WO2011080903A1 - 可変指向性アンテナ装置 - Google Patents

可変指向性アンテナ装置 Download PDF

Info

Publication number
WO2011080903A1
WO2011080903A1 PCT/JP2010/007488 JP2010007488W WO2011080903A1 WO 2011080903 A1 WO2011080903 A1 WO 2011080903A1 JP 2010007488 W JP2010007488 W JP 2010007488W WO 2011080903 A1 WO2011080903 A1 WO 2011080903A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
variable directivity
turned
antenna
parasitic
Prior art date
Application number
PCT/JP2010/007488
Other languages
English (en)
French (fr)
Inventor
渡 野口
弘之 万木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/387,830 priority Critical patent/US8717249B2/en
Priority to JP2011547320A priority patent/JP5557853B2/ja
Publication of WO2011080903A1 publication Critical patent/WO2011080903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements

Definitions

  • the present invention relates to a variable directional antenna device including one feeding element and at least one parasitic element.
  • a network using wireless communication is superior in terms of portability of information terminals and freedom of arrangement compared to a network using wired communication.
  • the information terminal can be reduced in weight by omitting a wired cable for connection between the information terminals.
  • the wireless communication device is not only used for data transmission between conventional personal computers, but is also currently installed in many home appliances for transmitting video and audio data between the home appliances. Has come to be used.
  • the wireless communication device has the advantages as described above, but radiates electromagnetic waves in the space for communication, so when it is installed in a space where many reflectors are installed, it is reflected on the object. Data transmission may not be performed normally due to the deterioration of transmission characteristics due to the fading effect caused by the incoming delayed wave.
  • VoIP Internet Video on Demand
  • home appliances that are fixedly installed, such as large television broadcast receivers, Blu-ray disc recorders / players, and DVD recorders
  • Each home appliance must be equipped with a connection function to a wireless LAN (Local Area Network), and a wireless LAN access point for connecting to the Internet line.
  • LAN Local Area Network
  • fading mainly occurs due to movements such as opening / closing of a person, a person around the television broadcast receiving apparatus or the DVD recorder, and the door. Also, when communication is performed between a wireless communication device and a wireless access point installed in a portable device such as a portable television player such as a small television broadcast receiver such as a one-segment television broadcast receiver. In general, fading occurs when the device itself is moved.
  • Patent Documents 1 to 3 describe wireless communication apparatuses according to the related art that receive wireless signals in accordance with time changes in a radio wave propagation environment.
  • variable directivity antenna device for the directivity control of the transmission / reception antenna, the following variable directivity antenna device is proposed in Patent Document 4.
  • the variable directivity antenna device includes a feeding antenna element and a parasitic antenna element, and each parasitic antenna element is provided with a pair of PIN diodes.
  • Each control line connecting the PIN diode to the controller is provided with an inductor provided at a predetermined interval in a portion electromagnetically coupled to another variable directivity antenna.
  • the interval at which the inductor is provided is set to such a length that the section between the inductors in the control line does not substantially resonate at the operating frequency of the variable directivity antenna.
  • Japanese Unexamined Patent Publication No. 2000-134023 Japanese Patent Application Laid-Open No. 2005-142866. JP-A-8-172423. International Application Publication No. 2009/050883.
  • MIMO Multiple Input Multiple Output
  • SISO Single Input Single Output
  • the band used in the wireless LAN of the 5 GHz band is relatively wide, such as about 800 MHz.
  • the object of the present invention is to solve the above-described problems, and in a dual-band variable directional antenna device that can operate in two frequency bands, a relatively high antenna compared with the prior art over a wide band in a higher frequency band.
  • An object of the present invention is to provide a variable directivity antenna device that can secure a gain and can ensure a relatively large FB ratio as compared with the prior art.
  • the variable directivity antenna device is One feed element; Including at least one parasitic element connected to the other end of the diode, which is juxtaposed so as to be electromagnetically close to the feeding element and having one end grounded, In the variable directional antenna device that can change the directivity by turning on and off the diode, In the feed element, a first antenna element having a first width, a dual band forming inductor, and a second antenna element having a second width wider than the first width are connected in series. Configured A rectangular notch is formed at the other end corner of the parasitic element.
  • the second width of the second antenna element is formed to be larger than the length in the longitudinal direction of the second antenna element.
  • variable directivity antenna device includes two parasitic elements juxtaposed with each other so as to sandwich the feeding element.
  • variable directivity antenna device of the present invention since the rectangular cutout is formed at the other end corner of the parasitic element, in the dual-band variable directivity antenna device, in the higher frequency band It is possible to provide a variable directivity antenna device that can ensure a relatively high antenna gain as compared with the prior art and a relatively large FB ratio as compared with the prior art over a wide band.
  • FIG. 1 It is a perspective view which shows the external appearance of the radio
  • substrate 401 of FIG. FIG. 2 is a plan view of an antenna device substrate 402 in FIG. 1. It is a graph which shows the schematic radiation pattern of the variable directivity antenna apparatus 1 when the parasitic elements 1a and 1b of FIG. 1 are turned off. It is a graph which shows the schematic radiation pattern of the variable directivity antenna apparatus 1 when only the parasitic element 1b of FIG.
  • FIG. 1 shows experimental results of the prototype device for the variable directivity antenna device 1 according to type A0 shown in FIGS. 1 and 2, and the variable directivity antenna device when the parasitic elements 1a and 1b in FIG. 1 are turned off. It is a graph which shows 1 radiation pattern. 1 and 2 are experimental results of the prototype device of the variable directivity antenna device 1 according to type A0 illustrated in FIGS.
  • FIG. 3 is an experimental result of the prototype device of the variable directivity antenna device 1 according to type A0 shown in FIG. 1 and FIG. 2, and the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 1 is turned on. It is a graph which shows general
  • FIG. 3 is an experimental result of the prototype device of the variable directivity antenna device 1 according to type A0 shown in FIGS. 1 and 2, and the variable directivity antenna device when the parasitic elements 1a and 1b of FIG. 1 are turned on. It is a graph which shows the one general radiation pattern.
  • FIG. 8B is a perspective plan view showing a conductor pattern on the back surface of the antenna device substrate 401 of FIG. 8A. It is a top view which shows the conductor pattern of the front surface of the antenna apparatus board
  • FIG. 9B is a perspective plan view showing a conductor pattern on the back surface of the antenna device substrate 401 of FIG. 9A.
