WO2011079485A1 - 硅单质的生产方法及生产设备 - Google Patents

硅单质的生产方法及生产设备 Download PDF

Info

Publication number
WO2011079485A1
WO2011079485A1 PCT/CN2010/000493 CN2010000493W WO2011079485A1 WO 2011079485 A1 WO2011079485 A1 WO 2011079485A1 CN 2010000493 W CN2010000493 W CN 2010000493W WO 2011079485 A1 WO2011079485 A1 WO 2011079485A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
raw material
product
elemental
gas
Prior art date
Application number
PCT/CN2010/000493
Other languages
English (en)
French (fr)
Inventor
陈涵斌
钟真武
陈其国
陈文龙
Original Assignee
江苏中能硅业科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009202827795U external-priority patent/CN201665535U/zh
Priority claimed from CN 201010126121 external-priority patent/CN101837977B/zh
Application filed by 江苏中能硅业科技发展有限公司 filed Critical 江苏中能硅业科技发展有限公司
Publication of WO2011079485A1 publication Critical patent/WO2011079485A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material

Definitions

  • the invention relates to a method for producing silicon elemental substance and a production device thereof. More specifically, the invention relates to a method for producing a silicon elemental substance (including polycrystalline silicon and single crystal silicon) by using a molten single shield silicon to reduce a gaseous silicon compound raw material. Silicon production method and production equipment. Background technique
  • silicon single-mass (especially polysilicon) production method is to improve the Siemens process, mainly using a bell-type reactor and 8 electrodes connected to the electrodes as the deposition substrate, using a high-temperature reduction process, through high A pure gaseous silicon compound starting material (such as SiHCl 3 ) is subjected to reduction deposition (chemical vapor deposition) in an H 2 atmosphere to form a polycrystalline silicon.
  • SiHCl 3 pure gaseous silicon compound starting material
  • reduction deposition chemical vapor deposition
  • the chemical vapor deposition process is carried out in a bell-type reduction furnace.
  • the reaction vessel is sealed.
  • the bottom plate is provided with a discharge port and a feed port, and a plurality of pairs of electrodes, and the electrodes are connected with a diameter of 5 to 10,
  • a silicon core with a length of 1500 ⁇ 3000, two silicon rods on each pair of electrodes are connected to each other through a short silicon rod at the other end.
  • TC Conductively and heated to 1000 ⁇ 115
  • hydrogen is reduced
  • silicon is deposited on the surface of the silicon rod, so that the diameter of the silicon rod is gradually increased, eventually reaching about 120 ⁇ 200mm.
  • the production diameter is 120 ⁇ 200mm
  • the required reaction time is approximately 150 to 300 hours.
  • this modified Siemens production process has the following disadvantages: 1) Due to the small specific surface area of the silicon rod deposition, the space utilization rate in the reactor is low, the primary conversion rate of the raw material is low, and the yield is limited. Based on the actual yield of 8%, only 16.5 grams of elemental silicon can be obtained per kilogram of trichlorosilane. Most of the trichlorosilane is converted to silicon tetrachloride during the deposition process, and the by-product silicon tetrachloride is separated.
  • Chinese patent application CN 1 01 31 8654 discloses a fluidized bed method for preparing high-purity polycrystalline silicon particles and a fluidized bed reactor, characterized in that the heating zone and the reaction zone are structurally separated from each other in the heating zone of the reactor Passing the silicon-free fluidizing gas to make the polycrystalline silicon particles in the heating zone in a fluidized state, and heating the polycrystalline silicon particles to 1 000 - 1 4 10 ° C by a heating device; the heated polycrystalline silicon particles are transported to the reaction zone, The reaction zone is filled with a silicon-containing gas, and the silicon-containing gas is thermally decomposed or reduced on the surface of the polycrystalline silicon particles to produce elemental silicon and deposited on the surface of the particle; a polycrystalline silicon particle having a particle size of G.
  • polycrystalline silicon fine particles having a diameter of 0.01 to 1.0 mm were added as seed crystals to maintain the amount of polycrystalline silicon particles in the reactor.
  • the fluidized bed process also exists such that the deposition of silicon on the reactor wall causes the internal space of the fluidized bed to decrease, and as the thickness of the inner wall changes, the thermal stress unevenness of the inner wall causes material damage, and the fluidized bed gas distributor is easily deposited by silicon.
  • the blockage leads to defects such as downtime, and the primary conversion rate of the fluidized bed process still needs to be improved.
  • the rod-shaped polycrystalline silicon or the granular polycrystalline silicon produced needs to be melted into a liquid state at a high temperature in a subsequent processing step, and then a polycrystalline silicon ingot can be produced or further produced by a straight pull method.
  • Monocrystalline silicon which undoubtedly greatly increases the production complexity, production cost and energy consumption, as well as the risk of polycrystalline silicon ingot or single crystal silicon produced by external impurity contamination (secondary pollution).
  • the current status quo is that there is still a need for a production method and production equipment for silicon, which can overcome the problems existing in the prior art, and can be produced at a lower production cost and higher than the prior art. Production efficiency and lower energy consumption result in higher purity silicon (such as polycrystalline silicon ingots and monocrystalline silicon).
  • the inventors have conducted painstaking research on the basis of the prior art and found that by using a molten silicon element having a very high temperature to convert a silicon compound into a silicon single shield, it can be solved.
  • the present invention relates to the technical aspects of the following aspects:
  • a method for producing a simple substance of silicon comprising: contacting a vaporized silicon compound or a mixed gas of vaporized silicon compound and hydrogen as a silicon raw material gas with molten elemental silicon as a silicon raw material liquid, and contacting said silicon A contacting step of reducing a compound to a silicon element, wherein the silicon element is fused into the molten elemental silicon upon formation.
  • each R ie, 2n+2 R
  • each independently represents hydrogen, fluorine, chlorine, bromine or iodine, preferably each independently represents hydrogen, chlorine or bromine, further preferably represents hydrogen, and n is selected An integer from 1 to 3, preferably n l,
  • the silicon compound is a gaseous silicon by-product of a single crystal silicon or polysilicon manufacturing process.
  • the contacting step is carried out at a temperature of 1500 to 2000 ° C and under an absolute pressure and an atmospheric pressure of 0.5 to 8 bar, wherein preferably The temperature is 1600 to 1800 ° C, and preferably in absolute pressure, the atmospheric pressure is 1 to 2 bar.
  • a production method further comprising the step of producing a polycrystalline silicon and a day/or single crystal silicon by a crystalline silicon ingot furnace and an I or a single crystal silicon furnace.
  • a silicon simple substance production apparatus comprising: a contact reactor and a silicon raw material liquid supply device for supplying molten elemental silicon, wherein the contact reactor comprises contacting a reactor main body and communicating the contact reaction And a silicon raw material liquid supply device for introducing the molten elemental silicon as a silicon raw material liquid into the mixed gas of the contact reactor main body and hydrogen as a silicon raw material gas and introducing the silicon raw material gas into the contact main body a tube, wherein the contact reactor body is structurally adapted to cause the introduced silicon raw material liquid to contact the introduced silicon raw material gas in its internal space to reduce the silicon compound to a silicon simple substance, wherein the silicon The elemental material is fused into the molten single shield silicon after formation to form a silicon elemental product, whereby the contact reactor further optionally includes a silicon elemental product for exporting the silicon elemental product to the contact reactor body Export the tube.
  • a production apparatus characterized in that the contact reactor body is a reaction column, preferably a plate column or a packed column.
  • the silicon raw material liquid introduction pipe is located at the top of the contact reactor main body at an opening position in the contact reactor main body, the silicon raw material Opening of the gas introduction tube in the body of the contact reactor The port position is located on a lower side of the contact reactor body, and the silicon element product outlet tube is located at a bottom of the contact reactor body at an opening position in the contact reactor body.
  • the silicon element product outlet tube is directly connected to the polycrystalline silicon ingot furnace and/or the single crystal silicon drawing furnace, and/or the silicon single product is first
  • the collector is in communication, and then communicates with the polycrystalline silicon ingot furnace and/or the single crystal silicon drawing furnace via a relay outlet tube located on the silicon element product collector, thereby introducing at least a portion of the silicon elemental product into the A polycrystalline silicon ingot furnace and/or a single crystal silicon drawing furnace for drawing polycrystalline silicon ingots and/or single crystal silicon.
  • the production apparatus according to any one of the preceding aspects, wherein the contact reactor main body, the silicon raw material liquid supply device, the silicon raw material liquid introduction pipe, the silicon simple substance product discharge pipe, and the The inner wall of the polycrystalline silicon ingot furnace, the single crystal silicon drawing furnace, the silicon elemental product collector and/or the relay outlet tube has graphite, silicon carbide, silicon nitride, boron nitride or any of them. Lining of composite material.
  • the production apparatus characterized in that there are a plurality of said contact reactors and at least one silicon raw material liquid supply device, wherein said plurality of contact reactors share one or more The silicon raw material liquid supply device.
  • the production apparatus characterized in that there are a plurality of said contact reactors, wherein at least two of the contacting reactors are operated in series above and below the lower stage, so that the upper stage contacts the silicon of the reactor
  • the elemental product outlet tube is directly connected to the silicon raw material liquid introduction tube of the next stage contact reactor, or the silicon elemental product outlet tube of the upper stage contacting reactor is first connected to the silicon elemental product collector, and then via the silicon located in the silicon
  • the relay outlet pipe on the elemental product collector is in direct communication with the silicon raw material liquid introduction pipe of the next-stage contact reactor, thereby at least a part of the silicon elemental product from the upper-stage contact reactor is introduced as a silicon raw material liquid.
  • the next level of contact in the reactor is characterized in that there are a plurality of said contact reactors, wherein at least two of the contacting reactors are operated in series above and below the lower stage, so that the upper stage contacts the silicon of the reactor
  • the elemental product outlet tube is directly connected to the silicon raw material liquid introduction tube
  • the production apparatus further includes a silicon raw material gas supply device for supplying the silicon raw material gas in communication with the silicon raw material gas introduction pipe, and
  • the contact reactor further includes means for contacting the contact step 19.
  • the gas product outlet pipe is directly connected to the silicon raw material gas supply device, and/or directly connected to the silicon raw material gas introduction pipe, thereby At least a portion of the gaseous product is introduced into the contact reactor body as at least a portion of the silicon feed gas.
  • the silicon element product outlet pipe is directly connected to the silicon raw material liquid supply port, and/or directly connected to the silicon raw material liquid introduction pipe. Thereby at least a portion of the silicon elemental product is introduced into the contact reactor body as at least a portion of the silicon feedstock liquid.
  • the packed column comprises a metal casing 101 structurally defining a closed internal space, the internal space fixed to the metal casing 101 a separate inner liner 102, a liquid introduction pipe 104 opened at the top of the metal casing 101, a liquid discharge pipe 105 opened at the bottom of the metal casing 101, and a gas introduction opening at a lower side of the metal casing 101 a tube 107 and a gas outlet tube 109 open at the top of the metal housing 101, wherein the individual liner 102 structurally defines a closed interior space, the interior space of the individual liner 102 being divided into an upper region a central portion and a lower portion, the middle portion being filled with a filler 106, in which a liquid distribution disc 103 is disposed, the independent inner liner 102 further comprising the aforementioned respective ones on the metal housing 101 a pair of one-to-one fully abutting extension lines (obviously, the number of extension lines is necessarily identical to the number of
  • liquid distribution disc 103 is provided with at least one air hole 10303 and at least one liquid distribution hole 10302 separated from the air hole 10303.
  • a production apparatus characterized in that an electric heating coil 108 is wound on the outer peripheral wall of the independent liner 102.
  • liquid introduction tube 104 and the liquid outlet tube 056 have a two-layer structure, and the outer layer is a metal tube case with a cooling jacket.
  • the layers are separate liners that define the liquid introduction or delivery channels.
  • the present invention has the following advantages:
  • the present invention can use silicon tetrachloride as a raw material for a silicon compound to carry out the contact reaction, thereby finding an effective recycling route for silicon tetrachloride which is a by-product of the prior art polysilicon production process, and thereby reducing The raw material cost of silicon production;
  • reaction tail gas The gaseous product (reaction tail gas) produced by the contact reaction can be recycled, thereby further reducing the cost of raw materials, and the final tail gas treatment is easy.
  • Fig. 1 schematically shows a preferred embodiment of the invention in which two vertical reaction columns (secondary series reaction columns) connected in series are used as the main body of the contact reactor (hereinafter sometimes referred to simply as a contact reactor). ).
  • Fig. 2 schematically shows another preferred embodiment of the invention in which a vertical reaction column is used as the contact reactor body or contact reactor.
  • Fig. 3 schematically shows a packed column of a preferred structure to which the present invention relates.
  • Fig. 4 is a view schematically showing the upper side of a liquid distribution disk according to the present invention. Symbol Description:
  • 1 01 metal shell; 1 02, independent lining; 1 03, liquid distribution disc; 1 04, liquid introduction tube; 1 05, liquid outlet tube; 1 06, packing; 1 07, gas introduction tube; Electric heating coil; 1 09, gas outlet tube.
  • 1 0301 liquid flow area; 1 0302, liquid distribution hole; 1 0303, air hole; 1 0304, fixed screw hole.
  • the present invention provides a method for producing a silicon elemental substance, characterized in that And a contacting step of contacting a vaporized silicon compound or a vaporized silicon compound and hydrogen as a silicon raw material gas with molten elemental silicon as a silicon raw material liquid, and reducing the silicon compound into a silicon simple substance, wherein the silicon elemental substance After the formation, the molten elemental silicon is fused, whereby the silicon elemental product of the present invention is obtained.
  • silicon elemental includes various elemental forms of silicon, such as atomic silicon, liquid silicon (silicon in molten state), amorphous silicon and crystalline silicon (such as monocrystalline and polycrystalline silicon). Etc. Among them, single crystal silicon and polycrystalline silicon are preferable.
  • silicon compound refers to high temperatures (eg.
  • any silicon-containing compound or a mixture thereof which can be produced by pyrolysis to form a silicon element or which can be reduced by hydrogen at this high temperature to form a silicon element can be produced at 1500 to 2000 ° C.
  • the silicon compound of the present invention sometimes does not refer to a single compound, but may refer to a mixture of a plurality of silicon compounds.
  • the silicon compound is composed only of silicon and one or more elements selected from the group consisting of sulphur and hydrogen.
  • the silicon compound is one or more selected from the group consisting of compounds represented by the following formula (1).
  • the silicon compound is selected from one or more of silicon tetrachloride (SiCl 4 ), trichlorosilane (SiHCl 3 ) and silane (SiH 4 ).
  • the silicon compound may be a simple silicon compound or any mixture of a plurality of silicon compounds without any limitation.
  • the production method of the present invention can be carried out using various gaseous silicon by-products (such as process tail gas) from various single crystal silicon or polycrystalline silicon manufacturing processes (such as the aforementioned Siemens process) without affecting the object of the present invention. achieve.
  • gaseous silicon by-product includes silicon by-products which can assume a gaseous state by heating to a temperature of 60 to 600 ° C (preferably 150 to 300 ° C) even at a normal temperature.
  • the process produces a large amount of waste silicon
  • the product (the main component is silicon tetrachloride, but also includes a variety of other silicon compounds with complex compositions).
  • the by-product can be directly used as the silicon compound of the present invention, thereby finding a high efficiency and high added value for the waste by-product (for directly manufacturing expensive silicon simple substances such as polycrystalline silicon and single crystal The recycling route of silicon) and at the same time reduces the raw material cost of the production method of the present invention.
  • the existing monocrystalline silicon or polycrystalline silicon manufacturing process requires very high purity for the silicon raw material, so that the gaseous silicon by-products derived from these manufacturing processes can fully satisfy the requirements of the present invention for the purity of the silicon compound and the like.
  • the present invention can actually use gaseous silicon by-products of a single crystal silicon or polycrystalline silicon manufacturing process as the silicon compound without any prior purification treatment.
  • the silicon compound is used in vaporized form.
  • the silicon compound of the present invention is a substance which can be vaporized to become a gas at a certain temperature (e.g., 60 to 600 ° C, preferably 150 to 300 ° C) and at normal pressure. Therefore, the use temperature of the vaporized silicon compound of the present invention is correspondingly 60 to 600 ° C, preferably 150 to 300 ° C, but it is not limited thereto.
