WO2011077774A1 - モータロータ及びモータロータ製造方法 - Google Patents

モータロータ及びモータロータ製造方法 Download PDF

Info

Publication number
WO2011077774A1
WO2011077774A1 PCT/JP2010/060980 JP2010060980W WO2011077774A1 WO 2011077774 A1 WO2011077774 A1 WO 2011077774A1 JP 2010060980 W JP2010060980 W JP 2010060980W WO 2011077774 A1 WO2011077774 A1 WO 2011077774A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
resolver
resolver rotor
caulking
Prior art date
Application number
PCT/JP2010/060980
Other languages
English (en)
French (fr)
Inventor
英明 安田
康之 佐武
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/518,297 priority Critical patent/US8963387B2/en
Priority to EP10839011.3A priority patent/EP2518870B1/en
Priority to KR1020127016210A priority patent/KR101353206B1/ko
Priority to CN201080059426.4A priority patent/CN102687376B/zh
Publication of WO2011077774A1 publication Critical patent/WO2011077774A1/ja
Priority to US14/571,926 priority patent/US9780630B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/028Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots for fastening to casing or support, respectively to shaft or hub
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to a technique for fixing a resolver rotor provided to a motor rotor to a shaft used for the motor rotor.
  • a motor used for power uses a resolver as a rotation sensor for detecting a rotation position of a rotation shaft of the motor in order to perform accurate position control.
  • This resolver includes a resolver rotor that is fixed to a shaft of a rotor that constitutes a motor, and a resolver stator that is attached to a case that indicates a rotation axis. In order to secure the detection accuracy of the resolver, it is necessary to attach importance to the mounting accuracy and the like, and various studies have been made.
  • Patent Document 1 discloses a technique regarding a resolver rotor. By providing a stepped portion on the shaft, inserting the rotor, bush, and rotary transformer in an overlapping manner, caulking the shaft so as to cover one end of the rotary transformer, and crushing the end of the shaft, the above-described rotor, bush, and A structure for holding a rotary transformer on a shaft is disclosed. By simplifying the structure of the shaft, rotor, bush, and rotary transformer, the assembly is improved and the cost is reduced.
  • Patent Document 2 discloses a technique regarding a rotor of a magnet generator.
  • a boss fixed to the rotation drive shaft and a iron bar arranged concentrically on the outer peripheral part of the boss and arranging a permanent magnet on the inner peripheral surface.
  • the outer peripheral portion of the boss and the inner peripheral portion of the iron rod are in contact with each other, and the iron rod hits the iron rod receiving portion provided on one side of the outer peripheral portion.
  • the boss and the iron rod are fixed in the axial direction by the crimping portion provided on the other side of the outer peripheral portion crimping the iron rod.
  • the joint between the outer peripheral portion and the inner peripheral portion is provided at a position where the tensile stress in the radial direction due to the axial load is minimum.
  • Patent Document 3 discloses a technique related to a resolver rotor fixing structure.
  • a plurality of notches are provided in the inner peripheral hole of the resolver rotor, and are arranged at predetermined positions with respect to the shaft.
  • the resin part formed by injection molding for the purpose of pressing the rotor core on the shaft the resin flows and fills the notch part formed in the inner peripheral hole part of the resolver rotor.
  • a resin layer is formed on both side surfaces in the rotational axis direction of the resolver rotor, and the resolver rotor is held integrally with the shaft.
  • the key formed in the inner peripheral hole of the resolver rotor enters the key groove formed in the shaft, thereby preventing the rotational direction of the resolver rotor from being displaced relative to the shaft.
  • Patent Document 4 discloses a technique related to a rotation angle sensor fixing structure.
  • a stepped portion is provided in the motor rotor, and the resolver rotor is lightly press-fitted into the portion, and an elastic ring and a pressing ring are inserted from the stepped portion and pressed to fix the resolver rotor to the motor rotor.
  • the resolver rotor is held on the motor rotor by the frictional force of the elastic ring and the holding ring.
  • JP-A-8-279424 Japanese Patent Laid-Open No. 10-0666287 JP 2006-158005 A JP 2007-064870 A
  • Patent Literature 1 and Patent Literature 2 are methods for holding a resolver rotor by caulking a shaft or a boss.
  • the shaft or boss is a metal part, and a force that pushes and expands the inner diameter of the resolver rotor is applied by caulking.
  • the resolver rotor if the resolver rotor is deformed beyond a certain value, the resolver detects the number of rotations using the rotation phase, which may cause an electrical error in the output signal and affect the detection accuracy of the resolver. There is.
  • the notch portion has a structure that penetrates the resin, and thus an electric error may occur depending on the size of the notch portion. Further, since the notch portion is required on the inner diameter side, there arises a problem that the outer shape of the resolver rotor has to be enlarged.
  • Patent Document 4 it is considered that the problem of the accuracy of the resolver that Patent Documents 1 to 3 have can be solved.
  • the resolver rotor when attaching the resolver rotor to the motor rotor, Requires a retaining ring. That is, the number of component parts of the motor rotor increases. If the number of parts increases, there will be a problem that the number of processing steps increases and hinders cost reduction.
  • an object of the present invention is to provide a motor rotor and a motor rotor manufacturing method capable of caulking a resolver rotor that is low in cost and hardly affects the detection accuracy of the resolver in order to solve such problems.
  • a motor rotor has the following characteristics. (1) In a motor rotor including a resolver rotor that detects a rotational position and a shaft on which the resolver rotor is crimped, a first step portion that is deformed by being brought into contact with the punch during the crimping process. A second stepped portion with which an end surface of the resolver rotor contacts, and a recess formed in a surface in the vicinity of the first stepped portion and in contact with an inner peripheral hole portion of the resolver rotor, wherein the resolver rotor is connected to the shaft.
  • the first step portion of the shaft is crushed by the punch and folded in the recess, and a crimping projection that deforms and protrudes from the first step portion is formed to form an end surface of the resolver rotor. It is preferable to press.
  • the concave portion of the shaft includes a first concave portion and a second concave portion formed so as to overlap the first concave portion, and the second concave portion is the first concave portion. It is preferable that the angle formed between the outer peripheral surface of the shaft and the inner surface of the second recess is smaller than that of the first recess.
  • the resolver rotor is formed by stacking a plurality of steel plates, and the steel plate positioned on an end surface of the resolver rotor with which the caulking convex portion abuts. It is preferable to provide a long hole at a position corresponding to the caulking convex portion.
  • the caulking convex portion protrudes at four positions on a short-diameter side of the resolver rotor formed in an approximately elliptical shape. It is preferable to be formed on the shaft.
  • a motor rotor manufacturing method has the following characteristics. (5)
  • a resolver rotor is fitted to an outer shape of a shaft, and a punch is pressed against the shaft to perform a caulking process, the resolver rotor is inserted into the shaft, and a second step portion formed on the shaft
  • One end surface of the resolver rotor is brought into contact with the first stepped portion formed on the shaft, and the pressure is applied to pressurize the inner peripheral hole portion of the resolver rotor.
  • a caulking convex portion that is bent in a concave portion formed on an outer peripheral surface and is deformed and protrudes from the first stepped portion is in contact with the other end surface of the resolver rotor and is caulked.