  • FIG. 10B is a perspective plan view showing a conductor pattern on the back surface of the antenna device substrate 401 of FIG. 10A. It is a top view which shows the conductor pattern of the front surface of the antenna apparatus board
  • FIG. 11B is a perspective plan view showing a conductor pattern on the back surface of the antenna device substrate 401 of FIG. 11A.
  • 8A and 8B show experimental results of the prototype device of the variable directivity antenna device according to type A1 illustrated in FIGS. 8A and 8B, and the variable directivity antenna device 1 when the parasitic elements 1 a and 1 b of FIG. 8A are turned off. It is a graph which shows the radiation pattern.
  • 8A and 8B show experimental results of the prototype device of the variable directivity antenna device according to type A1 illustrated in FIGS. 8A and 8B, in which only the parasitic element 1 b of FIG. 8A is turned on. It is a graph which shows a radiation pattern.
  • 8A and 8B show experimental results of the prototype device of the variable directivity antenna device according to type A1 illustrated in FIGS. 8A and 8B, in which only the parasitic element 1 a of FIG.
  • 8A is turned on. It is a graph which shows a general radiation pattern.
  • 8A and 8B show experimental results of the prototype device of the variable directivity antenna device according to type A1 illustrated in FIGS. 8A and 8B, and the variable directivity antenna device 1 when the parasitic elements 1 a and 1 b of FIG. 8A are turned on. It is a graph which shows general
  • 9A and 9B show experimental results of the prototype device of the variable directivity antenna device according to type B1 illustrated in FIGS. 9A and 9B, and the variable directivity antenna device 1 when the parasitic elements 1 a and 1 b of FIG. 9A are turned off. It is a graph which shows the radiation pattern.
  • 9A and 9B show experimental results of the prototype device of the variable directivity antenna device according to type B1 illustrated in FIGS. 9A and 9B, in which only the parasitic element 1b of FIG. 9A is turned on. It is a graph which shows a radiation pattern.
  • 9A and 9B show experimental results of the prototype device of the variable directivity antenna device according to type B1 shown in FIG. 9A, in which only the parasitic element 1a of FIG. 9A is turned on. It is a graph which shows a general radiation pattern.
  • 9A and 9B are experimental results of the prototype device of the variable directivity antenna device according to type B1 illustrated in FIGS. 9A and 9B, and the variable directivity antenna device 1 when the parasitic elements 1a and 1b of FIG. 9A are turned on.
  • 10A and 10B are experimental results of the prototype device of the variable directivity antenna device according to type A2 illustrated in FIGS. 10A and 10B, and the variable directivity antenna device 1 when the parasitic elements 1 a and 1 b of FIG. 10A are turned off. It is a graph which shows the radiation pattern. 10A and 10B show experimental results of the prototype device of the variable directivity antenna device according to type A2 shown in FIGS. 10A and 10B, and the variable directivity antenna device 1 when only the parasitic element 1 b of FIG. 10A is turned on. It is a graph which shows a radiation pattern. 10A and 10B are experimental results of the prototype device of the variable directivity antenna device according to type A2 illustrated in FIGS.
  • FIG. 10A and 10B are experimental results of the prototype device of the variable directivity antenna device according to type A2 illustrated in FIGS. 10A and 10B, and the variable directivity antenna device 1 when the parasitic elements 1 a and 1 b of FIG. 10A are turned on. It is a graph which shows general
  • FIG. 11B is an experimental result of the prototype device of the variable directivity antenna device according to type B2 illustrated in FIGS. 11A and 11B, and the variable directivity antenna device 1 when the parasitic elements 1a and 1b in FIG. 11A are turned off. It is a graph which shows the radiation pattern.
  • 11A and 11B show experimental results of the prototype device for the variable directivity antenna device according to type B2 shown in FIGS. 11A and 11B, and the variable directivity antenna device 1 when only the parasitic element 1 b of FIG. 11A is turned on. It is a graph which shows a radiation pattern.
  • 11A and 11B are experimental results of the prototype device of the variable directivity antenna device according to type B2 illustrated in FIGS. 11A and 11B, in which only the parasitic element 1a of FIG. 11A is turned on. It is a graph which shows a general radiation pattern.
  • FIG. 11B is an experimental result of the prototype device of the variable directivity antenna device according to type B2 illustrated in FIG. 11A and FIG. 11B, and the variable directivity antenna device 1 when the parasitic elements 1a and 1b of FIG. 11A are turned on. It is a graph which shows general
  • FIG. 1 is a perspective view showing an external appearance of a wireless communication device 300 including a variable directivity antenna device 1 according to type A0 according to an embodiment of the present invention
  • FIG. 2 is a plan view of the wireless communication device 300 of FIG.
  • FIG. 3 is a block diagram showing an internal configuration of the wireless communication apparatus 300 of FIG.
  • a wireless communication apparatus 300 is a wireless communication apparatus of 2 ⁇ 2 MIMO transmission system compliant with, for example, the wireless LAN communication standard IEEE802.11n, and has variable directivity as shown in FIG.
  • the antenna devices 1 and 2 the device controller 10 that controls the operation of the entire device, the radiation pattern controller 11 that controls the radiation pattern of the variable directivity antenna devices 1 and 2, and the variable transmission antenna device 1 2 and a wireless communication circuit 12 including a wireless transmission / reception circuit for receiving a wireless reception signal via the variable directional antenna devices 1 and 2 and a USB (Universal) receiving power from an external device and transmitting / receiving a signal.
  • Serial Bus Serial Bus
  • variable directivity antenna device 1 is close to the feeding device 1c on the antenna device substrate 401 so as to be parallel to the feeding device 1c and to be electromagnetically coupled to the feeding device 1c.
  • the parasitic elements 1a and 1b are arranged in parallel so as to sandwich the feeding element 1c at intervals of 1/4 of the operating wavelength.
  • the parasitic element 1 a is grounded via the PIN diode 501 and is connected to the radiation pattern controller 11 via the high frequency blocking inductor 511.
  • the parasitic element 1b is grounded via the PIN diode 502 and connected to the radiation pattern controller 11 via the high frequency blocking inductor 511.
  • the feed element 1c is configured by connecting a top loading antenna element 1f, a dual band forming inductor 1e, and an antenna element 1d in series, and a feed point Q1 that is one end of the antenna element 1d is connected via a feed cable 521.
  • the radiation pattern controller 11 changes the directivity of the variable directional antenna device 1 by turning on / off the PIN diodes 511, 512 by applying or not applying a predetermined control voltage to the PIN diodes 511, 512.
  • the parasitic elements 1a and 1b in which the PIN diodes 511 and 512 are turned on operate as a reflector, for example.
  • the parasitic elements 1a and 1b in which the PIN diodes 511 and 512 are turned on are said to be turned on.
  • variable directivity antenna device 2 is arranged on the antenna device substrate 402 in the same manner as the variable directivity antenna device 1, and the feed element 2c is parallel to the feed element 2c and the feed element 2c is connected to the feed element 2c.
  • Parasitic elements 2a and 2b that are juxtaposed so as to be interposed at intervals of 1/4 of the operating wavelength are configured.
