WO2011077766A1 - エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット - Google Patents

エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット Download PDF

Info

Publication number
WO2011077766A1
WO2011077766A1 PCT/JP2010/057606 JP2010057606W WO2011077766A1 WO 2011077766 A1 WO2011077766 A1 WO 2011077766A1 JP 2010057606 W JP2010057606 W JP 2010057606W WO 2011077766 A1 WO2011077766 A1 WO 2011077766A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
metal
electrode
vibrator
alloy
Prior art date
Application number
PCT/JP2010/057606
Other languages
English (en)
French (fr)
Inventor
俊典 小柏
昌昭 栗田
貴志 照井
寒江 威元
克典 赤根
岡本 謙蔵
上木 健一
翔平 武田
Original Assignee
日本電波工業株式会社
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電波工業株式会社, 田中貴金属工業株式会社 filed Critical 日本電波工業株式会社
Priority to JP2011547349A priority Critical patent/JP5400898B2/ja
Priority to CN201080059290.7A priority patent/CN102687396B/zh
Priority to US13/516,365 priority patent/US9065418B2/en
Priority to TW099140145A priority patent/TWI485268B/zh
Publication of WO2011077766A1 publication Critical patent/WO2011077766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape

Definitions

  • the present invention relates to an electrode material for a vibrator such as a quartz vibrator applied as an excitation electrode, and in particular, a piezoelectric vibrator with good manufacturing variation and aging characteristics (frequency temporal characteristics) and further, an inexpensive vibrator.
  • the present invention relates to an electrode material.
  • the present invention also relates to a piezoelectric vibrator using the same and a sputtering target suitable for forming the electrode thereof.
  • Piezoelectric vibrators in particular, quartz vibrators are well known as frequency control elements, and are incorporated as reference sources of frequency and time of various electronic devices.
  • quartz vibrators In recent years, it has become an indispensable part in consumer digital control devices, and the demand is increasing. Along with this, it is required to lower the price while further improving the quality.
  • FIG. 4 shows a configuration of a surface mount type crystal resonator which is an example of the crystal resonator.
  • the quartz crystal vibrator is configured such that the quartz crystal piece 2 is accommodated in the container body 1 made of laminated ceramic, and the metal cover 3 is covered and sealed hermetically.
  • a crystal holding terminal 4 is provided on the inner bottom surface of the container body 1 and mounting terminals 5 are provided on the outer bottom surface at four corners.
  • the metal cover 3 is joined to a metal ring (not shown) provided on the open end face of the container body 1 by seam welding.
  • the crystal holding terminal 4 is electrically connected to the mounting terminals 5 of one set of diagonal parts, and the metal cover 3 is electrically connected to the mounting terminals 5 of the other set of diagonal parts by a conductive path including a through electrode.
  • the quartz crystal pieces 2 are obtained, for example, by dividing a quartz wafer cut from artificial quartz into individual pieces by polishing, cutting and the like, and making the planar view into a rectangular shape.
  • Excitation electrodes 6 for exciting thickness shear vibration are formed on both main surfaces of the crystal piece 2, and lead-out electrodes 6 a are formed extending on both sides of one end of the crystal piece 2. Then, both ends of the one end portion of the extended crystal piece 2 of the lead-out electrode 6 a are fixed to the crystal holding terminal 4 by the conductive adhesive 7 before sealing with the metal cover 3.
  • the excitation electrode 6 and the lead-out electrode 6 a are formed on the crystal piece 2 by sputtering or vapor deposition in a vacuum chamber (in a vacuum atmosphere).
  • a Cr (chromium), Ni (nickel) or NiCr alloy film which is compatible with the crystal piece 2 is formed as a base electrode, and the excitation electrode 6 is formed thereon. It is common to do.
  • the crystal piece 2 is taken out of the vacuum chamber, and one end of the crystal piece 2 extending from the extraction electrode 6a is fixed to the inner bottom surface of the container body 1 in the atmosphere.
  • the container body 1 containing the crystal piece 2 is again housed in a vacuum atmosphere, the excitation electrode 6 is irradiated with gas ions, and a part of the surface of the excitation electrode 6 is scraped to reduce the mass.
  • the vibration frequency of the crystal unit is adjusted from the low side to the high side.
  • the metal cover 3 is joined to the opening end face in a nitrogen gas atmosphere, for example, under normal pressure, to complete a quartz oscillator.
  • the quartz oscillator generally refers to a state in which the quartz piece 2 is hermetically sealed, and is also referred to as a crystal unit.
  • the vibration frequency is dispersed at the time of completion of the crystal unit, and the vibration frequency changes with the passage of time in use.
  • Frequency aging characteristics aging characteristics
  • the production variation here is indicated by a frequency deviation ⁇ f0 / f0 (ppm) with respect to a nominal value of the vibration frequency (vibration frequency desired by the user) f0.
  • ⁇ f 0 is a frequency offset from the nominal frequency.
  • the temporal frequency characteristic is indicated by a frequency deviation ⁇ f1 / f1 (ppm) using the vibration frequency after completion of the quartz oscillator as a reference value f1, and ⁇ f1 in this case is a shift frequency amount from the vibration frequency f1.
  • the constituent material of the excitation electrode 6 including the lead-out electrode 6 a formed on the surface of the quartz piece 2.
  • Au gold
  • Ag silver
  • Au-Ag alloy an Au-Ag alloy
  • the most preferable material of the excitation electrode 6 is Au.
  • Au is an electrode material which is extremely stable chemically, has a small mass change due to oxidation and sulfidation, and has a good electrical conductivity. Therefore, in the manufacturing process of the above-mentioned quartz oscillator, it is difficult to be oxidized even after being returned to the atmosphere after frequency adjustment, and there is little variation at the time of manufacturing at the time of completion. In addition, the frequency temporal characteristics over a long period of month or year are also good, and the vibration frequency becomes substantially flat with the passage of time.
  • Such a quartz oscillator is oxidized and sulfurized even during use under the influence of an organic gas component or the like released from the conductive adhesive 7 that fixes the quartz piece 2, and the vibration frequency increases with the passage of time. The frequency decreases with time and the time-lapse characteristics deteriorate.
  • the present invention is based on making it cheaper than Au, and an electrode material for a vibrator capable of making manufacturing variation and aging characteristics almost equal to or more than Au, a piezoelectric vibrator using the same, and the material It is an object of the present invention to provide a sputtering target comprising
  • the present inventors examined the application of an alloy mainly composed of Au as a new excitation electrode material in order to solve the above problems.
  • the main component of Au is the emphasis on the property of Au, that is, the chemical stability. And even if it is expensive Au, it is because it was thought that cost reduction of the whole material could be achieved by alloying with another metal.
  • the present invention it is also an object to improve the manufacturing time variation and the frequency temporal characteristic.
  • the reduction of the variation ( ⁇ f0 / f0) at the time of manufacture can be achieved by applying an alloy based on a highly stable metal such as Au.
  • the inventors of the present invention examined the frequency temporal characteristics of various metals with respect to the frequency temporal characteristic ( ⁇ f1 / f1), it is found that a metal showing a tendency to lower the frequency and a metal showing a tendency to increase exist. I found it.
  • the inventors of the present invention alloy the respective metals offset with each other as frequency aging characteristics in opposite directions to Au, which is chemically stable and flattens the frequency aging characteristics, to form a ternary alloy and
  • the present invention has been conceived as it is possible to stabilize the manufacturing time variation and the frequency aging characteristics by the entire alloy.
  • the present invention is an electrode material for a vibrator comprising a ternary alloy of Au and two metals M1 and M2 and serving as an excitation electrode for exciting a vibration in a piezoelectric piece, wherein the two metals are the same.
  • Metal M1 metal whose frequency temporal characteristic (.DELTA.f1 / f1) of the piezoelectric vibrator tends to decrease compared with the reference value f1
  • metal M2 frequency temporal characteristic of piezoelectric vibrator (.DELTA.f1 / f1 ) Is a metal that tends to increase from the reference value f1.
  • f1 is a vibration frequency at the time of hermetic sealing of the piezoelectric piece
  • ⁇ f1 is a difference frequency between the vibration frequency which changes with the passage of time and the reference value f1.
  • the electrode material for a vibrator according to the present invention maintains a chemically stable property by the alloy component of Au, so it is less likely to cause oxidation or the like. Therefore, it is possible to suppress the manufacturing variation of the vibration frequency before and after the completion of the cover-closed piezoelectric vibrator which is returned to the atmosphere and particularly after frequency adjustment in vacuum.
  • the present invention alloys the metals M1 and M2 having an action contrary to the frequency aging property to chemically stable Au, balances the actions of the respective metals, and produces the variation during manufacture and the frequency aging property according to the entire alloy.
  • FIG. 1A shows the frequency temporal characteristics of Au, metals M1 and M2.
  • This FIG. 1 (a) is created based on data of time-lapse frequency characteristics of Ag and Pd as examples of M1 and M2 (see Conventional Examples 1 to 3 described later).