  • the hydrogen gas is not particularly limited, and a hydrogen raw material conventionally used in the production of polycrystalline silicon or single crystal silicon in the prior art can be directly used.
  • the hydrogen gas is generally heated to 60 to 600 ° C before use, preferably to 150 to 300 ° C.
  • the vaporized silicon compound may be directly used as the silicon source gas, or a mixed gas of the vaporized silicon compound and hydrogen may be used as the silicon source gas (hereinafter sometimes collectively referred to as silicon source gas).
  • silicon source gas a mixed gas of the vaporized silicon compound and hydrogen
  • the ratio of the vaporized silicon compound to the hydrogen gas is 2:1 - 9:1, preferably 2:1 - 5:1 by volume.
  • the method of producing the mixed gas is not limited in any way, and any means capable of mixing hydrogen gas with the vaporized silicon compound in a predetermined ratio may be used.
  • the temperature of the silicon raw material gas is generally 60 to 60 (TC, preferably 150 to 300 ° C, and the pressure is generally 0.5 to 8 bar, preferably 1 to 2 bar, but according to actual conditions of production or to adjust the contact reaction system The need for atmospheric pressure is sometimes not limited to this.
  • the vaporized silicon compound or the mixed gas is brought into contact with molten elemental silicon as a silicon raw material liquid as a silicon raw material gas, and the silicon compound is reduced or pyrolyzed (hereinafter sometimes collectively referred to as reduction) into silicon. Elemental, at the same time generating a gaseous state The original product or pyrolysis product (ie, the gaseous product of the contacting step). At this time, the silicon simple substance generated after fusion into the molten elemental silicon, thereby forming a silicon simple substance of the present invention works. Mouth ⁇ 0
  • the molten elemental silicon may be obtained by melting solid elemental silicon (e.g., polycrystalline silicon ingot, polycrystalline silicon ingot, polycrystalline silicon ingot, etc.), or may be obtained by any other means, and is not particularly limited.
  • the purity of the molten elemental silicon is preferably not less than 6N (preferably not less than 7N) so that the obtained silicon elemental product can satisfy the usual industrial requirements in purity.
  • the purity of the silicon elemental product obtained is generally 6 N or more, preferably 7 N or more.
  • the melting can be carried out by any conventionally used heating means in the prior art, such as radiant heating, electric heating coil heating, etc., with radiant heating being preferred.
  • radiant heating By this heating, the solid elemental silicon is heated to 1500 - 2000 ° C (preferably 1600 - 1800 ° C) to be melted.
  • the temperature of the molten elemental silicon or the silicon raw material liquid is generally 1,500 to 2,000 ° C, preferably 1600 to 1800 ° C, but it is sometimes not limited thereto depending on the actual production.
  • the ratio of the silicon raw material gas to the silicon raw material liquid is not particularly limited as long as the contacting step is performed, as long as the amount of the silicon raw material liquid can ensure sufficient heat to the silicon raw material gas.
  • the above-mentioned reduction reaction or pyrolysis reaction
  • the ratio is also dependent on the manner in which the silicon raw material gas is in contact with the silicon raw material liquid (for example, a manner of intermittent contact or a method of continuously blowing a silicon raw material liquid into the silicon raw material liquid) Factors cannot be specified.
  • the molar ratio of the silicon raw material gas to the silicon raw material liquid is generally 3:1 - 10:1, preferably 4:1 - 6:1, but as before As described, the production method of the present invention is not limited at all.
  • the contacting step is carried out at a reaction temperature of 1500 to 20 G (TC (preferably 1600 to 1800 ° C).
  • the contact reaction can be carried out by heating by radiant heating, electric heating coil heating or the like.
  • the manner inside the reaction space to maintain or reach the reaction temperature is easily accomplished by those skilled in the art and will not be described herein.
  • the contact step is carried out under the conditions of an atmospheric pressure of 0.5 to 8 bar (preferably 1 to 2 bar). At this time, the atmosphere pressure can be maintained or reached by changing the supply amount, the supply speed, or the reaction temperature of the silicon raw material gas, which is easily realized by those skilled in the art, and will not be described herein.
  • the contact time of the silicon raw material gas and the silicon raw material liquid there is no particular limitation on the contact time of the silicon raw material gas and the silicon raw material liquid, as long as the contact time is sufficient to ensure that the silicon raw material liquid conveys sufficient to the silicon raw material gas.
  • the heat is such that the latter undergoes the aforementioned reduction reaction (or pyrolysis reaction).
  • the contact time is also dependent on the manner in which the silicon raw material gas is in contact with the silicon raw material liquid (for example, the manner of one-pass contact or the amount of the fixed silicon raw material liquid to continuously blow the silicon raw material gas therein) Or factors such as the relative moving speed of the silicon raw material liquid and the silicon raw material gas, and thus cannot be specified. In other words, the contact time is sufficient as long as it can ensure that the silicon source gas has substantially contacted (with heat exchange) with the silicon material liquid.
  • the silicon feed gas and the silicon raw material liquid are subjected to the contact reaction in a reverse contact (opposing direction). More preferably, the contact is in a transient contact manner, that is, the silicon raw material gas and the silicon raw material liquid are separated from each other immediately after the instantaneous contact, whereby the contact appears as a dynamic bond/ Separation method.
  • the method may be preliminarily carried out by any method or means known to those skilled in the art (such as a liquid distribution plate or a spray pipe).
  • the silicon raw material liquid is made into a highly dispersed state (such as atomization, spraying, fluidization, dispersion, etc.), and then brought into contact with the silicon raw material gas, and/or, in the reaction space where the contact reaction is performed.
  • Introducing various devices or components such as trays, reactor packing, porous materials, etc. that can increase the contact area or contact efficiency of the two, and then carry out the contact reaction in the presence of these devices or components, It will be understood by those skilled in the art.
  • the contacting step is carried out in a reaction column, preferably a vertical reaction column, further preferably a tray column or a packed column.
  • the silicon raw material gas is introduced from a lower side surface of the reaction column, and the silicon raw material liquid is introduced from a top portion of the reaction column, thereby The reduction reaction occurs while the molten elemental silicon (i.e., the silicon elemental product of the present invention) in which the silicon element is fused is derived from the bottom of the reaction column.
  • the molten elemental silicon i.e., the silicon elemental product of the present invention
  • the production method further includes, as the silicon raw material liquid, the molten elemental silicon (silicon elemental product) fused with the silicon simple substance, additionally provided molten elemental silicon or a combination thereof, and And or, the contacting step is repeated one or more times with the gas product of the contacting step, the additionally supplied silicon raw material gas or a combination thereof as the silicon raw material gas.
  • the silicon elemental product and/or gaseous product obtained by the production method of the present invention preferably, the silicon elemental product
  • the term "additionally provided molten elemental silicon” or “additionally provided silicon source gas” means a fresh (as opposed to the aforementioned "cycle") molten elemental silicon or silicon source gas as provided above. .
  • the production method of the present invention preferably further comprises the step of supplying at least a portion of the obtained silicon elemental product directly or continuously to one or more polycrystalline silicon ingot furnaces and/or single crystal silicon drawing furnaces, thereby Polycrystalline ingots or single crystal silicon of higher purity can be produced with lower production costs, higher production efficiency, and lower energy consumption than the prior art.
  • the polycrystalline silicon ingot furnace and the single crystal silicon drawing furnace can be directly applied to those conventionally used in the art, and will not be described herein.
  • the silicon simple substance obtained by the present invention can be directly used as a silicon feed by various methods conventional in the art, thereby producing the polycrystalline silicon ingot and single crystal silicon, which will not be described herein.
  • the aforementioned production method can be realized by, for example, a silicon production facility as follows.
  • a silicon production facility as follows.
  • any matters not mentioned such as the specifications of various raw materials, the way in which the contact reaction is carried out, the reaction conditions, etc.
  • any of the contents described below may be combined with any of the contents described herein before, and thus new technical solutions or technical ideas are considered as part of the original disclosure or original description of the present invention, and should not be It is considered to be new content that has not been disclosed or anticipated in this article.
  • the silicon simple substance production apparatus of the present invention includes a contact reactor and a silicon raw material liquid supply device for supplying molten elemental silicon, wherein the contact reactor includes a contact reactor main body and the contact reaction reactor main body And introducing the silicon raw material supply device raw material liquid and the vaporized silicon compound or vaporized silicon compound with argon, wherein the contact reactor body is structurally suitable for the introduced silicon raw material liquid Reducing the silicon compound into a silicon element in contact with the introduced silicon source gas in its internal space, wherein the silicon element is fused into the molten elemental silicon after formation to form a silicon elemental product, thereby
  • the contact reactor also optionally includes a silicon element product outlet tube for deriving the silicon elemental product out of the contact reactor body.
  • contact reactor body and “contact reactor”, although not meant to each other, are sometimes referred to collectively as contact reactors, to the extent that they are not confused by those skilled in the art.
  • the contact reactor main body may be any reaction vessel, and its material, size, structure, and the like are not limited as long as it includes an internal reaction space suitable for the contact reaction, and the material thereof is satisfied. It is sufficient to be able to withstand the reaction conditions (reaction temperature and reaction pressure, etc.) of the aforementioned contact reaction and to have the general requirements of resistance to contact reaction corrosion, which will be apparent to those skilled in the art.
  • the reaction vessel is preferably a reaction column, and further preferably a vertical reaction column (preferably a tray column or a packed column).
  • the present invention is not particularly limited as to the material, size specifications and structural forms of all of these reaction columns, as long as it meets the above-mentioned general requirements, and thus those conventionally used in the art can be directly used.
  • any number of plates can be used, but considering the capacity Easy to obtain, generally the actual number of plates is 5 - 200, but is not limited to this.
  • the packed column any filler which can effectively improve the contact efficiency of the reactants can be used, and the filler can be, for example, a step ring, a Raschig ring, a Pall ring, a saddle ring, a different saddle ring, and a cross. Rings, cross spacer rings, keel rings, spiral rings and structured corrugated packings (such as structured packing in the form of corrugated sheets) are not particularly limited.
  • these fillers must also meet the general requirements set forth in the specification for contact reactors in terms of materials and the like, as will be apparent to those skilled in the art.
  • the present invention can directly use a tray column or a packed column conventionally used in the chemical field as long as it satisfies the general requirements described in the specification.
  • the silicon raw material liquid is previously highly dispersed (or dispersed) by a suitable dispersing device before the silicon raw material liquid is brought into contact with the silicon raw material gas. status.
  • a dispersing device such as a liquid distribution plate or a spray pipe may be installed at the top of each of the reaction columns as described above, which are conventionally known to those skilled in the art and will not be described herein.
  • the silicon raw material liquid introduction pipe and the silicon raw material gas introduction pipe are connected to the contact reactor main body.
  • the silicon raw material liquid introduction pipe is located at the top of the contact reactor main body at an opening position in the contact reactor main body, and the silicon raw material gas introduction pipe is in the The position of the opening in the main body of the contact reactor is located at the lower side of the main body of the contact reactor, so that the feeding position of the silicon raw material liquid is higher than the feeding position of the silicon raw material gas, thereby facilitating the realization of silicon.
  • the silicon element product outlet tube is located at the bottom of the contact reactor body at an opening position in the contact reactor body, so as to discharge the silicon elemental product from the contact by gravity or the like. reactor.
  • the production apparatus of the present invention further comprises mixing the raw material gas uniformly and I or heating to the temperature specified before the present invention, and further outputting it to the silicon raw material gas supply device.
  • the silicon raw material gas is introduced into the tube. Therefore, the silicon material gas supply means may be any means capable of realizing these predetermined functions, and is not particularly limited.
  • the contacting reactor may further comprise a gas product outlet tube for directing the gaseous product of the contacting step to the contacting reactor body.
  • the gaseous product discharged from the gas product outlet pipe may be subjected to subsequent treatment by a suitable method, or, preferably, the gas product outlet pipe is directly connected to the aforementioned silicon raw material gas supply device, and/or directly
  • the silicon raw material gas introduction pipe is connected to thereby at least a part of the gaseous product is introduced into the contact reactor main body as at least a part of the silicon raw material gas to be recycled.
  • the silicon feed gas supply means and the gas product discharge pipe simultaneously supply the silicon feed gas to the contact reactor.
  • silicon raw material gas introduction pipes, silicon raw material gas supply devices, gas product delivery pipes, etc. must also meet the above general requirements, and may also be subjected to temperature control treatment (such as heating means, etc., as needed). It will be apparent to those skilled in the art that the contents are maintained or heated to a predetermined temperature of the present invention.
  • the silicon element product outlet tube is directly connected to the polycrystalline silicon ingot furnace and/or the single crystal silicon drawing furnace, and/or is first connected to the silicon elemental product collector, and then passes through the location.
  • the relay outlet tube on the silicon single element product collector is in communication with the polycrystalline silicon ingot furnace and/or the single crystal silicon drawing furnace, thereby introducing at least a portion of the silicon elemental product into the polycrystalline silicon ingot furnace and/or single crystal A silicon drawing furnace for drawing polycrystalline silicon ingots and/or single crystal silicon.
  • the silicon element product collector functions as a silicon element product storage device, and is convenient for controlling the amount or temperature of the silicon elemental product delivered to the polycrystalline silicon ingot furnace and/or the single crystal silicon drawing furnace, but the silicon Elementary product collectors are not required.
  • the silicon element product collector may be any insulated container (to maintain the temperature of the silicon elemental product) suitable for containing a silicon-based product that is discharged from the contact reactor directly at a high temperature.
  • the silicon element product collector may be any insulated container (to maintain the temperature of the silicon elemental product) suitable for containing a silicon-based product that is discharged from the contact reactor directly at a high temperature.
  • the polycrystalline silicon ingot furnace and/or the single crystal silicon drawing furnace may be directly used, and those conventionally used in the field are not particularly limited.
  • the silicon raw material liquid supply device may be suitable for molten solids Any means for supplying silicon and the molten elemental silicon to the contact reactor is not particularly limited, and can be conventionally selected by those skilled in the art.
  • the silicon raw material liquid or the silicon elemental product is directly contacted.
  • the inner wall of the device or conduit of the relay outlet tube or the like or the like preferably having a lining made of graphite, silicon carbide, silicon nitride, boron nitride or any composite material thereof or itself (For example, those members in contact with the reaction space, such as the aforementioned dispersing device, packing, tray, etc.) are composed of graphite, silicon carbide, silicon nitride, boron nitride or any composite material thereof.
  • the contact reactor main body, the silicon raw material supply device, and the silicon raw material liquid may be heated by a conventional heating method such as radiant heating or electric heating coil heating.
  • a device or a pipe such as a tube, a silicon single product product export tube, a polycrystalline silicon ingot furnace, a single crystal silicon drawing furnace, a silicon elemental product collector, and/or the relay outlet tube to maintain or reach a predetermined temperature, This is easily accomplished by those skilled in the art and will not be described herein.
  • the silicon raw material liquid supply device it is preferable to maintain the silicon raw material liquid supply device at 150 G to 20 () by radiant heating.
  • the silicon single shield product may be collected by radiant heating.
  • the device is maintained at 1500 - 2000 ° C.
  • the various lines described above may be heated by electric heating to maintain the temperature range of the line from 1500 to 2000 ° C.