  • the parasitic element 2 a is grounded via the PIN diode 503 and connected to the radiation pattern controller 11 via the high frequency blocking inductor 513.
  • the parasitic element 2b is grounded via a PIN diode 504 and connected to the radiation pattern controller 11 via a high frequency blocking inductor 514.
  • the feed element 2c is configured by connecting a top loading antenna element 2f, a dual band forming inductor 2e, and an antenna element 2d in series, and a feed point Q2 that is one end of the antenna element 2d is connected via a feed cable 522.
  • the radiation pattern controller 11 changes the directivity of the variable directivity antenna device 1 by turning on / off the PIN diodes 513, 514 by applying or not applying a predetermined control voltage to the PIN diodes 513, 514.
  • the parasitic elements 2a and 2b in which the PIN diodes 513 and 514 are turned on are said to be turned on, and the parasitic elements 2a and 2b in which the PIN diodes 513 and 514 are turned off. Is that the parasitic elements 2a and 2b are turned off.
  • the antenna device substrates 401 and 402 are connected to two opposing sides of the antenna device substrate 403 and fixed at an angle of 60 degrees with respect to the antenna device substrate 401.
  • the USB connector 307 is fixed to another side of the antenna device substrate 403.
  • a ground conductor 406 is formed on the back surface of the antenna device substrate 403.
  • FIG. 4 is a plan view of the antenna device substrate 401 of FIG. 1
  • FIG. 5 is a plan view of the antenna device substrate 402 of FIG. 4 and 5 illustrate a prototype device of an experimental example according to the embodiment.
  • 6A is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when the parasitic elements 1a and 1b in FIG. 1 are turned off
  • FIG. 6B is a graph in which only the parasitic element 1b in FIG. 1 is turned on
  • 6C is a graph showing a schematic radiation pattern of the variable directional antenna device 1 when the passive directional antenna device 1 is turned on
  • FIG. 6C shows a schematic radiation pattern of the variable directional antenna device 1 when the parasitic elements 1a and 1b of FIG.
  • FIG. 6D is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 1 is turned on.
  • the variable directivity antenna device 1 when the parasitic elements 1a and 1b are turned off, the parasitic elements 1a and 1b do not affect the radiation pattern of the feeder element 1c, and the radiation pattern of the variable directivity antenna device 1 is fed. It is the same as the radiation pattern of the element 1c and is almost non-directional. Further, by turning on at least one of the parasitic elements 1a and 1b, the radiation pattern of the variable directivity antenna device 1 changes as shown in FIGS. 6B to 6D. As described above, the variable directivity antenna device 1 has four radiation patterns shown in FIGS. 6A to 6D.
  • FIGS. 7A to 7D are experimental results of the prototype device of the variable directivity antenna device according to type A0 shown in FIGS. 1 and 2, and FIG. 7A shows that the parasitic elements 1a and 1b in FIG. 1 are turned off.
  • 7B is a graph showing the radiation pattern of the variable directional antenna device 1 when only the parasitic element 1b of FIG. 1 is turned on.
  • 7C is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 1 is turned on
  • FIG. 7D is a graph showing that the parasitic elements 1a and 1b of FIG. 1 are turned on. It is a graph which shows the general
  • FIGS. 7A to 7D it can be seen that directivity similar to the schematic radiation patterns of FIGS. 6A to 6D can be obtained.
  • FIGS. 8A, 8B, 9A, 9B, 10A, 10B, 11A, and 11B modified examples in which the electrical characteristics of the antenna are improved from the above embodiment will be described.
  • a variable directional antenna device will be described for a dual-band wireless LAN using both the 2.4 GHz band and the 5 GHz band.
  • FIG. 8A is a plan view showing a conductor pattern on the front surface of the antenna device board 401 of the variable directivity antenna device 1 of type A1 according to the first modification of the present invention
  • FIG. 8B is an antenna device of FIG. 8A
  • 3 is a perspective plan view showing a conductor pattern on the back surface of a substrate 401.
  • FIG. 8B should be shown in a plan view, but for convenience of illustration, it is shown in a perspective plan view seen from the front surface (the invisible portion is shown by a solid line instead of a dotted line). The same applies to 10B and FIG. 11B.
  • a substantially rectangular ground conductor 404 is formed on the lower side, and on the upper side, a strip-shaped parasitic element 1a, a feeding element 1c, The strip-shaped parasitic elements 1b are juxtaposed at intervals of 1/4 of the operating wavelength.
  • the feed element 1c is configured by connecting a rectangular top-loading antenna element 1f, a dual-band forming inductor 1e, and a strip-shaped antenna element 1d in series.
  • the width W1d of the antenna element 1d is wider than the widths W1a and W1b of the parasitic elements 1a and 1b, and the width W1f of the antenna element 1f is wider than the width W1d of the antenna element 1d.
  • the width W1f of the device 1f is formed to be larger than the length L1f in the longitudinal direction.
  • a ground conductor 404g is formed on the back surface of the antenna device substrate 401 so as to face the ground conductor 404 with the antenna device substrate 401 interposed therebetween, and the antenna device substrate 401 is placed on the parasitic elements 1a and 1b, respectively.
  • the parasitic elements 1ah and 1bh are formed so as to be opposed to each other, and each pair of the parasitic elements (1a and 1ah; 1b and 1bh) opposed to each other is one that penetrates the antenna device substrate 401 in the thickness direction. They are connected via a plurality of through-hole conductors (not shown) and operate integrally.
  • An antenna element 1dh is formed so as to face the antenna element 1d with the antenna device substrate 401 interposed therebetween, and a pair of antenna elements (1d and 1dh) facing each other penetrates the antenna device substrate 401 in the thickness direction. They are connected via a book or a plurality of through-hole conductors (not shown) and operate integrally.
  • the integration of the elements on the front surface and the elements on the back surface is for increasing the conductor thickness and increasing the power resistance.
  • the dual band forming inductor 1e has a meander shape, and is from the same element width (referred to as a meander-shaped envelope width) as the width W1d of the antenna element 1d at the connection portion with the antenna element 1d.
  • the element width is formed so as to increase toward the upper antenna element 1f, and is formed in a meander shape having a trapezoidal envelope outer shape.
  • the FB ratio in the directivity pattern of the antenna device when the parasitic element 1a or 1b is turned on is larger than in the embodiments of FIGS. 1 to 5 and FIGS. 6A to 6D. can do.
  • FIG. 9A is a plan view showing a conductor pattern on the front surface of the antenna device substrate 401 of the variable directivity antenna device 1 of type B1 according to the second modification of the present invention
  • FIG. 9B shows the antenna device of FIG. 9A
  • 3 is a perspective plan view showing a conductor pattern on the back surface of a substrate 401.
  • the second modification is different from the first modification in FIGS. 8A and 8B in the following points.
  • a rectangular notch is formed at the upper right corner (opposite corner different from one end to which the PIN diode 501 is connected) facing the dual band forming inductor 1e in the lateral direction.
  • 1ac is formed, that is, the upper right corner of the parasitic element 1a is formed in a staircase shape