  • the aspect of the invention described in the above (1) is a motor rotor including a resolver rotor for detecting a rotational position and a shaft on which the resolver rotor is caulked, and a punch is brought into contact with the shaft during caulking.
  • the first step portion of the shaft is crushed by the punch and broken in the concave portion, and a crimping convex portion that deforms and projects from the first step portion is formed to press the end face of the resolver rotor.
  • the caulking convex portion formed by the punch is formed so as to be bent from the middle of the concave portion, and as a result, the caulking convex portion is pressed against the resolver rotor in a state where the end face of the resolver rotor is pressed from the axial direction of the shaft. This is because it works.
  • the aspect of the invention described in the above (2) is the motor rotor described in (1), wherein the recess of the shaft includes a first recess and a second recess formed so as to overlap the first recess, The second recess is formed closer to the first step than the first recess, and the angle formed by the outer peripheral surface of the shaft and the inner surface of the second recess is smaller than that of the first recess.
  • the smaller the angle formed by the recess and the outer surface of the shaft the easier it is to break in the middle of the recess when the first step portion is pressed with a punch.
  • the caulking convex portion easily acts on the end face of the resolver rotor from the axial direction of the shaft, and the influence on the detection accuracy of the resolver is reduced.
  • the resolver rotor is formed by laminating a plurality of steel plates, and the caulking convex portion is in contact with the motor rotor according to (3).
  • a long hole is provided at a position corresponding to the caulking convex portion in the steel plate located on the end face of the rotor.
  • the aspect of the invention described in the above (4) is the motor rotor according to any one of (1) to (3), in which the caulking convex portion is a short of the resolver rotor formed in a substantially elliptical shape. It is formed on the shaft so as to protrude at four places on the radial side.
  • the resolver rotor used in the resolver is an elliptical resolver rotor
  • the ratio of the longer diameter side that is, the side closer to the resolver stator, contributes to the detection accuracy. For this reason, it is possible to contribute to the detection accuracy of the resolver by forming the caulking convex portions so as to protrude at three places on the side on the short diameter side that is less likely to contribute to the detection accuracy.
  • the aspect of the invention described in the above (5) is a motor rotor manufacturing method in which a resolver rotor is fitted to the outer shape of a shaft, and a punch is pressed against the shaft to perform a caulking process. One end face of the resolver rotor is brought into contact with the second stepped portion, the punch is brought into contact with the first stepped portion formed on the shaft, and pressure is applied, whereby the inner peripheral hole portion of the resolver rotor is brought into contact.
  • the resolver rotor is crimped and joined to the shaft by the crimping convex portion that is bent in the concave portion formed on the outer peripheral surface and deforms and protrudes from the first stepped portion contacts the other end surface of the resolver rotor and is crimped. Is.
  • FIG. 1 shows a cross-sectional view when caulking the resolver rotor RR to the rotor shaft SH of the first embodiment.
  • FIG. 2 shows a partially enlarged view of the rotor shaft SH. It is an enlarged view of part A in FIG.
  • FIG. 3 shows a cross-sectional view of the rotor shaft SH and the jig. It is arrow BB of FIG.
  • the caulking punch JP is indicated by an imaginary line.
  • FIG. 4 shows an enlarged view of the caulking punch JP portion.
  • FIG. 4 is an enlarged view of a portion C in FIG. 3, but FIG. 3 and FIG. 4 are slightly different for convenience of explanation.
  • FIG. 1 shows a cross-sectional view when caulking the resolver rotor RR to the rotor shaft SH of the first embodiment.
  • FIG. 2 shows a partially enlarged view of the rotor shaft SH. It is an enlarged view of part A in FIG.
  • FIG. 3 shows a cross-section
  • FIG. 5 shows an enlarged cross-sectional view of the punch portion.
  • FIG. 5 is a DD view of FIG. 4.
  • the motor rotor MR is a structural member used for a rotating electric machine (not shown) together with a motor stator (not shown), and includes a resolver (not shown) for detecting the number of rotations of the rotating electric machine. Therefore, a resolver rotor RR is provided at the end of the motor rotor MR.
  • a rotor core RC is sandwiched between a first end plate EPD and a second end plate EPU and held by a caulking plate KP on a rotor shaft SH used for the motor rotor MR.
  • the rotor core RC is formed by laminating a plurality of laminated steel plates.
  • the rotor core RC is formed with an insertion hole RCH into which a permanent magnet (not shown) is inserted and a through hole RCS.
  • the rotor shaft SH is formed with a first stepped portion SST, a notch groove SB1, and a second stepped portion SHD.
  • the first stepped portion SST and the notched groove SB1 are formed by the resolver rotor RR.
  • the second stepped portion SHD shown in FIG. 1 is formed below the first stepped portion SST and the notch groove SB1, that is, the side where the rotor core RC is provided in order to hold the resolver rotor RR.
  • the stepped part is also formed in order to hold
  • the notch groove SB1 is a groove that is cut at an angle of 55 degrees from the outer peripheral surface (rotor holding outer peripheral portion SRR) of the rotor shaft SH, and this groove shape depends on the shape of the cutting bit used when forming the rotor shaft SH. Is. Therefore, the notch groove SB1 can be formed when the rotor shaft SH is formed.
  • the resolver rotor RR is caulked at one end of the rotor shaft SH.
  • the resolver rotor RR is paired with a resolver stator (not shown) and exhibits a function as a resolver.
  • the resolver rotor RR attached to the rotor shaft SH is formed by laminating a plurality of electromagnetic steel plates.
  • the rotor shaft SH When the resolver rotor RR is attached to the rotor shaft SH by caulking, the rotor shaft SH is disposed on the caulking base JD, and a part of the rotor shaft SH is crushed by the caulking punch JP to perform caulking.
  • the caulking punch JP is connected to a thrust generator such as a hydraulic press (not shown), and has a function of moving up and down vertically in the axial direction of the caulking base JD.
  • a thrust generator such as a hydraulic press (not shown)
  • four punch convex portions JPK are formed on the crimping punch JP in order to crimp the first stepped portion SST of the rotor shaft SH. Therefore, when caulking the first stepped portion SST with the caulking punch JP, only the portion of the punch convex portion JPK actually contacts the first stepped portion SST.
  • the caulking punch JP is caulked at four locations on the outer periphery of the rotor shaft SH.
  • the first stepped portion SST formed on the rotor shaft SH is crushed by being pressed by the caulking punch JP (punch convex portion JPK) as shown in FIG.
  • the notch groove SB1 is formed in the vicinity of the first stepped portion SST on the outer peripheral surface of the rotor shaft SH, the first stepped portion SST is bent in the middle of the notched groove SB1 in FIG. It deforms in the state shown, and comes into contact with the resolver rotor RR.
  • the caulking punch JP punch convex portion JPK
  • the first stepped portion SST of the rotor shaft SH is deformed to form the caulking convex portion SSD.
  • the caulking convex portion SSD abuts so as to cover a part of the end face of the resolver rotor RR, and the caulking convex portion SSD presses the resolver rotor RR as shown in FIG.
  • the metal flow MF occurs in the resolver rotor RR in a situation as shown in FIG.
  • the resolver rotor RR is sandwiched between the second stepped portion SHD and the caulking convex portion SSD and is held on the rotor shaft SH.
  • the motor rotor MR of the first embodiment has the above-described configuration, the following operations and effects are achieved.
  • the motor rotor MR according to the first embodiment includes a resolver rotor RR that detects a rotational position and a rotor shaft SH on which the resolver rotor RR is swaged.