  • the frequency temporal characteristic is the shift frequency amount from f1 when the vibration frequency of the quartz oscillator at completion is set to the reference value f1 and the oscillation frequency of the quartz oscillator measured with the passage of time is f.
  • ⁇ f1 is ⁇ f1
  • ⁇ f1 / f1 is plotted with time.
  • Au has a good frequency temporal characteristic, and even when time passes, the variation of ⁇ f1 / f1 is small, and the locus becomes almost horizontal.
  • the frequency temporal characteristics of the metals M1 and M2 in the present invention are as shown in FIG. 1 (a). That is, when the metal M1 is used as an electrode, the frequency decreases with the passage of time, and ⁇ f1 / f1 is lowered (fluctuating in the negative direction). Conversely, the metal M2 is a metal having a characteristic that the frequency increases and the ⁇ f1 / f1 increases (varies in the positive direction) as time passes.
  • the electrode material according to the present invention causes the metal M1 and M2 having such characteristics to be alloyed with Au, thereby offsetting the effects of the respective metals with respect to changes in ⁇ f1 / f1, as shown in FIG. 1 (b). It aims at suppressing the temporal change of ⁇ f1 / f1 of the entire alloy.
  • the reasons for exhibiting the above-mentioned frequency temporal characteristics for the metals M1 and M2 are not all clear, but the inventors of the present invention and others have compared the metal M1 whose frequency tends to decrease with It is thought that metal is apt to cause chemical changes such as oxidation and sulfurization, and the mass change caused by this changes the frequency temporal characteristics.
  • the metal M2 whose frequency changes in an increasing tendency is considered to be a metal in which a change occurs in mechanical properties (hardness and the like) with the passage of time after the thin film serving as the excitation electrode is manufactured.
  • the metal M2 is considered to be apt to accumulate internal stress at the time of film formation by sputtering, and this internal stress is relieved over time, and the frequency temporal characteristic changes.
  • the inventors examined particularly suitable metals in the range of the metals M1 and M2.
  • the metal M1 is at least one of Ag, Al, and Ni
  • the metal M2 is preferably Pd, Ru, Pt, Ir, Rh, and Cu. These metals have a clear effect on the frequency characteristics in alloying with Au, and by balancing them, they contribute to the stabilization of the frequency characteristics.
  • a particularly preferable combination of the metals M1 and M2 is an Au-Ag-Pd alloy in which the metal M1 is Ag and the metal M2 is Pd.
  • the metals M1 and M2 may contain a plurality of the above-described metals.
  • the content of each constituent metal is 20 to 70% by mass of Au, and the total concentration of M1 and M2 is 80 to 30% by mass. Is preferred. It is necessary to secure a certain amount of Au concentration in order to suppress manufacturing variations related to the vibration frequency of the piezoelectric vibrator, and it is preferable to set at least 20% by mass. Also, in consideration of the cost of the entire material, it is preferable to distribute the Au concentration to 70% by mass.
  • the mass ratio of each concentration is preferably in the range of 2: 8 to 8: 2. This is because it is difficult to stabilize the frequency temporal characteristics if the actions of both metals are excessively biased. If this mass ratio is more preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4, the frequency temporal characteristic is further stabilized.
  • the higher the concentration of Au the more the frequency temporal characteristics of Au become dominant, so that the mass ratio of the metals M1 and M2 can be shifted even in the direction of 2: 8 or 8: 2.
  • the lower the concentration of Au the higher the total concentration of the metals M1 and M2, and the frequency temporal characteristics thereby become dominant. Therefore, in this case, it is necessary to equalize the weight ratio of the metals M1 and M2 to 4: 6 to 6: 4, and to offset the frequency temporal characteristics in which the right falling by the metal M1 and the right rising by the metal M2 are offset.
  • the frequency temporal characteristic of Au is generally flat, but after 100 hours, it tends to be a downward trend microscopically microscopically. Therefore, the mass ratio of metals M1 and M2 forms an upward-sloping frequency temporal characteristic that increases above the reference value, offsets the temporally downward frequency characteristic of downward-falling due to Au, and obtains a temporal frequency characteristic superior to that of Au alone. Is also possible.
  • the vibrator electrode material as an excitation electrode made of a ternary alloy (Au, Ag, Pd) in the present invention does not specify the impurities contained in the manufacturing process, in reality, these impurities Contamination is inevitable, and even if impurities are incorporated, these are not excluded within the inevitable range.
  • the total of impurities oxygen, carbon, sulfur
  • the total of impurities is 150 ppm or less as a standard, there is no particular problem. More preferably, it is 100 ppm or less.
  • mixing of O (oxygen) and S (sulfur) is not preferable because Ag, Pd and the like in the electrode film are oxidized or sulfurized to destabilize the frequency aging characteristics.
  • the incorporation of C (carbon) is not preferable because it increases the resistance of the electrode.
  • the piezoelectric vibrator provided with the piezoelectric piece on which the electrode made of the electrode material for vibrator according to the present invention described above is formed has little variation in production of the vibration frequency at the time of completion, and has long-term frequency characteristics over a long time even in use. It can be maintained.
  • the present invention is particularly useful as a quartz oscillator in which a piezoelectric piece is used as a quartz piece, and is useful for an excitation electrode formed on the surface of a quartz piece.
  • the crystal oscillator has been described as a surface mount type, but not limited to this, for example, a lead type in which a lead wire is derived as a metal base can also be applied.
  • the invention is applicable to a piezoelectric vibrator having an excitation electrode to be excited, and also includes such as an IDT electrode for exciting a surface acoustic wave.
  • the vibrator electrode material according to the present invention as an electrode, a thin film formation method such as vacuum evaporation can be applied, but a sputtering method is preferable for efficient product production.
  • the vibrator electrode material according to the present invention also suitably corresponds to sputtering. This is because Ag (sputtering rate: 2.20), Cu (sputtering rate: 1.59) and Pd (sputtering rate: 1.41) have a sputtering rate close to that of Au (sputtering rate: 1.65) This is because a thin film having a composition that does not deviate from the target composition can be formed. Therefore, the target consisting of the above-mentioned Au alloy can be applied as a sputtering target for electrode formation.
  • the impurity concentration of the target be reduced. Impurities in the target cause the impurities of the thin film (electrode) to be produced, and there is a possibility that the characteristics thereof may be impaired.
  • impurities which may be contained in the target O, C, and S can be considered, but the total amount of these impurities is preferably 150 ppm or less, more preferably 100 ppm or less.
  • mixing of O and S is not preferable because Ag, Pd and the like in the electrode film are oxidized or sulfurized to destabilize the frequency aging characteristics.
  • the incorporation of C is not preferable because it increases the resistance of the electrode.
  • At least any one (preferably all) of the oxygen content, the carbon content, and the sulfur content of each impurity is 80 ppm or less.
  • the target is also homogeneous.
  • the target is also an alloy metal having a polycrystalline structure, but the one having an average grain boundary diameter of 50 to 200 ⁇ m is preferable. If the average grain size is smaller than 50 ⁇ m, particles are easily generated during sputtering. If the average grain size is larger than 200 ⁇ m, segregation tends to occur and the alloy composition of the electrode film varies. Further, since segregation at grain boundaries is not preferable, the difference between the composition in the grain boundaries and the average composition of all the alloys should be within the range of 0.05 mass% to 1.0 mass% in terms of Au concentration. preferable.
  • the sputtering target which concerns on this invention, it can manufacture also by the powder metallurgy method besides the melt-casting method.
  • the electrode material according to the present invention not only Au alone but also a ternary alloy containing Au is used to suppress variations during manufacturing of the piezoelectric vibrator, and the temporal aging characteristics are also substantially equal to or higher than Au. It can be good.
  • the amount of Au used can be reduced by alloying the conventional electrode material made of Au, which can also contribute to the reduction of material cost.
  • FIG. 2 is a diagram showing a configuration of a surface mount type crystal oscillator. The figure which shows the desired characteristic of each Example.
  • a sputtering target made of Au ternary alloy of various compositions was manufactured, and a quartz oscillator was manufactured based on this.
  • the same study was carried out on a binary Au alloy.
  • An Au alloy target was produced by the following method.
  • the Au mass, Ag mass, and Pd mass were weighed to a predetermined mass ratio, and inserted into an alumina crucible. These lumps were melted while being stirred in a high frequency melting furnace in the atmosphere and then poured into a square mold to produce an alloy ingot. And rolling and heat processing were repeated about an alloy ingot, and it was set as the board material of thickness 30 mm. The rolling and heat treatment were performed while controlling so that the grain boundaries became 50 ⁇ m or more and 200 ⁇ m or less.