  • a rectangular notch is formed at the upper left corner (opposite corner different from the one connected to the PIN diode 502) facing the dual band forming inductor 1e in the lateral direction.
  • the rectangular notch 1ahc is formed at a position (upper right corner of the upper right corner) facing the notch 1ac of the parasitic element 1a, that is, the upper right tip of the parasitic element 1ah.
  • the corner is formed in a staircase shape
  • the rectangular notch 1bhc is formed at a position facing the notch 1bc of the parasitic element 1b (upper left corner). That is, the top left corner of the parasitic element 1bh is formed in a staircase shape.
  • the FB ratio in the directivity pattern of the antenna device when the parasitic element 1a or 1b is turned on is increased as compared with the embodiments of FIGS. 1 to 5 and 6A to 6D, and the gain of the antenna device is first. It can be made larger than the modified example.
  • FIG. 10A is a plan view showing a conductor pattern on the front surface of the antenna device substrate 401 of the variable directivity antenna device 1 of type A2 according to the third modification of the present invention
  • FIG. 10B shows the antenna device of FIG. 10A
  • 3 is a perspective plan view showing a conductor pattern on the back surface of a substrate 401.
  • the third modification is different from the first modification in the following points. (1) The antenna element 1f is replaced with a rectangular shape, and the upper side is formed in a trapezoidal shape wider than the lower side, and (2) the dual band forming inductor 1e is replaced with a meander shape having a trapezoidal envelope outer shape. And a meander shape having a rectangular envelope outer shape.
  • FIG. 11A is a plan view showing a conductor pattern on the front surface of the antenna device substrate 401 of the type B2 variable directivity antenna device 1 according to a fourth modification of the present invention
  • FIG. 11B shows the antenna device of FIG. 11A 3 is a perspective plan view showing a conductor pattern on the back surface of a substrate 401.
  • FIG. The fourth modification differs from the third modification in that notches 1ac, 1bc, 1ahc, and 1bhc are formed in the parasitic elements 1a, 1b, 1ah, and 1bh, respectively.
  • FIGS. 8A and 8B are experimental results of the prototype device of the variable directivity antenna device according to type A1 shown in FIGS. 8A and 8B.
  • FIG. 12A shows the parasitic elements 1a and 1b in FIG. 8A being turned off.
  • 12B is a graph showing the radiation pattern of the variable directional antenna device 1 when only the parasitic element 1b of FIG. 8A is turned on.
  • 12C is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 8A is turned on, and
  • FIG. 12D is a graph showing that the parasitic elements 1a and 1b of FIG. 8A are turned on.
  • FIG. 13A shows the parasitic elements 1a and 1b in FIG. 9A being turned off.
  • FIG. 13B is a graph showing the radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1b of FIG. 9A is turned on.
  • 13C is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 9A is turned on, and
  • FIG. 13D shows the parasitic elements 1a and 1b of FIG. 9A.
  • FIG. 14A to 14D show the experimental results of the prototype device for the variable directivity antenna device according to type A2 shown in FIGS. 10A and 10B.
  • FIG. 14A shows that the parasitic elements 1a and 1b in FIG. 10A are turned off.
  • FIG. 14B is a graph showing the radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1b of FIG. 10A is turned on.
  • 14C is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 10A is turned on, and
  • FIG. 14D shows the parasitic elements 1a and 1b of FIG. 10A.
  • FIG. 15A to 15D show the experimental results of the prototype device for the variable directivity antenna device according to type B2 shown in FIGS. 11A and 11B.
  • FIG. 15A shows the parasitic elements 1a and 1b of FIG. 11A.
  • 15B is a graph showing a radiation pattern of the variable directional antenna device 1 when it is turned off, and FIG. 15B shows a radiation pattern of the variable directional antenna device 1 when only the parasitic element 1b of FIG. 11A is turned on.
  • 15C is a graph showing a schematic radiation pattern of the variable directivity antenna device 1 when only the parasitic element 1a of FIG. 11A is turned on, and
  • FIG. 15D is a parasitic element 1a, 1b of FIG. 11A. It is a graph which shows the general radiation pattern of the variable directivity antenna device 1 when is turned on.
  • the experimental results of FIGS. 12A to 15D will be considered.
  • the dual band forming inductor 1e in the type B2 of FIG. When the meander shape has a trapezoidal envelope outer shape, the unwanted radiation in the lateral direction is reduced and the FB ratio is greatly increased in the 5 GHz band of type A1 in FIG. 12C, but the gain of the antenna device is reduced. You can see that In order to improve this, when notches 1ac, 1bc, etc. are formed in parasitic elements 1a, 1b, etc., the unwanted radiation in the lateral direction is reduced and the FB ratio is large in the 5 GHz band of type B1 in FIG. 13C. The gain of the antenna device can be increased in a wide band of 5 GHz band while maintaining.
  • the parasitic element By forming the notches 1ac and 1bc so that the shape of the leading ends of 1a and 1b and the like is formed in a staircase shape, the frequency characteristics of the antenna device can be improved. This shape acts as a wide-band variable directivity antenna whose directivity can be switched satisfactorily in each channel. Further, by switching the directivity switching, it is possible to avoid a null point and perform stable communication without selecting an installation location.
  • the 5 GHz band wireless LAN system has a wide use band of about 800 MHz, it is difficult to switch the directivity in all bands, but the type A1 in FIGS. 8A and 8B and the type B1 in FIGS. 9A and 9B are shown.
  • the inductor 1e of the feed element 1c used for frequency separation of 2.4 GHz and 5 GHz bands is gradually widened so that the directivity is variable in all the 5 GHz bands where the use frequency band is wide. . Further, by switching the directivity switching, it is possible to avoid a null point and perform stable communication without selecting an installation location.
  • the wireless communication device 300 is a wireless communication device of 2 ⁇ 2 MIMO transmission system compliant with the wireless LAN communication standard IEEE802.11n, but the present invention is not limited to this. It may be a wireless communication device compliant with other wireless communication standards such as a mobile phone.
  • PIN diodes 501 to 504 are used.
  • the present invention is not limited to this, and other high-frequency diodes may be used.
  • variable directivity antenna device since the rectangular cutout portion is formed at the other end corner of the parasitic element, in the dual-band variable directivity antenna device, Provided is a variable directional antenna device capable of ensuring a relatively high antenna gain as compared with the prior art and a relatively large FB ratio as compared with the prior art over a wide band in the higher frequency band. be able to.
  • 1 ... Variable directional antenna device 1a, 1b, 1ah, 1bh ... parasitic element, 1ahc, 1bhc ... notch, 1c: feeding element, 1d, 1f, 1dh ... antenna elements, 1e: dual band forming inductor, 10: Device controller, 11 ... Radiation pattern controller, 12 ... wireless communication circuit, 13 ... USB interface, 401 ... antenna device substrate, 404, 404g ... grounding conductor, 501, 502 ... PIN diodes, 511, 512... High frequency blocking inductor.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 給電素子(1c)は、第1の幅(W1d)を有する第1のアンテナ素子(1d)と、デュアルバンド形成用インダクタ(1e)と、第1の幅(W1d)よりも広い第2の幅(W1f)を有する第2のアンテナ素子(1f)とが直列に接続されて構成される。インダクタ(1e)は、第1のアンテナ素子(1d)に接続された部分の第1の幅(W1d)から、第2のアンテナ素子(1f)に接続された部分に向かって広くなる幅を有する台形の包絡線外形形状を有するメアンダ形状で形成される。無給電素子(1a,1b)の他端角部に矩形形状の切欠部(1ac,1bc)をさらに形成した。