  • the rotor shaft SH includes a rivet punch at the time of caulking. Formed on the surface where the first stepped portion SST deformed upon contact with the JP, the second stepped portion SHD with which the end surface of the resolver rotor RR contacts, and the inner peripheral hole portion of the resolver rotor RR in the vicinity of the first stepped portion SST.
  • the resolver rotor RR When the resolver rotor RR is caulked with the rotor shaft SH, the first step portion SST of the rotor shaft SH is crushed by the caulking punch JP and is broken in the notch groove SB1, and the first step portion A crimping protrusion SSD that deforms and protrudes from the SST is formed to press the end face of the resolver rotor RR.
  • FIG. 12 is a cross-sectional view showing how the resolver rotor RR is fixed to the rotor shaft SH by a conventional caulking method.
  • the rotor shaft SH is deformed when the punch convex portion JPK of the caulking punch JP abuts on the first stepped portion SST to form the caulking convex portion SSD.
  • a metal flow MF in the direction of the arrow as shown in FIG. 12 is generated inside the resolver rotor RR, and is deformed in the radial direction of the resolver rotor RR. That is, the inner diameter RRB of the resolver rotor RR is pushed outward in the radial direction. If such deformation occurs above a certain value, an electrical error may occur in the resolver output signal.
  • the rotor shaft SH of the motor rotor MR of the first embodiment is provided with a notch groove SB1, and the metal flow MF is generated mainly in the axial direction of the rotor shaft SH as shown in FIG. Further, the metal flow MF in the radial direction of the resolver rotor RR is reduced. For this reason, the harmful effect shown in the example of FIG. 12 is less likely to occur. Therefore, it becomes difficult to generate a force that expands in the radial direction from the inner diameter side of the resolver rotor RR, and it is possible to minimize the influence on the detection accuracy of the resolver.
  • the motor rotor MR avoids the problems that occur when caulking, as described above, by forming the notch groove SB1 in the rotor shaft SH.
  • This notch groove SB1 is formed by using a processing tool that is normally used by a processing machine used to form the rotor shaft SH, and the angle formed by the surfaces of the rotor shaft SH and the notch groove SB1 is 55 degrees. ing.
  • the cutout groove SB1 can be formed without exchanging the machining tool, and the machining time of the cutout groove SB1 is hardly required, so that the caulking without cost is required. It becomes possible to solve the processing problem.
  • FIG. 6 shows a cross-sectional view of the rotor shaft SH of the second embodiment. This corresponds to FIG.
  • an additional notch groove SB2 is formed following the notch groove SB1.
  • the additional notch groove SB2 is formed in the rotor shaft SH in such a shape that the angle formed by the rotor shaft SH and the additional notch groove SB2 is 90 degrees, and is processed using a tool called a so-called grooving tool. Has been. Therefore, after first forming the notch groove SB1 in the rotor shaft SH, it is necessary to additionally process the additional notch groove SB2 using a grooving tool or the like.
  • FIG. 7 shows a cross-sectional view of the rotor shaft SH and the jig.
  • FIG. 8 shows an enlarged view of the caulking punch JP.
  • FIG. 8 is an enlarged view of an E part shown in FIG. 7.
  • an oval-shaped relief groove RRH is formed in a portion corresponding to the outer periphery of the portion to be caulked with the rotor shaft SH.
  • the escape groove RRH is provided in the first resolver rotor RR formed of laminated steel plates.
  • two relief grooves RRH are provided between two dowel caulking RRDs among the dowel caulking RRD portions provided at four locations of the resolver rotor RR. This is because the detection accuracy of a resolver (not shown) is on the short side of the resolver rotor RR formed in an elliptical shape, and the long side hardly contributes to detection accuracy.
  • the width X1 in the long side direction of the relief groove RRH formed in the ellipse is set slightly narrower than the width X2 of the caulking convex portion SSD formed in the caulking punch JP, and the width in the short side direction is set to about several mm.
  • the width in the short side direction can be secured more than the protruding amount of the deforming protruding portion RRM shown in FIG.
  • the shape of the relief groove RRH is not necessarily an oval shape as shown in FIGS.
  • the oval shape is due to the processing using a cutting jig, but it is possible to adopt another shape by using a method such as punching with a press. This is because it is only necessary to cover the width in which the caulking convex portion SSD is formed.
  • the motor rotor MR of the second embodiment includes an additional notch groove SB2 formed so that the recess of the rotor shaft SH overlaps the notch groove SB1 and the notch groove SB1, and the additional notch groove SB2 is larger than the notch groove SB1.
  • the angle formed between the outer circumferential surface of the rotor shaft SH and the inner surface of the additional cutout groove SB2 is formed smaller than that of the cutout groove SB1.
  • FIG. 9 shows a cross-sectional view of the rotor shaft SH when pressurized by the caulking punch JP.
  • the angle formed by the surface of the additional notch groove SB2 with respect to the outer peripheral surface of the first step portion SST portion of the rotor shaft SH is 90 degrees, and the outer periphery of the surface of the notch groove SB1 and the first step portion SST portion of the rotor shaft SH.
  • the angle is smaller than the angle of 125 degrees formed by the surface. (Indicated as 55 degrees in FIG.
  • FIG. 10 shows a cross-sectional view of the rotor shaft SH and the resolver rotor RR when pressed by the caulking punch JP. Further, by providing the resolver rotor RR with the relief groove RRH, even when the resolver rotor RR is deformed, the deformed protrusion RRM shown in FIG. 10 can be absorbed. For this reason, it becomes possible to suppress the change of the diameter with respect to the resolver rotor RR. Note that the escape groove RRH is formed on the first sheet of the resolver rotor RR, and thus hardly contributes to a decrease in detection accuracy of a resolver (not shown).
  • FIG. 11 shows a graph relating to suppression of external shape change during caulking of the resolver rotor.
  • the vertical axis shows the minor axis change amount of the resolver rotor RR
  • the horizontal axis shows the allowable overstroke amount until the resolver rotor RR is deformed to the outer diameter after the caulking convex portion SSD contacts the resolver rotor RR.
  • the evaluation is made only for the cutout groove SB1 shown in the first embodiment and for the case where both the additional cutout groove SB2 and the cutout groove SB1 shown in the second embodiment are formed. As shown in FIG.
  • the invention has been described according to the present embodiment, the invention is not limited to the embodiment, and by appropriately changing a part of the configuration without departing from the spirit of the invention. It can also be implemented.
  • a hollow pipe is used as the rotor shaft SH, a solid shaft may be used, and the second end plate EPU may be directly caulked with the rotor shaft SH for the fixing method of the rotor core RC.
  • the shape of the caulking punch JP or the caulking base JD is not particularly limited to this. Moreover, it does not prevent that the material etc. which are illustrated also replace with the thing which has an equivalent function.
  • the shapes of the cutout groove SB1 and the additional cutout groove SB2 need not be limited to the shapes shown in the first embodiment and the second embodiment. The same applies to the angles of the cutout groove SB1 and the additional cutout groove SB2. For example, there is no problem that the angle slightly increases or decreases depending on the shape of the tip of the cutting tool, and only the additional notch groove SB2 is provided, not the shape continuous with the notch groove SB1 in terms of the shape of the additional notch groove SB2. Even if it is a simple shape, it can exhibit the same function. The reason why the notch groove SB1 is provided when the additional notch groove SB2 is machined is that it is convenient for machining.
  • the cutout groove SB1 or the additional cutout groove SB2 of the invention exhibits its function even if it is configured to crimp the entire circumference of the rotor shaft SH if necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