  • the silicon element product outlet tube is directly in communication with the silicon raw material liquid supply device, thereby introducing at least a portion of the silicon elemental product into the silicon raw material liquid supply device as molten elemental silicon.
  • the silicon element product outlet pipe is directly in communication with the silicon raw material liquid introduction pipe, whereby at least a part of the silicon elemental product is directly introduced into the contact reactor main body as a silicon raw material liquid (or a supplementary portion thereof).
  • the silicon raw material liquid supply device and the silicon elemental product delivery tube simultaneously supply silicon to the contact reactor Raw material liquid.
  • a plurality of contact reactors as previously described and at least one silicon feedstock supply device as previously described.
  • the plurality of contact reactors share one or more of the silicon raw material liquid supply devices.
  • one contact reactor can receive molten elemental silicon from one or more silicon feedstock supply devices, or a silicon feedstock supply device can supply molten elemental silicon to one or more contact reactors, The production capacity of each device is fully utilized according to the actual situation of production.
  • the silicon raw material liquid introduction pipe is directly connected, or the silicon elemental product outlet pipe of the upper stage contacting the reactor is first connected to the silicon elemental product collector (the communication mode is as described above), and then passed through the silicon elemental product collector.
  • the upper relay outlet tube is in direct communication with the silicon raw material liquid introduction tube of the next-stage contact reactor (as described above), thereby at least a part of the silicon elemental product from the upper-stage contact reactor is used as silicon
  • the raw material liquid or the silicon raw material liquid is replenished and introduced into the next-stage contact reactor to further utilize the silicon single shield product.
  • the silicon elemental product or a portion thereof from the lower-stage contact reactor can also be introduced into the upper-stage contact reactor in a similar manner as a supplement to the silicon raw material liquid or the silicon raw material liquid.
  • the gaseous product from the upper stage (lower stage) contacting the reactor or a portion thereof may also be introduced as a supplement to the silicon feed gas or the silicon feed gas in a similar manner as before, and introduced into the next stage (on Level 1) is in contact with the reactor.
  • each contact reactor can independently recycle gas products and/or silicon elemental products from itself in the same manner as previously described herein.
  • one or more of the contacting reactors may also recycle gaseous products and/or silicon elemental products from the remaining one or more of the contacting reactors in the same manner as previously described herein, thereby forming interwoven
  • the production network system is used to maximize the recycling of these substances and the residual heat contained therein, thereby further highlighting the advantages of the present invention in terms of heat utilization efficiency and raw material conversion rate.
  • necessary attachment mechanisms such as valves and power transmission devices (such as pumps) may be provided on various pipes as described above, as will be understood and conventionally selected by those skilled in the art.
  • the vaporized silicon compound 11 and the hydrogen gas 12 are introduced into the silicon raw material gas supply device 5 in a predetermined ratio, and are mixed and heated to a predetermined temperature, and then used as a silicon raw material gas 7 at a prescribed flow rate.
  • the lower side of the first-stage reaction column 1 is introduced.
  • the polycrystalline silicon chunk is heated in the silicon raw material liquid supply device 6 to 1 500 00 to 00 (TC is melted into a liquid, and then as a silicon raw material liquid 8 at a prescribed flow rate from the top of the first-stage reaction column 1 (preferably in After being uniformly dispersed by a liquid distribution plate or the like (not shown), it is introduced into the reaction column 1.
  • the temperature range in the reaction column 1 is maintained by a heating device (not shown) attached to the reaction column 1
  • the range of the pressure in the reaction column 1 is controlled to be in the range of 0.5 to 8ba r.
  • the fed silicon raw material gas and the fed silicon raw material liquid are brought into contact with each other in the first-stage reaction column 1 in reverse, and a reduction reaction occurs to form a silicon simple substance.
  • the silicon element is fused into the molten elemental silicon upon formation, thereby forming a silicon elemental product 9.
  • the silicon element product collector 2 can transport the collected silicon elemental product to the polycrystalline silicon ingot furnace 3 and/or the single crystal silicon drawing furnace 4 to perform polycrystalline silicon ingot casting and/or single crystal silicon drawing.
  • the silicon elemental product collector 2 may be omitted, and the obtained silicon elemental product may be directly delivered to the polycrystalline silicon ingot furnace 3 and/or the single crystal silicon drawing furnace 4.
  • the silicon element product collector 2 supplies a part or all of the silicon elemental product collected therein to the second-stage reaction column 1.
  • the silicon element product collector 2 corresponds to the aforementioned silicon material liquid supply device 6, and the supplied silicon element product corresponds to the aforementioned silicon material liquid 8.
  • the silicon raw material supply device 6 of the first-stage reaction column 1 or another new silicon raw material supply device 6 may be used at the same time.
  • the silicon raw material liquid 8 is supplied to the second-stage reaction column 1 together with the silicon simple product collector 2.
  • the fed silicon raw material liquid 8 and the fed silicon raw material gas 7 undergo a reverse contact reaction in the second-stage reaction column 1 to form a silicon elemental product 9 and a reaction off-gas 10 .
  • the silicon elemental product 9 discharged from the second-stage reaction column 1 can be treated or utilized in the same manner as the silicon elemental product 9 discharged from the first-stage reaction column 1, or other possible utilization can be made.
  • reaction tail gas 10 generated in the second-stage reaction column 1 is discharged from the top of the second-stage reaction column 1, and at least a part thereof is introduced into the silicon raw material gas supply device of the first-stage reaction column 1 via the valve 13 5 (or not shown in the silicon raw material supply device 5 of the second-stage reaction column 1) is made to be at least a part of the silicon raw material gas 7, whereby the reaction off-gas 10 is recycled.
  • the reaction off-gas 10 from the first-stage reaction column 1 can also be recycled in a similar manner, such as silicon entering the first-stage reaction column 1 or the second-stage reaction column 1.
  • the raw material gas supply device 5 is used.
  • the first stage reaction column 1 and the second stage reaction column 1 may share one or more of the aforementioned silicon elemental product collectors 2, one or more of the aforementioned polycrystalline silicon ingots.
  • the furnace 3, one or more of the aforementioned single crystal silicon drawing furnaces 4, one or more of the aforementioned silicon raw material gas supply devices 5, and/or one or more of the aforementioned silicon raw material liquid supply, and the like, are not limited thereto.
  • the reaction tower 1 may be more than necessary as needed, and is not limited to the two illustrated.
  • these reaction towers 1 can be combined in other ways (e.g., in parallel), and are not limited to the illustrated series combination.
  • a silicon feed gas 7 is introduced into the reaction column 1 from the lower side of the reaction column 1 at a prescribed flow rate, while the silicon raw material liquid 8 is fed from the top of the reaction column 1 to the reaction at a prescribed flow rate.
  • Tower 1 in. Maintaining the temperature in the reaction column 1 is in the range of 1 600 to 1 800 ° C, and the atmospheric pressure is in the range of 0.5 to 8 ba r , so that the silicon raw material gas 7 fed and the silicon raw material liquid 8 fed are in the reaction.
  • the reduction reaction occurs in the reverse contact in the column 1.
  • the generated silicon elemental product 9 flows out from the bottom of the reaction column 1, it is partially conveyed continuously into the single crystal silicon drawing furnace 4 via the valve 13 to carry out drawing of the single crystal silicon, and the other part is used as the silicon raw material.
  • the liquid 8, returns to the top of the reaction column 1, thereby supplementing the silicon raw material liquid 8. Further, the reaction off-gas 10 is discharged from the top of the reaction column 1.
  • the reaction column 1 is preferably a packed column in which a packed packing is filled (e.g., Raschig ring or Pall ring, etc.) It is preferable to increase the contact area of the silicon raw material liquid 8 with the silicon raw material gas 7, thereby improving the contact reaction efficiency.
  • a packed packing e.g., Raschig ring or Pall ring, etc.
  • the packed tower includes a metal casing 101 structurally defining a closed inner space, a separate inner liner 102 fixed in the inner space of the metal casing 101, at the top of the metal casing 101
  • An open liquid introduction pipe 104 for introducing the silicon raw material liquid
  • a liquid discharge pipe 105 opened at the bottom of the metal casing 101 (for deriving the silicon elemental product)
  • a side-opening gas introduction pipe 107 for introducing the silicon raw material gas
  • a gas outlet pipe 109 for deriving the reaction tail gas
  • the independent liner 102 further includes an extension pipe that is completely abutted one-to-one with the respective openings on the metal casing 101, thereby communicating the liquid introduction pipe 104 with the upper region, and the The liquid discharge pipe 105 communicates with the lower region, communicates the gas introduction pipe 107 with the lower region, and communicates the gas discharge pipe 109 with the upper region.
  • the number of extension lines at this time must be exactly the same as the number of openings described above.
  • the extension pipe can also be regarded as an extension of each of the introduction pipe/outlet pipe in the internal space of the metal casing 101.
  • the independent inner liner 102 preferably adopts a multi-section tubular design, and the segments are nested with each other to form a unitary inner liner, but the invention is not limited to this particular form, and may be Other forms known to those skilled in the art. Additionally, a conventional bracket design is provided in the central region of the separate inner village 102 to facilitate loading of the packing 106.
  • a lower tapered region of the individual liner 102 has a tapered tapered shape to Convenient for discharging.
  • a card slot design is adopted at a minimum of the bottom of the independent lining 102.
  • the bottom of the independent lining 102 can be designed as an annular card slot to facilitate nesting and fixing with the liquid outlet pipe 105. It is also known to those skilled in the art.
  • an electric heating coil 108 is preferably wound around the outer peripheral wall of the individual inner liner 102.
  • the inner wall surface of the metal casing 1.01 has a highly reflective plating or coating to maximally reflect the heat radiated inside the casing back to the individual inner liner 102, thereby Improve energy efficiency.
  • the metal housing 101 and/or the gas introduction tube 107 and the gas outlet tube 109 have a cooling jacket.
  • the liquid introduction tube 104 and the liquid outlet tube 506 preferably have a two-layer structure, wherein the outer layer is a metal shell with a cooling jacket, and the inner layer is a separate lining defining a liquid introduction or outlet passage.
  • an electric heating coil can be wound on the outer wall of the independent inner liner to facilitate heating.
  • the separate liner is part of the aforementioned extension line that interfaces with the liquid introduction tube 104 and the liquid outlet tube 105, thereby being substantially integral with the extension line (see Figure 3). This simplifies the design and manufacture of production equipment.
  • a cooling liquid such as water or a heat transfer oil (preferably a heat transfer oil) into each of the aforementioned cooling jackets.
  • the gas outlet pipe 109 there are two (as shown in FIG. 3) or more of the gas outlet pipe 109, and two (as shown in FIG. 3) or more of the gas introduction pipe 107.
  • each of the individual liners (including the extension pipe thereof), the liquid distribution plate, and the filler are preferably selected from the group consisting of graphite, silicon nitride, silicon carbide, and the like.
  • One or more (composite materials) of boron nitride are formed of a material, and preferably composed of silicon nitride. It is known to those skilled in the art that these materials are very resistant to high temperatures and corrosion and are therefore preferably used in the present invention.
  • the liquid distribution plate 103 includes a liquid flow area 1 0301 (for collecting the introduced silicon raw material liquid) on the upper surface of the liquid distribution plate 103, and a liquid distribution hole 1 penetrating the liquid distribution plate 103.
  • 0302 shown as 33 hole arrays, But not limited to this
  • the pores 10 0303 penetrating through the liquid distribution plate 103 (shown as four, but not limited thereto) It is displayed as 8, but not limited to this).
  • the liquid distribution disc 103 can be directly adapted to those conventionally used in the field of packed towers.
  • the shape thereof is not limited to the disc shape shown in Fig. 4 , but is expressed in any suitable shape depending on the sectional shape of the upper region.
  • the fixing screw hole 10304 is used to provide a bolt to fix the liquid dispensing disk 103 to the upper region of the aforementioned separate liner 102.
  • how to fix the liquid distribution plate 103 is a technique known to those skilled in the art.
  • the liquid distribution plate 103 is structured and arranged such that all of the introduced silicon raw material liquid must first pass through the distribution of the liquid distribution plate 103, and then enter the filling material 106 after the distribution is uniformly hooked. Zone (in contact with the filler 106).
  • the liquid distribution holes 1 0302 are only distributed (preferably uniformly distributed) in the liquid flow region 1 0301 in order to control the flow and distribution of the introduced silicon raw material liquid.
  • the liquid flow region 10301 is preferably a groove design (a recessed structure lower than the upper surface), thereby facilitating the collection of the introduced silicon raw material liquid without causing clogging thereof or Entering the air hole 1 0303, so as to affect the ventilation function of the air hole.
  • liquid distribution hole 1 0302, the air hole 10 303 and the fixed screw hole 10 0304 do not overlap each other in position, but are separated by an appropriate distance (preferably according to a certain arrangement) Hook distribution), which is known to those skilled in the art.
  • the production apparatus shown in Fig. 2 is used.
  • the height h of the tower body of the reaction tower 1 is 1000
  • the inner diameter d of the tower is 300 mm
  • the filler silicon nitride ceramic Pall ring, diameter l 3 cm, height 3 to 5 cm
  • the height c of the lower surface of the packing from the upper surface of the bottom flange is 200 mm.
  • a silane i.e., a silicon compound, a temperature of 100 ° C
  • a silicon raw material gas 7 is used as a silicon raw material gas 7 at a delivery flow rate of 20 m 3 /h from the lower portion of the reaction column 1 at a height a from the upper surface 150 of the bottom flange of the reaction column 1
  • the side is fed into the reaction column 1.
  • the temperature inside the reaction column 1 was controlled to 1600. Around C, the atmospheric pressure is controlled at lbar.
  • molten elemental silicon (purity of 7 N) having a temperature of 1600 ° C was supplied as a silicon raw material liquid 8 into the reaction column 1 from the center of the top of the column of the reaction column 1 at a transport flow rate of 125 kg / h.
  • the silicon elemental product 9 is continuously withdrawn from the center of the bottom of the column of the reaction column 1, and 16% of its flow rate is returned to the top of the reaction column 1 as a supplement to the silicon raw material liquid 8 (i.e., silicon).
  • the raw material liquid 8'), and the remaining part is continuously fed into the single crystal silicon drawing furnace 4 (TDR-Z80 type single crystal furnace, the maximum power is 130kW, manufactured by Xi'an Ligong Crystal Technology Co., Ltd.), and the single crystal silicon is drawn. .
  • the production was stopped after 100 hours of continuous production, a total of 100 kg of silicon raw material liquid 8 was consumed, and about 2,600 kg of single crystal silicon (purity of 6 N) was co-drawn.
  • the total power consumption of the production equipment is about 2.5 X 10 5 kWh (i.e., the average power consumption of single crystal silicon is about 100 kWh/kg).
  • a mixed gas of trichlorosilane (i.e., silicon compound) and hydrogen (the volume ratio of trichlorosilane to hydrogen is 1:4) is used as the silicon raw material gas 7, the temperature is 200 ° C, and the delivery flow rate is 75 m 3 /h. 0
  • the temperature in the reaction column 1 was controlled at about 1800 ° C, and the atmospheric pressure was controlled at 1 bar.
  • the silicon raw material liquid 8 had a temperature of 1900 ° C and a conveying flow rate of 160 kg / h.
  • the production was stopped after 100 hours of continuous production, a total of 100 kg of silicon raw material liquid 8 was consumed, and about 1400 kg of single crystal silicon (purity of 6 N) was drawn together.
  • the total power consumption of the production equipment is about 1.8 X 10 5 kWh (i.e., the average power consumption of single crystal silicon is about 138 kWh/kg).
  • gaseous silicon tetrachloride i.e., silicon compound
  • hydrogen gaseous silicon tetrachloride and hydrogen at a volume ratio of 1:4 at 40 TC
  • the delivery flow rate is 75mVh.
  • the temperature in the reaction column 1 was controlled at about 1800 ° C, and the atmospheric pressure was controlled at 2 bar.
  • the silicon raw material liquid 8 had a temperature of 1900 ° C and a conveying flow rate of 180 kg / h.
  • the single crystal silicon drawing furnace 4 was changed to a polycrystalline silicon ingot furnace (JJL500 type polycrystalline silicon ingot furnace, rated power of 175 kW, manufactured by Zhejiang Jinggong Technology Co., Ltd., not shown) to produce a polycrystalline silicon ingot.
  • JJL500 type polycrystalline silicon ingot furnace rated power of 175 kW, manufactured by Zhejiang Jinggong Technology Co., Ltd., not shown
  • the production was stopped after 100 hours of continuous production, a total of 150 kg of silicon raw material liquid 8 was consumed, and a total of about 1,250 kg of polycrystalline silicon ingot (purity of 6 N) was produced.
  • the total power consumption of the production equipment is about 1.45 X 10 5 kWh (i.e., the average power consumption of the polycrystalline silicon ingot is about 132 kWh/kg).