Description

可変指向性アンテナ装置
 本発明は、1本の給電素子と、少なくとも1本の無給電素子とを備えた可変指向性アンテナ装置に関する。
 情報端末どうしを相互に接続するネットワーク形態の中で、無線通信を用いたネットワークは、有線通信を用いたネットワークに比較して、情報端末の可搬性及び配置の自由度の点で優れていること及び情報端末間の接続のための有線ケーブルを省くことにより情報端末を軽量化できることなどの利点を有する。これにより、無線通信装置は、従来のパーソナルコンピュータ間でのデータ伝送に利用されるのみならず、現在では、多くの家電製品にも搭載され、当該家電製品間での映像音声データの伝送のために利用されるようになってきた。
 しかしながら、無線通信装置は上記のような利点を有する反面、空間に電磁波を放射して通信を行うので、多数の反射物が設置されているような空間に設置される場合、物体に反射して到来する遅延波によって引き起こされるフェージングの影響によって伝送特性の劣化が起きて、データ伝送を正常に行えないことがあった。例えば、大型テレビジョン放送受信装置やブルーレイディスク記録再生装置及びDVDレコーダなどの、固定して設置される家電機器を用いてインターネット・ビデオ・オン・デマンド(VoD;Video on Demand)技術を利用する場合、各家電機器に無線LAN(Local Area Network)への接続機能を搭載し、さらにインターネット回線に接続するための無線LANアクセスポイントを設ける必要がある。この場合には、主に、テレビジョン放送受信装置やDVDレコーダの周囲にいる人間、扉の開閉などの動きに起因するフェージングが発生する。また、ワンセグ・テレビジョン放送受信装置などの小型のテレビジョン放送受信装置又はポータブルDVDプレーヤなどの持ち運びが可能なポータブル機器に搭載された無線通信装置と無線アクセスポイントとの間で通信を行う場合には、主に、機器そのものを動かすことによりフェージングが発生する。
 従来、このようなフェージングに対する対策として、送受信アンテナの指向性制御及び様々なダイバーシチ処理などの制御方法が提案されている。電波伝搬環境の時間変化に応じて無線信号を受信する従来技術に係る無線通信装置は、例えば特許文献1~特許文献3に記載されている。
 また、上記送受信アンテナの指向性制御のために、以下の可変指向性アンテナ装置が特許文献4において提案されている。当該可変指向性アンテナ装置は、給電アンテナ素子と無給電アンテナ素子とを備え、各無給電アンテナ素子には一対のPINダイオードが設けられる。PINダイオードをコントローラに接続する各制御線には、他の可変指向性アンテナと電磁的に結合した部分に所定間隔で設けられたインダクタが設けられる。インダクタを設ける間隔は、制御線におけるインダクタ間の区間が可変指向性アンテナの動作周波数において実質的に共振しない長さに設定される。
特開2000-134023号公報。 特開2005-142866号公報。 特開平8-172423号公報。 国際出願公開第2009/050883号。
 一般的に無線通信装置において、アンテナ及び送受信機器用モジュールを、個別設計、及び評価した後、組み合わせ評価を行うため、無線機器として最適なアンテナ設計が行われているかは疑問点が多い。近年のMIMO(Multple Input Multple Output)技術は、従来のSISO(Single Input Single Output)技術と比較し、アンテナと変復調、それぞれの技術が密接な関係にある上、複数のアンテナを使用するため、アンテナ間の配置やアイソレーションに課題が多く存在する。
 ここで、例えば2.4GHz帯と5GHz帯との両方を用いるデュアルバンド無線LANのためにアンテナ装置を構成した場合に、特に、5GHz帯の無線LANで使用する帯域が約800MHzと比較的広いために、当該広帯域にわたって所定値以上のアンテナ利得を確保しかつ可変指向性アンテナ装置でのフロント・バック比(以下、FB比という。)を所定値以上確保することが非常にむずかしいという問題点があった。
 本発明の目的は以上の問題点を解決し、2つの周波数帯で動作可能なデュアルバンド用可変指向性アンテナ装置において、高い方の周波数帯において広帯域にわたって、従来技術に比較して比較的高いアンテナ利得を確保しかつ従来技術に比較して比較的大きなFB比を確保することができる可変指向性アンテナ装置を提供することにある。
 本発明に係る可変指向性アンテナ装置は、
 1本の給電素子と、
 上記給電素子と電磁的に近接するように並置され、一端が接地されたダイオードの他端が接続された少なくとも1本の無給電素子とを備え、
 上記ダイオードをオン・オフすることにより指向特性を変更可能な可変指向性アンテナ装置において、
 上記給電素子は、第1の幅を有する第1のアンテナ素子と、デュアルバンド形成用インダクタと、上記第1の幅よりも広い第2の幅を有する第2のアンテナ素子とが直列に接続されて構成され、
 上記無給電素子の他端角部に、矩形形状の切欠部を形成したことを特徴とする。
 上記可変指向性アンテナ装置において、上記第2のアンテナ素子の第2の幅は、上記第2のアンテナ素子の長手方向の長さよりも大きくなるように形成されたことを特徴とする。
 また、上記可変指向性アンテナ装置において、上記給電素子を挟設するように互いに並置された2本の無給電素子を備えたことを特徴とする。
 本発明に係る可変指向性アンテナ装置によれば、上記無給電素子の他端角部に、矩形形状の切欠部を形成したので、デュアルバンド用可変指向性アンテナ装置において、高い方の周波数帯において広帯域にわたって、従来技術に比較して比較的高いアンテナ利得を確保しかつ従来技術に比較して比較的大きなFB比を確保することができる可変指向性アンテナ装置を提供することができる。
本発明の一実施形態に係るタイプA0に係る可変指向性アンテナ装置1を備えた無線通信装置300の外観を示す斜視図である。 図1の無線通信装置300の平面図である。 図1の無線通信装置300の内部構成を示すブロック図である。 図1のアンテナ装置基板401の平面図である。 図1のアンテナ装置基板402の平面図である。 図1の無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図1の無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図1の無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図1の無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図1及び図2に図示されたタイプA0に係る可変指向性アンテナ装置1の試作装置の実験結果であって、図1の無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図1及び図2に図示されたタイプA0に係る可変指向性アンテナ装置1の試作装置の実験結果であって、図1の無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図1及び図2に図示されたタイプA0に係る可変指向性アンテナ装置1の試作装置の実験結果であって、図1の無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図1及び図2に図示されたタイプA0に係る可変指向性アンテナ装置1の試作装置の実験結果であって、図1の無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 本発明の第1の変形例に係るタイプA1の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図である。 図8Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。 本発明の第2の変形例に係るタイプB1の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図である。 図9Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。 本発明の第3の変形例に係るタイプA2の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図である。 図10Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。 本発明の第4の変形例に係るタイプB2の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図である。 図11Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。 図8A及び図8Bに図示されたタイプA1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図8Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図8A及び図8Bに図示されたタイプA1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図8Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図8A及び図8Bに図示されたタイプA1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図8Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図8A及び図8Bに図示されたタイプA1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図8Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図9A及び図9Bに図示されたタイプB1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図9Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図9A及び図9Bに図示されたタイプB1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図9Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図9A及び図9Bに図示されたタイプB1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図9Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図9A及び図9Bに図示されたタイプB1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図9Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図10A及び図10Bに図示されたタイプA2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図10Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図10A及び図10Bに図示されたタイプA2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図10Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図10A及び図10Bに図示されたタイプA2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図10Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図10A及び図10Bに図示されたタイプA2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図10Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図11A及び図11Bに図示されたタイプB2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図11Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図11A及び図11Bに図示されたタイプB2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図11Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフである。 図11A及び図11Bに図示されたタイプB2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図11Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。 図11A及び図11Bに図示されたタイプB2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図11Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。
 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
 図1は本発明の一実施形態に係るタイプA0に係る可変指向性アンテナ装置1を備えた無線通信装置300の外観を示す斜視図であり、図2は図1の無線通信装置300の平面図であり、図3は図1の無線通信装置300の内部構成を示すブロック図である。
 図1~図3において、無線通信装置300は、例えば無線LANの通信規格IEEE802.11nに準拠した2×2のMIMO伝送方式の無線通信装置であって、図3に示すように、可変指向性アンテナ装置1,2と、装置全体の動作を制御する装置コントローラ10と、可変指向性アンテナ装置1,2の放射パターンを制御する放射パターンコントローラ11と、無線送信信号を可変指向性アンテナ装置1,2を介して送信し又は無線受信信号を可変指向性アンテナ装置1,2を介して受信する無線送受信回路を含む無線通信回路12と、外部装置から電源を受電しかつ信号を送受信するUSB(Universal Serial Bus)インターフェース13と、当該USBインターフェース13に接続されたUSBコネクタ307とを備えて構成される。
 図1~図3において、可変指向性アンテナ装置1は、アンテナ装置基板401上において、給電素子1cと、当該給電素子1cと互いに平行となり、かつ給電素子1cと電磁的に結合するように近接して、給電素子1cを動作波長の1/4の間隔で挟設するように並置されてなる無給電素子1a,1bとを備えて構成される。無給電素子1aはPINダイオード501を介して接地されるとともに、高周波阻止用インダクタ511を介して放射パターンコントローラ11に接続される。また、無給電素子1bはPINダイオード502を介して接地されるとともに、高周波阻止用インダクタ511を介して放射パターンコントローラ11に接続される。さらに、給電素子1cはトップローディング型アンテナ素子1fとデュアルバンド形成用インダクタ1eとアンテナ素子1dとが直列に接続されて構成され、アンテナ素子1dの一端である給電点Q1は給電ケーブル521を介して無線通信回路12に接続される。ここで、放射パターンコントローラ11は所定の制御電圧をPINダイオード511,512に印加し又は印加しないことによりPINダイオード511,512をオン・オフさせて可変指向性アンテナ装置1の指向性を変化させることにより、図6を参照して詳細後述するように、例えばPINダイオード511,512がオンされた無給電素子1a,1bが例えば反射器として動作する。本実施形態において、PINダイオード511,512がオンされた無給電素子1a,1bについては、無給電素子1a,1bがオンされたといい、PINダイオード511,512がオフされた無給電素子1a,1bについては、無給電素子1a,1bがオフされたという。
 図1~図3において、可変指向性アンテナ装置2は、アンテナ装置基板402上において、可変指向性アンテナ装置1と同様に、給電素子2cと、当該給電素子2cと互いに平行となりかつ給電素子2cを動作波長の1/4の間隔で挟設するように並置されてなる無給電素子2a,2bとを備えて構成される。無給電素子2aはPINダイオード503を介して接地されるとともに、高周波阻止用インダクタ513を介して放射パターンコントローラ11に接続される。また、無給電素子2bはPINダイオード504を介して接地されるとともに、高周波阻止用インダクタ514を介して放射パターンコントローラ11に接続される。さらに、給電素子2cはトップローディング型アンテナ素子2fとデュアルバンド形成用インダクタ2eとアンテナ素子2dとが直列に接続されて構成され、アンテナ素子2dの一端である給電点Q2は給電ケーブル522を介して無線通信回路12に接続される。ここで、放射パターンコントローラ11は所定の制御電圧をPINダイオード513,514に印加し又は印加しないことによりPINダイオード513,514をオン・オフさせて可変指向性アンテナ装置1の指向性を変化させることにより、図6を参照して詳細後述するように、例えばPINダイオード513,514がオンされた無給電素子2a,2bが例えば反射器として動作する。本実施形態において、PINダイオード513,514がオンされた無給電素子2a,2bについては、無給電素子2a,2bがオンされたといい、PINダイオード513,514がオフされた無給電素子2a,2bについては、無給電素子2a,2bがオフされたという。
 図1及び図2において、アンテナ装置基板401及び402はそれぞれ、アンテナ装置基板403の対向する2つの辺に連結されかつ、アンテナ装置基板401に対して60度の角度をなすように固定されている。また、USBコネクタ307はアンテナ装置基板403の別の一辺に固定されている。また、アンテナ装置基板403の裏面には接地導体406が形成されている。
 図4は図1のアンテナ装置基板401の平面図であり、図5は図1のアンテナ装置基板402の平面図である。図4及び図5においては、当該実施の形態に係る実験例の試作装置を図示している。
 図6Aは図1の無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図6Bは図1の無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図6Cは図1の無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図6Dは図1の無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。
 図6Aに示すように、無給電素子1a及び1bがオフされているときには、無給電素子1a及び1bは給電素子1cの放射パターンに影響を及ぼさず、可変指向性アンテナ装置1の放射パターンは給電素子1cの放射パターンと同一であってほぼ無指向性となる。さらに、無給電素子1a及び1bのうちの少なくとも一方をオンすることにより、可変指向性アンテナ装置1の放射パターンは図6B~図6Dに示すように変化する。このように、可変指向性アンテナ装置1は図6A~図6Dに示す4つの放射パターンを有する。
 図7A~図7Dは図1及び図2に図示されたタイプA0に係る可変指向性アンテナ装置の試作装置の実験結果であって、図7Aは図1の無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図7Bは図1の無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図7Cは図1の無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図7Dは図1の無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。図7A~図7Dから明らかなように、図6A~図6Dの概略放射パターンと同様の指向性を得ることができることがわかる。
 以下の図8A、図8B、図9A、図9B、図10A、図10B、図11A及び図11Bにおいては、上述の実施の形態からアンテナの電気的特性を改善した変形例について説明する。ここで、各変形例では、具体的には、2.4GHz帯と5GHz帯との両方を用いるデュアルバンド無線LANのために可変指向性アンテナ装置について説明する。
 図8Aは本発明の第1の変形例に係るタイプA1の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図であり、図8Bは図8Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。なお、図8Bについて平面図で図示すべきであるが、図示の便宜上、おもて面から見た透視平面図(可視できない部分については点線ではなく実線で図示した)で示し、図9B、図10B及び図11Bにおいても同様である。
 図8Aにおいて、アンテナ装置基板401のおもて面上に、その下側に略矩形形状の接地導体404が形成される一方、その上側に、ストリップ形状の無給電素子1aと、給電素子1cと、ストリップ形状の無給電素子1bとが動作波長の1/4の間隔で並置されるように形成される。給電素子1cは、矩形形状のトップローディング型アンテナ素子1fと、デュアルバンド形成用インダクタ1eと、ストリップ形状のアンテナ素子1dとが直列に接続されて構成される。アンテナ素子1dの幅W1dは無給電素子1a,1bの幅W1a,W1bよりも広く、アンテナ素子1fの幅W1fはアンテナ素子1dの幅W1dよりも広くなるように形成されており、ここで、アンテナ装置1fの幅W1fはその長手方向の長さL1fよりも大きいように形成されている。
 また、図8Bにおいて、アンテナ装置基板401の裏面上に、接地導体404にアンテナ装置基板401を挟んで対向するように接地導体404gが形成され、無給電素子1a,1bにそれぞれアンテナ装置基板401を挟んで対向するように無給電素子1ah,1bhが形成されかつこれら対向する各1対の無給電素子(1aと1ah;1bと1bh)はアンテナ装置基板401を厚さ方向に貫通する1本又は複数のスルーホール導体(図示せず。)を介して接続されて一体化して動作する。また、アンテナ素子1dにアンテナ装置基板401を挟んで対向するようにアンテナ素子1dhが形成されかつこれら対向する1対のアンテナ素子(1dと1dh)はアンテナ装置基板401を厚さ方向に貫通する1本又は複数のスルーホール導体(図示せず。)を介して接続されて一体化して動作する。なお、これらのおもて面の素子と裏面の素子との一体化は、導体厚さを大きくして耐電力を高めるためである。
 図8Aにおいて、特に、デュアルバンド形成用インダクタ1eはメアンダ形状を有し、アンテナ素子1dとの接続部分におけるアンテナ素子1dの幅W1dと同一の素子幅(メアンダ形状の包絡線幅をいう。)から、上側のアンテナ素子1fに向かって素子幅が広くなるように形成された素子幅を有し、台形の包絡線外形形状を有するメアンダ形状で形成されている。これにより、詳細後述するように、無給電素子1a又は1bをオンしたときのアンテナ装置の指向性パターンにおけるFB比を図1~図5及び図6A~図6Dの実施の形態に比較して大きくすることができる。
 図9Aは本発明の第2の変形例に係るタイプB1の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図であり、図9Bは図9Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。
 第2の変形例は、図8A及び図8Bの第1の変形例に比較して、以下の点が異なる。
(1)無給電素子1aにおいて、デュアルバンド形成用インダクタ1eに横方向で対向する右上の先端角部(PINダイオード501が接続された一端とは異なる他端の角部)に矩形形状の切欠部1acを形成したこと、すなわち、無給電素子1aの右上の先端角部を階段形状に形成したこと、
(2)無給電素子1bにおいて、デュアルバンド形成用インダクタ1eに横方向で対向する左上の先端角部(PINダイオード502が接続された一端とは異なる他端の角部)に矩形形状の切欠部1bcを形成したこと、すなわち、無給電素子1bの左上の先端角部を階段形状に形成したこと、
(3)無給電素子1ahにおいて、無給電素子1aの切欠部1acと対向する位置(右上の先端角部)に矩形形状の切欠部1ahcを形成したこと、すなわち、無給電素子1ahの右上の先端角部を階段形状に形成したこと、及び
(4)無給電素子1bhにおいて、無給電素子1bの切欠部1bcと対向する位置(左上の先端角部)に矩形形状の切欠部1bhcを形成したこと、すなわち、無給電素子1bhの左上の先端角部を階段形状に形成したこと。
 第2の変形例では、第1の変形例に比較して、無給電素子1a,1b,1ah,1bhにそれぞれ切欠部1ac,1bc,1ahc,1bhcを形成することにより、詳細後述するように、無給電素子1a又は1bをオンしたときのアンテナ装置の指向性パターンにおけるFB比を図1~図5、図6A~図6Dの実施の形態に比較して大きくしかつアンテナ装置の利得を第1の変形例に比較して大きくすることができる。
 図10Aは本発明の第3の変形例に係るタイプA2の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図であり、図10Bは図10Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。第3の変形例は、第1の変形例に比較して、以下の点が異なる。
(1)アンテナ素子1fを矩形形状に代えて、上辺が下辺よりも広い台形形状で形成したこと、及び
(2)デュアルバンド形成用インダクタ1eを、台形の包絡線外形形状を有するメアンダ形状に代えて、矩形の包絡線外形形状を有するメアンダ形状で形成したこと。
 図11Aは本発明の第4の変形例に係るタイプB2の可変指向性アンテナ装置1のアンテナ装置基板401のおもて面の導体パターンを示す平面図であり、図11Bは図11Aのアンテナ装置基板401の裏面の導体パターンを示す透視平面図である。第4の変形例は、第3の変形例に比較して、無給電素子1a,1b,1ah,1bhにそれぞれ切欠部1ac,1bc,1ahc,1bhcを形成したことが異なる。
 次いで、第1~第4の変形例に係る可変指向性アンテナ装置1の試作装置の実験結果について以下に説明する。
 図12A~図12Dは図8A及び図8Bに図示されたタイプA1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図12Aは図8Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図12Bは図8Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図12Cは図8Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図12Dは図8Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。また、図13A~図13Dは図9A及び図9Bに図示されたタイプB1に係る可変指向性アンテナ装置の試作装置の実験結果であって、図13Aは図9Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図13Bは図9Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図13Cは図9Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図13Dは図9Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。さらに、図14A~図14Dは図10A及び図10Bに図示されたタイプA2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図14Aは図10Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図14Bは図10Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図14Cは図10Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図14Dは図10Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。またさらに、図15A~図15Dは図11A及び図11Bに図示されたタイプB2に係る可変指向性アンテナ装置の試作装置の実験結果であって、図15Aは図11Aの無給電素子1a,1bがオフされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図15Bは図11Aの無給電素子1bのみがオンされているときの可変指向性アンテナ装置1の放射パターンを示すグラフであり、図15Cは図11Aの無給電素子1aのみがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフであり、図15Dは図11Aの無給電素子1a,1bがオンされているときの可変指向性アンテナ装置1の概略放射パターンを示すグラフである。以下、図12A~図15Dの実験結果について考察する。
 説明の簡単化のために例えば、図12C、図13C、図14C及び図15Cの無給電素子1aのみをオンした場合について考えると、まず、図15CのタイプB2において、デュアルバンド形成用インダクタ1eを台形の包絡線外形形状を有するメアンダ形状した場合、図12CのタイプA1の5GHz帯において、横方向の不要放射が減少してFB比が大幅に大きくなっているが、アンテナ装置の利得が減少していることがわかる。これを改善するために、無給電素子1a,1b等に切欠部1ac,1bc等を形成した場合、図13CのタイプB1の5GHz帯において、横方向の不要放射が減少してFB比が大きい値を保持しつつ5GHz帯の広い帯域でアンテナ装置の利得を増大させることができる。
 以上説明したように、5GH帯の無線LANシステムでは約800MHzと使用帯域が広いためすべての帯域で指向性を切り替えることが難しいが、図9A及び図9BのタイプB1に示すように、無給電素子1a,1b等の先端部の形状を階段形状で形成するように切欠部1ac,1bcを形成することにより、アンテナ装置の周波数特性の改善を図ることができる。この形状により、各チャネルにおいて良好に指向性が切り替え可能な広帯域可変指向性アンテナとして作用する。また、指向性切り替えを切り替えることで、ヌルポイントを避け、設置箇所を選ばない安定した通信が可能である。
 また、5GH帯の無線LANシステムでは約800MHzと使用帯域が広いため、すべての帯域で指向性を切り替えることは難しいが、図8A及び図8BのタイプA1及び図9A及び図9BのタイプB1に示すように、2.4GHzと5GHz帯の周波数分離のために使用する給電素子1cのインダクタ1eを徐々に広がる形状にすることで、使用周波数帯域が広い5GHz帯すべての帯域で指向性が可変となる。また、指向性切り替えを切り替えることで、ヌルポイントを避け、設置箇所を選ばない安定した通信が可能である。
 以上の実施形態及び変形例において、無線通信装置300は、無線LANの通信規格IEEE802.11nに準拠した2×2のMIMO伝送方式の無線通信装置であったが、本発明はこれに限られず、携帯電話機などの他の無線通信規格に準拠した無線通信装置であってもよい。
 以上の実施形態及び変形例において、PINダイオード501~504を用いているが、本発明はこれに限らず、その他の高周波用ダイオードを用いてもよい。
 以上詳述したように、本発明に係る可変指向性アンテナ装置によれば、上記無給電素子の他端角部に、矩形形状の切欠部を形成したので、デュアルバンド用可変指向性アンテナ装置において、高い方の周波数帯において広帯域にわたって、従来技術に比較して比較的高いアンテナ利得を確保しかつ従来技術に比較して比較的大きなFB比を確保することができる可変指向性アンテナ装置を提供することができる。
1…可変指向性アンテナ装置、
1a,1b,1ah,1bh…無給電素子、
1ahc,1bhc…切欠部、
1c…給電素子、
1d,1f,1dh…アンテナ素子、
1e…デュアルバンド形成用インダクタ、
10…装置コントローラ、
11…放射パターンコントローラ、
12…無線通信回路、
13…USBインターフェース、
401…アンテナ装置基板、
404,404g…接地導体、
501,502…PINダイオード、
511,512…高周波阻止用インダクタ。