低コストで検出精度に影響の出にくいレゾルバロータのカシメ加工を可能としたモータロータ及びモータロータ製造方法を提供するため、レゾルバロータ(RR)と、レゾルバロータ(RR)がカシメ加工されるロータシャフト(SH)と、を備えるモータロータ(MR)において、ロータシャフト(SH)にはカシメパンチ(JP)が当接して変形する第1段差部(SST)とレゾルバロータ(RR)の端面が当接する第2段差部(SHD)と第1段差部(SST)の近傍かつレゾルバロータ(RR)の内周穴部が接する面に形成される切欠溝(SB1)とを備え、カシメ加工の際にロータシャフト(SH)の第1段差部(SST)が切欠溝(SB1)内で折れカシメ凸部(SSD)を形成してレゾルバロータ(RR)の端面を押圧する。

Description

モータロータ及びモータロータ製造方法
 本発明は、モータロータに設けられるレゾルバロータをモータロータに用いるシャフトに固定する技術に関するものである。
 近年、ハイブリッドカーや電気自動車など、動力にモータを用いる車が増加している。動力に用いられるモータには、正確な位置制御を行うためにモータの回転軸の回転位置を検出する回転センサとしてレゾルバを用いるケースが多い。このレゾルバは、モータを構成するロータのシャフトに固定されるレゾルバロータと、回転軸を指示するケース側に取り付けられるレゾルバステータとで構成される。
 レゾルバの検出精度を確保するためには、これらの取り付け精度等を重視する必要があり、様々な検討がなされている。
 特許文献1には、レゾルバのロータについての技術が開示されている。
 軸に段付き部を設け、ロータ、ブッシュ、及びロータリートランスを重ねて挿入し、ロータリートランスの一端を覆うように軸をカシメ加工して軸の端部を潰すことで、前述のロータ、ブッシュ及びロータリートランスを軸に保持させる構造が開示されている。
 軸やロータ、ブッシュ、及びロータリートランスの構造を単純化することで、組み立て性の向上とコストダウンを図っている。
 特許文献2には、磁石発電機の回転子についての技術が開示されている。
 磁石発電機の回転子におけるボスと鉄椀の接合において、回転駆動軸に固定されるボスと、ボスの外周部に同芯的に配置され内周面に永久磁石を配置する鉄椀と、を固定する際に、ボスの外周部と鉄椀の内周部とが接し、かつ外周部の一方側に設けられた鉄椀受け部に鉄椀が当たる。そして、さらに外周部の他方側に設けられたカシメ部が鉄椀をカシメつけることによって、ボスと鉄椀とが軸方向に固定される。この外周部と内周部との接合は、軸方向荷重による半径方向の引っ張り応力が最小の位置に設けられている。
 特許文献3には、レゾルバロータの固定構造に関する技術が開示されている。
 レゾルバロータの内周穴部に複数の切り欠き部を設け、シャフトに対して所定の位置に配置する。そして、シャフトにロータコアを押さえる目的で射出成形によって形成される樹脂部を形成することで、レゾルバロータの内周穴部に形成された切り欠き部にも樹脂が流動して充填される。その結果、レゾルバロータの回転軸方向の両側面に樹脂層を形成して、レゾルバロータがシャフトに対し一体的に保持される。また、シャフトに形成されたキー溝にレゾルバロータの内周穴に形成されたキーが入り込むことで、レゾルバロータのシャフトに対する回転方向のずれを防いでいる。
 特許文献4には、回転角センサの固定構造に関する技術が開示されている。
 モータロータに段差部を設け、その部分にレゾルバロータを軽圧入嵌合し、その上から弾性リングと押さえリングを挿入し、加圧してレゾルバロータをモータロータに固定する構造となっている。弾性リングと押さえリングの摩擦力でレゾルバロータをモータロータに保持している。
特開平8-279424号公報 特開平10-066287号公報 特開2006-158005号公報 特開2007-064870号公報
 しかしながら、特許文献1乃至特許文献4に開示される技術には、以下に説明する課題があると考えられる。
 特許文献1及び特許文献2は、シャフトまたはボスをカシメ加工することでレゾルバロータを保持する方法である。ただし、シャフトまたはボスは金属部品であり、カシメ加工することでレゾルバロータの内径を押し広げられるような力が加わる。
 この結果、レゾルバロータが一定値以上に変形してしまうと、レゾルバが回転位相を用いて回転数を検出しているために、出力信号に電気誤差が発生しレゾルバの検出精度に影響する可能性がある。
 また、特許文献3に示されるような方法を用いると、切り欠き部分に樹脂に貫通する構造となっているので、切り欠き部分の大きさによっては電気誤差が発生する虞がある。
 また、切り欠き部分を内径側に必要とするため、レゾルバロータの外形を大きくしなければならないという問題も発生する。
 また、特許文献4に示されるような方法を用いると、特許文献1乃至特許文献3の抱えるレゾルバの精度の問題は解消しうると考えられるが、レゾルバロータをモータロータに取り付ける際に、弾性リングと押さえリングを必要とする。
 つまり、モータロータの構成部品の部品点数が増えてしまう。部品点数が増えれば加工工程が増え、コストダウンの妨げになるという問題が生じると考えられる。
 そこで、本発明はこのような課題を解決するために、低コストでレゾルバの検出精度に影響の出にくいレゾルバロータのカシメ加工を可能としたモータロータ及びモータロータ製造方法を提供することを目的とする。
 前記目的を達成するために、本発明の一態様によるモータロータは、以下のような特徴を有する。
(1)回転位置を検出するレゾルバロータと、前記レゾルバロータがカシメ加工されるシャフトと、を備えるモータロータにおいて、前記シャフトには、カシメ加工の際にパンチが当接して変形する第1段差部と、前記レゾルバロータの端面が当接する第2段差部と、前記第1段差部の近傍かつ前記レゾルバロータの内周穴部が接する面に形成される凹部と、を備え、前記レゾルバロータを前記シャフトとカシメ加工した際に、前記シャフトの前記第1段差部が前記パンチに潰され前記凹部内で折れ、前記第1段差部から変形して突出するカシメ凸部を形成して前記レゾルバロータの端面を押圧することが好ましい。
(2)(1)に記載のモータロータにおいて、前記シャフトの前記凹部は、第1凹部と該第1凹部に重なるようにして形成される第2凹部を備え、前記第2凹部は、前記第1凹部よりも前記第1段差側に形成され、前記シャフトの外周面と前記第2凹部の内面の形成する角度が、前記第1凹部に比べて小さいことが好ましい。
(3)(1)または(2)に記載のモータロータにおいて、前記レゾルバロータは、複数枚の鋼板を積層して形成され、前記カシメ凸部が当接する前記レゾルバロータの端面に位置する前記鋼板に、前記カシメ凸部と対応する位置に長穴を設けることが好ましい。
(4)(1)乃至(3)のいずれか1つに記載のモータロータにおいて、前記カシメ凸部は、略楕円形状に形成される前記レゾルバロータの短径側の辺に4カ所突出するように前記シャフトに形成されることが好ましい。
 また、前記目的を達成するために、本発明の一態様によるモータロータ製造方法は以下のような特徴を有する。
(5)レゾルバロータをシャフトの外形に嵌合させ、前記シャフトにパンチを押し当ててカシメ加工するモータロータ製造方法において、前記シャフトに前記レゾルバロータを挿入し、前記シャフトに形成される第2段差部に前記レゾルバロータの一方の端面を当接させ、前記シャフトに形成される第1段差部に前記パンチを当接させ、加圧することで、前記レゾルバロータの内周穴部が当接する前記シャフトの外周面に形成された凹部内で折れ、前記第1段差部から変形して突出するカシメ凸部が、前記レゾルバロータの他方の端面に当接しカシメ加工されることを特徴とする。
 このような特徴を有する本発明によるモータロータの一態様により、以下のような作用、効果が得られる。
 上記(1)に記載される発明の態様は、回転位置を検出するレゾルバロータと、レゾルバロータがカシメ加工されるシャフトと、を備えるモータロータにおいて、シャフトには、カシメ加工の際にパンチが当接して変形する第1段差部と、レゾルバロータの端面が当接する第2段差部と、第1段差部の近傍かつレゾルバロータの内周穴部が接する面に形成される凹部と、を備え、レゾルバロータをシャフトとカシメ加工した際に、シャフトの第1段差部がパンチに潰され凹部内で折れ、第1段差部から変形して突出するカシメ凸部を形成してレゾルバロータの端面を押圧するものである。
 シャフトとレゾルバロータとカシメ加工する際に、特許文献1及び特許文献2に示される技術の様にシャフトをカシメ加工すると、カシメ加工によって生じるメタルフローが後述する図12に示すような状態となり、レゾルバロータの内径を直接押し広げてしまう。この結果、課題に示したようにレゾルバの検出精度に影響が出ることが懸念される。
 しかしながら、第1段差部の近傍かつレゾルバロータの内周穴部が接する面に形成される凹部を設けることで、シャフトの径が太る方向にメタルフローが発生することを抑制することが可能となる。これは、パンチによって形成されるカシメ凸部は、凹部の途中から折れるような格好で形成され、その結果、レゾルバロータの端面をシャフトの軸方向から押しつけるような状態でカシメ凸部がレゾルバロータに作用するためである。
 したがって、シャフトの径が太る方向にメタルフローが発生することが抑制され、レゾルバロータの内径側から径方向に拡大する力が発生しにくくなることで、カシメ加工によるレゾルバの検出精度への影響を最小限に抑えることが可能となる。