  • the plate was cut into a disk shape to prepare an Au alloy target.
  • the type of the Au alloy target manufactured in the present embodiment and the content of impurities are as shown in Table 1.
  • the grain boundaries are shown in Table 1 as average values.
  • the O concentration is infrared absorption using an oxygen and nitrogen analyzer (LECO TC-600), and the C and S concentrations are infrared absorption using a carbon sulfur analyzer (HORIBA EMIA-920V) It was measured.
  • the average value of grain boundaries is drawn a straight line randomly parallel to the metal micrograph of 140 times magnification, and the length of all the portions where the straight line overlaps the alloy phase is measured, and the average of the lengths Calculated by calculating the value.
  • the number of parallel straight lines drawn in the metallographic micrograph is such that the portion overlapping with the alloy phase is 200 points or more.
  • Quartz oscillator manufacture crystal resonator produced here is similar to surface mount type crystal resonator and FIG.
  • the quartz wafer cut out from the artificial quartz by AT cutting is further divided into a rectangular shape by polishing, cutting and the like.
  • the excitation electrode 6 and the lead-out electrode 6a were formed in the both main surfaces of a quartz piece by the sputtering method using said each target.
  • a Cr (chromium) film was sputtered on a quartz piece as a base electrode.
  • the base electrode is well compatible with the quartz crystal piece and secures the adhesion strength of the Au alloy formed thereon.
  • the thickness of the base electrode here was 50 ⁇ .
  • the thickness of the excitation electrode 6 decreases as the vibration frequency increases, and in this example, the vibration frequency is set to 26 MHz and is set to 1600 ⁇ in terms of Au.
  • the excitation electrode 6 is required to have the same mass if the material is the same and the vibration frequency is the same (the thickness of the crystal piece is the same). Therefore, the thickness of the excitation electrode 6 differs depending on the specific gravity of the electrode material used. From this, it becomes easy to compare the electrode thickness by converting it to the thickness of general Au regardless of the electrode material. For example, in the case of 1600 ⁇ in terms of Au, the thickness of Ag is 3000 ⁇ .
  • the container body 1 to which the crystal piece 2 was fixed was introduced into a vacuum chamber, and the excitation electrode 6 was irradiated with gas ions to scrape off part of the surface to adjust the vibration frequency.
  • the adjustment frequency here was set to 26 MHz as described above.
  • the metal cover 3 was joined to the opening end face of the container body 1 in a nitrogen gas atmosphere to form a quartz oscillator.
  • the planar outline of the container body 1 is 3.2 ⁇ 2.5 mm
  • the crystal piece is 2.1 ⁇ 1.4 mm.
  • the change width (variation) is smaller than that of Ag, and the graph becomes closer to the change width of Au (conventional example 3).
  • Pd is a chemically stable material next to Au.
  • the use of a material that is chemically stable compared to Ag gives good results, and in particular, binary alloys containing Au are also good. It can be said that the result is obtained (Reference Examples 1 and 2).
  • each crystal unit is housed in a constant temperature bath, and the vibration frequency f is measured every 10, 100, 500, 1000, 2000, 3000 hours, and the crystal piece 2 is sealed and sealed at the initial stage of completion
  • the number of samples of the quartz oscillator is 10 each.
  • the temperature of the constant temperature bath here was 85.degree.
  • test temperature 85 degreeC it corresponds roughly to the vibration frequency after 2 years, and corresponds to the vibration frequency after 4 years in 2000 hours and 6 years in 3000 hours. The results are shown in FIG.
  • the ternary Au alloy showed the stability of frequency temporal characteristics substantially equal to or higher than that of Au (Examples 1 to 7, Comparative Example 1).
  • the variation in frequency deviation among the crystal oscillators (10 pieces) after 1000 hours becomes large. That is, for example, the frequency deviation after 1000 hours becomes large as compared with the other Examples 1 to 7 in which the mass ratio of Au as Au-50% Ag-30% Pd (Example 7) is 20% or more.
  • the variation after 1000 hours is considered to be one of the factors that the Ag concentration is as high as 60 mass% and the Au is as low as 10 mass%. Therefore, in order to suppress the variation in frequency deviation, it is necessary to secure at least 20% by mass of the Au concentration in the Au alloy.
  • the concentration of Pd is within 30% by mass, so the concentration of Ag is 50% by mass at maximum. Therefore, the frequency temporal characteristic is within ⁇ 2 ppm and the variation in 1000 hours is suppressed, and the reliability is also enhanced.
  • the binary Au alloy also has a temporary effect as compared with Ag (Reference Examples 1 and 2 and Conventional Example 2).
  • the effect is thin compared to ternary alloys.
  • Ag is added, the influence of the frequency deviation changing in the negative direction becomes greater, and it becomes more difficult to maintain the stability of the frequency temporal characteristics. Therefore, a binary Au alloy can not be expected for the purpose of maintaining the performance while reducing the amount of Au in the Au alloy.
  • FIG. 5 shows the stability after aging of each example. This is the result of calculating the SN ratio of the zero-desired target from ⁇ f up to 1000 hours of evaluation of the frequency temporal characteristics, and it can be said that the performance is more stable as the SN ratio is larger.
  • Vibration frequency change Delta] f t of the crystal oscillator exposed to 85 ° C. (10 pieces) a (f t -f 1) (Hz ) was measured up to 1000 hours.
  • f t is the vibration frequency after t time
  • f 1 is the initial vibration frequency (vibration frequency before aging (0 hour)). Since Delta] f t value preferably does not change, and calculates the SN ratio ⁇ x as good nominal best characteristic zero.
  • the ternary Au alloy is more stable in performance than Ag or Pd, similarly to Au.
  • the performance is stabilized as the mass ratio of Ag is higher than that of Pd (Examples 1 to 3, Example 5).
  • the ternary Au alloy shown in the examples was substantially equal to or more than Au in manufacturing variation and aging characteristics at the time of use, and all were good (Example 1- 7).
  • the influence of the temporal aging characteristics of Ag and Pd on the aging characteristics (SN ratio) of the Au alloy tended to change depending on the Au concentration.
  • the tendency is that, for example, when the concentration of Au in the alloy is high, the tendency of the increase in the frequency temporal characteristics of Pd and the decrease of the same with Ag affect the Au alloy almost equally. It is. This tendency is also apparent from the fact that in the case of an Au alloy having an Au concentration of 60% by mass and an Ag: Pd mass ratio of 5: 5, the SN ratio is equal to the SN ratio of Au (see FIG. As a result of the increase and decrease tendency of Ag and Pd being equal, Example 4 of the fifth example of the present invention and the prior art example 1 show aging characteristics as stable as Au.
  • the effect that the frequency temporal characteristic of Au itself is flat largely affects the characteristics of the Au alloy. Therefore, even if there is some fluctuation in the mass ratio of Ag and Pd, the frequency temporal characteristics of the Au alloy itself become stable because the Au concentration is high.
  • the concentration of Au is higher than 50% by mass to 70% by mass
  • the mass ratio of the concentration of Ag and Pd in the Au alloy is within the range of 8: 2 to 2: 8. For example, there is no problem in the aging characteristics of the Au alloy. If the mass ratio is more preferably in the range of 7: 3 to 3: 7, further preferably 6: 4 to 4: 6, the aging characteristics of the Au alloy are further stabilized.
  • the aging characteristics tend to be stabilized by adding more Ag than Pd. This tendency is also apparent from the fact that the aging characteristics (SN ratio) are more stable when Ag is added in a larger amount than Pd at 50% by mass of Au concentration or 40% by mass (FIG. 5) Examples 1 and 2, Examples 3 and 5).
  • the mass ratio of Ag and Pd in the Au alloy is in the range of 8: 2 to 4: 6 when the Au concentration is as low as 20 to 50% by mass, the problem of the aging characteristics is a problem. There is no. If the mass ratio is more preferably in the range of 8: 2 to 5: 5, further preferably 8: 2 to 6: 4, the aging characteristics will be further stabilized.
  • Table 2 shows the result of measuring the average particle diameter of the excitation electrode film of each example.
  • the measurement scanned the surface of 1 micrometer x 1 micrometer using the scanning probe microscope (Innova by Veeco).
  • the surface shape after scanning was displayed by analysis software (SPM Lab Analysis V7.00), and 20 particles in the screen were randomly extracted.
  • the diameter of the extracted particles was determined on the screen, and the average value of these was used as the average particle diameter. It can be seen from Table 2 that the ternary Au alloy has a smaller average particle diameter of the excitation electrode film than the Au or binary Au-Ag alloy.
  • the present invention is useful as an electrode material of a piezoelectric vibrator, can be applied to a piezoelectric vibrator having little variation in manufacturing frequency of vibration frequency at the time of completion, and capable of maintaining frequency temporal characteristics for a long time even in use. Moreover, it can also contribute to the material cost reduction.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】振動子の製造時バラツキ及びエージング特性をAuよりも良好とすることができ、Auよりも安価とすることができる電極材料を提供する。 【解決手段】本発明は、Auと、2種の金属M1、M2との3元系合金からなり、圧電片に振動を励起する励振電極としての振動子用電極材料であって、前記2種の金属M1、M2は、(a)金属M1:圧電振動子の周波数経時特性(Δf1/f1)が基準値f1よりも減少する傾向となる金属、(b)金属M2:圧電振動子の周波数経時特性(Δf1/f1)が基準値f1より増加する傾向となる金属、である。そして、金属M1は、Ag、Al、Niであり、金属M2は、Pd、Ru、Pt、Ir、Rh、Cuであるものが好ましい。