Claims (3)

  1.  1本の給電素子と、
     上記給電素子と電磁的に近接するように並置され、一端が接地されたダイオードの他端が接続された少なくとも1本の無給電素子とを備え、
     上記ダイオードをオン・オフすることにより指向特性を変更可能な可変指向性アンテナ装置において、
     上記給電素子は、第1の幅を有する第1のアンテナ素子と、デュアルバンド形成用インダクタと、上記第1の幅よりも広い第2の幅を有する第2のアンテナ素子とが直列に接続されて構成され、
     上記無給電素子の他端角部に、矩形形状の切欠部を形成したことを特徴とする可変指向性アンテナ装置。
  2.  上記第2のアンテナ素子の第2の幅は、上記第2のアンテナ素子の長手方向の長さよりも大きくなるように形成されたことを特徴とする請求項1記載の可変指向性アンテナ装置。
  3.  上記給電素子を挟設するように互いに並置された2本の無給電素子を備えたことを特徴とする請求項1又は2記載の可変指向性アンテナ装置。
PCT/JP2010/007488 2009-12-28 2010-12-24 可変指向性アンテナ装置 WO2011080903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/387,830 US8717249B2 (en) 2009-12-28 2010-12-24 Variable directivity antenna apparatus including parasitic elements having cut portion of rectangular shape
JP2011547320A JP5557853B2 (ja) 2009-12-28 2010-12-24 可変指向性アンテナ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-296847 2009-12-28
JP2009296847 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080903A1 true WO2011080903A1 (ja) 2011-07-07

Family

ID=44226330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007488 WO2011080903A1 (ja) 2009-12-28 2010-12-24 可変指向性アンテナ装置

Country Status (3)

Country Link
US (1) US8717249B2 (ja)
JP (1) JP5557853B2 (ja)
WO (1) WO2011080903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212299A (zh) * 2019-05-21 2019-09-06 常熟市泓博通讯技术股份有限公司 可调式元素因子的阵列天线模组

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833479B1 (en) * 2013-08-02 2020-03-18 Advanced Automotive Antennas, S.L. Antenna system for a vehicle
CN104882675B (zh) * 2015-05-05 2017-09-05 重庆大学 一种基于变容二极管的双陷波可调的超宽带天线
TWI671951B (zh) * 2018-03-09 2019-09-11 啟碁科技股份有限公司 智慧型天線裝置
KR20210158490A (ko) * 2020-06-24 2021-12-31 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152218A (ja) * 1992-11-06 1994-05-31 Fujitsu Ten Ltd 移動体用アンテナ
JP2007060386A (ja) * 2005-08-25 2007-03-08 Hitachi Ltd アンテナ装置
JP2009077398A (ja) * 2007-09-20 2009-04-09 Delta Networks Inc 無線lanap/ルータに応用されるプリント・モノポール・スマート・アンテナ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172423A (ja) 1994-12-19 1996-07-02 Kyocera Corp アンテナダイバーシチ受信方式
JPH08288731A (ja) 1995-04-17 1996-11-01 Zanavy Informatics:Kk 2周波共用プリントアンテナ
JP4040768B2 (ja) 1998-10-27 2008-01-30 東芝テック株式会社 アンテナ指向性制御システム
JP2001345633A (ja) 2000-03-28 2001-12-14 Matsushita Electric Ind Co Ltd アンテナ装置
EP1490980A4 (en) * 2002-03-14 2005-12-14 Ipr Licensing Inc MOBILE COMMUNICATION HANDAPPARAT WITH ADAPTIVE ANTENNA ARRAY
JP2003298346A (ja) 2002-04-05 2003-10-17 Matsushita Electric Ind Co Ltd アンテナ装置
US6987493B2 (en) * 2002-04-15 2006-01-17 Paratek Microwave, Inc. Electronically steerable passive array antenna
JP4027237B2 (ja) 2003-01-23 2007-12-26 アルプス電気株式会社 デュアルバンドアンテナ
EP1441414A1 (en) 2003-01-23 2004-07-28 Alps Electric Co., Ltd. Dual band antenna with reduced size and height
JP2005142866A (ja) 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd アンテナ選択ダイバーシチ装置及び受信方法
US7180465B2 (en) * 2004-08-13 2007-02-20 Interdigital Technology Corporation Compact smart antenna for wireless applications and associated methods
JP4270278B2 (ja) * 2004-09-03 2009-05-27 株式会社村田製作所 アンテナ装置
JP5035342B2 (ja) * 2007-08-09 2012-09-26 富士通株式会社 可変指向性アンテナ
WO2009050883A1 (ja) 2007-10-19 2009-04-23 Panasonic Corporation アレーアンテナ装置
US8604994B2 (en) * 2008-10-07 2013-12-10 Panasonic Corporation Antenna apparatus including feeding elements and parasitic elements activated as reflectors
JP5372177B2 (ja) * 2009-12-28 2013-12-18 パナソニック株式会社 可変指向性アンテナ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152218A (ja) * 1992-11-06 1994-05-31 Fujitsu Ten Ltd 移動体用アンテナ
JP2007060386A (ja) * 2005-08-25 2007-03-08 Hitachi Ltd アンテナ装置
JP2009077398A (ja) * 2007-09-20 2009-04-09 Delta Networks Inc 無線lanap/ルータに応用されるプリント・モノポール・スマート・アンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212299A (zh) * 2019-05-21 2019-09-06 常熟市泓博通讯技术股份有限公司 可调式元素因子的阵列天线模组

Also Published As

Publication number Publication date
JP5557853B2 (ja) 2014-07-23
JPWO2011080903A1 (ja) 2013-05-09
US20120127053A1 (en) 2012-05-24
US8717249B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
JP5372177B2 (ja) 可変指向性アンテナ装置
US8514134B2 (en) MIMO antenna having parasitic elements
KR101204508B1 (ko) 무선 통신을 위한 변형된 역-f 안테나
KR101217469B1 (ko) 다중대역 특성을 갖는 mimo 안테나
US8659482B2 (en) MIMO antenna having plurality of isolation adjustment portions
US7557761B2 (en) Array antenna apparatus having at least two feeding elements and operable in multiple frequency bands
US8866692B2 (en) Electronic device with isolated antennas
US9196957B2 (en) MIMO antenna for improved isolation
US10424831B2 (en) Antenna system
JP5557853B2 (ja) 可変指向性アンテナ装置
US20140071009A1 (en) Dual-band Antenna
JP5631921B2 (ja) マルチアンテナ及び電子装置
JP4538651B2 (ja) 無線通信機器
US9088077B2 (en) Antenna system for wireless communication device
WO2013093466A1 (en) Antenna element & antenna device comprising such elements
US20170170555A1 (en) Decoupled Antennas For Wireless Communication
Kim et al. High isolation internal dual-band planar inverted-F antenna diversity system with band-notched slots for MIMO terminals
CN113451788B (zh) 天线、天线模组及无线网络设备
JP2009044604A (ja) グランド一体型アンテナ
US20110273352A1 (en) Antenna Structure
JP2004056498A (ja) 無線通信端末用アンテナ装置及び無線通信装置
US20080094303A1 (en) Planer inverted-F antenna device
JP2003338783A (ja) アンテナ装置
US11075458B2 (en) Antenna system
CN110277651B (zh) 智能型天线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547320

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13387830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840763

Country of ref document: EP

Kind code of ref document: A1