 また、シャフトをカシメ加工することでレゾルバロータを固定するため、新たな部品を必要とせず、モータロータのコストダウンに貢献することが可能となる。
 また、上記(2)に記載される発明の態様は、(1)に記載のモータロータにおいて、シャフトの凹部は、第1凹部と第1凹部に重なるようにして形成される第2凹部を備え、第2凹部は、第1凹部よりも第1段差側に形成され、シャフトの外周面と第2凹部の内面の形成する角度が、第1凹部に比べて小さくなっているものである。
 凹部とシャフトの外表面とが形成する角度が小さい方が、パンチで第1段差部を押圧した際に凹部の中程で折れやすくなる。その結果、レゾルバロータの端面にカシメ凸部がシャフトの軸方向から作用し易くなり、レゾルバの検出精度に与える影響が小さくなる。
 また、上記(3)に記載される発明の態様は、(1)または(2)に記載のモータロータにおいて、レゾルバロータは、複数枚の鋼板を積層して形成され、カシメ凸部が当接するレゾルバロータの端面に位置する鋼板に、カシメ凸部と対応する位置に長穴を設けたものである。
 レゾルバロータにカシメ凸部が当接して力が加えられる際に、レゾルバロータの径方向に力が加えられることがレゾルバロータの径の拡大につながり、その結果レゾルバの検出精度を低下させる。
 このため、あらかじめ複数の鋼板が積層されて形成されるレゾルバロータの端部の鋼板のカシメ凸部と対応する位置に長穴を設け、レゾルバロータの径の拡大を吸収するバッファゾーンを作ることで、レゾルバの精度の低下を抑えることが可能となる。
 また、上記(4)に記載される発明の態様は、(1)乃至(3)のいずれか1つに記載のモータロータにいて、カシメ凸部は、略楕円形状に形成されるレゾルバロータの短径側の辺に4カ所突出するようにシャフトに形成されるものである。
 レゾルバに用いるレゾルバロータは、楕円形状のレゾルバロータを用いる場合、長径側の辺、すなわちレゾルバステータにより近く配置される側の方が検出精度に寄与する割合は多い。
 このため、より検出精度に寄与しにくい短径側の辺に3カ所突出するようにカシメ凸部を形成することで、レゾルバの検出精度に貢献することが可能となる。
 また、このような特徴を有する本発明の一態様によるモータロータ製造方法により、以下のような作用、効果が得られる。
 上記(5)に記載の発明の態様は、レゾルバロータをシャフトの外形に嵌合させ、シャフトにパンチを押し当ててカシメ加工するモータロータ製造方法において、シャフトにレゾルバロータを挿入し、シャフトに形成される第2段差部にレゾルバロータの一方の端面を当接させ、シャフトに形成される第1段差部にパンチを当接させ、加圧することで、レゾルバロータの内周穴部が当接するシャフトの外周面に形成された凹部内で折れ、第1段差部から変形して突出するカシメ凸部が、レゾルバロータの他方の端面に当接しカシメ加工されることで、レゾルバロータがシャフトにカシメ接合されるものである。
 したがって、レゾルバロータをシャフトにカシメ加工によって固定する際に、パンチが第1段差部に当接することで、凹部の途中から折れるような格好でカシメ凸部が形成されるため、レゾルバロータの内径側から径方向に押し広げるような力がレゾルバロータに加わりにくくすることが出来る。
 その結果、レゾルバの検出精度に影響せずに、カシメ加工を行ってシャフトにレゾルバロータを固定する、モータロータの製造方法を提供することが出来る。
 また、特許文献4に示すような、部品点数の増加を必要としないので、コストダウンに貢献することができる。
第1実施形態の、ロータシャフトにレゾルバロータをカシメ加工する際の断面図である。 第1実施形態の、ロータシャフトの部分拡大図である。 第1実施形態の、ロータシャフト及び治具の断面図である。 第1実施形態の、カシメパンチ部分の拡大図である。 第1実施形態の、カシメパンチ部分の拡大断面図である。 第2実施形態の、ロータシャフトの断面図である。 第2実施形態の、ロータシャフト及び治具の断面図である。 第2実施形態の、カシメパンチ部分の拡大図である。 第2実施形態の、カシメパンチによって加圧した際のロータシャフトの断面図である。 第2実施形態の、カシメパンチによって加圧した際のロータシャフト及びレゾルバロータの断面図である。 第2実施形態の、レゾルバロータのカシメ加工時における外形変化の抑制に関するグラフである。 従来用いられたカシメ加工方法により、シャフトにレゾルバロータを固定する様子を表す断面図である。
 まず、本発明の第1の実施形態について説明する。
(第1実施形態)
 図1に、第1実施形態のロータシャフトSHにレゾルバロータRRをカシメ加工する際の断面図を示す。
 図2に、ロータシャフトSHの部分拡大図を示す。図1のA部を拡大したものである。
 図3に、ロータシャフトSH及び治具の断面図を示す。図1の矢視BBである。なお、説明の都合上、カシメパンチJPは想像線で示している。
 図4に、カシメパンチJP部分の拡大図を示す。図3のC部分の拡大図であるが、説明の都合で図3と図4とは若干表現が異なる。
 図5に、パンチ部分の拡大断面図を示す。図4の矢視DDである。
 モータロータMRは、図示しないモータステータと共に図示しない回転電機に用いられる構造部材であり、回転電機の回転数を検出するために図示しないレゾルバが備えられる。このため、モータロータMRの端部にはレゾルバロータRRが備えられている。
 モータロータMRに用いるロータシャフトSHには、ロータコアRCが第1エンドプレートEPDと第2エンドプレートEPUに挟まれ、カシメプレートKPによって押さえられ保持されている。
 ロータコアRCは、積層鋼板が複数枚積層されて形成されている。そして、ロータコアRCには図示しない永久磁石が挿入される挿入穴RCHと、貫通穴RCSが形成されている。
 ロータシャフトSHは、図1及び図2に示すように、第1段差部SSTと切欠溝SB1と第2段差部SHDが形成されており、第1段差部SST及び切欠溝SB1はレゾルバロータRRが保持されるロータ保持外周部SRRの上端部分に形成されている。また、図1に示す第2段差部SHDはレゾルバロータRRの保持のために第1段差部SST及び切欠溝SB1の下側、すなわちロータコアRCが設けられる側に形成されている。なお、説明は省略するが、ロータコアRCを保持するためにも段付き部分が形成されている。
 切欠溝SB1はロータシャフトSHの外周面(ロータ保持外周部SRR)から55度の角度で切削されている溝であるが、この溝形状はロータシャフトSHを形成する際に用いる切削バイトの形状によるものである。したがって、切欠溝SB1はロータシャフトSHの形成時に形成することができる。
 そして、ロータシャフトSHの一端にはレゾルバロータRRがカシメ加工される。レゾルバロータRRは図示しないレゾルバステータと対になってレゾルバとしての機能を発揮するものである。
 ロータシャフトSHに取り付けられるレゾルバロータRRは、複数の電磁鋼板を積層して形成されている。
 そして、レゾルバロータRRをロータシャフトSHにカシメ加工によって取り付ける際には、カシメ台JDにロータシャフトSHを配置し、カシメパンチJPによってロータシャフトSHの一部を押し潰し、カシメ加工を行う。
 カシメパンチJPは、図示しない油圧プレスなどの推力発生装置に接続され、カシメ台JDの軸方向垂直に昇降する機能を有する。またカシメパンチJPには、図4に示すようにロータシャフトSHの第1段差部SSTをカシメ加工するために、パンチ凸部JPKが4カ所形成されている。したがって、カシメパンチJPによって第1段差部SSTをカシメ加工する際に、実際に第1段差部SSTに当接するのは、パンチ凸部JPKの部分だけである。
 したがって、カシメパンチJPは、図3及び図4に示されるように、ロータシャフトSHの外周のうち4カ所をカシメ加工する。
 ロータシャフトSHに形成されている第1段差部SSTは、図5に示されるようにカシメパンチJP(パンチ凸部JPK)に加圧されることで潰される。この際に、ロータシャフトSHの外周面であって第1段差部SSTの近傍に切欠溝SB1が形成されていることで、第1段差部SSTは切欠溝SB1の途中で折れ曲がるような図5に示す状態で変形し、レゾルバロータRRに当接する。こうして第1段差部SSTにカシメパンチJP(パンチ凸部JPK)が当接することで、ロータシャフトSHの第1段差部SSTは変形してカシメ凸部SSDを形成する。
 その後、カシメ凸部SSDはレゾルバロータRRの端面の一部を覆うようにして当接し、図5に示されるようにカシメ凸部SSDはレゾルバロータRRを押圧する。この際に、レゾルバロータRR内ではメタルフローMFが図5に示すような状況で発生するものと考えられる。
 この結果、レゾルバロータRRは第2段差部SHDとカシメ凸部SSDで挟まれてロータシャフトSHに保持されることになる。
 第1実施形態のモータロータMRは上記構成であるので、以下に説明する作用及び効果を奏する。
 まず、レゾルバの精度の低下を抑制することが可能となる点が挙げられる。
 第1実施形態のモータロータMRは、回転位置を検出するレゾルバロータRRと、レゾルバロータRRがカシメ加工されるロータシャフトSHと、を備えるモータロータMRにおいて、ロータシャフトSHには、カシメ加工の際にカシメパンチJPが当接して変形する第1段差部SSTと、レゾルバロータRRの端面が当接する第2段差部SHDと、第1段差部SSTの近傍かつレゾルバロータRRの内周穴部が接する面に形成される切欠溝SB1と、を備え、レゾルバロータRRをロータシャフトSHとカシメ加工した際に、ロータシャフトSHの第1段差部SSTがカシメパンチJPに潰され切欠溝SB1内で折れ、第1段差部SSTから変形して突出するカシメ凸部SSDを形成してレゾルバロータRRの端面を押圧するものである。
