組成物、化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP2016072378A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP2016072377A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
WO2016129691A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
JP2017075140A (ja) * 2015-09-09 2017-04-20 三星電子株式会社Samsung Electronics Co., Ltd. 縮合環化合物及びそれを含む有機発光素子
US10370484B2 (en) 2014-07-03 2019-08-06 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
WO2019181465A1 (ja) 2018-03-19 2019-09-26 日鉄ケミカル&マテリアル株式会社 有機電界発光素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108940A (ja) * 2012-11-30 2014-06-12 Samsung Display Co Ltd インドロカルバゾール誘導体及びそれを含む有機電界発光素子
KR102160720B1 (ko) * 2012-12-17 2020-09-28 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계발광 소자
KR20150047858A (ko) * 2013-10-25 2015-05-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
JP6260058B2 (ja) 2014-09-12 2018-01-17 三菱重工環境・化学エンジニアリング株式会社 ストーカ式焼却炉
CN105338213A (zh) * 2015-11-23 2016-02-17 威海华菱光电股份有限公司 接触式图像传感器
WO2017109722A1 (en) * 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
JP7374187B2 (ja) * 2019-05-20 2023-11-06 出光興産株式会社 有機エレクトロルミネッセンス素子、化合物及び電子機器
CN113072687B (zh) * 2021-03-10 2022-12-13 东南大学 一种含8-羟基喹啉基团的咔唑多孔聚合物及其制备方法和应用
CN118084927B (zh) * 2024-04-19 2024-08-23 季华恒烨(佛山)电子材料有限公司 吲哚并咔唑类化合物及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2009136596A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子
WO2010113761A1 (ja) * 2009-03-31 2010-10-07 新日鐵化学株式会社 有機電界発光素子
US9290498B2 (en) * 2009-10-23 2016-03-22 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device having an electron- and/or exciton-blocking layer comprising an indolocarbazole compound
EP2511360A4 (en) * 2009-12-07 2014-05-21 Nippon Steel & Sumikin Chem Co Organic light-emitting material and organic light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2009136596A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2521196A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416397A1 (en) * 2009-03-31 2012-02-08 Nippon Steel Chemical Co., Ltd. Material for phosphorescent light-emitting element and organic electroluminescent element using same
US8962158B2 (en) 2009-03-31 2015-02-24 Nippon Steel & Sumikin Chemical Co., Ltd. Material having indolocarbazole compound for phosphorescent light-emitting element and organic electroluminescent element using the same
EP2416397A4 (en) * 2009-03-31 2012-08-29 Nippon Steel Chemical Co MATERIAL FOR A PHOSPHORESCENT ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT USING THE SAME
US10043977B2 (en) 2011-07-15 2018-08-07 Idemitsu Kosan Co., Ltd. Nitrogenated aromatic heterocyclic derivative, and organic electroluminescent element using same
JP2013040105A (ja) * 2011-07-15 2013-02-28 Idemitsu Kosan Co Ltd 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
US12063851B2 (en) 2011-07-15 2024-08-13 Idemitsu Kosan Co., Ltd. Nitrogenated aromatic heterocyclic derivative and organic electroluminescent element using same
WO2013109045A1 (en) * 2012-01-16 2013-07-25 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN104136440A (zh) * 2012-01-16 2014-11-05 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和使用该化合物的有机电致发光器件
CN104271582A (zh) * 2012-05-02 2015-01-07 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
KR101401620B1 (ko) 2012-07-17 2014-06-02 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
KR101917938B1 (ko) 2014-03-07 2018-11-12 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 표시 장치, 조명 장치 및 발광성 조성물
JPWO2015133353A1 (ja) * 2014-03-07 2017-04-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び発光性組成物
WO2015133353A1 (ja) * 2014-03-07 2015-09-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び発光性組成物
WO2015137472A1 (ja) * 2014-03-12 2015-09-17 出光興産株式会社 組成物、化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
CN106103428A (zh) * 2014-03-12 2016-11-09 出光兴产株式会社 组合物、化合物、有机电致发光元件用材料、油墨组合物、有机电致发光元件、及电子设备
JPWO2015137472A1 (ja) * 2014-03-12 2017-04-06 出光興産株式会社 組成物、化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
US10290815B2 (en) 2014-03-12 2019-05-14 Idemitsu Kosan Co., Ltd. Composition, compound, material for organic electroluminescence element, ink composition, organic electroluminescence element, and electronic device
US10370484B2 (en) 2014-07-03 2019-08-06 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
JP2016072377A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP2016072378A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JPWO2016129691A1 (ja) * 2015-02-13 2017-11-24 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2016129691A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
US10538514B2 (en) 2015-02-13 2020-01-21 Idemitsu Kosan Co., Ltd. Compound, composition, organic electroluminescence element, and electronic device
JP2017075140A (ja) * 2015-09-09 2017-04-20 三星電子株式会社Samsung Electronics Co., Ltd. 縮合環化合物及びそれを含む有機発光素子
WO2019181465A1 (ja) 2018-03-19 2019-09-26 日鉄ケミカル&マテリアル株式会社 有機電界発光素子

Also Published As

Publication number Publication date
CN102696126B (zh) 2015-06-10
KR20120123368A (ko) 2012-11-08
JP5596706B2 (ja) 2014-09-24
KR101758865B1 (ko) 2017-07-17
TW201130950A (en) 2011-09-16
TWI485228B (zh) 2015-05-21
EP2521196A1 (en) 2012-11-07
EP2521196A4 (en) 2017-12-27
JPWO2011080972A1 (ja) 2013-05-09
US9260433B2 (en) 2016-02-16
EP2521196B1 (en) 2018-09-12
CN102696126A (zh) 2012-09-26
US20120235133A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5596706B2 (ja) 有機電界発光素子
JP5215481B2 (ja) 有機電界発光素子
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP5662994B2 (ja) 有機電界発光素子
JP6140146B2 (ja) 有機電界発光素子
JP6091428B2 (ja) 有機電界発光素子
JP5723764B2 (ja) 有機電界発光素子
JP5834023B2 (ja) 有機電界発光素子
JP5972884B2 (ja) 有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
WO2011081061A1 (ja) 有機電界発光素子
WO2011049063A1 (ja) 有機電界発光素子
WO2013038804A1 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547407

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13512883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019438

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010840831

Country of ref document: EP