Description

エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット
 本発明は、励振電極として適用される水晶振動子等の振動子用電極材料に関し、特に圧電振動子の製造時バラツキ及びエージング特性(周波数経時特性)を良好なものとし、更に、安価な振動子用電極材料に関する。また、これを用いた圧電振動子、及び、その電極を形成するのに好適なスパッタリングターゲットに関する。
 圧電振動子、特に、水晶振動子は周波数制御素子として周知され、各種電子機器の周波数・時間の基準源として内蔵される。近年では、民生用のデジタル制御機器にも不可欠の部品となり、需要も高まる一方であり、これに伴い、品質をさらに向上させた上での低価格化が求められている。
 図4は、水晶振動子の一例である表面実装型の水晶振動子の構成を示す。水晶振動子は、積層セラミックからなる容器本体1に水晶片2を収容し、金属カバー3を被せて密閉封入されてなる。容器本体1の内底面には水晶保持端子4を、外底面には4角部に実装端子5を有する。金属カバー3は容器本体1の開口端面に設けた不図示の金属リングにシーム溶接によって接合される。そして、水晶保持端子4は一組の対角部の実装端子5に、金属カバー3は、他組の対角部の実装端子5に貫通電極を含む導電路によって電気的に接続される。
 水晶片2は、例えば人工水晶から切り出された水晶ウェハを、さらに研磨・切断加工等して個々に分割され、平面視を矩形状とされたものである。水晶片2の両主面には、厚みすべり振動を励起する励振電極6が形成され、水晶片2の一端部両側には引出電極6aが延出形成される。そして、引出電極6aの延出した水晶片2の一端部両側が、金属カバー3による封止前に、導電性接着剤7によって水晶保持端子4に固着される。
 この水晶振動子の製造方法としては、真空チャンバー内(真空雰囲気中)でのスパッタリングや蒸着によって、励振電極6及び引出電極6aを水晶片2に形成する。尚、この際、励振電極6の付着強度確保のため、水晶片2と馴染みが良いCr(クロム)、Ni(ニッケル)あるいはNiCr合金膜を下地電極として形成し、その上に励振電極6を形成するのが一般的である。励振電極を形成後、真空チャンバーから水晶片2を取り出し、大気雰囲気中で引出電極6aの延出した水晶片2の一端部両側を容器本体1の内底面に固着する。
 次に、水晶片2を収容した容器本体1を再度真空雰囲気中に収容して、励振電極6にガスイオンを照射し、励振電極6の表面の一部を削り取って質量を減じる。これにより、水晶振動子の振動周波数が低い方から高い方に調整される。そして、最後に、再びの大気中に戻した後に、例えば常圧とした窒素ガス雰囲気中で金属カバー3を開口端面に接合して、水晶振動子を完成させる。尚、水晶振動子とは一般に水晶片2が密閉封入された状態を指し、クリスタルユニットとも呼ばれている。
 ところで、水晶振動子において、製造者及びユーザ(使用者)の求める条件の一つとして、水晶振動子の完成時に振動周波数がばらつく製造時バラツキ、及び、使用時における時間の経過とともに振動周波数が変化する周波数経時特性(エージング特性)が挙げられる。ここでの製造時バラツキは、振動周波数の公称値(ユーザの求める振動周波数)f0に対する周波数偏差Δf0/f0(ppm)で示される。尚、Δf0は公称周波数からのずれ周波数量である。また、周波数経時特性は、水晶振動子の完成後の振動周波数を基準値f1とした周波数偏差Δf1/f1(ppm)で示され、この場合のΔf1は振動周波数f1からのずれ周波数量となる。
 そして、これらの製造時バラツキ及び周波数経時特性は、水晶片2の表面上に形成される特に励振電極6(引出電極6a含む)の構成材料に依存することが多い。ここで、励振電極6の構成材料としては、一般には、Au(金)、Ag(銀)又はAu-Ag合金が使用されている。
 励振電極6の構成材料として最も好ましいのはAuである。Auは化学的に極めて安定であり酸化、硫化による質量変化が少なく、また、電気伝導性も良好な電極材料である。そのため、上記の水晶振動子の製造工程において、周波数調整後に大気中に戻した後にも酸化し難く完成時の製造時バラツキが少ない。また、月や年単位での長期間にわたる周波数経時特性も良好で振動周波数が時間の経過とともに概ね平坦な特性になる。
 但し、Auは材料コスト面において他の金属よりも高価で不利な面がある。そこで、Auの代替材料としてAg等の適用がなされているが、それら金属は水晶振動子の特に製造時バラツキ及び周波数経時特性を十分に満足させるものではない。
 即ち、例えば、Agは比較的容易に酸化、硫化が生じる傾向があるため、電極形成時には純Agであっても、その後、容器本体1に水晶片2を固着する際(大気中)、表面が酸化する。そして、それ以上の酸化の進行は抑止され、化学的には安定化する。しかし、水晶片2の固着作業後の、周波数調整は再度真空中で処理するものであり、削り取られた露出面は再度純Agになって活性化する。そして、周波数調整後に大気にさらされることでその露出面が再度酸化する。そのため、周波数調整をしたにも拘わらず、酸化によって質量が増加し、完成した水晶振動子の製造時バラツキが生じ易くなる。また、このような水晶振動子は、水晶片2を固着する導電性接着剤7から放出される有機ガス成分等の影響により使用中にも酸化、硫化が進行し、時間の経過と共に振動周波数が低下して周波数経時特性が悪化する。
 また、特許文献1では、Auを使用することなく、Ag、Pdからなる二元合金を用いた励振電極が示されている。しかし、この場合には、励振電極として基本的にAgが用いられているので、周波数調整後における大気中でのAgの酸化や硫化による質量増加に起因して、特に製造時バラツキを悪化させる問題がある。
特開平11-168343号公報
 そこで、本発明は、Auよりも安価とすることを基本とし、製造時バラツキ及びエージング特性をAuとほぼ同等以上にすることができる振動子用電極材料及びこれを用いた圧電振動子並びに該材料からなるスパッタリングターゲットを提供することを目的とする。
 本発明者等は、上記課題を解決すべく、新たな励振電極材料としてAuを主体とした合金の適用を検討した。Auを主体とするのは、上記の通り、化学的安定性というAuが有する特性を重視したことによる。そして、高価なAuであっても、他の金属との合金化により材料全体の低コスト化を図ることができると考えたからである。
 そして、本発明においては、製造時バラツキ及び周波数経時特性の改善も課題としている。この点、製造時のバラツキ(Δf0/f0)の軽減については、Auという安定性の高い金属を基本とした合金を適用することで達成できると考えられる。一方、周波数経時特性(Δf1/f1)について、本発明者等は、各種金属の周波数経時特性を検討したところ、周波数を低下させる傾向を示す金属と、上昇させる傾向を示す金属が存在することを見出した。そして、本発明者等は、化学的に安定で周波数経時特性を平坦とするAuに対して、互いに反対方向の周波数経時特性となって相殺し合うそれぞれの金属を合金化して三元系合金とすることで合金全体による製造時バラツキ及び周波数経時特性を安定化することができるとして本発明に想到した。
 即ち、本発明は、Auと、2種の金属M1、M2との3元系合金からなり、圧電片に振動を励起する励振電極としての振動子用電極材料であって、前記2種の金属は、(a)金属M1:圧電振動子の周波数経時特性(Δf1/f1)が基準値f1よりも減少する傾向となる金属、(b)金属M2:圧電振動子の周波数経時特性(Δf1/f1)が基準値f1より増加する傾向となる金属である振動子用材料である。但し、f1は圧電片の密閉封入時の振動周波数、Δf1は時間の経過とともに変化する振動周波数と基準値f1との差周波数である。
 本発明に係る振動子用電極材料は、Auの合金成分によって化学的に安定な性質を維持するので、酸化等を起こしにくい。したがって、特に真空中での周波数調整後に大気中に戻してカバー封止した圧電振動子の完成前後での振動周波数の製造時バラツキを抑制できる。
 そして、本発明は、周波数経時特性に相反する作用を有する金属M1、M2を化学的に安定なAuに合金化し、それぞれの金属の作用をバランスさせて、合金全体よる製造時バラツキ及び周波数経時特性を安定化させるものである。
 この金属M1、M2の合金化による周波数経時特性の安定化について、詳細に説明すると、図1のようになる。図1(a)は、Au、金属M1、M2のそれぞれの周波数経時特性を示すものである。この図1(a)は、M1、M2の例としてAg、Pdについての、周波数経時特性のデータを基に作成されたものである(後述の従来例1~3参照)。上記したように周波数経時特性は、完成時の水晶振動子の振動周波数を基準値f1とし、時間経過と共に測定される水晶振動子の振動周波数をfとしたときのf1からのずれ周波数量(f-f1)をΔf1としたとき、Δf1/f1を経時的にプロットしたものである。そして、Auは、図1(a)で示すように、周波数経時特性が良好であり、時間経過があってもΔf1/f1の変動が少なく、その軌跡は略水平となる。
 本願発明における金属M1、M2の周波数経時特性は、図1(a)のようなものとなる。つまり、金属M1は、これを電極としたときに時間経過と共に周波数が減少し、Δf1/f1が低下する(マイナス方向に変動する)特性を有する金属である。逆に、金属M2は、時間経過と共に、周波数が増加し、Δf1/f1が増加する(プラス方向に変動する)特性を有する金属である。
 本願発明に係る電極材料は、かかる特性を有する金属M1、M2をAuに合金化させることで、Δf1/f1の変化について、それぞれの金属が有する作用を相殺させ、図1(b)のように合金全体のΔf1/f1の経時的変動を抑制することを狙うものである。
 金属M1、M2について、上記のような周波数経時特性を示す理由については、必ずしも全てが明確ではないが、本発明者等の推察としては、周波数が減少傾向に推移する金属M1とは、比較的に酸化、硫化等の化学的変化が生じやすい金属であり、それによる質量変化が周波数経時特性に変化を与えていると考える。また、周波数が増加傾向に推移する金属M2は、励振電極となる薄膜製造後の時間経過に伴う機械的性質(硬度等)に変化が生じる金属であると考える。これは、金属M2は、スパッタリングによる成膜時に内部応力が蓄積されやすく、この内部応力が時間経過により緩和され、周波数経時特性が変化するものと考えている。
 そして、本発明者等は、金属M1、M2の範囲について、特に好適な金属を検討した。その結果、金属M1は、Ag、Al、Niの少なくともいずれかであり、金属M2は、Pd、Ru、Pt、Ir、Rh、Cuの少なくともいずれかとするのが好ましいとした。これらの金属は、Auとの合金化において、明確な周波数特性への影響を有し、これらのバランスをとることで周波数特性の安定化に寄与するからである。また、金属M1、M2の特に好ましい組合せとしては、金属M1をAgとし、金属M2をPdとする、Au-Ag-Pd合金である。尚、金属M1、M2は、上記の各金属を複数含んでも良い。
 本発明に係るAu合金からなる励振電極としての振動子用電極材料について、各構成金属の含有量は、Au濃度20~70質量%とし、M1、M2の合計濃度を80~30質量%とするのが好ましい。圧電振動子の振動周波数に関する製造時バラツキを抑制するためにはある程度のAu濃度の確保を要し、少なくとも20質量%とすることが好ましい。また、材料全体のコストを考慮すれば、Au濃度は70質量%までの配分とすることが好ましい。
 また、M1、M2の合計濃度を80~30質量%としたとき、それぞれ濃度の質量比は2:8~8:2の範囲内とするのが好ましい。両金属の作用が過度に偏ると周波数経時特性が安定し難くなるからである。この質量比については、より好ましくは3:7~7:3、更に好ましくは4:6~6:4とすれば、周波数経時特性が更に安定する。
 これらの場合、Auの濃度が高いほど、Auの周波数経時特性が支配的になるので、金属M1及びM2の質量比は2:8又は8:2の方向にシフトしても許容される。これに対し、Auの濃度が低いほど、金属M1及びM2の合計濃度が高まって、これによる周波数経時特性が支配的になる。したがって、この場合には、金属M1とM2との重量比を4:6~6:4の均等にし、金属M1による右下がりと金属M2による右上がりとなる周波数経時特性が相殺する必要がある。
 また、図1aのグラフから分かるように、Auの周波数経時特性は概ね平坦であるが、100時間以降では微視的には右下がりとなる減少傾向になる。したがって、金属M1とM2の質量比によって基準値よりも増加する右上がりの周波数経時特性を形成し、Auによる右下がりの周波数経時特性を相殺し、Au単体よりも優れた周波数経時特性を得ることも可能となる。
 尚、本発明での三元合金(Au、Ag、Pd)からなる励振電極としての振動子用電極材料は、製造工程中に含有される不純物についての明示はないが、現実にはこれら不純物の混入は不可避であり、仮に不純物が混入されたとしてもその不可避の範囲内でこれらを排除するものではない。例えば、目安として不純物(酸素、炭素、硫黄)の合計が150ppm以下であれば格別の問題はない。より好ましくは100ppm以下とする。特にO(酸素)、S(硫黄)の混入は電極膜中のAg、Pd等を酸化あるいは硫化させ周波数経時特性を不安定にするため好ましくない。また、C(炭素)の混入は電極の抵抗を増加させるために好ましくない。
 以上説明した本発明に係る振動子用電極材料からなる電極が形成された圧電片を備える圧電振動子は、完成時における振動周波数の製造時バラツキも少なく、使用段階においても長期に周波数経時特性を維持できる。本発明は、特に、圧電片を水晶片とする水晶振動子として有用であり、励振電極が水晶片の表面に形成されたものに有用である。
 また、実施形態では、水晶振動子は表面実装型として説明したが、これに限らず、例えば金属ベースとしてリード線が導出したリード型でも適用でき、要するに、水晶片等を含む圧電片に振動を励起する励振電極を有する圧電振動子に適用でき、弾性表面波を励起するIDT電極のようなものも含まれる。
 本発明に係る振動子用電極材料を電極として形成するためには、真空蒸着等の薄膜形成法も適用できるが、効率的な製品製造のためにスパッタリング法が好ましい。
 本発明に係る振動子用電極材料は、スパッタリングにも好適に対応している。これは、Ag(スパッタレート:2.20)、Cu(スパッタレート:1.59)、Pd(スパッタレート:1.41)は、スパッタレートがAu(スパッタレート:1.65)に近いことから、ターゲット組成との乖離のない組成の薄膜を形成することができるからである。よって、電極形成のためのスパッタリングターゲットとして上記したAu合金からなるターゲットが適用できる。
 ターゲットの不純物濃度は低減されているものが好ましい。ターゲット中の不純物は、製造される薄膜(電極)の不純物の要因となり、その特性を損なうおそれがある。ターゲットに含まれる可能性のある不純物としてとしては、O、C、Sが考えられるが、これらの不純物量の合計が150ppm以下であることがこのましく、更に好ましくは100ppm以下とする。特にO、Sの混入は電極膜中のAg、Pd等を酸化あるいは硫化させ周波数経時特性を不安定にするため好ましくない。また、Cの混入は電極の抵抗を増加させるために好ましくない。
 より好ましくは、個々の不純物について、酸素含有量、炭素含有量、硫黄含有量の少なくともいずれか(好ましくは全部)が80ppm以下であるのが好ましい。
 更に、より均質な組成の電極を形成するためには、ターゲットも均質であることが好ましい。この点、ターゲットも多結晶構造を有する合金金属であるがその平均粒界径が50~200μmであるものが好ましい。平均粒界径50μmよりも小さいとスパッタリング中にパーティクルが発生しやすく、200μmよりも大きいと偏析が生じやすく電極膜の合金組成がばらつくからである。また、結晶粒界における偏析は好ましくないことから、粒界内の組成と全合金の平均組成とのずれについて、Au濃度で0.05質量%~1.0質量%の範囲内であることが好ましい。
 尚、本発明に係るスパッタリングターゲットの製造方法としては、溶解鋳造法の他粉末冶金法によっても製造可能である。
 以上説明したように、本発明に係る電極材料によれば、Au単体ではなくAuを含む三元合金として、圧電振動子の製造時バラツキを抑制すると共に、周波数経時特性もAuとほぼ同等以上に良好なものとすることができる。また、従来のAuからなる電極材料に対して、合金化によりAuの使用量を低減し、材料コストの低減にも寄与することができる。
Au、金属M1、M2、及び本発明に係る合金の周波数経時特性を模式的に説明する図。 各実施例に係る水晶振動子の製造時バラツキである、公称周波数f0に対する初期周波数f1の周波数偏差Δf0/f0の分布を示す図。 各実施例に係る水晶振動子の周波数経時特性である初期振動周波数f1に対する周波数偏差Δf1/f1を示す図 表面実装型の水晶振動子の構成を示す図。 各実施例の望目特性を示す図。
 以下、本発明の実施形態について説明する。本実施形態では、各種組成のAu3元系合金からなるスパッタリングターゲットを製造し、これを基に水晶振動子を製造した。また、対比のため、2元系のAu合金についても同様の検討を行った。
合金ターゲットの製造:Au合金ターゲットは次のような方法で製造した。Au塊、Ag塊、Pd塊を所定の質量比になるように秤量し、アルミナるつぼ中に挿入した。これらの塊を大気中で高周波溶解炉にて攪拌しつつ溶融させた後、角型鋳型に流し込んで合金インゴットを製造した。そして、合金インゴットについて圧延及び熱処理を繰り返し、厚さ30mmの板材とした。圧延および熱処理は結晶粒界が50μm以上200μm以下になるように制御しながら行った。この板材を円盤状に切り出されAu合金ターゲットを作成した。本実施形態で製造したAu合金ターゲットの種類、不純物含有量は表1の通りである。また、結晶粒界は平均値を表1に示した。
 製造後のターゲットについては、O濃度を酸素窒素分析装置(LECO TC-600)を用いて赤外線吸収方式により、C、S濃度を炭素硫黄分析装置(HORIBA EMIA-920V)を用いて赤外線吸収方式により測定した。また、結晶粒界の平均値は、倍率140倍の金属顕微鏡写真に無作為に平行な直線を引き、その直線が合金相と重なった全ての部分の長さを計測し、その長さの平均値を算出することにより求める。金属顕微鏡写真に引く平行な直線の本数は、合金相と重なる部分が200点以上となる本数とする。
Figure JPOXMLDOC01-appb-T000001
水晶振動子の製造:ここで製造した水晶振動子は、図4と同様の表面実装型の水晶振動子である。人工水晶からATカットして切り出された水晶ウェハを、さらに研磨・切断加工等して矩形状に分割する。そして、上記の各ターゲットを用いたスパッタリング法で水晶片の両主面に励振電極6及び引出電極6aを形成した。尚、このAu合金からなる電極形成の前に、水晶片に、下地電極としてCr(クロム)膜をスパッタした。下地電極は、水晶片と馴染みがよくその上に形成するAu合金の付着強度を確保するものである。ここでの下地電極の厚さは50Åとした。励振電極6の厚さは、一般には振動周波数が高いほど小さくなり、この例では振動周波数を26MHzとして、Au換算で1600Åとした。
 なお、励振電極6は、材料がいずれであれ、振動周波数が同じ(水晶片の厚みが同じ)場合は、質量を同一とすることが求められる。したがって、使用する電極材料の比重によって励振電極6の厚みは異なる。このことから、電極材料がいずれであっても、一般的なAuの厚みに換算して電極厚みの比較を容易にする。例えば前述のAu換算で1600Åは、Agで3000Åの厚みとなる。
 上記の励振電極6の形成後、容器本体1の内底面の水晶保持端子4に水晶片2の引出電極6aが延出した一端部両側を導電性接着剤7によって固着した。そして、水晶片2が固定された容器本体1を真空チャンバーに導入し、励振電極6にガスイオンを照射して表面の一部を削り取って振動周波数の調整を行った。ここでの調整周波数は、前述の26MHzに設定した。振動周波数の調整後、窒素ガス雰囲気中で金属カバー3を容器本体1の開口端面に接合して水晶振動子とした。ちなみに、容器本体1の平面外形は3.2×2.5mmであり、水晶片は2.1×1.4mmである。
水晶振動子の特性評価:以上で製造した水晶振動子について、製造時バラツキ及び周波数経時特性の評価を行った。まず、水晶片2を密閉封入した水晶振動子の完成時における振動周波数の製造時バラツキの評価を行った。この評価では、製造後の水晶振動子(100個)について初期振動周波数f1を測定し、公称周波数f0に対する初期振動周波数f1の周波数偏差Δf0/f0(但し、Δf0=f1-f0)を算出し、統計を取った。その結果を図2に示す。
 図2から、従来品であるAuを励振電極6とした水晶振動子は、周波数偏差Δf0/f0が収束しており製造時におけるバラツキの少ない良好なものといえる(従来例1)。そして、3元系Au合金を励振電極6とした水晶振動子は、Auとほぼ同等の特性を有する(実施例1~7、比較例1)。これに対し、Agを励振電極6とした水晶振動子は、周波数偏差Δf0/f0に分散が見られバラツキが多いことがわかる(従来例2)。また、Pdの場合はAgよりも変化幅(ばらつき)は小さく、Auでの変化幅に接近したグラフとなる(従来例3)。これは、PdがAuに次いで化学的に安定な材料であることに起因する。尚、製造時バラツキの評価(Δf0/f0)の観点から見ると、Agに比べて化学的に安定な材料を用いた場合は良好な結果となり、特にAuを含有した2元系合金も良好な結果になるといえる(参考例1、2)。
 次に、周波数経時特性の評価を行った。この検討は、各水晶振動子を所定温度の恒温槽に収容し、10、100、500、1000、2000、3000時間毎に振動周波数fを測定し、水晶片2を密閉封入した完成時の初期振動周波数f1の周波数偏差Δf1/f1(ppm)=(f-f1)/f1×1,000,000を算出した。但し、水晶振動子の試料数はそれぞれ10個である。ここでの恒温槽の温度は85℃で行った。尚、試験温度85℃についての1000時間では、概ね、2年後の振動周波数に相当し、2000時間では4年後、3000時間では6年後の振動周波数に相当する。この結果を図3に示す。
 この電極材料の周波数経時特性の評価について、85℃、1000時間における周波数偏差Δf1/f1が±2ppm以内であることを合格条件としたとき、Auは、85℃における周波数偏差Δf1/f1は長時間経過しても周波数偏差Δf1/f1が低く周波数経時特性の安定性が確認された(従来例1)。これに対して、Agの場合は、全体として周波数が下がる傾向にあり、1000時間経過前に周波数偏差が-2ppmを下回るものがみられた(従来例2)。また、Pdの場合には、全体として周波数が上がる傾向にあり、1000時間経過前に周波数偏差が2ppmを上回るものがみられた(従来例3)。尚、Pdについては、試験時間が1000時間を越えて例えば約5000時間経過すると、周波数偏差の下降が生じる。但し、周波数偏差の降下が生じても、それ以降の長時間にわたり依然としてプラスの領域内にあることにかわりはない。
 これらの金属では上記結果が出た一方で、3元系Au合金については、Auとほぼ同等以上の周波数経時特性の安定性を示した(実施例1~7、比較例1)。
 但し、組成がAu-60%Ag-30%Pdの場合(比較例1)、合格条件は満たすものの、1000時間後における各水晶振動子(10個)間の周波数偏差のバラツキが大きくなる。すなわち、例えばAu-50%Ag-30%Pd(実施例7)としてAuの質量比を20%以上とした他の実施例1~7と比較して1000時間後の周波数偏差が大きくなる。この1000時間後のバラツキは、Ag濃度が60質量%と高く、Auが10質量%と低いことが要因の一つと考えられる。従って、周波数偏差のバラツキを抑制するためには、Au合金中のAu濃度は少なくとも20質量%確保する必要がある。この場合、合金全体の抵抗値(クリスタルインピーダンス)を考慮すると、Pdの濃度は30質量%以内となるので、Agの濃度は最大でも50質量%となる。したがって、周波数経時特性を±2ppm以内にして、しかも1000時間でのバラツキを抑制するので信頼性も高められる。
 尚、2元系のAu合金もAgと比較して一応の効果はあるものと考えられる(参考例1、2、従来例2)。しかし、長時間経過の測定結果を参照すると、3元系合金と比較して効果は薄いものといえる。尚且つ、Agを添加すればするほど、周波数偏差がマイナス方向に変化する影響が大きくなり、周波数経時特性の安定性を維持することが難しくなる。そのため、Au合金中のAu量を減らしつつ、その性能を維持するという目的においては、2元系のAu合金は期待することができない。
 図5は、各実施例のエージング後の安定性を示したものである。これは、周波数経時特性の評価1000時間までのΔfからゼロ望目のSN比を計算したものであり、SN比が大きいほど性能が安定しているといえる。
 以下にゼロ望目のSN比算出方法を記載する。85℃に暴露した水晶振動子(10個)の振動周波数変化Δf=(f-f1)(Hz)を1000時間まで測定した。fはt時間後における振動周波数、f1は初期振動周波数(エージング前(0時間)の振動周波数)である。Δf値は変化しないことが好ましいので、ゼロが良い望目特性としてSN比ηxを計算した。
 評価は10点のサンプルを用いて行い、水晶振動子の放置時間は0h、50h、100h、200h、400h、700h、1000hとして、合計60点のΔfを測定した。0hを除いた各経過時間におけるΔfを、Δf50、Δf100、Δf200、Δf400、Δf700、Δf1000とした場合、σ=((Δf50)+(Δf100+(Δf200+(Δf400+(Δf700+(Δf1000)/60より、ηx=-log(σ)(db)でSN比を計算する。
 図5から、3元系Au合金は、Auと同様に、AgやPdよりも性能が安定していることがわかる。また、Au濃度が低い場合には、PdよりもAgの質量比率が高い方が、性能が安定する結果となっている(実施例1~3、実施例5)。
 以上の試験結果から、実施例に示す3元系Au合金は、製造時バラツキ、及び使用時のエージング特性において、Auとほぼ同等以上であり、いずれも良好なものであった(実施例1~7)。その中でも、Ag、Pdそれぞれの周波数経時特性がAu合金のエージング特性(SN比)に与える影響が、Au濃度に応じて変化する傾向がみられた。
 その傾向とは、例えば、合金中のAu濃度が高い場合において、Pdの有する周波数経時特性の増加傾向及びAgの有する同減少傾向は、Au合金に対してほぼ均等に影響してくる、というものである。かかる傾向は、Au濃度60質量%、Ag、Pd濃度の質量比が5:5であるAu合金の場合に、そのSN比が、AuのSN比と同等であることからも明らかであり(図5の実施例4と従来例1)、AgとPdの増減傾向が均等である結果、Auと同等に安定したエージング特性を示している。
 但し、Au濃度が高いことによって、Auそのものの有する周波数経時特性が平坦である作用が、Au合金の特性に大きく影響することも確かである。そのため、Ag、Pdの質量比に多少の変動があっても、Au濃度が高いことで、Au合金そのものの周波数経時特性は安定する。その後の追加試験によれば、Au濃度が50質量%より多く70質量%まで、と高めの場合、Au合金中のAg、Pd濃度の質量比は8:2~2:8の範囲内とすれば、Au合金のエージング特性に問題はない。かかる質量比は、より好ましくは7:3~3:7、更に好ましくは6:4~4:6の範囲内とすれば、Au合金のエージング特性が更に安定する。
 一方で、Au濃度が低い場合には、AgをPdよりも多く添加することにより、エージング特性が安定する傾向がある。この傾向は、Au濃度50質量%、あるいは40質量%の場合において、AgをPdよりも多く添加した方が、エージング特性(SN比)が安定していることからも明らかである(図5の実施例1と2、実施例3と5)。その後の追加試験によれば、Au濃度20~50質量%と低めの場合、Au合金中のAg、Pd濃度の質量比は8:2~4:6の範囲内とすれば、エージング特性に問題はない。かかる質量比は、より好ましくは8:2~5:5、更に好ましくは8:2~6:4の範囲内とすれば、エージング特性が更に安定することとなる。
 また、表2は、各実施例の励振電極膜の平均粒子径を測定した結果を示すものである。測定は、走査型プローブ顕微鏡(Veeco社製 innova)を使用し、1μm×1μmの表面を走査した。走査後の表面形状を解析ソフト(SPMLab Analyssis V7.00)で表示し、画面中の粒子を無作為に20個抽出した。抽出した粒子は画面上で直径を求め、これらの平均値を平均粒子径とした。表2から、3元系Au合金は、Auや2元系Au-Ag合金と比べて、励振電極膜の平均粒子径が小さくなることがわかる。
Figure JPOXMLDOC01-appb-T000002
 本発明は、圧電振動子の電極材料として有用であり、完成時の振動周波数の製造時バラツキが少なく、また、使用段階においても長期に周波数経時特性を維持できる圧電振動子に適用できる。また、その材料コスト低減にも資することができる。
1 容器本体
2 水晶片
3 カバー
4 水晶保持端子
5 実装端子
6 励振電極
7 導電性接着剤

Claims (9)

  1. Auと、2種の金属M1、M2との3元系合金からなり、圧電片に振動を励起する励振電極としての振動子用電極材料であって、
    前記2種の金属M1、M2は、下記特性を有する金属である振動子用電極材料。
    (a)金属M1:圧電振動子の周波数経時特性(Δf1/f1)が基準値f1よりも減少する傾向となる金属
    (b)金属M2:圧電振動子の周波数経時特性(Δf1/f1)が基準値f1より増加する傾向となる金属
    (但し、基準値f1は圧電片の密閉封入時の振動周波数、Δf1は時間経過後の振動周波数と基準値f1との差周波数)
  2.  金属M1は、Ag、Al、Niの少なくともいずれかであり、金属M2は、Pd、Ru、Pt、Ir、Rh、Cuの少なくともいずれかである請求項1記載の振動子用電極材料。
  3.  金属M1は、Agであり、金属M2はPdである請求項1記載の振動子用電極材料。
  4.  Au濃度20~70質量%とし、M1、M2の合計濃度を80~30質量%とする請求項1~請求項3のいずれかに記載の振動子用電極材料。
  5.  M1、M2の濃度の質量比は2:8から8:2の範囲内にある請求項4記載の振動子用電極材料。
  6.  請求項1~請求項5記載の材料からなる励振電極が形成された圧電片を備える圧電振動子。
  7.  圧電片は水晶片であり、励振電極が前記水晶片の表面下地電極上に形成されたものである請求項6記載の圧電振動子。
  8.  請求項1~請求項5記載の材料からなるAu合金スパッタリングターゲットであって、不純物として、O含有量、C含有量、S含有量の合計が150ppm以下であることを特徴とするスパッタリングターゲット。
  9.  平均粒界径が50~200μmである組織を有する、請求項8記載のスパッタリングターゲット。
PCT/JP2010/057606 2009-12-25 2010-04-28 エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット WO2011077766A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011547349A JP5400898B2 (ja) 2009-12-25 2010-04-28 エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット
CN201080059290.7A CN102687396B (zh) 2009-12-25 2010-04-28 耐老化特性优良的振子用电极材料及使用该材料的压电振子、以及由该材料构成的溅射靶材
US13/516,365 US9065418B2 (en) 2009-12-25 2010-04-28 Resonator electrode material excellent in aging property, piezoelectric resonator using the same material, and sputtering target made of the same material
TW099140145A TWI485268B (zh) 2009-12-25 2010-11-22 具優質時效特性之震動子用電極材料以及使用該材料之壓電震動子與由該材料所構成之濺鍍靶材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295350 2009-12-25
JP2009295350 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077766A1 true WO2011077766A1 (ja) 2011-06-30

Family

ID=44195318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057606 WO2011077766A1 (ja) 2009-12-25 2010-04-28 エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット

Country Status (5)

Country Link
US (1) US9065418B2 (ja)
JP (1) JP5400898B2 (ja)
CN (1) CN102687396B (ja)
TW (1) TWI485268B (ja)
WO (1) WO2011077766A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022802A (ja) * 2012-07-13 2014-02-03 River Eletec Kk 音叉型水晶振動子
JP2018098592A (ja) * 2016-12-12 2018-06-21 日本電波工業株式会社 圧電振動片及び圧電デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109633A (ja) * 2013-10-22 2015-06-11 株式会社大真空 圧電振動素子と当該圧電振動素子を用いた圧電デバイスおよび、前記圧電振動素子の製造方法と当該圧電振動素子を用いた圧電デバイスの製造方法
DE102014214683A1 (de) * 2014-07-25 2016-01-28 Heraeus Deutschland GmbH & Co. KG Sputtertarget auf der Basis einer Silberlegierung
JP2017175203A (ja) * 2016-03-18 2017-09-28 セイコーエプソン株式会社 発振器、電子機器および移動体
CN112202415B (zh) * 2020-09-25 2021-09-24 杭州星阖科技有限公司 一种体声波谐振器的制造工艺方法和体声波谐振器
CN115109963B (zh) * 2022-06-29 2023-11-17 重庆科技学院 一种晶体振荡器银铋铜合金电极及制作工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141242A (ja) * 2000-10-31 2002-05-17 Furuya Kinzoku:Kk 電子部品
JP2004084065A (ja) * 2002-06-24 2004-03-18 Kobelco Kaken:Kk 銀合金スパッタリングターゲットとその製造方法
JP2006157509A (ja) * 2004-11-30 2006-06-15 Kyocera Kinseki Corp 圧電振動子
JP2008042873A (ja) * 2006-08-01 2008-02-21 Txc Corp 電極構造および圧電結晶発振器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595075A (ja) * 1991-10-02 1993-04-16 Seiko Epson Corp 半導体装置
EP0582830B1 (de) * 1992-07-31 1997-03-19 Hoechst Aktiengesellschaft Planarer Sensor aus Keramikmaterial zum Nachweis von brennbaren Gasen
JPH1168501A (ja) * 1997-08-22 1999-03-09 Matsushita Electric Ind Co Ltd 水晶振動子および水晶振動子の製造方法
JPH11168343A (ja) 1997-12-04 1999-06-22 Murata Mfg Co Ltd 厚み縦圧電共振子
JP2000239835A (ja) * 1999-02-22 2000-09-05 Japan Energy Corp スパッタリングターゲット
DE10006352A1 (de) * 2000-02-12 2001-08-30 Bosch Gmbh Robert Piezoelektrischer Keramikkörper mit silberhaltigen Innenelektroden
TWI258514B (en) 2002-06-24 2006-07-21 Kobelco Res Inst Inc Silver alloy sputtering target and process for producing the same
JP2005236360A (ja) 2004-02-17 2005-09-02 Seiko Epson Corp 圧電振動片の電極及び圧電振動子
JP5216210B2 (ja) * 2006-12-28 2013-06-19 日本電波工業株式会社 水晶振動片および水晶振動デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141242A (ja) * 2000-10-31 2002-05-17 Furuya Kinzoku:Kk 電子部品
JP2004084065A (ja) * 2002-06-24 2004-03-18 Kobelco Kaken:Kk 銀合金スパッタリングターゲットとその製造方法
JP2006157509A (ja) * 2004-11-30 2006-06-15 Kyocera Kinseki Corp 圧電振動子
JP2008042873A (ja) * 2006-08-01 2008-02-21 Txc Corp 電極構造および圧電結晶発振器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022802A (ja) * 2012-07-13 2014-02-03 River Eletec Kk 音叉型水晶振動子
JP2018098592A (ja) * 2016-12-12 2018-06-21 日本電波工業株式会社 圧電振動片及び圧電デバイス

Also Published As

Publication number Publication date
TWI485268B (zh) 2015-05-21
JPWO2011077766A1 (ja) 2013-05-02
US9065418B2 (en) 2015-06-23
TW201129702A (en) 2011-09-01
CN102687396A (zh) 2012-09-19
JP5400898B2 (ja) 2014-01-29
US20120248943A1 (en) 2012-10-04
CN102687396B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2011077766A1 (ja) エージング特性に優れる振動子用電極材料及び該材料を用いた圧電振動子並びに該材料からなるスパッタリングターゲット
TWI582247B (zh) Ag合金濺鍍靶及Ag合金膜之製造方法
JP6869237B2 (ja) スパッタリングターゲット及び、その製造方法
KR20070108908A (ko) 스퍼터링 타겟 제조방법
KR101007585B1 (ko) 고순도 루테늄 합금 타겟트 및 그 제조방법과 스퍼터막
JP4801279B2 (ja) スパッタリングターゲット材
JP6043413B1 (ja) アルミニウムスパッタリングターゲット
JP4418777B2 (ja) Ag基合金からなるスパッタリングターゲット材および薄膜
EP3279366B1 (en) Cu-ga alloy sputtering target and method of manufacturing cu-ga alloy sputtering target
JP6451481B2 (ja) 誘電体膜および誘電体素子
JP6743867B2 (ja) W−Tiスパッタリングターゲット
JP2017108365A (ja) 圧電振動子およびその製造方法
JP3061654B2 (ja) 液晶ディスプレイ用半導体装置材料及び液晶ディスプレイ用半導体装置材料製造用溶製スパッタリングターゲット材料
JP6627993B2 (ja) Cu−Ni合金スパッタリングターゲット
JP2019173067A (ja) スパッタリングターゲット
JP4238689B2 (ja) 金属抵抗体およびその製造方法
CN110317969B (zh) 焊料接合电极以及焊料接合电极的覆膜形成用铜合金靶
JP2003055761A (ja) スパッタリングターゲット、その製造方法および電子部品
WO2019167564A1 (ja) Cu-Ni合金スパッタリングターゲット
JP2001345655A (ja) 水晶振動片の製造方法及び水晶デバイス
JP6520289B2 (ja) Ag合金膜及びAg合金膜の製造方法
JP2021027372A (ja) 圧電振動子およびその製造方法
JP2022060753A (ja) 電気抵抗材料、電流検出用抵抗器、及び電気抵抗材料の製造方法
JP2020007600A (ja) はんだ接合電極およびはんだ接合電極の被膜形成用錫合金ターゲット
JP2017034451A (ja) 電子部品及び電子部品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059290.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13516365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011547349

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839003

Country of ref document: EP

Kind code of ref document: A1