 図12に、従来用いられたカシメ加工方法により、ロータシャフトSHにレゾルバロータRRを固定する様子を表す断面図を示す。
 ロータシャフトSHはカシメパンチJPのパンチ凸部JPKが第1段差部SSTに当接することで変形し、カシメ凸部SSDを形成する。
 しかし、この際にレゾルバロータRRの内部には図12に示すような矢印方向のメタルフローMFが発生することになり、レゾルバロータRRの径方向に変形する。つまりレゾルバロータRRの内径RRBは、径方向外側に押し広げられることになる。
 このような変形が、ある一定値以上に起こると、レゾルバの出力信号に電気誤差が発生する虞がある。
 しかし、第1実施形態のモータロータMRのロータシャフトSHには切欠溝SB1を設けており、図5に示すようにメタルフローMFは主にロータシャフトSHの軸方向に発生する。また、レゾルバロータRRの径方向へのメタルフローMFは少なくなる。このため、図12の例に示したような弊害は起こりにくくなる。
 したがって、レゾルバロータRRの内径側から径方向に拡大する力が発生しにくくなることで、レゾルバの検出精度への影響を最小限に抑えることが可能となる。
 また、第1実施形態のモータロータMRを用いる場合に、製造コストを下げることが可能な点が挙げられる。
 特許文献4に示されるように、弾性リングや押さえリングを用いて加工すればレゾルバとモータロータの取り付け精度は向上することは分かっている。しかしながら、部品点数の増加は加工工程を増やすとともに、部品そのもののコストも必要となり、コストダウンの妨げになる。
 しかしながら、第1実施形態のモータロータMRは、ロータシャフトSHに切欠溝SB1を形成することで、カシメ加工するに当たって発生する問題を上述のように回避している。
 この切欠溝SB1は、ロータシャフトSHを形成する際に用いる加工機の、通常用いる加工バイトを用いて形成されており、ロータシャフトSHと切欠溝SB1との表面が形成する角度は55度となっている。
 結果、ロータシャフトSHを形成している際に加工バイトを交換することなく切欠溝SB1を形成することが可能であり、切欠溝SB1の加工時間もほとんど必要としないので、コストをかけずにカシメ加工の問題を解決することが可能となる。
 次に、本発明の第2の実施形態について説明する。
(第2実施形態)
 本発明の第2実施形態の構成は、第1実施形態の構成とほぼ同じであるが、ロータシャフトSHに形成される切欠溝SB1の形状と、レゾルバロータRRの形状に若干の差異がある。以下にそれを説明する。
 図6に、第2実施形態のロータシャフトSHの断面図を示す。図5に対応している。
 第2実施形態のロータシャフトSHは、切欠溝SB1に追加切欠溝SB2が続けて形成されている。追加切欠溝SB2はロータシャフトSHと追加切欠溝SB2とが形成する角度が90度になるような形状に、ロータシャフトSHに形成されており、いわゆる溝入れバイトと呼ばれるような工具を用いて加工されている。したがって、まずロータシャフトSHに切欠溝SB1を形成した後、追加切欠溝SB2を溝入れバイトなどを用いて追加工する必要がある。
 図7に、ロータシャフトSH及び治具の断面図を示す。図3に対応している。
 図8に、カシメパンチJP部分の拡大図を示す。図4に対応している。図7に示されたE部の拡大図である。
 一方、レゾルバロータRRには、ロータシャフトSHとカシメ加工をする部分の外周に当たる部分にオーバル形状の逃げ溝RRHが形成されている。逃げ溝RRHは積層鋼板で形成されるレゾルバロータRRの1枚目に設けられている。
 また、逃げ溝RRHの位置については、レゾルバロータRRの4カ所に設けられているダボカシメRRD部分のうち2つのダボカシメRRDの間に2つの逃げ溝RRHが設けられる構成となっている。これは、図示しないレゾルバの検出精度には、楕円形状に形成されるレゾルバロータRRのうち短辺側であり、長辺側は検出精度に寄与しにくいためである。
 長円に形成される逃げ溝RRHの長辺方向の幅X1は、カシメパンチJPに形成されるカシメ凸部SSDの幅X2よりも若干狭く設定され、短辺方向の幅は数mm程度に設定される。しかしながら、短辺方向の幅は図8に示される変形突出部RRMの突出量よりも幅が確保できれば良い。
 なお、逃げ溝RRHの形状は、必ずしも図7及び図8に示されるようなオーバル形状である必要はない。オーバル形状となっているのは、切削治具を用いて加工したためであるが、プレスで打ち抜く等の方法を用いれば別の形状を採ることも可能である。これは、カシメ凸部SSDが形成される幅をカバーできれば良いからである。
 第2実施形態のモータロータMRは上記構成であるので、以下に説明する作用及び効果
を奏する。
 まず、第1実施形態よりもレゾルバの精度の低下を抑制することが可能となる点が挙げられる。
 第2実施形態のモータロータMRは、ロータシャフトSHの凹部は、切欠溝SB1と切欠溝SB1に重なるようにして形成される追加切欠溝SB2を備え、追加切欠溝SB2は、切欠溝SB1よりも第1段差部SST側に形成され、ロータシャフトSHの外周面と追加切欠溝SB2の内面の形成する角度が、切欠溝SB1に比べて小さく形成されているものである。
 図9に、カシメパンチJPによって加圧した際のロータシャフトSHの断面図を示す。
 ロータシャフトSHの第1段差部SST部分の外周面に対して追加切欠溝SB2の表面が形成する角度が90度であり、切欠溝SB1の表面とロータシャフトSHの第1段差部SST部分の外周面とが形成する角度125度よりも、角度が小さくなっている。(図5では55度と示している)
 このため、第1段差部SSTがカシメパンチJPに押圧されてカシメ加工されるにあたり、より切欠溝SB1または追加切欠溝SB2内で折れやすくなり、図9に示すようにメタルフローMFの発生方向もレゾルバロータRRの端面と直行する方向に近くなる。
 したがって、レゾルバロータRRに対する径方向に変形する力は、発生しにくくなる。
 図10に、カシメパンチJPによって加圧した際のロータシャフトSH及びレゾルバロータRRの断面図を示す。
 また、レゾルバロータRRに逃げ溝RRHを設けたことで、レゾルバロータRRが変形した場合にも、図10に示す変形突出部RRMを吸収することが出来る。このため、レゾルバロータRRに対する、径の変化を抑制することが可能となる。
 なお、逃げ溝RRHはレゾルバロータRRの1枚目に形成されていることで、図示しないレゾルバの検出精度の低下に寄与しにくい。
 図11に、レゾルバロータのカシメ加工時における外形変化の抑制に関するグラフを示す。
 縦軸にレゾルバロータRRの短径変化量を示し、横軸にカシメ凸部SSDがレゾルバロータRRに接触した後の、レゾルバロータRRが外径変形するまでの許容オーバーストローク量を示す。評価は第1実施形態に示した切欠溝SB1だけのものと、第2実施形態に示す追加切欠溝SB2及び切欠溝SB1の両方が形成されたものについてされている。
 この図11に示すように、追加切欠溝SB2を設けたことで、切欠溝SB1だけの場合よりもカシメ凸部SSDの許容オーバーストローク量を稼ぐことが可能であり、ロータシャフトSHとレゾルバロータRRとの固定をした際にレゾルバの精度の悪化を抑制することができる。
 以上、本実施形態に則して発明を説明したが、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更することにより実施することもできる。
 例えば、ロータシャフトSHは中空のパイプを用いているが中実のシャフトを用いても良いし、ロータコアRCの固定方法についても第2エンドプレートEPUをロータシャフトSHと直接カシメ加工しても良い。また、カシメパンチJPやカシメ台JDの形状についても、特にこれに限定されるものではない。また、例示してある材質等についても、同等の機能を有するものに置き換えることを妨げない。
 また、切欠溝SB1及び追加切欠溝SB2の形状についても、第1実施形態及び第2実施形態に示した形状に限定される必要はない。また、切欠溝SB1及び追加切欠溝SB2の角度に関しても同様である。例えば、バイトの先端の形状等の都合によって角度が若干増減することは問題なく、また、追加切欠溝SB2の形状に関して言えば切欠溝SB1と連続する形状ではなく、追加切欠溝SB2だけ設けたような形状としても同等の機能を発揮することはできる。追加切欠溝SB2を加工する際に切欠溝SB1が設けてあることは、加工上の都合だからである。
 また、カシメパンチJPによるカシメ位置は4カ所であるが、カシメ位置を増やすことやカシメ幅を増やすことを妨げない。必要であればロータシャフトSHの全周に渡ってカシメ加工をする構成としても、発明の切欠溝SB1または追加切欠溝SB2はその機能を発揮するからである。
EPD   第1エンドプレート
EPU   第2エンドプレート
JD   カシメ台
JP   カシメパンチ
JPK   パンチ凸部
KP   カシメプレート
MF   メタルフロー
MR   モータロータ
RC   ロータコア
RCH   挿入穴
RCS   貫通穴
RR   レゾルバロータ
RRB   内径
RRD   ダボカシメ
RRH   逃げ溝
RRM   変形突出部
SB1   切欠溝
SB2   追加切欠溝
SH   ロータシャフト
SHD   第2段差部
SRR   ロータ保持外周部
SSD   カシメ凸部
SST   第1段差部