Description

硅单质的生产方法及生产设备 技术领域
本发明涉及一种硅单质的生产方法及生产设备, 更具体来说, 本发明涉及一种利用熔融单盾硅使气态硅化合物原料发生还原反应 而生产硅单质 (包括多晶硅和单晶硅) 的硅单质的生产方法和生产 设备。 背景技术
目前, 绝大多数的硅单质 (尤其是多晶硅) 的生产方法是改良 西门子工艺, 主要使用钟罩型反应器和与电极相连的 8隨 左右的硅 芯作为沉积基底, 采用高温还原工艺, 通过高纯的气态硅化合物原 料 (比如 SiHCl3) 在 H2气氛中还原沉积 (化学气相沉积) 而生成多 晶娃。
上述化学气相沉积过程是在钟罩型的还原炉中进行的, 该反应 容器是密封的, 底盘上安装有出料口和进料口以及若干对电极, 电 极上连接着直径 5 ~ 10睡、 长度 1500 ~ 3000隱 的硅芯, 每对电极上 的两根硅棒又在另一端通过一较短的硅棒相互连接, . 对电极上施加 6~ 12kV 左右的高压时, 硅棒被击穿导电并加热至 1000 ~ 115(TC发 生反应, 经氢还原, 硅在硅棒的表面沉积, 使硅棒的直径逐渐增大, 最终达到 120~ 200mm 左右。 通常情况下, 生产直径为 120~ 200mm 的高纯硅棒, 所需的反应时间大约为 150~ 300小时。
然而, 这种改良西门子生产工艺存在以下缺点: 1 ) 由于硅棒沉 积比表面积小, 反应器内空间利用率低, 原料一次转化率低, 产量 受到限制。 以实收率为 8%计算, 每千克三氯氢硅只能得到 16.5克单 质硅, 大部分三氯氢硅在沉积过程中转换为四氯化硅, 副产物四氯 化硅经过分离后, 又重新合成三氯氢硅作为原材料, 这样的循环过 程耗能耗电, 效率低下; 2) 裂解过程产生的尾气成分复杂, 分离成 本高; 3) 由于采用钟罩型反应器, 在硅棒长大一定尺寸 (如 100 ~ 200i i ) 后必须使反应器降温, 取出产品。 因此只能间歇生产, 热量 损失大, 能耗高; 和 4 ) 由于产品为棒状多晶硅, 增加了破碎、 包装 的工序和成本, 还可能会带入新的杂质 (二次污染)。
为克服西门子工艺的缺点, 能耗更低的流化床多晶硅生产工艺 被开发出来。
中国专利申请 CN 1 01 31 8654 公开了一种流化床制备高纯度多晶 硅颗粒的方法及流化床反应器, 其特征在于加热区和反应区在结构 上相互隔开, 在反应器的加热区, 通入不含硅流化气体使加热区的 多晶硅颗粒处于流化状态, 并通过加热装置将多晶硅颗粒加热至 1 000 - 1 4 1 0 °C ; 加热后的多晶硅颗粒输送到反应区, 在反应区通入 含硅气体, 含硅气体在多晶硅颗粒表面发生热分解或还原, 产生单 质硅并沉积在颗粒表面; 在反应器下部将部分粒径为 G. l ~ 1 0mni 的 多晶硅颗粒作为产品取出; 在反应区上部, 加入作为晶种的直径为 0. 01 ~ 1 . Omm的多晶硅细颗粒以维持反应器内多晶硅颗粒的量。
但是, 流化床工艺也存在诸如反应器壁沉积硅致使流化床内部 空间减小, 并且随着内壁厚度的变化, 内壁热应力不均导致材质损 坏, 流化床气体分布器容易由于硅沉积而堵塞导致停工等缺陷, 并 且, 流化床工艺的一次转化率也仍有待提高。
同时, 不论是西门子工艺还是流化床工艺, 所生产的棒状多晶 硅或粒状多晶硅均需要在后续的加工步骤中通过高温熔融成液态 后, 才能制造出多晶硅铸锭或进而通过直拉法等制造出单晶硅, 这 无疑又大大增加了生产复杂度、 生产成本和能量消耗, 同时还存在 外界杂质污染所制造的多晶硅铸锭或单晶硅的风险(二次污染)。
因此, 目前的现状是, 仍旧需要一种硅单质的生产方法和生产 设备, 其可以克服现有技术中存在的那些问题, 并且可以以与现有 技术相比更低的生产成本、 更高的生产效率和更低的能耗, 制造出 纯度更高的硅单质 (比如多晶硅锭及单晶硅)。 发明内容
本发明人在现有技术的基础上经过刻苦的研究发现, 通过利用 具有极高温度的熔融单质硅来硅化合物转化成硅单盾, 就可以解决 前述问题, 并由此完成了本发明。
具体而言, 本发明涉及以下方面的技术内容:
1、 一种硅单质的生产方法, 其特征在于, 包括使汽化的硅化合 物或者汽化的硅化合物与氢气的混合气体作为硅原料气与作为硅原 料液的熔融单质硅接触, 而将所述硅化合物还原成硅单质的接触步 骤, 其中所述硅单质在生成后即融合入所述熔融单质硅中。
2、 如前述任一方面所述的生产方法, 其特征在于, 所述硅原料 液的温度为 1500 ~ 2000°C , 优选 1600 - 1800°C, 并且所述硅原料气 的温度为 60~ 600°C, 优选 150~ 300°C。
3、 如前述任一方面所述的生产方法, 其特征在于, 所述硅化合 物选自以如下通式 ( 1 ) 表示的化合物的一种或多种,
SinR2n+2 ( 1 )
其中, 各个 R (即 2n+2个 R ) 相同或不同, 各自独立地代表氢、 氟、 氯、 溴或碘, 优选各自独立地代表氢、 氯或溴, 进一步优选均 代表氢, n为选自 1 ~ 3的整数, 优选 n=l,
或者, 所述硅化合物为单晶硅或多晶硅制造工艺的气态硅副产 物。
4、 如前述任一方面所述的生产方法, 其特征在于, 在进行所述 接触步骤时, 以硅原子为计, 所述硅原料气与所述硅原料液的摩尔 比例为 3: 1 - 10: 1, 优选 4: 1 - 6: 1。
5、 如前述任一方面所述的生产方法, 其特征在于, 所述接触步 骤在温度 1500 ~ 2000°C, 并且以绝对压力计, 气氛压力为 0.5 ~ 8bar 的条件下进行, 其中优选所述温度为 1600 ~ 1800°C, 并且优选以绝 对压力计, 所述气氛压力为 1 ~ 2bar。
6、 如前述任一方面所述的生产方法, 其特征在于, 在所述混合 气体中, 按体积计, 所述汽化的硅化合物与所述氢气的比例为 2: 1 - 9: 1, 优选 2: 1 ~ 5: 1。
7、 如前述任一方面所述的生产方法, 其特征在于, 所述接触步 骤在反应塔中进行, 优选在板式塔或填料塔中进行。 8、 如前述任一方面所述的生产方法, 其特征在于, 从所述反应 塔的下部侧面导入所述硅原料气, 从所述反应塔的顶部导入所述硅 接触而发生所述还原反应, 同时从所述反应塔的底部导出融合了所 述硅单质的所述熔融单质硅。
9、 如前述任一方面所述的生产方法, 其特征在于, 还包括以融 合了所述硅单质的所述熔融单质硅、 另外提供的熔融单质硅或其组 合作为硅原料液, 和 /或, 以所述接触步骤的气体产物、 另外提供的 硅原料气或其组合作为硅原料气, 将所述接触步骤重复一次或多次 的步骤。
1 0、 如前述任一方面所述的生产方法, 其特征在于, 还包括将 晶硅铸锭炉和 I、或单晶硅拉 炉, 以制造多晶硅 和日 /或单晶硅的步 骤。
1 1、 一种硅单质的生产设备, 其特征在于, 包括接触反应器和 用于供给熔融单质硅的硅原料液供给装置, 其中所述接触反应器包 括接触反应器主体、 连通所述接触反应器主体与所述硅原料液供给 装置以便将所述熔融单质硅作为硅原料液导入所述接触反应器主体 与氢气的混合气体作为硅原料气导入所述接触 应器主体中的硅原 料气导入管, 其中所述接触反应器主体在结构上适合使所述导入的 硅原料液与所述导入的硅原料气在其内部空间中接触而将所述硅化 合物还原成硅单质, 其中所述硅单质在生成后即融合入所述熔融单 盾硅中, 形成硅单质产品, 由此所述接触反应器还任选包括用于将 所述硅单质产品导出所述接触反应器主体的硅单质产品导出管。
1 2、 如前述任一方面所述的生产设备, 其特征在于, 所述接触 反应器主体为反应塔, 优选板式塔或填料塔。
1 3、 如前述任一方面所述的生产设备, 其特征在于, 所述硅原 料液导入管在所述接触反应器主体内的开口位置位于所述接触反应 器主体的顶部, 所述硅原料气导入管在所述接触反应器主体内的开 口位置位于所述接触反应器主体的下部侧面, 并且所述硅单质产品 导出管在所述接触反应器主体内的开口位置位于所述接触反应器主 体的底部。
1 4、 如前述任一方面所述的生产设备, 其特征在于, 所述硅单 质产品导出管直接与多晶硅铸锭炉和 /或单晶硅拉制炉连通, 和 /或 先与硅单质产品收集器连通, 然后再经由位于所述硅单质产品收集 器上的中继导出管与多晶硅铸锭炉和 /或单晶硅拉制炉连通, 由此将 至少一部分所述硅单质产品导入所述多晶硅铸锭炉和 /或单晶硅拉 制炉, 以进行多晶硅铸锭和 /或单晶硅拉制。
1 5、 如前述任一方面所述的生产设备, 其特征在于, 所述接触 反应器主体、 所述硅原料液供给装置、 所述硅原料液导入管、 所述 硅单质产品导出管、 所述多晶硅铸锭炉、 所述单晶硅拉制炉、 所述 硅单质产品收集器和 /或所述中继导出管的内壁具有由石墨、 碳化 硅、 氮化硅、 氮化硼或其任意复合材料构成的内衬。
1 6、 如前述任一方面所述的生产设备, 其特征在于, 存在多个 所述接触反应器和至少一个所迷硅原料液供给装置, 其中所述多个 接触反应器共用一个或多个所述硅原料液供给装置。
1 7、 如前述任一方面所述的生产设备, 其特征在于, 存在多个 所述接触反应器, 其中至少两个接触反应器以上下级串联的方式操 作, 使得上一级接触反应器的硅单质产品导出管与下一级接触反应 器的硅原料液导入管直接连通, 或者使得上一级接触反应器的硅单 质产品导出管先与硅单质产品收集器连通, 然后再经由位于所述硅 单质产品收集器上的中继导出管与下一级接触反应器的硅原料液导 入管直接连通, 由此将至少一部分来自所述上一级接触反应器的硅 单质产品作为硅原料液导入所述下一级接触反应器中。
1 8、 如前述任一方面所述的生产设备, 其特征在于, 所述生产 设备还包括与所述硅原料气导入管连通的用于供给所述硅原料气的 硅原料气供给装置, 并且所述接触反应器还包括用于将所述接触步 19、 如前述任一方面所述的生产设备, 其特征在于, 所述气体 产物导出管直接与所述硅原料气供给装置连通, 和 /或直接与所述硅 原料气导入管连通, 由此将至少一部分所述气体产物作为所述硅原 料气的至少一部分导入所述接触反应器主体中。
20、 如前述任一方面所述的生产设备, 其特征在于, 所述硅单 质产品导出管直接与所述硅原料液供给蓼置连通, 和 /或直接与所述 硅原料液导入管连通, 由此将至少一部分所述硅单质产品作为所述 硅原料液的至少一部分导入所述接触反应器.主体中。
21、 如前述任一方面所述的生产设备, 其特征在于, 所述填料 塔包括在结构上限定了闭合的内部空间的金属壳体 101、 固定在所述 金属壳体 101的所述内部空间中的独立内衬 102、 在所述金属壳体 101 顶部开口的液体导入管 104、 在所述金属壳体 101底部开口的液体导 出管 105、 在所述金属壳体 101下部侧面开口的气体导入管 107和在所 述金属壳体 101顶部开口的气体导出管 109, 其中所述独立内衬 102在 结构上限定了闭合的内部空间, 所述独立内衬 102的所述内部空间分 为上部区域、 中部区域和下部区域, 在所述中部区域中装填有填料 106, 在所述上部区域中设置有液体分布盘 103, 所述独立内衬 102还 包括与所述金属壳体 101上的前述各个开口一对一完全对接的延伸 管路 (显然, 此时所述延伸管路的数目必然与前述开口的数目完全 相同), 从而将所述液体导入管 104与所述上部区域连通、 将所述液 体导出管 105与所述下部区域连通、 将所述气体导入管 107与所述下 部区域连通, 并且将所述气体导出管 109与所迷上部区域连通。
22、 如前述任一方面所述的生产设备, 其特征在于, 所述液体 分布盘 103上设置有至少一个气孔 10303和与所述气孔 10303分隔的 至少一个液体分布孔 10302。
23、 如前述任一方面所述的生产设备, 其特征在于, 在所述独 立内衬 102的外周壁上缠绕电加热线圏 108。
24、 如前述任一方面所述的生产设备, 其特征在于, 所述金属 壳体 101具有冷却夹套。 25、 如前述任一方面所述的生产设备, 其特征在于, 所迷金属 壳体 1 01的内壁面具有高反射性镀层或涂层。
26、 如前述任一方面所述的生产设备, 其特征在于, 所述独立 内村 1 02的所述下部区域具有锥形渐缩形状。
27、 如前述任一方面所述的生产设备, 其特征在于, 所述气体 导入管 1 G7和所述气体导出管 1 09具有冷却夹套。
28、 如前述任一方面所述的生产设备, 其特征在于, 所述液体 导入管 1 04和所述液体导出管 1 05具有双层结构, 外层为带冷却夹套 的金属管壳, 内层为限定液体导入或导出通道的独立内衬。
29、 如前述任一方面所述的生产设备, 其特征在于, 所述气体 导出管 1 09存在至少两个, 而所述气体导入管 1 07存在至少两个。 技术效果
与现有技术相比, 本发明具有以下优点:
1 ) 可以在常压下实施, 对设备的耐压要求度低, 因此可以降低 设备的制造成本以及生产的操作成本等;
2 ) 由于接触反应在反应器的整个空间内进行, 因此与多晶硅制 造用反应器相比, 反应器的内部空间利用率高, 有利于提高生产效 率;
3 ) 可以以连续的方式操作, 减少了间歇式操作所导致的能量浪 费; 。 、、 、 ^ ,、 、 、 , 造出多晶硅铸锭或单晶硅, 省去了大量的中间过程和步骤 (比如多 晶硅制造、 破碎、 包装、 运输和再熔融等工序), 省去了由此而导致 的大量的人工和操作成本及能量消耗和浪费, 并降低了硅产品受到 二次污染的可能性, 有利于提高生产效率、 降低生产成本以及获得 纯度更高的硅单质产品;