Claims (5)

  1.  回転位置を検出するレゾルバロータと、前記レゾルバロータがカシメ加工されるシャフトと、を備えるモータロータにおいて、
     前記シャフトには、カシメ加工の際にパンチが当接して変形する第1段差部と、前記レゾルバロータの端面が当接する第2段差部と、前記第1段差部の近傍かつ前記レゾルバロータの内周穴部が接する面に形成される凹部と、を備え、
     前記レゾルバロータを前記シャフトとカシメ加工した際に、前記シャフトの前記第1段差部が前記パンチに潰され前記凹部内で折れ、前記第1段差部から変形して突出するカシメ凸部を形成して前記レゾルバロータの端面を押圧することを特徴とするモータロータ。
  2.  請求項1に記載のモータロータにおいて、
     前記シャフトの前記凹部は、第1凹部と該第1凹部に重なるようにして形成される第2凹部を備え、
     前記第2凹部は、前記第1凹部よりも前記第1段差側に形成され、前記シャフトの外周面と前記第2凹部の内面の形成する角度が、前記第1凹部に比べて小さいことを特徴とするモータロータ。
  3.  請求項1または請求項2に記載のモータロータにおいて、
     前記レゾルバロータは、複数枚の鋼板を積層して形成され、
     前記カシメ凸部が当接する前記レゾルバロータの端面に位置する前記鋼板に、前記カシメ凸部と対応する位置に長穴を設けたことを特徴とするモータロータ。
  4.  請求項1乃至請求項3のいずれか1つに記載のモータロータにおいて、
     前記カシメ凸部は、略楕円形状に形成される前記レゾルバロータの短径側の辺に4カ所突出するように前記シャフトに形成されることを特徴とするモータロータ。
  5.  レゾルバロータをシャフトの外形に嵌合させ、前記シャフトにパンチを押し当ててカシメ加工するモータロータ製造方法において、
     前記シャフトに前記レゾルバロータを挿入し、前記シャフトに形成される第2段差部に前記レゾルバロータの一方の端面を当接させ、
     前記シャフトに形成される第1段差部に前記パンチを当接させ、加圧することで、
     前記レゾルバロータの内周穴部が当接する前記シャフトの外周面に形成された凹部内で折れ、前記第1段差部から変形して突出するカシメ凸部が、前記レゾルバロータの他方の端面に当接しカシメ加工されることを特徴とするモータロータ製造方法。
PCT/JP2010/060980 2009-12-24 2010-06-28 モータロータ及びモータロータ製造方法 WO2011077774A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/518,297 US8963387B2 (en) 2009-12-24 2010-06-28 Motor rotor including a resolver rotor for detecting rotation position
EP10839011.3A EP2518870B1 (en) 2009-12-24 2010-06-28 Motor rotor and method for manufacturing motor rotor
KR1020127016210A KR101353206B1 (ko) 2009-12-24 2010-06-28 모터 로터 및 모터 로터 제조 방법
CN201080059426.4A CN102687376B (zh) 2009-12-24 2010-06-28 马达转子及马达转子制造方法
US14/571,926 US9780630B2 (en) 2009-12-24 2014-12-16 Method for manufacturing motor rotor including a resolver rotor for detecting rotation position

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291872A JP4645765B1 (ja) 2009-12-24 2009-12-24 モータロータ及びモータロータ製造方法
JP2009-291872 2009-12-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/518,297 A-371-Of-International US8963387B2 (en) 2009-12-24 2010-06-28 Motor rotor including a resolver rotor for detecting rotation position
US14/571,926 Division US9780630B2 (en) 2009-12-24 2014-12-16 Method for manufacturing motor rotor including a resolver rotor for detecting rotation position