5 ) 改变了传统的反应方式, 将反应能耗与铸锭及直拉单晶能耗 集中, 降低了总能耗, 有利于降低生产的总能耗和降低生产设备总 投资成本以及人工费用; 6 ) 与现有技术 (比如所述西门子工艺)相比, 对硅化合物原料 纯度的耐受度高, 由此原料成本低。 比如, 本发明可以使用四氯化 硅作为硅化合物原料进行所述接触反应, 因此为作为现有技术多晶 硅生产工艺废弃副产物的四氯化硅找到了一条有效的循环利用途 径, 并由此降低了硅单质生产的原料成本;
7 )硅化合物原料的转化率高, 生产效率和产量高; 和
8 )接触反应产生的气体产物 (反应尾气) 可以循环利用, 从而 进一步降低了原料成本, 并且最终的尾气处理容易。 附图说明
本发明的这些和其它目的、 优点和特点将在以下参照附图的说 明中得以明确。
图 1示意性地表示了本发明一个优选的实施方式, 其中使用了先 后串联的两个立式反应塔 (二级串联反应塔) 作为所述接触反应器 主体 (以下有时也简称为接触反应器)。
图 2示意性地表示了本发明另一个优选的实施方式, 其中使用一 个立式反应塔作为所述接触反应器主体或接触反应器。
图 3示意性地表示了本发明所涉及的一种优选结构的填料塔。 图 4示意性地表示了本发明所涉及的一种液体分布盘的上面视 图。 符号说明:
1、 立式反应塔 (即, 接触反应器主体或接触反应器); 2、 硅单 质产品收集器; 3、 多晶硅铸锭炉; 4、 单晶硅拉制炉; 5、 硅原料气 供给装置; 6、 硅原料液供给装置; 7、 硅原料气; 8和 8,、 硅原料液; 9、 硅单质产品; 1 0、 反应尾气 (接触步骤的气体产物); 1 1、 汽化 的硅化合物; 1 2、 氢气; 1 3、 阀门。
1 01、 金属壳体; 1 02、 独立内衬; 1 03、 液体分布盘; 1 04、 液 体导入管; 1 05、 液体导出管; 1 06、 填料; 1 07、 气体导入管; 1 08、 电加热线圏; 1 09、 气体导出管。 1 0301、液体流动区域; 1 0302、液体分布孔; 1 0303、气孔; 1 0304、 固定螺孔。
需要指出的是, 同一附图标记在同一附图或不同的附图中均表 示相同的含义。 具体实施方式
下面对本发明的具体实施方式进行详细说明, 但是需要指出的 是, 本发明的保护范围并不受这些具体实施方式的限制, 而是由附 录的权利要求书来确定。
本说明书提到的所有出版物、 专利申请、 专利和其它参考文献 全都引于此供参考。 除非另有定义, 本说明书所用的所有技术和科 学术语都具有本发明所属领域内一般技术人员常理解的相同意思。 在有冲突的情况下, 包括定义在内, 以本说明书为准。
当本说明书以术语 "本领域技术人员已知的" 或其同义词或词 组来描述材料、 方法、 部件、 装置或设备时, 该术语表示本说明书 包括提出本申请时本领域常规使用的那些, 但也包括目前还不常用, 但将变成本领域公认为适用于类似目的的那些。
当本说明书以术语 "直接与 ... ...连通" 或其同义词或词组来描 迷装置或部件的连接关系时, 并不排除在这些装置或部件之间存在 阀门、 温控装置或动力传输装置 (比如泵) 等本领域技术人员认为 必要的装置或设备的情况。
此外, 本说明书提到的各种范围均包括它们的端点在内, 除非 另有明确说明。 此外, 当对量、 浓度或其它值或参数给出范围、 一 个或多个优选范围或很多优选上限值与优选下限值时, 应把它理解 为具体公开了由任意对任意范围上限值或优选值与任意范围下限值 或优选值所形成的所有范围, 不论是否——公幵了这些数值对。
最后, 在没有明确指明的情况下, 本说明书内所提到的所有百 分数、 份数、 比率等都是以重量为基准的, 除非以重量为基准时不 符合本领域技术人员的常规认识。
如前所述, 本发明提供了一种硅单质的生产方法, 其特征在于, 包括使汽化的硅化合物或者汽化的硅化合物与氢气的混合气体作为 硅原料气与作为硅原料液的熔融单质硅接触, 而将所述硅化合物还 原成硅单质的接触步骤, 其中所述硅单质在生成后即融合入所述熔 融单质硅中, 由此获得本发明的硅单质产品。
在本发明的上下文中, 术语 "硅单质" 包括硅的各种单质存在 形式, 比如原子态硅、 液态硅 (熔融状态的硅) 、 非晶态硅和晶体 硅 (比如单晶硅和多晶硅) 等, 其中优选单晶硅和多晶硅。
在本发明的上下文中, 术语 "硅化合物" 指的是在高温 (比如
1500 ~ 2000°C ) 下可以通过热解而生成硅单质或者在该高温下可以 被氢气还原而生成硅单质的任何含硅化合物或其混合物。 该定义表 明, 本发明所述的硅化合物有时指的并不是单——种化合物, 而可 以指的是多种硅化合物的混合物。 优选的是, 所述硅化合物仅由硅 以及选自 |¾素和氢中的一种或多种元素构成。
根据本发明一个优选的实施方式, 所述硅化合物选自以如下通 式 ( 1 )表示的化合物的一种或多种。
Si„R2n+2 ( 1 )
其中, 所述 2n+2个 R各自相同或不同, 各自独立地代表氢、 氟、 氯、 溴或碘, 优选各自独立地代表氢、 氯或溴, 进一步优选均代表 氢, n为选自 1 - 3的整数, 优选 n=l。
根据本发明一个进一步优选的实施方式, 所述硅化合物选自四 氯化硅(SiCl4) 、 三氯氢硅(SiHCl3)和曱硅烷(SiH4) 中的一种或 多种。
如前所述, 所述硅化合物可以是一种单纯的硅化合物, 也可以 是多种硅化合物的任意混合物, 而没有任何的限制。 实际上, 本发 明的生产方法可以利用来自于各种单晶硅或多晶硅制造工艺 (比如 前述的西门子工艺) 的各种气态硅副产物 (比如工艺尾气) 来实施, 而不影响本发明目的的实现。 在本发明的上下文中, 术语 "气态硅 副产物" 包括即使在常温下呈液态但通过加热至 60 ~ 600°C (优选 150 - 300°C ) 而可以呈现为气态的硅副产物。
比如, 就所述西门子工艺而言, 该工艺产生了大量的废弃硅副 产物 (主要成分是四氯化硅, 同时还包括成分复杂的多种其他硅化 合物) 。 根据本发明, 可以直接使用该副产物作为本发明所述的硅 化合物, 由此为该废弃副产物找到了一条高效率并且是高附加值(用 于直接制造昂贵的硅单质比如多晶硅和单晶硅) 的循环利用途径, 并同时降低了本发明的生产方法的原料成本。
实际上, 目前现有的单晶硅或多晶硅制造工艺由于对硅原料的 纯度要求非常高, 因此来源于这些制造工艺的气态硅副产物完全可 以满足本发明对硅化合物纯度等方面的要求。 即, 本发明实际上可 以直接使用单晶硅或多晶硅制造工艺的气态硅副产物来作为所述硅 化合物, 而无需对其进行任何的预先纯化处理。
根据本发明, 所述硅化合物是以汽化的形式使用的。 为此, 本 发明所述的硅化合物是在一定的温度 (比如 60~ 600°C, 优选 150 ~ 300°C ) 和常压下能够被汽化而成为气体的物质。 因此, 本发明所述 汽化的硅化合物的使用温度相应地为 60~ 600°C, 优选 150 ~ 300°C, 但有时并不限于此。
根据本发明, 对所述氢气没有特别的限定, 可以直接使用现有 技术中制造多晶硅或单晶硅时常规使用的氢气原料。 所述氢气在使 用前一般被加热至 60~ 600°C, 优选被加热至 150~ 300°C。
根据本发明, 可以直接使用所述汽化的硅化合物作为硅原料气, 也可以使用所述汽化的硅化合物与氢气的混合气体作为硅原料气 (以下有时统称为硅原料气) 。 在所述混合气体中, 按体积计, 所 述汽化的硅化合物与所述氢气的比例为 2: 1 - 9: 1, 优选 2: 1 - 5: 1。 此时, 对所述混合气体的制造方法没有任何的限定, 可以使用能 够实现氢气与所述汽化的硅化合物按预定的比例混合的任何方式。
根据本发明, 所述硅原料气的温度一般为 60~ 60(TC,优选 150~ 300°C, 压力一般为 0.5 ~ 8bar, 优选 l ~ 2bar, 但根据生产的实际情 况或为了调节接触反应体系的气氛压力的需要, 有时也不限于此。
根据本发明, 使所述汽化的硅化合物或者所述混合气体作为硅 原料气与作为硅原料液的熔融单质硅接触, 而将所述硅化合物还原 或热解 (以下有时统称为还原) 成硅单质, 与此同时生成气态的还 原产物或热解产物 (即, 接触步骤的气体产物) 。 此时, 所述硅单 质在生成后即融合入所述熔融单质硅中, 由此形成本发明的硅单质 厂.口口 σ 0
才艮据本发明, 所述熔融单质硅可以是通过熔融固体单质硅 (比 如多晶硅块、 多晶硅锭、 多晶硅粒等) 而获得的, 也可以是通过任 何其他途径获得的, 并没有特别的限制。 优选的是, 所述熔融单质 硅的纯度最好不低于 6N (优选不低于 7N) , 以便使所获得的硅单质 产品在纯度上能够满足通常的工业需要。 根据本发明, 所获得的硅 单质产品的纯度一般为 6N以上, 优选 7N以上。
此时, 对所述固体单质硅的熔融方式没有任何的限制, 可以适 用现有技术中任何常规使用的加热方式来进行所述熔融, 比如辐射 加热、 电加热线圈加热等, 其中优选辐射加热。 通过该加热, 将所 述固体单质硅加热至 1500 - 2000°C (优选 1600 - 1800°C ) 而熔融。
由此, 所述熔融单质硅或所述硅原料液的温度一般为 1500 ~ 2000°C, 优选 1600 ~ 1800°C, 但根据生产的实际情况, 有时也不限 于此。
根据本发明, 在进行所述接触步骤时, 所述硅原料气与所迷硅 原料液的比例没有特别的限制, 只要所述硅原料液的量能够确保向 所迷硅原料气提供足够的热量从而使其发生前述的还原反应 (或热 解反应) 即可。 并且, 所述比例还取决于所述硅原料气与所述硅原 料液的接触方式 (比如一过性接触的方式或者固定硅原料液的用量 而向其中连续吹入硅原料气的方式) 等因素, 因此无法一概规定。 但作为生产的参考, 比如以硅原子为计, 所述硅原料气与所述硅原 料液的摩尔比例一般为 3: 1 - 10: 1, 优选 4: 1 - 6: 1, 但如前所述, 本发明的生产方法完全不限于此。
根据本发明, 所述接触步骤在反应温度 1500 ~ 20G(TC (优选 1600 ~ 1800°C ) 的条件下进行。 此时, 可以通过辐射加热、 电加热 线圈加热等方式来加热进行所述接触反应的反应空间内部的方式来 维持或达到所述反应温度, 这是本领域技术人员容易实现的, 在此 不赘述。 另外,以绝对压力计,所述接触步骤在气氛压力为 0. 5 ~ 8bar (优 选 l ~ 2bar ) 的条件下进行。 此时, 可以通过改变所述硅原料气的供 应量、 供应速度或反应温度等方式来维持或达到所述气氛压力, 这 是本领域技术人员容易实现的, 在此不赘述。
而且, 在进行所述接触步骤时, 对所述硅原料气与所述硅原料 液的接触时间没有特别的限制, 只要该接触时间足够确保所述硅原 料液向所述硅原料气传达足够的热量, 从而使后者发生前述的还原 反应 (或热解反应) 即可。 并且, 所述接触时间还取决于所述硅原 料气与所述硅原料液的接触方式 (比如一过性接触的方式或者固定 硅原料液的用量而向其中连续吹入硅原料气的方式) 或者所述硅原 料液与所述硅原料气的相对移动速度等因素, 因此无法一概规定。 换句话说, 所述接触时间只要能够确保所述硅原料气与所述硅原料 液已经发生了实质上的接触 (伴随热交换) 即可。
根据本发明一个优选的实施方式, 所述硅原料气和所述硅原料 液以逆向接触 (相向移动) 的方式进行所述接触反应。 更优选的是, 所述接触是一过性接触的方式, 即, 所述硅原料气与所述硅原料液 在瞬间接触之后立即彼此分离, 由此所述接触表现为一种动态的结 合 /分离方式。
为了使所述硅原料气和所迷硅原料液的接触反应 (热交换) 充 分进行, 可以通过本领域技术人员已知的任何方法或手段 (比如液 体分布盘或喷淋管等)预先将所述硅原料液制成高度分散的状态(比 如雾化、 喷淋、 流化、 散布等) , 然后再使其与所述硅原料气接触, 和 /或, 在进行所述接触反应的反应空间中引入可以增大二者接触面 积或接触效率的各种装置或部件 (比如塔板、 反应塔用填料、 多孔 材料等等) , 然后在这些装置或部件的存在下进行所述接触反应, 这是本领域技术人员可以理解的。
具体而言, 在一个优选的实施方式中, 所述接触步骤在反应塔 (优选立式反应塔, 进一步优选板式塔或填料塔) 中进行。 在该生 产方法的一个更优选的实施方式中, 从所述反应塔的下部侧面导入 所述硅原料气, 从所述反应塔的顶部导入所述硅原料液, 由此使所 发生所述还原反应, 同时从所迷反应塔的底部导出融合了所述硅单 质的所述熔融单质硅 (即本发明的硅单质产品)。 关于这些涉及反应 塔的优选实施方式, 将在下文中以本发明的硅单质的生产设备为例 进行详细的说明。
根据本发明的一个优选的实施方式, 所述生产方法还包括以融 合了所述硅单质的所述熔融单质硅 (硅单质产品)、 另外提供的熔融 单质硅或其组合作为硅原料液, 和 /或, 以所述接触步骤的气体产物、 另外提供的硅原料气或其组合作为硅原料气, 将所述接触步骤重复 一次或多次的步骤。 根据该实施方式, 将本发明生产方法所获得的 硅单质产品和 /或气体产物的至少一部分(优选占所述硅单质产品的
5 ~ 90重量%, 进一步优选占其 1 0 ~ 50重量%, 或者, 优选占所述气体 产物的 5 ~ 90体积 °/», 进一步优选占其 10 - 50体积%) 作为硅原料液和 /或硅原料气, 或者作为所述硅原料液和 /或硅原料气的补足部分, 循环回同一接触步骤的开始阶段或者开始新的接触步骤, 由此循环 利用了所迷硅单质产品和 /或所述气体产物及其所含的余热, 这对于 进一步提高本发明生产方法的热量利用效率、 原料转化率和生产效 率等而言是非常有利的, 因此优选。 在此, 术语 "另外提供的熔融 单质硅" 或 "另外提供的硅原料气" 指的是如前所述提供的新鲜(相 对于前述的 "循环" 而言) 的熔融单质硅或硅原料气。
另外, 本发明的生产方法优选还包括将所获得的硅单质产品的 至少一部分直接连续地或间断地供应给一个或多个多晶硅铸锭炉和 /或单晶硅拉制炉的步骤, 由此可以以与现有技术相比更低的生产成 本、 更高的生产效率和更低的能耗, 制造出纯度更高的多晶硅锭或 单晶硅。 根据本发明, 所述多晶硅铸锭炉和单晶硅拉制炉可以直接 适用本领域常规使用的那些, 在此不赘述。 另外, 可以直接利用本 领域常规的各种方法, 以本发明所获得的硅单质产品作为硅进料, 由此制造出所述多晶硅锭和单晶硅, 在此不赘述。
在本发明一个实施方式中, 前述的生产方法比如可以通过如下 的硅单质的生产设备来实现。 在以下的内容中, 除了明确说明的内 容之外, 未提到的任何事宜 (比如各种原材料的规格、 接触反应的 进行方式、 反应条件等等) 均直接适用本文此前的相应说明而无需 进行任何改变, 在此不再赘述。 而且, 以下所述的任何内容均可以 与本文此前所述的任何内容相结合, 由此而形成的新技术方案或技 术思想均视为本发明原始公开或原始记载内容的一部分, 而不应被 视为是本文未曾披露或预期过的新内容。
如前所述, 本发明的硅单质的生产设备包括接触反应器和用于 供给熔融单质硅的硅原料液供给装置, 其中所述接触反应器包括接 触反应器主体、 连通所述接触反应器主体与所述硅原料液供给装置 原料液导 ^和用于将汽化的娃化合物或者汽化的娃:合物与氬 导入 , 其中所述接触反应器主体在结构上适合使所述导入的硅原 料液与所述导入的硅原料气在其内部空间中接触而将所述硅化合物 还原成硅单质, 其中所述硅单质在生成后即融合入所述熔融单质硅 中, 形成硅单质产品, 由此所述接触反应器还任选包括用于将所述 硅单质产品导出所述接触反应器主体的硅单质产品导出管。
在本发明的上下文中, 在本领域技术人员不致混淆的语境程度 内, 术语 "接触反应器主体" 与 "接触反应器" 虽然彼此含义不尽 相同, 但有时统称为接触反应器。
根据本发明, 所述接触反应器主体可以是任何的反应容器, 对 其材质、 尺寸规格和结构形式等没有任何的限定, 只要其包括适合 进行所述接触反应的内部反应空间, 并且满足其材质可以耐受前述 接触反应的反应条件 (反应温度和反应压力等) 且具有抗接触反应 腐蚀性这些一般性要求即可, 这对于本领域技术人员而言是显然的。
如前所述, 所述反应容器优选反应塔, 进一步优选立式反应塔 (优选板式塔或填料塔)。 本发明对所有这些反应塔的材质、 尺寸规 格和结构形式等也没有特别的限定, 只要其符合前述的一般性要求 即可, 因此可以直接使用本领域常规使用的那些。
作为所述板式塔, 可以使用具有任何塔板数的, 但是考虑到容 易获得性, 一般其实际塔板数为 5 - 200块, 但并不限于此。 作为所 述填料塔, 可以使用填充了任何可以有效提高反应物接触效率的填 料的, 其中所述填料比如可以举出阶梯环、 拉西环、 鲍尔环、 矩鞍 环、 异鞍环、 十字环、 十字隔板环、 龙骨环、 螺旋环和规整波紋填 料(比如波纹板形式的规整填料) 等等, 并没有特别的限制。 当然, 这些填料在材质等方面也必须满足本说明书之前针对接触反应器所 提出的那些一般性要求, 这对于本领域技术人员而言是显然的。
实际上, 本发明可以直接使用化工领域中常规使用的板式塔或 填料塔, 只要其满足本说明书前述的那些一般性要求即可。
为了提高硅原料液与硅原料气的接触效率, 如前所述, 优选在 硅原料液与硅原料气接触之前, 通过适当的分散装置预先将所述硅 原料液制成高度分散 (或散布) 的状态。 比如, 可以在如前所述的 各种反应塔的塔顶安装液体分布盘或喷淋管等分散装置, 这些都是 本领域技术人员常规已知的, 在此不赘述。
根据本发明, 在所述接触反应器主体上连通了所述硅原料液导 入管和所述硅原料气导入管。 为了接触反应实施的方便, 优选的是, 所述硅原料液导入管在所述接触反应器主体内的开口位置位于所述 接触反应器主体的顶部, 而所述硅原料气导入管在所述接触反应器 主体内的开口位置位于所迷接触反应器主体的下部侧面, 使所迷硅 原料液的进料位置在水平上高于所述硅原料气的进料位置, 由此有 利于实现硅原料液和硅原料气的前迷优选的逆向接触。 另外, 在存 在时, 所述硅单质产品导出管在所述接触反应器主体内的开口位置 位于所述接触反应器主体的底部, 以便于通过重力等方式将所述硅 单质产品排出所述接触反应器。
在一个优选的实施方式中, 本发明的生产设备还包括与所迷硅 所述硅原料气供给装置将^原料气混合均匀和 I或加热至本发明之 前规定的温度, 并进一步将其输出给所述硅原料气导入管。 因此, 该硅原料气供给装置可以是能够实现这些预定功能的任何装置, 没 有特别的限制。 另外, 所述接触反应器还可以包括用于将所述接触步骤的气体 产物导出所述接触反应器主体的气体产物导出管。 从所述气体产物 导出管排出的气体产物可以通过适当的方法进行后续处理, 或者, 优选的是, 将所述气体产物导出管直接与前述的硅原料气供给装置 连通, 和 /或直接与所述硅原料气导入管连通, 由此将至少一部分所 述气体产物作为所述硅原料气的至少一部分导入所述接触反应器主 体中而加以循环利用。 这样, 可以循环利用所述气体产物及其所含 的余热, 由此具有提高热利用效率和总体硅转化率等优点, 因此优 选。 在后一种情况下, 所述硅原料气供给装置和所述气体产物导出 管同时向所述接触反应器供应硅原料气。
显然, 为了生产的需要, 这些硅原料气导入管、 硅原料气供给 装置和气体产物导出管等也必须满足前述的一般性要求, 并且根据 需要, 也可以经过温控处理 (比如附设加热手段等), 以将其内容物 维持在或加热到本发明预定的温度, 这对于本领域技术人员而言是 显然的。
根据本发明一个优选的实施方式, 所述硅单质产品导出管直接 与多晶硅铸锭炉和 /或单晶硅拉制炉连通, 和 /或先与硅单质产品收 集器连通, 然后再经由位于所迷硅单质产品收集器上的中继导出管 与多晶硅铸锭炉和 /或单晶硅拉制炉连通, 由此将至少一部分所述硅 单质产品导入所述多晶硅铸锭炉和 /或单晶硅拉制炉, 以进行多晶硅 铸锭和 /或单晶硅拉制。 此时, 所述硅单质产品收集器起到硅单质产 品贮存器的作用, 便于控制向多晶硅铸锭炉和 /或单晶硅拉制炉输送 的硅单质产品的量或温度等, 但该硅单质产品收集器并不是必须存 在的。
就本发明而言, 所述硅单质产品收集器可以是任何适合盛装直 接从所述接触反应器排出的尚处于高温状态的硅单质产品的保温容 器(以维持所述硅单质产品的温度), 对此并没有特别的限制。 并且, 如前所述, 所述多晶硅铸锭炉和 /或单晶硅拉制炉可以直接使用本领 域常规使用的那些, 并没有特别的限定。
根据本发明, 所述硅原料液供给装置可以是适合熔融固体单质 硅并将所迷熔融的单质硅提供给所述接触反应器的任何装置, 并没 有特别的限定, 这是本领域技术人员可以常规选择的。
根据本发明, 为了维持各反应步骤或阶段所需的温度水平和避 免装置腐蚀等问题产生, 即满足如前所述的一般性要求, 与接触反 应、硅原料液或硅单质产品直接接触的所有设备、 管道或构件等(包 括前述的接触反应器主体、 硅原料液供给装置、 硅原料液导入管、 硅单质产品导出管、 多晶硅铸锭炉、 单晶硅拉制炉、 硅单质产品收 集器和 /或所述中继导出管等装置或管路或下述的阀门等) 的内壁优 选具有由石墨、 碳化硅、 氮化硅、 氮化硼或其任意复合材料构成的 内衬或者其自身 (比如处于接触反应空间中的那些构件, 比如前述 的分散装置、 填料、 塔板等) 由石墨、 碳化硅、 氮化硅、 氮化硼或 其任意的复合材料构成。
进一步地, 为了维持各反应步骤或阶段所需的温度水平等, 可 以通过辐射加热、 电加热线圈加热等常规的加热方式来加热前述的 接触反应器主体、 硅原料液供给装置、 硅原料液导入管、 硅单质产 品导出管、 多晶硅铸锭炉、 单晶硅拉制炉、 硅单质产品收集器和 /或 所述中继导出管等装置或管路, 以使其维持或达到预定的温度, 这 是本领域技术人员容易实现的, 在此不赘述。
比如, 为了实施的方便性, 优选的是, 采用辐射加热的方式将 所述硅原料液供给装置维持在 150G ~ 20()(rC。 或者, 采用辐射加热 的方式将所述硅单盾产品收集器维持在 1500 - 2000 °C。 或者, 采用 电加热线圏加热的方式对前述的各种管路进行加热, 以维持管路内 温度范围为 1500 ~ 2000°C。
根据本发明的一个优选的实施方式, 所述硅单质产品导出管直 接与所述硅原料液供给装置连通, 由此将至少一部分所述硅单质产 品导入硅原料液供给装置中作为熔融单质硅的补充, 以便循环利用 所述硅单质产品。 或者, 所述硅单质产品导出管直接与所述硅原料 液导入管连通, 由此将至少一部分所述硅单质产品作为硅原料液(或 其补充部分) 直接导入所述接触反应器主体中。 此时, 所述硅原料 液供给装置和所述硅单质产品导出管同时向所述接触反应器供应硅 原料液。 这样, 可以循环利用所述硅单质产品及其所含的余热, 由 此具有提高热利用效率等优点, 因此优选。
根据本发明一个优选的实施方式, 存在多个如前所述的接触反 应器和至少一个如前所述的硅原料液供给装置。 其中, 所述多个接 触反应器共用一个或多个所述硅原料液供给装置。 具体而言, 一个 接触反应器可以接受来自于一个或多个硅原料液供给装置的熔融单 质硅, 或者, 一个硅原料液供给装置可以将熔融单质硅提供给一个 或多个接触反应器, 以根据生产的实际情况而充分发挥各装置的生 产能力。
在存在多个如前所述的接触反应器时, 优选其中至少两个接触 反应器以上下级串联的方式操作, 使得上一级接触反应器的硅单质 产品导出管与下一级接触反应器的硅原料液导入管直接连通, 或者 使得上一级接触反应器的硅单质产品导出管先与硅单质产品收集器 连通 (连通方式如前所述), 然后再经由位于所述硅单质产品收集器 上的中继导出管与下一级接触反应器的硅原料液导入管直接连通 (连通方式如前所述), 由此将至少一部分来自所述上一级接触反应 器的硅单质产品作为硅原料液或硅原料液的补充, 导入所述下一级 接触反应器中, 以进一步利用所述硅单盾产品。 当然, 来自所述下 ―级接触反应器的硅单质产品或其一部分也可以以类似的方式作为 硅原料液或硅原料液的补充, 导入所述上一级接触反应器中。
类似地, 来自所述上一级(下一级) 接触反应器的气体产物或 其一部分也可以以与之前类似的方式作为硅原料气或硅原料气的补 充, 导入所述下一级 (上一级)接触反应器中。
如前所述, 各个接触反应器可以按照与本说明书前述相同的方 式独立地循环利用来自自身的气体产物和 /或硅单质产品。 或者, 一 个或多个所述接触反应器也可以按照与本说明书前述相同的方式循 环利用来自其余的一个或多个所述接触反应器的气体产物和 /或硅 单质产品, 由此构成交织的生产网络体系, 以便最大限度地循环利 用这些物质及其所含的余热, 从而更彰显本发明在热量利用效率和 原料转化率等方面的优势。 为了便于生产, 根据需要, 可以在前述的各种管路上设置阀门 和动力传输装置 (比如泵) 等必要的附属机构, 这是本领域技术人 员可以理解和常规选择的。
以下以附图为例对本发明的生产方法和生产设备进行更为具体 的说明, 但本发明并不限于此。
根据图 1, 将汽化的硅化合物 1 1和氢气 1 2按规定的比例通入硅原 料气供给装置 5中, 在其中混合均勾并加热至预定温度后作为硅原料 气 7按规定的流量从第一级反应塔 1的下部侧面通入。 将多晶硅块在 硅原料液供给装置 6中加热至 1 5 00 - 2 00 (TC使其熔融成为液体, 然后 作为硅原料液 8按规定的流量从该第一级反应塔 1的顶部 (优选在经 由未图示的液体分布盘等分散均匀之后) 导入所述反应塔 1中。 通过 在所述反应塔 1上附设的加热装置 (未图示) 维持所述反应塔 1内的 温度范围为 1 600 - 1 800 °C , 并且将所述反应塔 1内的气氛压力控制在 0. 5 ~ 8ba r的范围内。
进料的硅原料气与进料的硅原料液在该第一级反应塔 1内逆向 相互接触, 发生还原反应而生成硅单质。 所述硅单质在生成后即融 合入所述熔融单质硅中, 由此形成硅单质产品 9。 将所述硅单质产品 9从该第一级反应塔 1的底部排出后, 使其进入硅单质产品收集器 2, 而反应尾气 1 0则由该第一级反应塔 1的顶部排出。 此时, 硅单质产品 收集器 2可向多晶硅铸锭炉 3和 /或单晶硅拉制炉 4输送所收集的硅单 质产品, 以进行多晶硅铸锭和 /或单晶硅拉制。 在本发明一个变形例 中, 也可以省略所述硅单质产品收集器 2 , 而直接向所述多晶硅铸锭 炉 3和 /或单晶硅拉制炉 4输送所获得的硅单质产品。
接着, 根据该图 1, 所述硅单质产品收集器 2向第二级反应塔 1供 应其中收集的硅单质产品的一部分或全部。 此时, 所述硅单质产品 收集器 2相当于前述的硅原料液供给装置 6, 而所供应的硅单质产品 则相当于前述的硅原料液 8。 在本发明一个变形例中, 也可以与此同 时使用所述第一级反应塔 1的所述硅原料液供给装置 6或者使用另一 个新的硅原料液供给装置 6 (未图示), 以便与所述硅单质产品收集 器 2—起向所述第二级反应塔 1供应所述硅原料液 8。 与之前类似, 进料的硅原料液 8与进料的硅原料气 7在所述第二 级反应塔 1中发生逆向接触反应而生成硅单质产品 9和反应尾气 1 0。 此时, 从所述第二级反应塔 1排出的硅单质产品 9可以与从第一级反 应塔 1排出的硅单质产品 9同样处理或利用, 或者进行其他可能的利 用。
另外, 该第二级反应塔 1所产生的反应尾气 1 0由该第二级反应塔 1的顶部排出, 将其至少一部分经由阀门 1 3通入第一级反应塔 1的硅 原料气供给装置 5中 (或第二级反应塔 1的硅原料气供给装置 5中, 未 图示), 使其成为硅原料气 7的至少一部分, 由此使得该反应尾气 1 0 得以循环利用。 根据本发明的一个变形例, 来自所述第一级反应塔 1 的反应尾气 1 0也可以通过类似的方式加以循环利用, 比如通入第一 级反应塔 1或第二级反应塔 1的硅原料气供给装置 5中。
根据本发明的进一步的变形例, 所述第一级反应塔 1和所述第二 级反应塔 1可以共用一个或多个前述的硅单质产品收集器 2、 一个或 多个前述的多晶硅铸锭炉 3、 一个或多个前述的单晶硅拉制炉 4、 一 个或多个前述的硅原料气供给装置 5和 /或一个或多个前述的硅原料 液供给装皇 6等, 并不限于图 1所示的特定形式。 而且, 所述反应塔 1 也可以根据需要存在更多个, 并不限于图示的两个。 再者, 这些反 应塔 1也可以其他的方式组合在一起 (比如并联), 而不限于图示的 串联组合方式。
根据图 2, 将硅原料气 7按规定的流量从反应塔 1的下部侧面通入 所述反应塔 1中, 同时将硅原料液 8按规定的流量从该反应塔 1的顶部 加入所述反应塔 1中。 维持所述反应塔 1内的温度范围为 1 600 ~ 1 800 °C , 气氛压力范围为 0. 5 ~ 8 ba r , 使进料的硅原料气 7与进料的硅原 料液 8在该反应塔 1内逆向接触而发生还原反应。 所生成的硅单质产 品 9从该反应塔 1的底部流出后, 经由阀门 1 3 , —部分被连续输送入 单晶硅拉制炉 4以进行单晶硅的拉制, 另一部分则作为硅原料液 8, 返回所迷反应塔 1的顶部, 由此作为硅原料液 8的补充。 另外, 反应 尾气 1 0则由该反应塔 1的顶部排出。
在该图 2中, 所述反应塔 1优选是一种填料塔, 其中填充的填料 (比如拉西环或鲍尔环等) 可以增大硅原料液 8与硅原料气 7的接触 面积, 由此提高接触反应效率, 是优选的。
根据图 3, 其中示意性地表示了本发明所涉及的一种优选结构的 填料塔。 其中, 所述填料塔包括在结构上限定了闭合的内部空间的 金属壳体 101、 固定在所述金属壳体 101的所述内部空间中的独立内 衬 102、 在所述金属壳体 101顶部开口的液体导入管 104 (用于导入所 述硅原料液)、 在所述金属壳体 101底部开口的液体导出管 105 (用于 导出所述硅单质产品)、 在所述金属壳体 101下部侧面开口的气体导 入管 107 (用于导入所述硅原料气) 和在所述金属壳体 101顶部开口 的气体导出管 109 (用于导出所述反应尾气), 其中所述独立内衬 102 在结构上限定了闭合的内部空间 (即, 前述的接触反应空间), 所述 独立内衬 102的所述内部空间分为上部区域、 中部区域和下部区域, 在所述中部区域中装填有填料 106, 在所述上部区域中设置有液体分 分布均勾之后, 再进入所述填料 106的区域。 为此, 所述液体分布盘 103处于所述填料 106的上方, 并距离其上表面一定距离处, 这是本 领域技术人员已知的。
另外, 所述独立内衬 102还包括与所述金属壳体 101上的前述各 个开口一对一完全对接的延伸管路, 从而将所述液体导入管 104与所 述上部区域连通、 将所述液体导出管 105与所述下部区域连通、 将所 述气体导入管 107与所述下部区域连通, 并且将所述气体导出管 109 与所述上部区域连通。 显然, 此时所述延伸管路的数目必然与前述 开口的数目完全相同。 换句话说, 所述延伸管路也可视为各导入管 / 导出管在所述金属壳体 101的内部空间中的延伸部分。
如图 3所示, 所述独立内衬 102优选采用多段式管状设计, 各段 之间互相嵌套而组成一个整体式内衬, 但本发明并不限于这种特定 的形式, 还可以是本领域技术人员已知的其他形式。 另外, 在所述 独立内村 102的中部区域具有常规的支架设计, 以方便装填所述填料 106。
图 3中, 在所述独立内衬 102的下部区域具有锥形渐缩形状, 以 方便出料。 另外, 在所述独立内衬 1 02的底部最小处采用卡槽设计, 比如可以将独立内衬 1 02的底部设计为环形卡槽, 以方便与所述液体 导出管 1 05嵌套固定, 这也是本领域技术人员已知的。
为了便于加热所述独立内衬 1 02的所述内部空间, 优选在所述独 立内衬 1 02的外周壁上缠绕电加热线圈 1 08。
根据本发明一个优选的实施方式, 所述金属壳体 1.01的内壁面具 有高反射性镀层或涂层, 以便将该壳体内部辐射的热量最大化地反 射回所述独立内衬 1 02, 从而提高能量利用效率。
为了便于温度控制, 在一个优选的实施方式中, 所述金属壳体 1 01和 /或所述气体导入管 1 07和所述气体导出管 1 09具有冷却夹套。 另外, 所述液体导入管 1 04和所述液体导出管 1 05优选具有双层结构, 其中外层为带冷却夹套的金属管壳, 而内层为限定液体导入或导出 通道的独立内衬。 其中, 在该独立内衬的外壁上可缠绕电加热线圈 以方便进行加热。 优选的是, 该独立内衬是与所述液体导入管 1 04和 所述液体导出管 1 05对接的前述延伸管路的一部分, 从而与该延伸管 路实际上是一个整体 (见图 3 ), 由此简化生产设备的设计和制造。
根据本发明, 可以通过向前述的各个冷却夹套中通入水或导热 油 (优选导热油) 等冷却液体等方式, 来方便地进行冷却。
根据本发明, 所述气体导出管 1 09存在两个 (如图 3所示) 或更 多个, 而所述气体导入管 1 07则存在两个 (如图 3所示) 或更多个, 优选存在三个或四个。
如前文所述, 为了满足本发明前述的一般性要求, 所述的各个 独立内衬 (包括其延伸管路)、 液体分布盘和填料等均优选采用选自 石墨、 氮化硅、 碳化硅及氮化硼中的一种或多种 (复合材质) 材质 构成, 其中优选由氮化硅构成。 本领域技术人员已知的是, 这些材 质都是非常耐高温和耐腐蚀的, 因此优选在本发明中使用。
根据图 4, 其中示意性地表示了本发明所涉及的一种液体分布盘 1 03的上面视图。 其中, 所述液体分布盘 1 03包括位于所述液体分布 盘 1 03上表面的液体流动区域 1 0301 (用于汇集导入的硅原料液)、 贯 穿所述液体分布盘 1 03的液体分布孔 1 0302 (图中显示为 33个孔阵列, 但并不限于此)(用于所述硅原料液的通过和分布)、 贯穿所述液体 分布盘 1 03的气孔 1 0303 (图中显示为 4个, 但并不限于此)(用于所 中显示为 8个, 但并不限于此)。 实际上, 所述液体分布盘 1 03可以直 接适用填料塔领域中常规使用的那些。 而且, 其形状并不限于图 4所 示的圆盘形状, 而是根据所述上部区域的截面形状呈现为任何适宜 的形状。
在图 4中, 所述固定螺孔 1 0304用于设置螺栓, 以将所述液体分 布盘 1 03固定在前述独立内衬 1 02的上部区域。 其中, 如何固定该液 体分布盘 1 03对于本领域技术人员而言是已知的技术。 优选的是, 所 述液体分布盘 1 03在结构和设置上要使得全部导入的硅原料液必须 先经过所述液体分布盘 1 03的分布, 在分布均勾之后再进入所述填料 1 06的区域(与所述填料 1 06接触)。
另外, 如图 4所示, 优选所述液体分布孔 1 0302仅分布 (优选均 匀分布) 于所述液体流动区域 1 0301中, 以便于控制导入的硅原料液 的流动和分布。 而且, 如图 4所示, 所述液体流动区域 1 0301优选为 凹槽设计 (低于所述上表面的凹陷结构) , 从而有利于导入的硅原 料液的汇集, 而不会造成其堵塞或进入所述气孔 1 0303中, 以致影响 所述气孔的通气功能。
另外, 显然的是, 所述液体分布孔 1 0302、 所述气孔 1 0 303和所 述固定螺孔 1 0304在位置上彼此不重叠, 而是相隔适当的距离 (优选 按照一定的排列方式而均勾分布), 这是本领域技术人员已知的。 实施例
以下通过实施例并结合附图对本发明进行进一步的详细说明, 但这些实施例仅仅是例示的目的, 并不旨在对本发明的范围进行任 何限定。 计算方法
硅化合物的转化率 (硅元素的单程收率)按照以下方法计算。 η = 22· — mi) x i00% 其中:
η—一硅元素的单程收率 (%),
m,——所消耗的硅原料液的总质量 ( kg ),
m2一一所生产的多晶硅锭或单晶硅的总质量 ( kg ),
M——硅元素的原子量,
V一一硅原料气的输送流量 (m3/h)。 实施例 1
在该实施例中, 使用图 2所示的生产设备。 具体而言, 所述反应 塔 1的塔主体高度 h为 1000麵, 塔内径 d为 300mm, 填料 (氮化硅质陶 瓷鲍尔环, 直径 l ~ 3cm, 高 3 ~ 5cm) 高度 b为 500mm, 填料下表面距 塔底法兰上表面的高度 c为 200mm。
将曱硅烷(即硅化合物, 温度为 100°C )作为硅原料气 7以 20m3/h 的输送流量在距反应塔 1塔底法兰上表面 150随的高度 a处从反应塔 1 的下部侧面输送入所述反应塔 1中。 将所述反应塔 1内的温度控制在 1600。C左右, 气氛压力控制在 lbar。 同时, 将温度为 1600°C的熔融 单质硅(纯度为 7N)作为硅原料液 8以 125kg/h的输送流量从反应塔 1 的塔顶部中央输送入所述反应塔 1中。
随着接触反应的进行, 将硅单质产品 9从所述反应塔 1的塔底部 中央连续导出, 并将其流量的 16%返回反应塔 1的顶部作为所述硅原 料液 8的补充 (即硅原料液 8' ), 剩余部分则连续输送入单晶硅拉制 炉 4 (TDR- Z80型单晶炉, 最大功率为 130kW, 西安理工晶体科技有限 公司制造) 中, 进行单晶硅的拉制。
连续生产 100小时后停止生产, 共消耗了 100kg硅原料液 8, 并且 共拉制出约 2600kg单晶硅(纯度为 6N)。 结果, 该生产设备(包括所 述单晶硅拉制炉) 的总耗电约为 2.5 X 105kWh (即, 单晶硅的平均电 耗约为 100kWh/kg)。
另外, 通过计算发现, 硅化合物的转化率约为 100%。 实施例 2
除了以下内容之外, 按照与实施例 1完全相同的方式进行。
以三氯氢硅 (即硅化合物) 和氢气的混合气体 (三氯氢硅与氢 气的体积比为 1: 4 ) 作为硅原料气 7, 其温度为 200°C, 输送流量为 75m3/h0
将反应塔 1内的温度控制在 1800°C左右, 气氛压力控制在 lbar。 所述硅原料液 8的温度为 1900°C, 输送流量为 160kg/h。
连续生产 100小时后停止生产, 共消耗了 100kg硅原料液 8, 并且 共拉制出约 1400kg单晶硅 (纯度为 6N)。 结果, 该生产设备(包括所 述单晶硅拉制炉) 的总耗电约为 1.8 X 105kWh (即, 单晶硅的平均电 耗约为 138kWh/kg)。
另外, 通过计算发现, 硅化合物的转化率约为 69%。 实施例 3
除了以下内容之外, 按照与实施例 1完全相同的方式进行。
以气态四氯化硅(即硅化合物) 和氢气的混合气体 (气态四氯化 硅与氢气在 40(TC下的体积比为 1: 4 ) 作为硅原料气 7, 其温度为 400 °C, 输送流量为 75mVh。
将反应塔 1内的温度控制在 1800°C左右, 气氛压力控制在 2bar。 所述硅原料液 8的温度为 1900°C, 输送流量为 180kg/h。
将所述单晶硅拉制炉 4改变为多晶硅铸锭炉( JJL500型多晶硅铸锭 炉, 额定功率为 175kW, 浙江精功科技股份有限公司制造, 未图示), 以制造多晶硅铸锭。
连续生产 100小时后停止生产, 共消耗了 150kg硅原料液 8, 并且共 生产出约 1250kg多晶硅锭(纯度为 6N)。 结果, 该生产设备(包括所述 多晶硅铸锭炉) 的总耗电约为 1.45 X 105kWh (即, 多晶硅锭的平均电 耗约为 132kWh/kg )。
另外, 通过计算发现, 硅化合物的转化率约为 59%。 以上虽然已结合实施例和附图对本发明的具体实施方式进行了 详细的说明, 但是需要指出的是, 本发明的保护范围并不受这些具 体实施方式的限制, 而是由附录的权利要求书来确定。 本领域技术 人员可在不脱离本发明的技术思想和主旨的范围内对这些实施方式 进行适当的变更, 而这些变更后的实施方式显然也包括在本发明的 保护范围之内。

Claims

权 利 要 求
1、 一种硅单质的生产方法, 其特征在于, 包括使汽化的硅化合 物或者汽化的硅化合物与氢气的混合气体作为硅原料气与作为硅原 料液的熔融单质硅接触, 而将所述硅化合物还原成硅单质的接触步 骤, 其中所述硅单质在生成后即融合入所述熔融单质硅中。
1、 如权利要求 1所述的生产方法, 其特征在于, 所述硅原料液 的温度为 1500 ~ 200 (TC, 优选 1600 ~ 1800 Ό , 并且所述硅原料气的 温度为 60 ~ 600 °C, 优选 150 ~ 300 °C。
3、 如权利要求 1所述的生产方法, 其特征在于, 所述硅化合物 选自以如下通式 (1 )表示的化合物的一种或多种,
Figure imgf000030_0001
其中, 各个 R相同或不同, 各自独立地代表氢、 氟、 氯、 溴或碘, 优选各自独立地代表氢、 氯或溴, 进一步优选均代表氢, n为选自 1 ~ 3的整数, 优选 n=l ,
或者, 所述硅化合物为单晶硅或多晶硅制造工艺的气态硅副产 物。
4、 如权利要求 1所述的生产方法, 其特征在于, 在进行所述接 触步骤时, 以硅原子为计, 所述硅原料气与所述硅原料液的摩尔比 例为 3: 1 - 1 0: 1 , 优选 4: 1 ~ 6: 1。
5、 如权利要求 1所述的生产方法, 其特征在于, 所述接触步骤 在温度 1500 ~ 2000 °C, 并且以绝对压力计, 气氛压力为 0. 5 ~ 8bar的 条件下进行, 其中优选所述温度为 1600 ~ 1800 °C, 并且优选以绝对 压力计, 所述气氛压力为 1 ~ 2ba r。
6、 如权利要求 1所述的生产方法, 其特征在于, 还包括将融合 铸锭炉和 /或单晶硅拉制5炉, 以制造多晶 锭和 I或单晶^的步骤。
7、 一种硅单质的生产设备, 其特征在于, 包括接触反应器和用 于供给熔融单质硅的硅原料液供给装置, 其中所述接触反应器包括 接触反应器主体、 连通所述接触反应器主体与所述硅原料液供给装 置以便将所述熔融单质硅作为硅原料液导入所述接触反应器主体中 的硅原料液导入管和用于将汽化的硅化合物或者汽化的硅化合物与 氢气的混合气体作为硅原料气导入所述接触反应器主体中的硅原料 气导入管, 其中所述接触反应器主体在结构上适合使所述导入的硅 原料液与所述导入的硅原料气在其内部空间中接触而将所述硅化合 物还原成硅单质, 其中所述硅单质在生成后即融合入所述熔融单质 硅中, 形成硅单质产品, 由此所述接触反应器还任选包括用于将所 述硅单质产品导出所述接触反应器主体的硅单质产品导出管。
8、 如权利要求 7所述的生产设备, 其特征在于, 所述接触反应 器主体为反应塔, 优选板式塔或填料塔。
9、 如权利要求 7所述的生产设备, 其特征在于, 所述硅单质产 品导出管直接与多晶硅铸锭炉和 /或单晶硅拉制炉连通, 和 /或先与 硅单质产品收集器连通, 然后再经由位于所述硅单质产品收集器上 的中继导出管与多晶硅铸锭炉和 /或单晶硅拉制炉连通, 由此将至少 一部分所述硅单质产品导入所述多晶硅铸锭炉和 /或单晶硅拉制炉, 以进行多晶硅铸锭和 /或单晶硅拉制。 '
1 0、 如权利要求 7所述的生产设备, 其特征在于, 所述接触反应 器主体、 所述硅原料液供给装置、 所述硅原料液导入管、 所述硅单 质产品导出管、 所迷多晶硅铸锭炉、 所述单晶硅拉制炉、 所述硅单 质产品收集器和 /或所述中继导出管的内壁具有由石墨、 碳化硅、 氮 化硅、 氮化硼或其任意复合材料构成的内衬。
1 1、 如权利要求 7所述的生产设备, 其特征在于, 存在多个所述 接触反应器, 其中至少两个接触反应器以上下级串联的方式操作, 使得上一级接触反应器的硅单质产品导出管与下一级接触反应器的 硅原料液导入管直接连通, 或者使得上一级接触反应器的硅单质产 品导出管先与硅单质产品收集器连通, 然后再经由位于所述硅单质 产品收集器上的中继导出管与下一级接触反应器的硅原料液导入管 直接连通, 由此将至少一部分来自所述上一级接触反应器的硅单质 产品作为硅原料液导入所述下一级接触反应器中。 12、 如权利要求 7所述的生产设备, 其特征在于, 所述生产设备 料气供给装置, 并且所迷接触反应器还包括用于将所述接触步骤的 气体产物导出所述接触反应器主体的气体产物导出管。
13、 如权利要求 11所述的生产设备, 其特征在于, 所述气体产 物导出管直接与所述硅原料气供给装置连通, 和 /或直接与所述硅原 料气导入管连通, 由此将至少一部分所述气体产物作为所述硅原料 气的至少一部分导入所述接触反应器主体中。
14、 如权利要求 7所述的生产设备, 其特征在于, 所述硅单质产 品导出管直接与所述硅原料液供给装置连通, 和 /或直接与所述硅原 料液导入管连通, 由此将至少一部分所述硅单质产品作为所述硅原 料液的至少一部分导入所述接触反应器主体中。
15、 如权利要求 8所述的生产设备, 其特征在于, 所述填料塔包 括在结构上限定了闭合的内部空间的金属壳体 ( 101 )、 固定在所述 金属壳体 ( 101 ) 的所述内部空间中的独立内衬 ( 102)、 在所述金属 壳体 ( 101 ) 顶部开口的液体导入管 ( 104)、 在所述金属壳体 (101 ) 底部开口的液体导出管 ( 105 )、 在所述金属壳体 ( 101 ) 下部侧面开 口的气体导入管 ( 107 ) 和在所述金属壳体 ( 101 ) 顶部开口的气体 导出管 ( 109 ), 其中所述独立内衬 ( 102 ) 在结构上限定了闭合的内 部空间, 所述独立内衬 ( 102 ) 的所述内部空间分为上部区域、 中部 区域和下部区域, 在所述中部区域中装填有填料 ( 106 ), 在所述上 部区域中设置有液体分布盘 (103), 所述独立内衬 ( 102 ) 还包括与 所述金属壳体( 101 )上的前述各个开口一对一完全对接的延伸管路, 从而将所迷液体导入管 ( 104 ) 与所述上部区域连通、 将所述液体导 出管 ( 105 ) 与所述下部区域连通、 将所述气体导入管 ( 107 ) 与所 迷下部区域连通, 并且将所述气体导出管 ( 109 ) 与所述上部区域连 通。
PCT/CN2010/000493 2009-12-31 2010-04-14 硅单质的生产方法及生产设备 WO2011079485A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200920282779.5 2009-12-31
CN2009202827795U CN201665535U (zh) 2009-12-31 2009-12-31 一种用于连续生产液体硅的填料塔
CN201010126121.2 2010-03-12
CN 201010126121 CN101837977B (zh) 2010-03-12 2010-03-12 硅单质的生产方法及生产设备

Publications (1)

Publication Number Publication Date
WO2011079485A1 true WO2011079485A1 (zh) 2011-07-07

Family

ID=44226159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000493 WO2011079485A1 (zh) 2009-12-31 2010-04-14 硅单质的生产方法及生产设备

Country Status (1)

Country Link
WO (1) WO2011079485A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009456A2 (en) * 2004-07-16 2006-01-26 Institutt For Energiteknikk Method and reactor for continuous production of semiconductor grade silicon
WO2008145236A1 (en) * 2007-05-25 2008-12-04 Umicore Economical process for the production of si by reduction of sicl4 with liquid zn
CN101318654A (zh) * 2008-07-04 2008-12-10 清华大学 一种流化床制备高纯度多晶硅颗粒的方法及流化床反应器
EP2019084A2 (de) * 2007-07-27 2009-01-28 Joint Solar Silicon GmbH & Co. KG Verfahren und Reaktor zur Herstellung von Silizium
CN101588992A (zh) * 2006-09-29 2009-11-25 信越化学工业株式会社 硅的精炼方法、硅及太阳能电池
US20090289390A1 (en) * 2008-05-23 2009-11-26 Rec Silicon, Inc. Direct silicon or reactive metal casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009456A2 (en) * 2004-07-16 2006-01-26 Institutt For Energiteknikk Method and reactor for continuous production of semiconductor grade silicon
CN101588992A (zh) * 2006-09-29 2009-11-25 信越化学工业株式会社 硅的精炼方法、硅及太阳能电池
WO2008145236A1 (en) * 2007-05-25 2008-12-04 Umicore Economical process for the production of si by reduction of sicl4 with liquid zn
EP2019084A2 (de) * 2007-07-27 2009-01-28 Joint Solar Silicon GmbH & Co. KG Verfahren und Reaktor zur Herstellung von Silizium
US20090289390A1 (en) * 2008-05-23 2009-11-26 Rec Silicon, Inc. Direct silicon or reactive metal casting
CN101318654A (zh) * 2008-07-04 2008-12-10 清华大学 一种流化床制备高纯度多晶硅颗粒的方法及流化床反应器

Similar Documents

Publication Publication Date Title
US6827786B2 (en) Machine for production of granular silicon
CN101318654B (zh) 一种流化床制备高纯度多晶硅颗粒的方法及流化床反应器
CN100369811C (zh) 一种多晶硅生产过程中的副产物的综合利用方法
CN101696013B (zh) 等离子体辅助流化床工艺生产多晶硅的方法及装置
CN102205967A (zh) 一种节能多晶硅还原炉及多晶硅的制造方法
TW201509802A (zh) 流化床反應器及用其製備高純度粒狀多晶矽的方法
KR20070119328A (ko) 유동층 반응기를 이용한 다결정 실리콘의 지속 가능한제조방법
KR20120110109A (ko) 주변 실리콘 테트라염화물을 이용하여 반응기 벽 상의 실리콘의 퇴적을 감소시키는 방법
CN102502646B (zh) 快速循环流化床化学气相沉积制备多晶硅的设备及方法
CN104803386B (zh) 用于制备高纯度多晶硅颗粒的流化床提升管反应器及方法
CN102933493A (zh) 用于制造高纯硅的等离子体沉积装置和方法
WO2011123998A1 (zh) 用于生产多晶硅的反应器及系统
CN201598181U (zh) 等离子体辅助流化床工艺生产多晶硅的装置
US10322938B2 (en) Poly-silicon manufacturing apparatus and method using high-efficiency hybrid horizontal reactor
WO2011079485A1 (zh) 硅单质的生产方法及生产设备
CN102060298B (zh) 一种多晶硅生产装置及多晶硅生产方法
CN101928001A (zh) 一种制备粒状多晶硅的新型流化床反应装置
CN206985723U (zh) 一种生产硅的装置
CN103449442A (zh) 一种流化床多晶硅颗粒的制备系统及利用该系统制备多晶硅的工艺
KR20180090522A (ko) 폴리실리콘의 제조 방법
WO2011009390A1 (zh) 硅气转化的反应器和方法
CN101837977B (zh) 硅单质的生产方法及生产设备
US10196273B2 (en) Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same
CN201665537U (zh) 用于连续生产液体硅的装置
JPH02279513A (ja) 高純度多結晶シリコンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840275

Country of ref document: EP

Kind code of ref document: A1