Publications (1)

Publication Number Publication Date
WO2011077774A1 true WO2011077774A1 (ja) 2011-06-30

Family

ID=43836054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060980 WO2011077774A1 (ja) 2009-12-24 2010-06-28 モータロータ及びモータロータ製造方法

Country Status (6)

Country Link
US (2) US8963387B2 (ja)
EP (1) EP2518870B1 (ja)
JP (1) JP4645765B1 (ja)
KR (1) KR101353206B1 (ja)
CN (1) CN102687376B (ja)
WO (1) WO2011077774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047254A1 (ja) * 2015-09-15 2017-03-23 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056853A1 (de) * 2008-11-12 2010-05-20 Continental Teves Ag & Co. Ohg Verschlussvorrichtung
WO2012039065A1 (ja) * 2010-09-24 2012-03-29 Ykk株式会社 自動停止装置付きスライドファスナー用スライダー
JP5796376B2 (ja) * 2011-07-05 2015-10-21 日産自動車株式会社 電動モータのロータ
JP2013124944A (ja) * 2011-12-15 2013-06-24 Toyota Motor Corp レゾルバロータ
JP2015116022A (ja) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 回転電機ロータ
JP6405788B2 (ja) * 2014-08-20 2018-10-17 株式会社デンソー 回転電機の回転子
CN107005108B (zh) * 2014-12-03 2018-07-24 日产自动车株式会社 旋转电机的转子构造
JP6674847B2 (ja) * 2016-06-02 2020-04-01 タイコエレクトロニクスジャパン合同会社 モータのステータ組立方法およびモータのステータ構造
JP2018115743A (ja) * 2017-01-20 2018-07-26 株式会社鷺宮製作所 電動弁及び冷凍サイクルシステム
JP7195338B2 (ja) * 2018-12-19 2022-12-23 三菱電機株式会社 乗り物用制御装置一体型回転電機
KR20200114258A (ko) * 2019-03-28 2020-10-07 엘지이노텍 주식회사 모터
PL237542B1 (pl) * 2019-10-11 2021-04-19 Siec Badawcza Lukasiewicz Instytut Napedow I Masz Elektrycznych Komel Sposób dokładnego osiowania resolvera na wałku maszyny elektrycznej
CN211981596U (zh) * 2020-04-07 2020-11-20 精进电动科技股份有限公司 一种旋变定子定位压片和定位结构

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300679A (ja) * 1992-04-17 1993-11-12 Asmo Co Ltd モータのロータ止着構造
JPH07218517A (ja) * 1994-02-03 1995-08-18 Yazaki Corp スピードセンサ
JPH08279424A (ja) 1995-04-06 1996-10-22 Tamagawa Seiki Co Ltd レゾルバのロータ
JPH1066287A (ja) 1996-05-09 1998-03-06 Denso Corp 磁石発電機の回転子
JP2004048925A (ja) * 2002-07-12 2004-02-12 Toyota Motor Corp ステータの固定方法及び固定構造並びにロータの固定方法及び固定構造
JP2006158005A (ja) 2004-11-25 2006-06-15 Toyota Motor Corp レゾルバロータの固定構造
JP2007064870A (ja) 2005-09-01 2007-03-15 Honda Motor Co Ltd 回転角センサの固定構造
JP2007124752A (ja) * 2005-10-26 2007-05-17 Toyota Motor Corp ロータシャフトおよびロータシャフトの製造方法
JP2008268065A (ja) * 2007-04-23 2008-11-06 Nippon Densan Corp レゾルバ
JP2008275385A (ja) * 2007-04-26 2008-11-13 Asmo Co Ltd バリアブルリラクタンス型レゾルバロータ及びブラシレスモータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905274A1 (de) * 1999-02-09 2000-08-10 Bosch Gmbh Robert Drehungssensor
JP4613544B2 (ja) * 2004-07-30 2011-01-19 トヨタ自動車株式会社 レゾルバのステータ固定構造
US7928617B2 (en) * 2005-01-31 2011-04-19 Toyota Jidosha Kabushiki Kaisha Resolver fixing structure
JP2011254677A (ja) * 2010-06-04 2011-12-15 Toyota Motor Corp モータのロータおよびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300679A (ja) * 1992-04-17 1993-11-12 Asmo Co Ltd モータのロータ止着構造
JPH07218517A (ja) * 1994-02-03 1995-08-18 Yazaki Corp スピードセンサ
JPH08279424A (ja) 1995-04-06 1996-10-22 Tamagawa Seiki Co Ltd レゾルバのロータ
JPH1066287A (ja) 1996-05-09 1998-03-06 Denso Corp 磁石発電機の回転子
JP2004048925A (ja) * 2002-07-12 2004-02-12 Toyota Motor Corp ステータの固定方法及び固定構造並びにロータの固定方法及び固定構造
JP2006158005A (ja) 2004-11-25 2006-06-15 Toyota Motor Corp レゾルバロータの固定構造
JP2007064870A (ja) 2005-09-01 2007-03-15 Honda Motor Co Ltd 回転角センサの固定構造
JP2007124752A (ja) * 2005-10-26 2007-05-17 Toyota Motor Corp ロータシャフトおよびロータシャフトの製造方法
JP2008268065A (ja) * 2007-04-23 2008-11-06 Nippon Densan Corp レゾルバ
JP2008275385A (ja) * 2007-04-26 2008-11-13 Asmo Co Ltd バリアブルリラクタンス型レゾルバロータ及びブラシレスモータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518870A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047254A1 (ja) * 2015-09-15 2017-03-23 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
JPWO2017047254A1 (ja) * 2015-09-15 2018-06-28 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置

Also Published As

Publication number Publication date
JP4645765B1 (ja) 2011-03-09
EP2518870A1 (en) 2012-10-31
CN102687376B (zh) 2014-10-15
US20150101181A1 (en) 2015-04-16
EP2518870B1 (en) 2018-09-26
KR20120088857A (ko) 2012-08-08
US9780630B2 (en) 2017-10-03
JP2011135676A (ja) 2011-07-07
US8963387B2 (en) 2015-02-24
KR101353206B1 (ko) 2014-01-21
US20120262033A1 (en) 2012-10-18
EP2518870A4 (en) 2017-07-26
CN102687376A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4645765B1 (ja) モータロータ及びモータロータ製造方法
EP2876316B1 (en) Radial foil bearing
KR101436796B1 (ko) 전기 기계
EP2740950B1 (en) Radial foil bearing
EP2154767B1 (en) Rotor shaft and method of manufacturing the same
EP3002471B1 (en) Radial foil bearing
EP3293860B1 (en) Rotary electric rotor and method of manufacturing rotary electric rotor
EP2740949B1 (en) Radial foil bearing
US8541917B2 (en) Rotary electrical machine
JP2013093983A (ja) ステータ固定構造
JP5560917B2 (ja) 回転電機用ロータの製造方法及び回転電機用シャフト素材
JP5893904B2 (ja) 積層鉄心及びその製造方法
KR20210002714A (ko) 자동차의 센서 장치용 자석 조립체, 자석 조립체를 갖는 센서 장치, 및 센서 장치를 갖는 자동차
JP6200720B2 (ja) ブラシレスモータ及びブラシレスモータの製造方法
JP5630206B2 (ja) 回転位置検出用ロータ固定構造
JP5696642B2 (ja) ステータ固定構造
JP2022055143A (ja) 管材の加工方法
JP6910413B2 (ja) 回転電機
CN115552770A (zh) 用于制造电机的方法和按照该方法制造的电机
JP6355268B2 (ja) 嵌合構造及び被嵌合部材の製造方法
JP2019047679A (ja) 回転電機とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059426.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518297

Country of ref document: US

Ref document number: 2010839011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127016210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE