WO2011074551A1 - 真空蒸着方法及び装置 - Google Patents

真空蒸着方法及び装置 Download PDF

Info

Publication number
WO2011074551A1
WO2011074551A1 PCT/JP2010/072410 JP2010072410W WO2011074551A1 WO 2011074551 A1 WO2011074551 A1 WO 2011074551A1 JP 2010072410 W JP2010072410 W JP 2010072410W WO 2011074551 A1 WO2011074551 A1 WO 2011074551A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
nozzle
vapor
temperature
chamber
Prior art date
Application number
PCT/JP2010/072410
Other languages
English (en)
French (fr)
Inventor
靖英 平賀
和幸 松村
隆史 井芹
照明 宮村
武 村田
大輔 巣山
恭平 野田
茂春 西村
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to JP2011515002A priority Critical patent/JP5298189B2/ja
Publication of WO2011074551A1 publication Critical patent/WO2011074551A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Definitions

  • the present invention relates to a vapor deposition apparatus, and more particularly, to a vapor deposition apparatus and a vapor deposition method using a plurality of types of vapor deposition materials.
  • a vapor deposition apparatus for evaporating a plurality of types of evaporation materials from a plurality of crucibles, and condensing these evaporation materials onto a member to be evaporated, but exclusively uses a carrier gas (for example, Patent Document 1 or 2).
  • a carrier gas for example, Patent Document 1 or 2.
  • a first processing container and a second processing container are provided, and a vapor deposition source built in the second processing container is connected to a blower built in the first processing container via a connecting pipe.
  • Each crucible as the deposition source is supplied with an inert gas (for example, Ar gas) from a gas supply source, and each film forming gas functions as a carrier gas that is carried to a blower through a connecting pipe.
  • Ar gas for example, Ar gas
  • a vapor deposition apparatus for vapor-depositing a vapor flow of an evaporating material mixed in a mixing chamber on a glass substrate through a perforated plate shutter and a perforated rectifying plate (for example, Patent Document 3).
  • the evaporation chambers and the mixing chambers are only separated by the spool shutter and are close to each other, and the chambers are likely to be affected by heat and close to each other.
  • each evaporation temperature as an appropriate ratio of evaporation amounts of vapor deposition materials.
  • the evaporation chamber, the spool shutter, and the mixing chamber are partitioned by walls heated by a plurality of heaters, and it is difficult to freely change the vapor flow of the vapor deposition material.
  • the walls common to each other are provided, the wall temperatures of these chambers and members are likely to be high, and the glass substrate to be deposited is also close to them, so that it is easily affected by heat.
  • the temperature of the discharge amount of the different materials can be individually controlled, and the evaporation material is vapor-deposited on the glass substrate held in the vapor deposition container so that the component amount ratio of the film formed on the vapor deposition member is substantially uniform.
  • a vapor deposition apparatus two evaporation containers for obtaining vaporized materials by heating different types of vapor deposition materials are provided, and a plurality of discharge holes for discharging the vaporized materials are provided in the vapor deposition containers.
  • the other A device is disclosed in which discharge holes at the tip of a discharge nozzle projecting from a discharge container are arranged concentrically (for example, Patent Document 4).
  • Patent Document 4 since the evaporation container is provided outside the evaporation container, it is difficult to be affected by the heat for evaporation, but there is no so-called mixing chamber, and the nozzles are also provided separately. Mixing is not easy.
  • an organic substance storage unit comprising at least one organic substance storage for receiving an organic substance to be deposited on the substrate, an organic substance injection nozzle part for injecting an organic substance to be deposited on the substrate, an organic substance injection nozzle part and an organic substance storage part
  • a vapor deposition apparatus including a connection line for connecting the two and a transfer device capable of moving at least an organic substance injection nozzle in the vertical direction (for example, Patent Document 5).
  • Patent Document 5 a vapor deposition apparatus including a connection line for connecting the two and a transfer device capable of moving at least an organic substance injection nozzle in the vertical direction.
  • the present invention has been made in view of the circumstances of the prior art described above, and an object of the present invention is to obtain a homogeneous deposited film made of a composite material. Another object of the present invention is to provide a vapor deposition apparatus in which a vapor deposited substrate and a vapor deposited film are not deteriorated by heat generated from a heater or the like for evaporating a vapor deposition material.
  • At least two vapor deposition sources for vaporizing different types of vapor deposition materials a nozzle having a space in which these vapor deposition materials can be mixed, and each vapor deposition material can be introduced from the at least two vapor deposition sources to the nozzle.
  • a nozzle for injecting vapor of the vapor deposition material, a pipe connecting the at least two vapor deposition sources and the nozzle, and a heater provided in at least one member of the nozzle and the pipe Has a mixing chamber for mixing the vapors of the respective vapor deposition materials therein, and has at least one opening for injecting the mixed vapor toward the substrate on the surface of the nozzle. It is possible to provide a vapor deposition apparatus.
  • Such a vacuum deposition apparatus includes a vacuum chamber, a plurality of crucibles, a nozzle provided in the vacuum chamber, a pipe connecting the plurality of crucibles and the nozzle, and a heater disposed at least in either the nozzle or the pipe. .
  • the vacuum deposition apparatus may further include a substrate holder that supports or suspends the substrate.
  • the nozzle has a mixing chamber inside, and one or more injection ports on the surface.
  • the basic part of this apparatus is the basic structure of the apparatus consisting of a chamber, nozzles (multiple injection ports), piping, and a plurality of crucibles (or further mixing chambers), and heaters can be arranged in the nozzles and piping. Further, the nozzle may include a plurality of injection ports.
  • “Vapor” as used herein refers to an evaporated molecule generated by vaporizing or sublimating the vapor deposition material. Further, “evaporation” does not mean in a narrow sense, but means general vaporization including
  • each of the pipes is a flexible hose that can be bent, and further includes a moving unit that reciprocates the nozzle along the substrate.
  • the reciprocating direction of the moving means may be any of a longitudinal direction, a short direction, and an oblique direction (diagonal direction) of the substrate.
  • Each pipe may be a flexible hose.
  • a means for moving the nozzle in the extending direction of the substrate may be provided.
  • you may integrate a flexible hose and a nozzle moving means.
  • a nozzle moving mechanism can be provided.
  • examples of the flexible structure of the pipe include a bellows and a multi-joint.
  • the crucible is preferably fixed, but may be movable. Details will be described later.
  • the flexible hose functions as a transfer pipe. The type, specifications, and details of the tube connecting the crucible and the nozzle are determined according to the characteristics of the apparatus.
  • the flexible structure of the tube can be any of a bellows structure, a multi-joint structure, and the like.
  • the inner wall of the pipe may be a curved surface (uneven) that periodically waves in the longitudinal direction instead of the cylindrical surface.
  • the pipe may have a multi-joint structure in which a plurality of short metal pipes are connected by a ball joint (spherical bearing or the like), for example.
  • Various specific structures can be adjusted to suit the characteristics of the device.
  • the flexible structure of the piping and the heater arrangement are as follows.
  • the thickness of the pipe may be changed periodically with respect to the longitudinal direction of the pipe, but in that case, the heater arrangement is made periodic (rough / dense) or the heater arrangement interval is constant, and the heater heating temperature (for example, , Output) is preferably changed in the longitudinal direction of the pipe.
  • Changing the heating temperature of the heater in the longitudinal direction of the pipe is also applicable when the thickness of the pipe is uniform in the longitudinal direction of the pipe.
  • the curved portion of the pipe is controlled to a high temperature and the straight portion is controlled to a low temperature. You may do it.
  • the moving means may be an articulated robot arm (horizontal articulated robot). In this case, pipes may be passed through the arms and joints, or pipes may be placed outside the arms and joints.
  • the inside of the articulated robot arm itself may be used as piping.
  • the object (movable object) to be directly moved by the articulated robot arm as the moving means may be a pipe or a nozzle.
  • a drive motor may be provided for each joint, each joint may be motor-controlled, and the pipe itself may have a moving mechanism (the pipe and the moving mechanism are integrated).
  • the bellows structure has a higher temperature retention (warming) than the straight pipe because the collision amount of molecules increases (that is, the energy of molecules decreases).
  • the heat retention is not particularly limited as long as it can prevent the outflow of energy of the evaporated molecules, and may be either direct heat retention or indirect heat retention.
  • the temperature of the inner wall of the pipe is close to the temperature of the evaporated molecules because the heat of the evaporated molecules is less likely to be taken away.
  • the amount of energy can be controlled not only by the total amount of heat but also by the energy density of each part of the piping.
  • the heater distribution can be sparse or dense according to the location of the piping.
  • the heater may be a resistance heating type heater such as a sheath heater, and may be an induction heating heater using a high frequency, an eddy current heater (IH heater), or the like.
  • IH heater eddy current heater
  • “Crucible fixation-nozzle movement-piping flexibility” may be changed or selected as appropriate according to various conditions. For example, any known technique can be applied to the size of the crucible, fixation to the vacuum chamber, connection to piping, and the like.
  • the nozzle is fixed (supported, connected) to the moving means, but preferably has a fixed structure that does not unnecessarily escape the amount of heat applied from the heater. Further, the nozzle preferably has a fixed structure in which a nozzle heater can be easily attached.
  • the flexibility of the piping may be appropriately selected in consideration of the distance of movement by the moving means, the speed of movement, the driving force for movement, and the like.
  • the “depressurized” state of “reducible pressure” means a pressure state lower than the atmospheric pressure.
  • the chamber may include a member that constitutes a vacuum vessel or vacuum chamber (vacuum chamber) generally used in a vacuum apparatus, such as a bell jar.
  • the vapor deposition source may include a crucible and may include a material that heats and vaporizes the vapor deposition material.
  • the heating may include heating by a heater such as resistance heating, and any known heating means such as high frequency induction heating, laser, image furnace, electron beam, etc. can be used as appropriate.
  • the pipe may have any shape including a cylindrical shape, but may include a pipe, a tube, or other conduit through which a fluid containing a gas can flow.
  • the whole may be a flexible tube.
  • the substrate may be held by a holding jig.
  • the holding jig may be anything as long as it can hold the substrate, and may include a clasp, a hook, a nail, and other fixing members.
  • Each vapor deposition source, each pipe, and the nozzle are each independently provided with a heater for heating the vapor deposition material and the vapor, and the pressure in each vapor deposition source, each pipe, and the nozzle.
  • Control means for controlling the heating temperature by each heater, and for detecting the flow rate of each vapor deposition material evaporating from each vapor deposition source, which is disposed at a position close to each vapor deposition source.
  • the vapor deposition apparatus according to the above (1) or (2), further comprising a detection means.
  • a heater for individually heating the crucible may be provided. Moreover, you may provide the temperature control means which controls the pressure of a crucible, piping, and a nozzle.
  • the heater may be three independent systems (a crucible, a flexible hose, and a nozzle).
  • the heat retention of the bellows may depend on the hardware structure. You may control by crucible individual heating. Details of the control contents will be described later.
  • control means may include any known control device, and examples thereof include a sequencer, a microcomputer, and a personal computer.
  • a sequencer When heated by the heater of the vapor deposition source, more vapor deposition material (substance) evaporates from the vapor deposition source and the pressure also rises. That is, by controlling the temperature of each evaporation source (for example, crucible) before mixing, the individual evaporation rate (evaporation amount) can be changed. And thereby, the target mixing ratio can be obtained in the film formation.
  • Temperature control of each part of the piping is also important. Compared to a straight pipe, the bellows structure is more preferably kept at a high temperature because the amount of collision of molecules increases. Further, the heat insulation may be either direct heat insulation or indirect heat insulation.
  • the temperature of various members is referred to, the magnitude of energy required for evaporation and reevaporation is important, and the amount of energy that can be applied increases as the temperature rises. Moreover, it is preferable to control not only the total amount of energy but also the energy density. Further, it is preferable that the three systems of the temperature of the vapor deposition source such as a crucible, the temperature of the inner wall of the nozzle, and the temperature of the inner wall of the tube can be controlled independently. Further, depending on the structure of the piping, the temperature may be changed depending on the location (for example, a straight line position and a curved line position).
  • the detection means detects the flow rate of each vapor deposition material (which may include simple substances, compounds, composites, and mixtures) evaporated from each vapor deposition source.
  • a factor that affects the flow rate may be arranged at a position where feedback control is possible.
  • it can each be provided in discharge pipes, such as a vapor
  • This flow rate can be considered as, for example, the amount of evaporation and / or the amount of movement (volume or weight) per unit time of the vapor deposition material that has become vapor or dispersed particles.
  • the detection means includes a detection device, and a commonly used sensor can be used for the detection device.
  • a crystal sensor including a crystal oscillator or the like can be used. Based on the result of such detection means, the heating temperature of the vapor deposition source can be controlled on the spot. For example, when the evaporation rate of any evaporation source is low in pre-deposition before the actual production, the evaporation rate can be adjusted to a desired evaporation rate by increasing the temperature of the evaporation source. Further, during the vapor deposition operation, if the evaporation rate from any vapor deposition source is low / high, adjustment is possible by increasing / decreasing the temperature of the vapor deposition source.
  • the at least two vapor deposition sources are arranged outside the chamber, and the vapor deposition materials are arranged in the middle of the pipes connecting the vapor deposition sources arranged outside the chamber and the chamber.
  • the vapor deposition apparatus according to any one of (1) to (4) above, wherein an ON / OFF valve for turning ON / OFF the flow of the vapor is provided.
  • the crucible may be placed outside the vacuum chamber.
  • the crucible can be taken out.
  • the shape of the valve is not particularly limited as long as it can be turned on and off.
  • a gate valve gate valve
  • a globe valve a ball valve
  • a butterfly valve a needle valve
  • a stop valve a check valve (reverse) Stop valve) or the like.
  • Arranging outside the chamber may include that the heat of the evaporation source does not reach the nozzle. Moreover, you may include that a connection part with the said container is limited. The limitation may include, for example, being connected to a pipe protruding from the container.
  • the control means can perform three independent heating controls.
  • the control means can control the temperature of the crucible. That is, the temperature of each crucible is heated above the evaporation temperature of the vapor deposition material, and the evaporation rate (evaporation amount) of each vapor deposition material is measured in real time by a sensor, and the measured values are fed back to the control means to feed back each crucible.
  • the temperature of each vapor deposition material is controlled so as to obtain a desired evaporation rate by controlling the temperature.
  • a vapor deposition film (film formation) having a target mixing ratio can be obtained.
  • the “evaporation temperature” here refers to a temperature at which the vapor deposition material evaporates (vaporizes).
  • the “evaporation rate” indicates the amount of vapor that evaporates per unit time.
  • the valve may be an ON / OFF valve that controls ON / OF. For example, when the valve is provided in a crucible placed outside the chamber, exchange of the vapor deposition material (crucible change) becomes easy. Valves that can be turned on and off at high temperatures are preferred.
  • a sensor is provided in each tube before mixing, the evaporation rate is measured, and the target mixing ratio is obtained as a result of film formation deposited on the substrate.
  • the evaporation rate of each material that evaporates (concepts including vaporization and sublimation) from each crucible is measured by a sensor (such as a crystal monitor) provided in each pipe that leads to the crucible.
  • the material evaporated in each crucible is mixed in the mixing chamber of the nozzle, and comes out of the nozzle and reaches the substrate to form a film.
  • each vapor does not theoretically adhere and remain on the inner walls of the nozzle and the pipe.
  • the film formation mixture ratio matches the ratio of the material evaporation rate (evaporation amount) measured by the sensor in each pipe, that is, the target mixture ratio. become. Furthermore, the value of the sensor in the vicinity of the pipe is fed back to the temperature control of the crucible, so that the film forming mixture ratio can be accurately controlled. In this case, temperature management above the continuous flight temperature of the nozzle and piping is a necessary condition.
  • continuous flight temperature as used herein means that vapor (evaporated molecules) can fly continuously without being deposited (fixed) on the wall surface, that is, without losing the energy given by the crucible. Indicates temperature.
  • Heating control is preferably controlled by three systems: crucible, nozzle, and piping.
  • a heater may be independently arrange
  • the crucible heater is controlled at a temperature (T01 (> T0)) slightly higher than the evaporation temperature T0 so that the material can be evaporated at the target evaporation rate.
  • the heater of the pipe is controlled to a temperature (T11 (> T1)) slightly higher than the continuous flight temperature T1 at which the material gas can continuously fly.
  • the heater of the nozzle is controlled to a temperature (T21 (> T2)) slightly higher than the continuous flight temperature T2 ejected from the opening, allowing the mixed vapor in the mixing chamber to fly without being deposited on the inner wall of the nozzle.
  • T21 > T2
  • T2 continuous flight temperature
  • the temperature may be changed depending on the location in the longitudinal direction of the pipe (for example, between a straight line position and a curved line position). Therefore, the heaters may be controlled independently or depending on the location of the heater.
  • the said control means controls the said heater of each said flexible hose independently, and heats and keeps each said flexible hose to the temperature more than the continuous flight temperature of a steam over the longitudinal direction.
  • the vapor deposition apparatus as described in said (3) can be provided.
  • the control means can perform temperature control in the circumferential direction and longitudinal direction of the flexible hose.
  • the flexible hose can be kept warm (controlled above the continuous flight temperature).
  • the control means controls the heater of the nozzle independently to heat and keep the nozzle above the continuous flight temperature of the steam having the lowest continuous flight temperature among the mixed steam.
  • the vapor deposition apparatus described in (3) above can be provided.
  • the control means can control the temperature of the nozzle.
  • the temperature of the nozzle can be kept (controlled above the continuous flight temperature).
  • the shape of the nozzle is cylindrical, and piping can be connected to both end faces. Moreover, a plurality of injection ports can be provided on the cylindrical surface of the nozzle. Thus, the nozzle can have a mixing function depending on the shape. This mixing function can vary with more detailed shapes.
  • the shape of the nozzle and the pipe mounting position may be “cylindrical and facing surfaces”, but may be other shapes. Moreover, a partition plate etc. can be provided in a nozzle.
  • the opening is in a direction substantially perpendicular to the above-described substrate that is a member to be coated.
  • the axial direction of the nozzle which is a cylindrical member is substantially parallel with respect to the board
  • the opening is preferably provided along a tangent line formed by contact between the outer peripheral surface of the cylinder and the substrate, and is preferably disposed near the center in the axial direction of the cylindrical member.
  • a merging pipe that conducts merging steam obtained by joining the vapors of the first vapor deposition material and the second vapor deposition material is connected to one end face of the nozzle, and a pipe that conducts the vapor of the third vapor deposition material.
  • the vapor deposition apparatus according to any one of (1) to (10) above, which is connected to the other end surface of the nozzle.
  • the piping where the first crucible and the second crucible merge can be connected to one end face of the nozzle. Moreover, the piping of the third crucible can be connected to the other end surface of the nozzle. In this way, mixing with three or more types of crucibles can be performed.
  • At least two vapor deposition sources for containing and evaporating the vapor deposition material, respective pipes connected to the respective vapor deposition sources and conducting the vapor of the respective vapor deposition materials, and these pipes are connected.
  • a mixing chamber capable of mixing vapors of the respective vapor deposition materials, a nozzle having an opening for injecting the mixed vapor, and a flow rate of each vapor deposition material evaporated from the respective vapor deposition sources.
  • a vapor deposition apparatus having a detection means provided at a position close to each vapor deposition source in a decompressed space, the vapors of the vapor deposition materials of the same type or different types are mixed.
  • the respective vapor deposition sources When spraying onto the substrate and depositing on the substrate as a mixed vapor deposition film, the respective vapor deposition sources are heated and controlled so that the vapors of the respective vapor deposition materials have a predetermined evaporation rate or a state corresponding thereto.
  • the flow rate of each vapor deposition material detected by the detection means is controlled by heating the pipes and / or the inner wall of the nozzle so as to be equal to or higher than the continuous flight temperature of each vapor and below the evaporation temperature of each vapor deposition material. Based on the above, the heating temperature of each vapor deposition source is adjusted and controlled, the vapor of each vapor deposition material is supplied into the mixing chamber, the vapors are uniformly stirred and mixed, and the mixed vapor is substantially supplied from the opening. In this case, a mixed vapor deposition film can be formed on the substrate by spraying the substrate as a parallel flow without diffusion.
  • the crucible is heated and controlled so that the vapor deposition material has a constant evaporation rate, and the nozzle and / or pipe are heated and controlled above the continuous flight temperature and below the evaporation temperature, and are stirred and mixed uniformly in the mixing chamber. It is possible to provide a vacuum vapor deposition method for spraying and forming a mixed vapor deposition film.
  • the respective vapor deposition sources may be kept above the vaporization temperature of the respective vapor deposition materials.
  • the temperature of the inner wall of each pipe is maintained at a temperature equal to or higher than the continuous flight temperature of each vapor and equal to or lower than the evaporation temperature of each vapor deposition material.
  • the inner wall of the nozzle be kept above the lowest continuous flight temperature among the continuous flight temperatures of each steam.
  • a vapor deposition source for evaporating different types of vapor deposition materials a nozzle having a space for mixing these vapor deposition materials and an opening capable of jetting the mixed vapor deposition materials, and flowing the vapor deposition materials from the vapor deposition source to the nozzles
  • the vapor deposition apparatus provided with the pipe capable of being mixed it is possible to uniformly mix the same type or different types of vapor deposition materials.
  • a uniform film can be formed by performing film formation using a mixed material that is uniformly mixed.
  • FIG. 6 is a partially cutaway perspective view of a nozzle that can be used in yet another embodiment of the present invention. It is a schematic model diagram of the vapor deposition apparatus of another Example of this invention. It is a schematic diagram of the vapor deposition apparatus of another Example of this invention.
  • Example of this invention it is a partial see-through
  • it is a partial see-through
  • it is a schematic perspective view which shows the positional relationship of the nozzle in a vapor deposition apparatus provided with another example of a moving apparatus, and a board
  • FIGS. 1A and 1B are a partial cross-sectional schematic diagram and a partial perspective side schematic diagram of a vapor deposition apparatus according to an embodiment of the present invention.
  • the vapor deposition apparatus 10 of the present embodiment includes a chamber 12 that can be depressurized by a vacuum pump (for example, a cryopump) (not shown), and a vapor deposition source 14 for the vapor deposition material A and a vapor deposition source 16 for the vapor deposition material B. Is provided.
  • These vapor deposition sources 14 and 16 are connected to pipes 18 and 20 through which vaporized vapor deposition materials (vapors) flow, respectively, and these pipes 18 and 20 include flexible pipe portions 18a and 20a on the distal end side, respectively. .
  • These flexible tube portions 18a and 20a are connected to the left and right end surfaces (bottom surface and top surface) of the cylindrical nozzle 22 provided in the chamber 12, and face the mixing chamber 24 which is a space in the nozzle 22. Inflow.
  • the vapors of the vapor deposition materials A and B are mixed without any particular stirring, and stay in the mixing chamber 24 as a mixed vapor of A + B.
  • openings 26 opened in the side surface portion (circumferential surface portion) of the cylindrical nozzle 22 to the surface of the substrate (deposited member) 28 installed facing the nozzle 22.
  • the mixed steam is injected.
  • the opening 26 is disposed on the peripheral surface of the nozzle 22 at a position facing the substrate 28.
  • the openings 26 are provided at positions facing the respective substrates 28 of the nozzle 22.
  • the substrate 28 is supported in the chamber 12 by the substrate holder 29.
  • the substrate 28 may be supported by any one of bottom surface support, side end surface support, top surface adsorption support, and suspension support.
  • the vapors of the vapor deposition materials A and B and the mixed vapor (mixed vapor) flow like a molecular flow when flying (flowing) through the pipes 18 and 20 and the nozzle 22.
  • the flexible tube portions 18a and 20a are not necessarily connected to the left and right end surfaces of the nozzle 22, but one tube portion is an end surface, the other tube portion is a side surface portion, both tube portions are side surface portions, and You may make it connect both a pipe part to one end surface.
  • the vapor deposition materials A and B may be either the same type of material or different types of materials.
  • the vapor deposition materials A and B when using a vapor deposition material having a temperature restriction (a vapor deposition material that cannot be heated to a very high temperature), the evaporation rate of the vapor deposition material is increased (increased), etc. Is mentioned.
  • the heaters 30a and 30b can be controlled separately and set to the most preferable temperature.
  • the vapors of the vapor deposition materials A and B are dispersed in the internal spaces of the respective vapor deposition sources 14 and 16 and flow toward the pipes 18 and 20 (directions indicated by arrows in FIG. 1A).
  • the internal pressure of the vapor deposition sources 14 and 16 is set to be at least higher than the internal pressure in the chamber 12, and the heating temperature is adjusted according to the type of the vapor deposition material, so that the vapors of the vapor deposition materials A and B can be obtained. The pressure is adjusted as appropriate.
  • the crucible as a vapor deposition source may be connected to pipes 18 and 20 provided so as to protrude from the chamber 12. If the crucible is directly connected to the chamber 12, heat accompanying the crucible heating may be conducted to the chamber 12. Therefore, it is more preferable to provide the crucible outside the chamber 12 and connect it to the pipes 18 and 20.
  • the nozzle 22 may be fixed by being connected to the pipes 18 and 20, or may be fixed by another fixing jig.
  • the nozzle 22 may be fixed to moving means described later. It is preferable that the pipes 18 and 20 have flexibility because the pipes 18 and 20 do not interfere with the movement of the nozzle 22 by the moving means.
  • pipes conventionally used as fluid pipes can be used, but it is particularly preferable that the pipes 18 and 20 are at least partially provided with flexible pipe portions 18a and 20a. Further, the entire pipes 18 and 20 may be flexible pipes. Heaters 32a and 32b are arranged around the pipes 18 and 20, and the temperature of the inner walls of the pipes 18 and 20 is adjusted to be equal to or higher than the respective continuous flight temperatures. This continuous flight temperature is lower than the respective evaporation temperatures of the vapor deposition sources 14 and 16, and the thermal effect on the nozzle 22 and the substrate 28 is small.
  • the inner wall may mean a wall that can contact when the fluid flows through the nozzle or the pipe.
  • the pipes 18 and 20 are connected to the wall surface of the nozzle 22 (in the present embodiment, an end surface, which can also be a circumferential surface).
  • the volume of the mixing chamber 24 of the nozzle 22 is set to be sufficiently larger than the total evaporation amount per unit time of vapor of each vapor deposition material flowing through each pipe. Thereby, each vapor introduced into the mixing chamber 24 is sufficiently stirred and mixed uniformly.
  • the mixed vapor sufficiently mixed in the nozzle 22 is injected from the opening 26 due to the pressure difference between the internal pressure of the nozzle 22 and the internal pressure of the chamber 12, and the mixed vapor is applied to the deposition surface of the substrate 28 (the lower surface in FIG. 1A).
  • a vapor deposition film is formed.
  • a sensor 36 made of a crystal oscillator as a film thickness monitor is provided at a position not buffered on the deposition surface of the substrate 28 and at a position facing the deposition surface. By this film thickness monitor, the injection amount (attachment amount), the attachment speed, etc. of the mixed steam are measured in real time.
  • the sensor 36 made of a crystal oscillator measures the film thickness of the deposited film, and does not perform feedback control of the evaporation rate of each vapor based on the measurement data.
  • a nozzle heater 34 is provided so as to cover at least a part of the outer periphery of the nozzle 22.
  • the inner wall of the nozzle 22 is heated to a temperature equal to or higher than the continuous flight temperature of the vapor deposition material and lower than the evaporation temperature. If the vapor deposition materials A and B have different continuous flight temperatures, it is preferable to heat the inner wall of the nozzle 22 in accordance with the continuous flight temperature of the vapor deposition material having a lower continuous flight temperature.
  • a moving means 35 is provided which is connected to the nozzle 22 and is movable in the chamber 12 in the longitudinal direction of the substrate 28 (vertical direction in FIG. 1B).
  • the moving means 35 is realized by a ball screw.
  • the ball screw serving as the moving means 35 preferably includes a screw 35a extending in the moving direction of the nozzle 22, a bearing portion 35b which supports the screw 35a at both ends and is rotatably supported by a driving device (for example, a motor) (not shown), and the nozzle 22.
  • a support 35d that locks the rotation of the nut portion 35c and a nut portion 35c that moves in the axial direction of the screw as the screw 35a rotates.
  • the nozzle 22 can be scanned in the longitudinal direction of the substrate 28, and a vapor deposition film can be formed on the entire surface of the substrate 28.
  • the moving means 35 is not limited to the ball screw of this embodiment, and the nozzle 22 may be movable in the plane direction of the substrate 28 (longitudinal direction, width direction, or diagonal direction).
  • the moving device 40 that moves (scans) the nozzle has a cylinder body 52 arranged outside the chamber 12, and a flange to which an internal rod 44 that supports the nozzle 22 by the tip is fixed.
  • the external rod 48 that supports the portion protrudes from the cylinder main body 52 side through the opening in the lower wall of the chamber to the inside of the chamber 12, and the nozzle 22 is moved (scanned) by sliding the external rod 48 by driving the cylinder.
  • a bellows 46 is provided so as to surround the external rod between the tip of the external rod 48 on the chamber 12 side and the opening of the chamber wall, and the inside of the bellows 46 with the external rod 48 (external rod 48 side) is in an atmospheric state.
  • the chamber 12 side is kept in a reduced pressure state.
  • the external rod 48 also serves as a guide when the nozzle 22 moves, but a guide mechanism may be provided separately.
  • a rack and pinion can be used as the drive source.
  • Only one moving mechanism may be provided so that the support portion at the tip of the inner rod 44 is disposed at the center of the nozzle 22, but one moving mechanism may be provided at the end of the inner rod 44 or two at both ends.
  • the main part of the drive mechanism such as the drive source and the sliding part, is arranged outside the chamber 12 to contribute to the reduction of the chamber size, and the chamber including the sliding part is also included.
  • the chamber including the sliding part is also included.
  • the vapors of the vapor deposition materials A and B scattered from the vapor deposition sources 14 and 16 are guided to the nozzle 22 via the pipes 18 and 20.
  • the nozzle 22 connected to the pipes 18 and 20 functions as a header. That is, the inside of the nozzle 22 becomes each vapor mixing chamber (manifold) 24, and after each vapor is stirred and mixed in the mixing chamber 24, the mixed vapor is jetted from the opening 26 of the nozzle 22 and deposited on the substrate 28. A film is deposited (co-evaporated) to form a film.
  • the mixed vapor sprayed onto the substrate 28 is obtained by uniformly mixing multi-component vapor deposition material vapor, and the uniformly mixed multi-component vapor deposition material vapor is sprayed onto the substrate 28 in a unified manner.
  • the mixing chamber 24 has a sufficient volume, the flow of the mixed vapor injected from each opening 26 is a flow that proceeds in a straight direction from the opening 26 toward the substrate, but at an angle from the straight direction. It becomes a flow having a width or a flow that is hardly diffused (hereinafter referred to as “straight flow”).
  • a vapor deposition film having a uniform thickness can be formed on the substrate 28 by using a compound in which each vapor deposition material is uniformly combined at a desired composition ratio.
  • the evaporation amount (scattering amount) of each vapor in the pipes 18 and 20 is measured by sensors 21a and 21b provided in the pipes 18 and 20 as detection means.
  • the sensors 21a and 21b measure, for example, the evaporation rate (evaporation amount per unit time) of each vapor.
  • these sensors 21a and 21b are provided near the joint with the nozzle 22, but the attachment positions of the sensors 21a and 21b on each pipe are far from the nozzle and close to the crucible (evaporation source). Cases can also be assumed. Moreover, you may arrange
  • each sensor By placing each sensor closest to its own evaporation source and farthest from the other evaporation source, it is easier to control the material as a single unit without mixing.
  • a sensor for example, it is possible to use a measuring device that utilizes the fact that a vibration characteristic is changed by attaching a coating film on a quartz oscillator.
  • the pipes 18 and 20 are not directly connected to each other (joined connection), and the pipes 18 and 20 are connected to the nozzle 22, respectively. For this reason, when measuring the vapor
  • Vapor splashing is not affected.
  • the amount of scattering of each vapor can be accurately measured by the sensors 21a and 21b.
  • the volume of the mixing chamber 24 is sufficiently large compared to the flow rate per unit time of each steam,
  • the length of the nozzle 22 (the distance between the connection ports of the pipes 18 and 20) only needs to be long enough.
  • each steam introduced into the mixing chamber 24 is randomly scattered, by configuring the nozzle 22 in this way, the steam supplied to the nozzle 22 from the pipe 18 (or 20) is randomly scattered and the nozzle There is almost no possibility of vapor reaching the pipe 20 (or 18) by colliding with the inner wall of 22. Therefore, the mixing (mixing) of each vapor in the mixing chamber 24 is performed at a high level.
  • the pipe 18 is arranged so that the supply direction of each steam to the nozzle 22 (left-right direction in FIG. 1A) and the injection direction of the mixed steam from the nozzle 22 (upward direction in FIG. 1A) are different. , 20 and the opening position of the opening 26 are provided. As a result, stirring and mixing of each vapor in the mixing chamber 24 is further enhanced.
  • the supply direction of each steam and the injection direction of the mixed steam are preferably orthogonal.
  • the configuration of the vapor deposition source, piping, and the like when three or more types of vapor deposition materials are used is shown in a schematic schematic view in FIG. Since the basic structure is the same as in FIG. 1A, only the different parts will be described.
  • the vapor deposition source 14 for the vapor deposition material A, the vapor deposition source 16 for the vapor deposition material B, and the vapor deposition source 15 for the vapor deposition material C are respectively provided. It is provided outside the chamber (not shown).
  • a pipe 20 extends from the vapor deposition source 16 and is connected to the nozzle 22.
  • a pipe 18 extends from the vapor deposition source 14 and is connected to the mixing tank 23, and a pipe 19 extends from the vapor deposition source 15 and is connected to the mixing tank 23.
  • the merging pipe 17 may be simply provided without providing such a mixing tank (see FIG. 6).
  • a merging pipe that conducts the merged vapor obtained by merging the vapors of the first vapor deposition material and the second vapor deposition material is connected to one end surface (for example, the left end surface in FIG. 1A) of the nozzle 22,
  • a pipe (see FIG. 6) for conducting vapor of the vapor deposition material is connected to the other end surface of the nozzle 22 (for example, the right end surface in FIG. 1A).
  • the vapor deposition source 15 of the vapor deposition material C is added to the vapor deposition apparatus of FIG. 1A and 1B, the Example of FIG. 6 demonstrates only a different part.
  • a heater 30c is disposed around the added vapor deposition source 15, and is heated to a temperature higher than the temperature at which the vapor deposition material C evaporates, but can be controlled independently of the heaters 30a and 30b.
  • the vapor of the vapor deposition material C is dispersed in the internal space of the vapor deposition source 15 and flows toward the pipe 19.
  • the internal pressure of the vapor deposition source 15 is set to be at least higher than the internal pressure in the chamber 12, and the vapor pressure of the vapor deposition material C is appropriately adjusted by adjusting the heating temperature according to the type of the vapor deposition material. Is done.
  • the entire pipe 19 may be a flexible pipe.
  • a heater 32c is disposed around the pipe 19 and is adjusted so that the temperature of the inner wall of the pipe 19 is equal to or higher than the continuous flight temperature of the vapor deposition material C. This continuous flight temperature is lower than the evaporation temperature of the vapor deposition material C of the vapor deposition source 15. Further, since the vapor deposition source 15 is installed outside the chamber 12, radiant heat (main heat transfer in a vacuum state) is blocked by the wall of the chamber 12, and the thermal effect on the nozzle 22 and the substrate 28 is not affected. Few. Pipes 18 and 19 extending from the vapor deposition sources 14 and 15 are connected to two entrances of the junction pipe 17 described above.
  • each flow sensor 21a and 21c is arrange
  • FIG. The outlet of the joining pipe 17 is connected to the nozzle 22, and the mixed vapor of the vapor deposition materials A and C is introduced into the mixing chamber 24 in the nozzle 22.
  • the vapor deposition material B is mixed with such a mixture (or bond). In other words, it is possible to selectively prevent only the deposition materials A and B from being bonded (or reacted).
  • This merging pipe 17 can also be provided with a heater, and the temperature can be controlled in the same manner as the other pipes 18, 19, and 20.
  • the mixing ratio of the mixed vapor ejected from the nozzle 22 can be accurately controlled to a desired ratio, and the deposited film formed on the substrate 28 can be accurately controlled to the desired composition ratio.
  • the vapor deposition apparatus according to the present embodiment can also be applied to the deposition of an organic EL vapor deposition film.
  • organic EL in recent years, the demand for larger substrates has increased, and as a result, high productivity (higher film formation speed) is required for the organic EL thin film to be formed. Homogeneity (film quality and film thickness must be uniform over the entire film surface).
  • the vapor deposition apparatus according to the present embodiment does not inject the mixed vapor in the form of dots from the nozzle 22 to the substrate 28, but injects the mixed vapor in a line shape from the plurality of openings 26 (injected linearly). ) For this reason, the vapor deposition apparatus of the invention according to the present embodiment can cope with an increase in the deposition rate of the organic EL thin film.
  • the vapor deposition apparatus of the invention according to the present embodiment is provided with a sufficiently large volume of the mixing chamber 24 of the nozzle 22 and jets a sufficiently uniform mixed vapor from the opening 26 to the substrate 28. It is made to evaporate. For this reason, the vapor deposition apparatus of the invention which concerns on a present Example can respond to the homogenization of an organic EL thin film.
  • a flexible flexible substrate may be used as the organic EL substrate 28. Since this flexible substrate is made of resin, there is a problem that it is vulnerable to heat.
  • vapor deposition sources 14 and 16 that are heated to a high temperature are arranged outside the chamber 12. Since the heating temperature of the pipes and nozzles is low and sufficient as compared with the vapor deposition sources 14 and 16, the vapor deposition apparatus of the invention according to this example is compared with the conventional apparatus in which the vapor deposition source is arranged in the chamber.
  • the thermal influence on the substrate 28 can be reduced. Thereby, the thermal influence with respect to the board
  • the vapor deposition sources 14 and 16 and the substrate 28 are physically and thermally blocked by the chamber 12, the vapor deposition sources 14 and 16 are more than necessary to avoid the thermal influence of the vapor deposition sources 14 and 16 on the substrate 28. There is no need to increase the distance between the chamber 12 and the chamber 12, and it is sufficient if the minimum required piping length is provided. Therefore, in the vapor deposition apparatus according to the present embodiment, although the vapor deposition sources 14 and 16 are disposed outside the chamber 12, the distance between the vapor deposition source and the substrate (TS distance) can be kept relatively short. .
  • the injection source is the nozzle 22 and the temperature of the nozzle 22 is lower than the vapor deposition sources 14 and 16
  • the crucible is used as the injection source.
  • the distance between the injection source and the substrate can be shortened as compared with a conventional apparatus that directly injects from the crucible to the substrate. For this reason, it is possible to reduce the material loss of the mixed vapor (ratio of the mixed vapor not deposited on the substrate) between the injection source and the substrate.
  • the ability to shorten the distance between the injection source and the substrate also contributes to shortening the TS distance.
  • the temperatures of the pipes 18 and 20 and the nozzle 22 are controlled by the control device 102 so as to be not less than the continuous flight temperature and not more than the evaporation temperature, that is, controlled so that the pipes 18 and 20 and the inner wall of the nozzle 22 do not stick. Therefore, the material loss of the mixed vapor (ratio of the mixed vapor not deposited on the substrate) can also be reduced by this. From these, the vapor deposition apparatus of the invention according to the present embodiment can use the material with high efficiency, and can reduce the material cost.
  • the size of the chamber relative to the large substrate can be relatively reduced (compact).
  • FIG. 2 schematically illustrates a vapor deposition apparatus according to another embodiment. Members common to those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • a cryopump (vacuum pump) 120 is connected to the chamber 12 via a pipe 140.
  • a chamber valve 142 is provided in the middle of the pipe 140. Further, as described above, the inside of the chamber 12 is evacuated by the cryopump 120 via the pipe 140 and the chamber valve 142.
  • the pipes 18 and 20 are respectively connected to both end faces of the nozzle 22, but the vapor of each vapor deposition material is supplied to the mixing chamber 24 as a straight flow (straight flow).
  • FIG. 3 is a schematic diagram showing a monitor and a control system.
  • the vapor deposition apparatus 100 ⁇ / b> A can be controlled by one or more control apparatuses (which may include a monitor apparatus) 102.
  • the control device 102 monitors the temperature of the vapor of each vapor deposition material, while the heater A (30a) and the heater B (30b) of the crucible as the vapor deposition source, and the pipes 18 and 20 (the flexible pipe portions 18a and 20a). (Including) heater A (32a) and heater B (32b), and nozzle heater 34, the vapor temperature of each vapor deposition material is controlled to the optimum temperature as described above.
  • each vapor deposition material can be changed by adjusting the amount of heat (or holding temperature) applied to the vapor deposition sources 14 and 16 of the vapor deposition materials A and B exclusively while monitoring the sensor.
  • each vapor is adjusted to a desired mixing ratio in the nozzle 22 to obtain a uniformly mixed vapor, and a mixed vapor deposition material is applied to the surface of the substrate 28 as a target. A homogeneous vapor deposition film is formed.
  • each vapor can be evaporated at a desired evaporation rate by measuring the evaporation rate of each vapor with the sensors 21a and 21b and feeding back to the temperature control of each vapor deposition source.
  • the mixing ratio of the vapor deposition materials A and B can be obtained as the target mixing ratio by independently controlling the evaporation rate of each vapor before mixing. Whether the actual mixing ratio is achieved can be verified by analyzing the components of the film attached to the sensor 36 using an analyzer (not shown).
  • the vapor deposition sources 14 and 16 are exchanged, after the on / off valves 130 and 132 are tightened, the vapor deposition sources 14 and 16 to be exchanged are removed, and new vapor deposition sources 14 and 16 are attached. Thereafter, the on / off valves 130 and 132 are opened again, and control is performed so that vapor deposition can be performed with a new vapor deposition material.
  • the chamber 12 is opened after the chamber valve 142 is closed. After the chamber 12 is closed, the chamber valve 142 is opened and the inside of the chamber 12 is evacuated again.
  • FIG. 4 shows a partially broken perspective view of a nozzle that can be used in this embodiment.
  • the nozzle 22 having a substantially cylindrical shape is connected to the left and right end faces (or the bottom face and the top face) with pipes made of flexible pipes 18a and 20a.
  • the flexible tube 20a is not joined to the right end surface of the nozzle 22 so as to face the mixing chamber 24 of the nozzle 22, but to the mixing chamber 24. It is joined in a state of passing through. Further, the distal end of the flexible tube 20a is fixed so as to vortex along the inner wall in the mixing chamber 24 of the nozzle 22.
  • the tip of the flexible tube 18a (not shown) is fixed in the mixing chamber 24 of the nozzle 22 so as to vortex along the inner wall of the nozzle 22. If it does in this way, the stirring effect of the vapor
  • at least one diffusion plate (baffle plate) 25 may be disposed on the inner wall of the nozzle 22. The diffusion plate 25 can further enhance the stirring effect between the vapors of the respective vapor deposition materials.
  • the diffuser plate 25 is preferably arranged at a position surrounding the opening 26, whereby the vapor of each vapor deposition material supplied to the mixing chamber 24 becomes difficult to be jetted from the opening 26 without being sufficiently mixed. It becomes easier to mix the steam.
  • Openings 26 and 27 are provided on the peripheral surface of the nozzle 22, and four openings 26 are perforated on the back side in the drawing, and another four openings 27 are formed at positions facing the openings 26 (cylindrical and facing surfaces). (Only two are shown in FIG. 4) are drilled. In this way, by providing the openings 26 and 27 for injecting the mixed vapor deposition material at two opposing positions on the peripheral surface of the nozzle 22, simultaneously with respect to the substrate 28 disposed on both sides of the nozzle 22, and , Uniform deposition can be performed. The direction, number and size of the openings 26 and 27 opened in the nozzle 22 can be appropriately determined according to the flow rate of the vapor deposition material from the vapor deposition sources 14 and 16 to be supplied.
  • FIG. 8 is a partially transparent schematic perspective view of the main part 10a of the vapor deposition apparatus provided with still another example of the moving apparatus in the embodiment of the present invention.
  • the vacuum chamber 12 shown transparent
  • a glass substrate 28a also shown as transparent
  • a cylindrical shape under the glass substrate 28a are shown below.
  • a nozzle 22 having a plurality of openings whose directions are arranged substantially parallel to the glass substrate 28a and capable of spraying paint or the like upward
  • a flexible hose 18a composed entirely of a flexible tube connected to both ends of the nozzle
  • a moving device 60 comprising a plate-like beam 62 for fixing 22 and an LM guide 64 for movably supporting both ends thereof is depicted.
  • the apparatus is configured in the same manner as in FIGS. 1A and 1B, but is omitted here for simplicity.
  • the glass substrate 28a is placed horizontally, and the nozzle 22 moves horizontally below the glass substrate 28a, whereby a predetermined mixed vapor deposition film is formed on the lower surface of the glass substrate 28a. It is formed.
  • This nozzle 22 is adiabatically fixed to a beam 62 supported at both ends by a LM guide (Linear Motion Guide) 64 which is placed in parallel and horizontally in the vacuum chamber 12 so as to be separated in the width direction. ing.
  • LM guide Linear Motion Guide
  • the flexible hose 18a connected to both ends of the nozzle 22 is supported by a support member (not shown) simply so as not to hang down.
  • the beam 62 slides on the LM guide by the drive source 13 of the moving device 60.
  • This drive source may be in the vacuum chamber 12, but is disposed outside the vacuum chamber here.
  • Examples of such a moving device 60 include a vacuum linear slider and a slider driven by a driving source 13 such as a cylinder or a ball screw.
  • the flexible hose 18a may be a bellows type or a method of joining straight pipes (multi-joint type). Further, as a method of supporting (guide) the flexible hose 18a when the nozzle 22 moves, the flexible hose 18a (or via a bellows) is accommodated in the cable bear and is placed along the LM guide 64, and the nozzle 22 A system in which the tip of the cable bear moves along the LM guide 64 along with the movement may be used. By using the flexible hose 18 a connected to both ends of the nozzle 22, different or similar vapor deposition materials can be guided to the nozzle 22.
  • the flexible hose 18a can be expanded and contracted, when the moving device 60 is operated and the beam 62 moves horizontally in the extending direction of the glass substrate 28a (left and right direction in the figure), the flexible hose 18a moves in accordance with the movement of the nozzle 22. 18a is expanded and contracted. That is, the flexible hose 18 a that is a pipe follows the movement of the nozzle 22. Or you may make it move the flexible hose 18a with the supporting member which supports them. At this time, it is more preferable that the beam 62 is placed and supported on the upper surface of the LM guide 64.
  • the glass substrate 28a is arranged on the upper side, but the glass substrate 28a is arranged on the lower side upside down, and the upper side of the glass substrate 28a is moved horizontally by the nozzle 22 moving in the extending direction.
  • a vapor deposition film may be formed.
  • FIG. 9 is a schematic perspective view showing the positional relationship between the nozzle 22 and the glass substrate 28a in the vapor deposition apparatus provided with another example of the moving apparatus in the embodiment of the present invention.
  • the glass substrate 28a is arranged vertically.
  • the flexible hose 18 a is connected to both ends of the nozzle 22, and different kinds or the same kind of vapor deposition materials can be led to the nozzle 22.
  • the moving device is not particularly shown, but a moving device similar to or different from that shown in FIG. 8 can be provided. With this moving device, the nozzle 22 moves upward and / or downward in parallel with the glass substrate 28a to form a vapor deposition film on the glass substrate 28a.
  • the flexible hose 18a can be expanded and contracted, and a tensile resistance can be provided like a helical spring by memorizing the shape in a contracted state. Therefore, even if it is a case where it moves up and down with a moving apparatus, the flexible hose 18a can be expanded-contracted without dripping.
  • a plurality of types of vapor deposition materials can be mixed uniformly, and a homogeneous mixed vapor deposition film can be formed on the substrate over the entire surface of the substrate.
  • the crucible which is a vapor deposition source and is heated to a high temperature is disposed outside the chamber, and the nozzle disposed in the chamber is sufficient at a heating temperature lower than that of the crucible.
  • the thermal effect on the substrate can be suppressed.
  • the mixed vapor of the vapor deposition material can be injected from the opening by the pressure difference between the internal pressure in the nozzle (internal pressure in the mixing chamber) and the pressure outside the nozzle (internal pressure in the chamber).
  • the injection direction of the mixed steam can be freely determined.
  • physical vapor deposition is mainly described here, chemical vapor deposition may be used, and mixing may include a chemical reaction between vapor deposition materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 均一な複合材料からなる蒸着膜を得る。基板が蒸着材料を蒸発させるヒータ等からの熱により劣化しない蒸着装置を提供する。 減圧状態を含み蒸着に好ましい環境を維持可能な容器と、異なる種類の蒸着材料を気化させる少なくとも2つの蒸着源と、これらの蒸着材料を混合して混合蒸着材料を形成する空間を備えるものであって、前記容器内に備えられるノズルと、前記少なくとも2つの蒸着源から、各蒸着材料を前記ノズルまで導入可能な各配管と、前記ノズルに設けられ、前記混合蒸着材料を噴射する少なくとも1つの開口と、前記混合蒸着材料を蒸着させる基板を保持する保持治具と、前記ノズル若しくは前記配管の少なくとも何れかに備えられるヒータと、を備える蒸着装置であって、前記ノズル若しくは前記配管の少なくとも何れかの内壁の温度が、各蒸着材料の連続飛行温度以上で、各蒸着材料の蒸発温度以下に保つ。

Description

真空蒸着方法及び装置
 本発明は、蒸着装置に関し、特に、複数の種類の蒸着材料を用いる蒸着装置及び蒸着方法に関する。
 従来、複数の坩堝から複数の種類の蒸発材料を蒸発させ、これらの蒸発材料を合流させて被蒸着部材に蒸着させる蒸着装置はあったが、もっぱら、キャリアガスを使用するものであった(例えば、特許文献1又は2)。このような装置では、第1の処理容器及び第2の処理容器を備え、第2の処理容器に内蔵された蒸着源が連結管を介して第1の処理容器に内蔵された吹き出し器に連結される。前記蒸着源としての各坩堝には、ガス供給源から不活性ガス(例えば、Arガス)が供給され、各成膜ガスは連結管を介して吹き出し器まで運ぶキャリアガスとして機能する。このため、キャリアガスが蒸着膜内に残存し易く、膜品質に問題があるばかりでなく、キャリアガスを供給するための設備が必要となり、装置が複雑化し易く、高価となり易い。
 また、蒸着材料の蒸気の均一な流れを形成し、蒸気分布を制御して、蒸着を均一化すべく、分離された2つの蒸発室からそれぞれスプールシャッタを介して混合室へ蒸発材料を流入させ、混合室で混合された蒸発材料の蒸気の流れを多孔板シャッタ及び多孔整流板を通して、ガラス基板に蒸着する蒸着装置が開示されている(例えば、特許文献3)。この発明においては、各蒸発室と混合室はスプールシャッタによって仕切られるのみで、近い位置にあり、各室は互いに熱的影響を受け、近い温度になってしまう可能性が高い。そのため、適正な蒸着材料の蒸発量の比として各蒸発温度を各々管理することは不可能である。また、蒸発室、スプールシャッタ、混合室は、複数のヒータにより加熱される壁により仕切られており、蒸着材料の蒸気流れを自在に変化させることが難しい。また、互いに共通する壁を備えているので、これら各室及び部材の壁温が高くなり易く、蒸着されるガラス基板も、これらから近いので、熱の影響を受け易い。
 更に、異種材料の放出量を個別に温度管理し得ると共に被蒸着部材に形成された膜の成分量比をほぼ均一にすべく、蒸発材料を蒸着用容器内で保持されたガラス基板に蒸着させる蒸着装置において、異なる種類の蒸着材料を加熱して蒸発材料を得るための2個の蒸発用容器を設け、蒸着用容器内に、蒸発材料を放出するための放出孔をそれぞれ複数個ずつ設けられた放出用容器を配置し、各蒸発用容器で得られた蒸発材料を放出用容器内にそれぞれ導く蒸発材料誘導管を設け、さらに一方の放出用容器に形成された放出孔内に、他方の放出用容器に突設された放出用ノズルの先端の放出孔を同心状に配置したものが開示されている(例えば、特許文献4)。この方法では、蒸着用容器外に、蒸発用容器が設けられているため、蒸発のための熱の影響を受け難いが、いわゆる混合室がなく、ノズルも別々に設けられているので、均一な混合は容易ではない。
 一方、チャンバーと、基板上に蒸着する有機物を受け入れる少なくとも一つの有機物格納所からなる有機物格納部と、基板上に蒸着する有機物を噴射する有機物噴射ノズル部と、有機物噴射ノズル部と有機物格納部とを連結させる連結ラインと、少なくとも有機物噴射ノズルを垂直方向に移動させることができる移送装置を備える蒸着装置が開示されている(例えば、特許文献5)。しかし、この蒸着装置では、異なる種類の蒸着材料を混合することができない。
特開2008-81778号公報 特開2008-88490号公報 特開2005-213570号公報 特開2005-336527号公報 特開2006-63447号公報
 本発明は、上記従来技術の事情に鑑みてなされたものであり、その目的とするところは、複合材料からなる均質な蒸着膜を得ようとするものである。また、蒸着される基板及び蒸着された膜が、蒸着材料を蒸発させるためのヒータ等から生じる熱によって劣化しないような蒸着装置を提供することである。
 本発明において、異なる種類の蒸着材料を気化させる少なくとも2つの蒸着源と、これらの蒸着材料を混合可能な空間を備えるノズルと、前記少なくとも2つの蒸着源から、各蒸着材料を前記ノズルまで導入可能な各配管と、前記ノズルに設けられ、前記混合蒸着材料を噴射する少なくとも1つの開口と、前記ノズル若しくは前記配管の少なくとも何れかに備えられるヒータと、を備える蒸着装置であって、前記ノズル若しくは前記配管の少なくとも何れかの内壁の温度を、各蒸着材料の連続飛行温度以上であって、各蒸着材料の蒸発温度以下に保つことができる蒸着装置を提供する。
 より具体的には、以下の通りである。
(1)減圧可能な内部空間を有するチャンバーと、蒸着材料が収容され、その蒸着材料を気化させる少なくとも2つの蒸着源と、前記チャンバー内に設けられ、同じく前記チャンバー内に配置される基板に対して前記蒸着材料の蒸気を噴射するノズルと、前記少なくとも2つの蒸着源と前記ノズルとをそれぞれ接続する配管と、前記ノズル及び前記配管の少なくとも一方の部材に設けられるヒータと、を備え、前記ノズルは、その内部に、前記各蒸着材料の蒸気を混合させる混合室を有すると共に、前記ノズルの表面に、混合された前記蒸気を前記基板に向けて噴射させる少なくとも1つの開口を有する、ことを特徴とする蒸着装置を提供することができる。
 このような真空蒸着装置は、真空チャンバーと、複数の坩堝と、真空チャンバー内に設けられたノズルと、複数坩堝とノズルを接続する配管と、少なくともノズルと配管のどちらかに配置されたヒータと、を備える。また、真空蒸着装置は、基板を支持したり、吊したりする基板ホルダーを更に備えていてもよい。ノズルは、内部に混合室を有し、表面に一個以上の噴射口を有する。この装置の基本部分は、チャンバー、ノズル(複数噴射口)、配管、複数の坩堝(又は、更に混合室)からなる装置の基本構成であり、ノズル、配管にヒータを配置することができる。また、ノズルは複数噴射口を備えてもよい。ここで言う「蒸気」とは、蒸着材料を気化や昇華させることによって生じた蒸発分子を示している。また、「蒸発」とは、狭義の意味ではなく、昇華も含む気化全般という意味である。
(2)前記各配管は折曲自在なフレキシブルホースであり、前記ノズルを前記基板に沿って往復移動させる移動手段を更に備えることを特徴とする上記(1)に記載の蒸着装置を提供することができる。
 ここで、移動手段の往復移動方向は、基板の長手方向、短手方向、又は斜め方向(対角方向)の何れであってもよい。
 各配管はフレキシブルホースであってもよい。ノズルを基板の延長方向へ移動する手段を備えてもよい。また、フレキシブルホース及びノズル移動手段を一体化してもよい。そして、ノズルの移動機構を備えることができる。また、配管のフレキシブル構造としては、蛇腹、多関節等を例としてあげることができる。坩堝は固定が好ましいが、可動としてもよい。詳細は後述する。フレキシブルホースは、移送管として機能する。坩堝とノズルを接続する管のタイプ、仕様、詳細は、装置の特徴に合わせて決定される。
 管のフレキシブル構造は蛇腹構造、多関節構造等、何れも用いることができる。例えば、蛇腹構造の場合、配管の内壁は円筒面ではなく、長手方向に周期的に波を打つ(凹凸の)曲面となっていてもよい。また、配管は、例えば、複数の短い金属管をボールジョイント(球面軸受等)で連結したような多関節構造であってもよい。各種具体的構造は、装置の特性に合わせて調整することができる。配管のフレキシブル構造とヒータ配置については、以下の通りである。配管の厚みを配管の長手方向に対して周期的に変えてもよいが、その場合、ヒータの配置を周期的(粗密)とするか、ヒータの配置間隔は一定とし、ヒータの加熱温度(例えば、出力)を配管長手方向に変化させることが好ましい。ヒータの加熱温度を配管長手方向に変化させるのは、配管の厚みが配管長手方向に均一である場合にも適用可能であり、例えば、配管の湾曲部は高温に、直線部は低温に制御するようにしてもよい。移動手段としては、多関節ロボットアーム(水平多関節ロボット)であってもよい。この場合、各アームと関節の内部に配管を通してもよく、若しくは、各アームと関節の外部に管を這わせてもよい。また、多関節ロボットアーム自体の内部を、配管として用いてもよい。この場合、移動手段である多関節ロボットアームが直接移動させる対象物(被移動物)は、配管であっても、ノズルであってもよい。配管が多関節構造の場合、各関節に駆動モータを設け、各関節をモータ制御し、配管自体に移動機構をもたせる(配管と移動機構とを一体とする)ようにしてもよい。
 配管構造だけでなく配管の温度制御も重要になる場合がある。直管に比べ蛇腹構造は分子の衝突量が増える(すなわち、分子の持つエネルギーが減る)事から直管の場合よりも高温の保温(加温)がより好ましい。また保温は、蒸発分子のエネルギー流出を防ぐことができるものであれば特に限定するものではなく、直接保温、間接保温の何れであってもよい。また配管の内壁の温度と、蒸発分子の持つ温度とが近い方が、蒸発分子の持つ熱が奪われにくいのでより好ましい。ここでは、配管の温度の高低に言及しているが、蒸気の連続飛行に必要なエネルギー量の「大小」で規定することも可能である。またエネルギー量は総量としての熱量だけでなく、配管の各部位のエネルギー密度で制御することもできる。例えば、配管の場所に応じてヒータ分布を疎にしたり密にしたりする等もできる。またヒータは、シースヒータ等の抵抗加熱型のヒータでもよく、高周波等による誘導加熱ヒータや、渦電流ヒータ(IHヒータ)等も用いることができる。誘導加熱のパターンとしては2つ挙げられ、材料(金属系の蒸着材料)自体を誘導加熱する場合と、蒸着源(坩堝)自体を誘導加熱する場合とがある。
 「坩堝の固定-ノズルの可動-配管のフレキシビリティ」は、種々の条件により、適宜変更や選択がなされてよい。例えば、坩堝の大きさ、真空チャンバーとの固定、配管との接続等は、公知の如何なる技術をも適用することができる。ノズルは、移動手段に固定(支持、連結)されるが、ヒータから加えられる熱量を不必要に逃がさない固定構造とすることが好ましい。またノズルは、ノズル用のヒータを取り付け易い固定構造が好ましい。配管のフレキシビリティは、移動手段による移動の距離、移動の速度、移動のための駆動力等を考慮して、適宜選択されてよい。
 ここで、「減圧可能な」の“減圧”状態とは、大気圧より低い圧力状態を意味している。また、チャンバーは、ベルジャー等、真空装置に一般に用いられる真空容器、真空槽(真空室)を構成する部材を含んでよい。蒸着源は、坩堝を含んでよく、加熱して蒸着材料を蒸発させるものを含んでよい。加熱は、抵抗加熱等のヒータによる加熱を含んでよく、高周波誘導加熱、レーザー、イメージ炉、電子ビーム等、公知の如何なる加熱手段も適宜用いることができる。配管とは、円筒形状を含み如何なる形状でもよいが、内部に気体を含む流体を流すことのできる管やチューブ、その他の導管を含んでよい。また、配管としては、自在に曲げられるフレキシブル管部を少なくとも一部に含むものが好ましい。全体がフレキシブル管であってもよい。そして、上記基板は、保持治具によって保持されてよいが、保持治具は、該基板を保持できれば如何なるものでもよく、留め金、フック、釘、その他の固定部材を含んでよい。
(3)前記各蒸着源、前記各配管、及び前記ノズルには、前記蒸着材料及び前記蒸気を加熱するヒータがそれぞれ独立に設けられ、前記各蒸着源、前記各配管、及び前記ノズル内の圧力を制御すべく、前記各ヒータによる加熱温度を制御する制御手段と、前記各蒸着源から蒸発する前記各蒸着材料の流量を検出するものであって、前記各蒸着源から近い位置に配置された検出手段と、を更に備えたことを特徴とする上記(1)又は(2)に記載の蒸着装置を提供することができる。
 坩堝を個々に加熱するヒータを備えてもよい。また、坩堝、配管、ノズルの圧力を制御する温度制御手段を備えてもよい。ヒータは、独立3系統(坩堝、フレキシブルホース、ノズル)としてもよい。そして、蛇腹の保温は、ハード構造に依存したものであってもよい。坩堝個々のヒーティングによる制御を行ってもよい。制御内容の詳細は後述する。
 ここで、制御手段は、公知のあらゆる制御装置を含んでよく、シーケンサ、マイコン、パソコン等を例としてあげることができる。蒸着源のヒータにより加熱すると、蒸着源からより多くの蒸着材料(物質)が蒸発し、圧力も上昇する。つまり、混合前の各蒸着源(例えば坩堝)の温度を制御することで、個々の蒸発レート(蒸発量)を変えることができる。そして、それにより成膜において、目的の混合比を得ることができる。前記配管の各部の温度制御も重要である。直管に比べ蛇腹構造は分子の衝突量が増える事から高温の保温がより好ましい。また、また保温は直接保温、間接保温の何れであってもよい。尚、ここでは、種々の部材の温度の高低に言及しているが、蒸発及び再蒸発に必要なエネルギー量の「大小」が重要であり、温度が上昇すると付与可能なエネルギー量が増える。また、エネルギー量は総量だけでなく、エネルギー密度についても制御することが好ましい。また、例えば坩堝のような蒸着源の温度、ノズルの内壁の温度、管の内壁の温度の3系統について独立に制御可能であることが好ましい。また、配管の構造によっては、場所によって(例えば、直線位置と曲線位置で)温度を変えてもよい。
(4)前記制御手段は、前記検出手段により検出した流量により、前記各蒸着源の加熱温度をリアルタイムに制御することを特徴とする上記(3)に記載の蒸着装置を提供することができる。
 また、上記の検出手段は、それぞれの蒸着源から蒸発するそれぞれの蒸着材料(単体、化合物、複合物、混合物を含んでよい)の流量を検出するが、この検出結果からそれぞれの蒸着源にこの流量に影響を及ぼす因子をフィードバック制御可能な位置に配置されてよい。例えば、それぞれの蒸着源(例えば坩堝)から延びる蒸気等の排出管にそれぞれ設けることができる。この流量は、例えば、蒸発量及び/又は蒸気や分散粒子となった蒸着材料の単位時間当たりの移動量(体積又は重量)として考えることができる。検出手段は、検出装置を含み、該検出装置には一般に用いられるセンサーが使用可能である。例えば、水晶発振子等を含む水晶センサーを用いることができる。このような検出手段の結果に基づいて、蒸着源の加熱温度をその場で制御可能である。例えば、本番前のプレ蒸着において、何れかの蒸着源の蒸発レートが低いとき、その蒸着源の温度を上げるようにすることにより、プレ蒸着において所望の蒸発レートに調整することができる。また、蒸着作業中に、仮に何れかの蒸着源からの蒸発レートが低い/高いとき、その蒸着源の温度を上げる/下げることにより、調整が可能である。
(5)前記少なくとも2つの蒸着源が、前記チャンバーの外部に配置され、前記チャンバーの外部に配置された前記各蒸着源と前記チャンバーとを接続する前記各配管の中途部に、前記各蒸着材料の蒸気の流れをON/OFFするON/OFFバルブをそれぞれ設けたことを特徴とする上記(1)から(4)の何れか1つに記載の蒸着装置を提供することができる。
 坩堝を真空チャンバー外に配置してもよい。坩堝を外に出すことができる。また、バルブは、ON/OFFできるバルブであれば、その形状は特に限定するものではなく、ゲートバルブ(仕切弁)、グローブバルブ、ボールバルブ、バタフライバルブ、ニードルバルブ、ストップバルブ、チェックバルブ(逆止弁)等を含んでもよい。
 前記チャンバーの外部に配置されるとは、蒸発源の熱の影響がノズルにまで及ばないことを含んでよい。また、前記容器との接続部が限定されることを含んでよい。限定とは、例えば、前記容器から突出する配管に接続されることを含んでよい。
(6)前記制御手段は、前記各ヒータをそれぞれ独立に制御することを特徴とする上記(3)に記載の蒸着装置を提供することができる。
 制御手段は、3系統の独立ヒーティング制御を行うことができる。
(7)前記制御手段は、前記各蒸着源の前記ヒータを独立に制御して所定の蒸発レートで各蒸着材料を蒸発させることを特徴とする上記(3)に記載の蒸着装置を提供することができる。
 制御手段は、坩堝の温度制御を行うことができる。すなわち、各坩堝の温度を蒸着材料の蒸発温度以上に加熱し、各蒸着材料の蒸発レート(蒸発量)をセンサーでリアルタイムに測定すると共に、それらの測定値を制御手段にフィードバックして各坩堝の温度を制御し、所望の蒸発レートが得られるよう各蒸着材料の温度制御を行う。それらの温度制御された各蒸着材料の蒸気を混合することで、目的の混合比の蒸着膜(成膜)を得ることができる。ここで言う「蒸発温度」とは、蒸着材料が蒸発(気化)する温度を示している。また、「蒸発レート」とは、単位時間当たりに蒸発する蒸気の量を示している。バルブは、ON/OFを制御するON/OFFバルブであってよい。例えば、チャンバーの外に置いた坩堝に当該バルブを設けると、蒸着材料の交換(坩堝チェンジ)が簡便となる。高温でON/OFF可能なバルブが好ましい。
 制御の特徴としてセンサーを混合前の各管に設けて蒸発レートを測定し、基板上に蒸着した成膜の結果として目的の混合比にすることがある。ここで、各坩堝から蒸発(気化、昇華を含んだ概念)する各材料の蒸発レートは、坩堝に通じた各配管に設けられたセンサー(水晶モニター等)によって計測される。各坩堝で蒸発した材料はノズルの混合室にて混合され、ノズルから出て基板に達し成膜される。ここで、ノズル及び配管が連続飛行温度以上に保たれていれば、各蒸気は、理論上はノズル及び配管の内壁に付着、残留することはない。このように材料の温度制御を行うことで、成膜の混合比が、各配管でのセンサーによって計測された材料の蒸発レート(蒸発量)の比、すなわち、目的とした混合比と一致することになる。更に、配管付近のセンサーの値を坩堝の温度制御にフィードバックすることにより、正確に成膜の混合比を制御することができる。この場合、ノズル、配管の連続飛行温度以上の温度管理が必要条件となる。ここで言う「連続飛行温度」とは、蒸気(蒸発分子)が壁面に蒸着(固着)することなく、すなわち坩堝で与えられたエネルギーをロスすることなく、連続的に飛んでいくことが可能な温度を示している。
 ヒーティング制御は、坩堝、ノズル、配管の3系統で制御していくことが好ましい。坩堝、配管、ノズルについて、独立して温度制御を行うように、坩堝、配管、ノズルのそれぞれに独立してヒータが配置されてよい。坩堝のヒータは、目的の蒸発レートで材料を蒸発できるよう、蒸発温度T0よりも少し高い温度(T01(>T0))で制御される。配管のヒータは、材料ガスが連続的に飛行できる連続飛行温度T1よりも少し高い温度(T11(>T1))に制御される。ノズルのヒータは、混合室内の混合蒸気がノズル内壁に蒸着することなく飛行でき、開口から噴射される連続飛行温度T2よりも少し高い温度(T21(>T2))に制御される。また、配管の構造によっては、配管長手方向の場所によって(例えば、直線位置と曲線位置で)温度を変えてもよい。従って、ヒータの場所毎に独立に若しくは従属するように制御してもよい。
(8)前記制御手段は、前記各フレキシブルホースの前記ヒータを独立に制御して、前記各フレキシブルホースを、その長手方向に亘って蒸気の連続飛行温度以上の温度に加熱、保温することを特徴とする上記(3)に記載の蒸着装置を提供することができる。
 制御手段は、フレキシブルホースの周方向及び長手方向の温度制御を行うことができる。また、フレキシブルホースの保温(連続飛行温度以上に制御)等を行うことができる。
(9)前記制御手段は、前記ノズルの前記ヒータを独立に制御して、前記ノズルを、混合された前記蒸気の内、前記連続飛行温度が最も低い蒸気の連続飛行温度以上に加熱、保温することを特徴とする上記(3)に記載の蒸着装置を提供することができる。
 制御手段は、ノズルの温度制御を行うことができる。また、ノズルの保温(連続飛行温度以上に制御)等を行うことができる。
(10)前記ノズルは円筒状部材であり、前記ノズルに前記配管がそれぞれ接続され、前記ノズルの周面に、長手方向に沿って複数の前記開口を設けたことを特徴とする上記(1)に記載の蒸着装置を提供することができる。
 ノズルの形状は円筒状で、両端面に配管を接続することができる。また、ノズルの円筒面に複数の噴射口を設けることができる。このように、形状によりノズルに混合機能を持たせることができる。この混合機能は、より詳細な形状により変化することができる。ノズルの形状と配管取付位置を「円筒形で対向面」としてもよいが、他の形状にしてもよい。またノズル内に仕切板等を設けることができる。
 ここで、開口は被塗布部材である上述した基板に対して実質的に垂直な方向にあいていることが好ましい。また、円筒状部材であるノズルの軸方向が上述する基板に対して実質的に平行であることが好ましい。従って、ノズルと基板を平行移動して近付けると、円筒の外周面に基板が実質的に接する関係になることが好ましい。上記開口は、この円筒の外周面と基板とが接して形成される接線に沿って備えられることが好ましく、また、円筒状部材の軸方向における中央近傍に配置されることが好ましい。
(11)第1の蒸着材料及び第2の蒸着材料の各蒸気を合流させた合流蒸気を導通させる合流配管が前記ノズルの一端面に接続され、第3の蒸着材料の蒸気を導通させる配管がノズルの他端面に接続される、ことを特徴とする上記(1)から(10)の何れか1つに記載の蒸着装置を提供することができる。
 第一の坩堝及び第二の坩堝の合流する配管をノズル一端面に接続することができる。また、第三の坩堝の配管をノズルの他端面に接続することができる。このようにして、3種以上の坩堝による混合を行うことができる。
(12)蒸着材料を収容し、蒸発させる少なくとも2つの蒸着源と、前記各蒸着源に接続され前記各蒸着材料の蒸気を導通させるそれぞれの配管と、これらの配管が接続されるものであって前記各蒸着材料の蒸気を混合させることが可能な混合室を備え、その混合された蒸気を噴射させる開口を備えるノズルと、前記各蒸着源から蒸発する前記各蒸着材料の流量を検出するものであって、前記各蒸着源に近い位置に備えられる検出手段と、を、減圧された空間の内部に有する蒸着装置を用いて、同じ種類の又は異なる種類の前記各蒸着材料の蒸気を混合して基板に噴射し、混合蒸着膜として基板に蒸着させる際、前記各蒸着源を、それぞれの前記各蒸着材料の蒸気が所定の蒸発レートを持つ或いはそれに相当する状態となるように加熱制御し、前記各配管及び/又は前記ノズルの内壁を、前記各蒸気の連続飛行温度以上、前記各蒸着材料の蒸発温度以下になるように加熱制御し、前記検出手段により検出された前記各蒸着材料の流量に基づき、前記各蒸着源の加熱温度を調整、制御し、前記各蒸着材料の蒸気を前記混合室内に供給して前記各蒸気を均一に攪拌、混合し、その混合蒸気を前記開口から実質的に拡散のない平行な流れとして基板に噴射し、前記基板上に混合蒸着膜を成膜する、ことを特徴とする方法を提供することができる。
 複数の坩堝と、各々の坩堝に接続された配管と、その配管が接続され混合室を備え、混合された蒸気を噴射するノズルが、真空チャンバー内に収納された蒸着装置を使用して、各蒸着材料が一定の蒸発レートを持つように坩堝を加熱制御し、ノズル及び/又は配管を連続飛行温度以上、蒸発温度以下に加熱制御し、混合室内で均一に攪拌、混合し、平行な流れとして噴射し、混合蒸着膜を成膜する真空蒸着方法を提供することができる。
 また、それぞれ異なる蒸発温度若しくは蒸発レートを備える複数種の蒸着材料を用いる場合は、それぞれの蒸着源はそれぞれの蒸着材料の蒸発温度以上に保たれてよい。一方、それぞれの配管の内壁の温度は、それぞれの蒸気の連続飛行温度以上であって、それぞれの蒸着材料の蒸発温度以下に保つことが好ましい。一方、ノズルの内壁は、各蒸気の連続飛行温度の内、最も温度が低い連続飛行温度以上に保たれるのが好ましい。
 以上のように、異なる種類の蒸着材料を蒸発させる蒸着源と、これらの蒸着材料を混合する空間及び混合された蒸着材料を噴射可能な開口を備えるノズルと、蒸着源からノズルまで蒸着材料を流すことが可能な配管と、を備える蒸着装置によれば、同じ種類の又は異なる種類の蒸着材料を均一に混合することが可能である。そして、均一に混合した混合材料により成膜を行うことで、均質な膜を形成することができる。
本発明の実施例の蒸着装置の部分断面概略図である。 本発明の実施例の蒸着装置の部分透視側面概略図である。 本発明の別の実施例の蒸着装置の概略図である。 本発明の別の実施例の蒸着装置の制御模式図である。 本発明の更に別の実施例において用いることができるノズルの部分破断斜視図である。 本発明の更に別の実施例の蒸着装置の略式模式図である。 本発明のまた別の実施例の蒸着装置の模式図である。 本発明の実施例において、図1Bとは異なる移動装置を備える蒸着装置の部分透視側面概略図である。 本発明の実施例において、更に別の移動装置例を備える蒸着装置の主要部の部分透視概略斜視図である。 本発明の実施例において、また別の移動装置例を備える蒸着装置内のノズルと基板の位置関係を示す概略斜視図である。
 次に、本発明の実施の形態について、図面を参照しながら説明する。各図面において同一の構成又は機能を有する構成要素及び相当部分には、同一の符号を付し、その説明は省略する。また、以下の説明では、本発明に係る実施の態様の例を示したに過ぎず、当業者の技術常識に基づき、本発明の範囲を超えることなく、適宜変更可能である。従って、本発明の範囲はこれらの具体例に限定されるものではない。また、これらの図面は、説明のために強調されて表されており、実際の寸法とは異なる場合がある。
 図1A及び1Bは、本発明の実施例である蒸着装置の部分断面概略図及び部分透視側面概略図である。本実施例の蒸着装置10は、図示しない真空ポンプ(例えば、クライオポンプ)により減圧可能なチャンバー12と、該チャンバー12外であるが、蒸着材料Aの蒸着源14及び蒸着材料Bの蒸着源16が備えられる。これらの蒸着源14及び16は、それぞれの気化された蒸着材料(蒸気)が流れる配管18及び20に接続され、これらの配管18及び20は、それぞれ、フレキシブル管部18a及び20aを先端側に備える。そして、これらのフレキシブル管部18a及び20aが、チャンバー12内に備えられた円筒形のノズル22の左右の端面(底面及び上面)に接続され、ノズル22内の空間である混合室24に対向して流入する。これにより、特に撹拌することなく、蒸着材料A及びBの蒸気は混合され、A+Bの混合蒸気として混合室24内に滞留する。この円筒形状のノズル22の側面部(周面部)に開けられる1以上(図1Aでは4個)の開口26から、ノズル22に対向して設置される基板(被蒸着部材)28の表面に向かって混合蒸気が噴射される。開口26は、ノズル22の周面の、基板28と対向する位置に配設される。チャンバー12内に複数の基板28が設けられる場合、ノズル22の各基板28と対向する位置に、開口26がそれぞれ設けられる。基板28は、基板ホルダー29によってチャンバー12内で支持される。基板28の支持は、底面支持、側端面支持、上面吸着支持、吊り下げ支持の何れであってもよい。蒸着材料A,Bの蒸気及び混合された蒸気(混合蒸気)は、配管18,20及びノズル22内を飛んでいく(流れる)際に、分子流のように流れる。尚、フレキシブル管部18a及び20aは、必ずしもノズル22の左右の端面に接続する必要はなく、一方の管部を端面に他方の管部を側面部に、両方の管部を側面部に、及び両方の管部を一方の端面に接続するようにしてもよい。
 蒸着源(例えば、坩堝)14及び16の周りには、ヒータ30a及び30bが配置され、ヒータ30a及び30bにより、蒸着材料A及びBがそれぞれ上述する温度以上に加熱される。蒸着材料A及びBは、同種の材料、又は異種の材料のいずれであってもよい。ここで、蒸着材料A及びBとして同種の材料を用いる例として、温度に制約がある蒸着材料(あまり高温に加熱できない蒸着材料)を使用する際、蒸着材料の蒸発レートを稼ぐ(増やす)場合などが挙げられる。尚、蒸着材料A及びBの蒸発温度が異なる場合は、それぞれのヒータ30a及び30bは、別々に制御することができて、それぞれ、最も好ましい温度に設定される。蒸着材料A及びBの蒸気は、それぞれの蒸着源14及び16の内部空間に分散され、配管18及び20に向かって(図1A中の矢印で示す方向)流れる。このときの、蒸着源14及び16の内圧は、少なくともチャンバー12内の内圧よりも高くなるように設定され、蒸着材料の種類に応じて加熱温度を調整することで、蒸着材料A及びBの蒸気圧が適宜調整される。ここで、蒸着源である坩堝は、チャンバー12から突出して設けられた配管18及び20に接続してもよい。坩堝をチャンバー12に直接接続すると、坩堝加熱に伴う熱がチャンバー12に熱伝導するおそれがあるため、坩堝を、チャンバー12外に設け、配管18及び20に接続する方がより好ましい。ノズル22は、配管18及び20に接続されることによって固定されてもよく、また別の固定治具により固定されてもよい。ノズル22は、後述する移動手段に固定されてもよい。配管18及び20がフレキシビリティを備えると、移動手段によりノズル22が移動しても配管18及び20はそれを妨げないので好ましい。
 配管18及び20としては、流体用の管として慣用的に用いられる管が適用可能であるが、特に少なくとも部分的にフレキシブル管部18a及び20aを備えるのが好適である。また、配管18及び20全体がフレキシブル管であってもよい。配管18及び20の周りにはヒータ32a及び32bが配置され、配管18及び20の内壁の温度がそれぞれの連続飛行温度以上になるように調整される。この連続飛行温度は、蒸着源14及び16のそれぞれの蒸発温度よりも低く、ノズル22及び基板28に及ぶ熱影響は少ない。また、蒸着源14及び16は、チャンバー12外に設置されているので、チャンバー12の壁体にて放射熱(真空状態での主要な熱伝達)が遮られ、ノズル22及び基板28に及ぶ熱影響は少ない。ここで、内壁とは、上記流体が前記ノズル若しくは前記配管を流れるときに接触し得る壁を意味してよい。
 各配管18及び20は、ノズル22の壁面(本実施例では、端面。周面にも可能。)に接続される。ノズル22の混合室24は、その容積が、各配管を流れる各蒸着材料の蒸気の、単位時間当たりの蒸発量の総和よりも十分に大きくなるようにする。これにより、混合室24に導入された各蒸気は十分に攪拌され、均一に混合される。
 ノズル22内で十分に混合された混合蒸気は、ノズル22の内圧とチャンバー12内の内圧の圧力差により開口26より噴射され、基板28の被蒸着面(図1A中では下面)に混合蒸気の蒸着膜が成膜される。基板28の被蒸着面に緩衝しない位置で、かつ、被蒸着面に臨む位置に、膜厚モニタとしての水晶発振子からなるセンサー36が設けられる。この膜厚モニタにより、混合蒸気の噴射量(付着量)、付着速度等がリアルタイムで計測される。ここで、水晶発振子からなるセンサー36は、蒸着膜の膜厚を計測するものであり、その計測データに基づいて各蒸気の蒸発レートのフィードバック制御を行うものではない。
 また、ノズル22の少なくとも一部外周を覆うようにノズルヒータ34が設けられる。このノズルヒータ34により、ノズル22の内壁は蒸着材料の連続飛行温度以上であって、蒸発温度未満に加熱される。仮に、蒸着材料A及びBにおいて、連続飛行温度が異なる場合は、連続飛行温度がより低い蒸着材料の連続飛行温度に合わせて、ノズル22の内壁を加熱することが好ましい。
 また、ノズル22に接続して、チャンバー12内において基板28の長手方向(図1Bでは上下方向)に移動自在な移動手段35が設けられる。本実施例において、この移動手段35は、ボールねじによって実現されている。移動手段35たるボールねじは、ノズル22の移動方向に延びるねじ35a、それを両端で支え図示しない駆動装置(例えばモータ)により回転駆動可能に軸支する軸受け部35b、ノズル22を好ましくは断熱的に固定しねじ35aの回転に伴ってねじの軸方向に移動するナット部35c、そして、ナット部35cの回転を係止するサポート35dから構成される。このような移動手段35及び配管(フレキシブル管部18a及び20a付)18,20によって、ノズル22を基板28の長手方向に走査させることができ、基板28の全面に蒸着膜が成膜可能となる。尚、移動手段35は、本実施例のボールねじに限らず、ノズル22を、基板28の平面方向(長手方向、幅方向、又は対角線方向)に移動自在なものであってもよい。例えば、図7に示すように、ノズルを移動(走査)させる移動装置40は、チャンバー12の外部にシリンダー本体部52を配置し、ノズル22を先端部により支持する内部ロッド44が固定されるフランジ部を支持する外部ロッド48がシリンダー本体部52側からチャンバー下壁の開口を介してチャンバー12内側に突出し、シリンダーの駆動によって外部ロッド48をスライドしてノズル22を移動(走査)する。外部ロッド48のチャンバー12側の先端からチャンバー壁の開口までの間は外部ロッドを包囲するように蛇腹46が設けられ、外部ロッド48のある蛇腹46の内側(外部ロッド48側)は大気状態、チャンバー12側は減圧状態に保っている。外部ロッド48はノズル22が移動する際のガイドの役目を兼ねているが、別に、ガイド機構を設けてもよい。又、駆動源としてはシリンダー以外に、ラックピニオン他も使用可能である。この移動機構はノズル22の中心部に内部ロッド44先端の支持部が配置するように一つのみ設けてもいいが、内部ロッド44の端に一つまたは両端に二つ設けてもいい。以上の構造・配置とすることによって、駆動源や摺動部分等の駆動機構の本体主要部分をチャンバー12外に配置してチャンバーサイズのコンパクト化へ寄与し、又、摺動部も含めてチャンバー12外の大気状態に配置することによりゴミ等のチャンバー内への侵入を防ぐことができる。尚、図7は蛇腹がチャンバー内側に突出する構造の図となっているが、蛇腹がチャンバーの外に突出するような構造も可能である。
 蒸着源14,16から飛散された蒸着材料A、Bの蒸気は、配管18、20を介してノズル22へと導かれる。ここで、配管18、20と接続されたノズル22はヘッダとして機能する。すなわち、ノズル22の内部は各蒸気の混合室(マニホールド)24となり、各蒸気は混合室24で攪拌、混合された後、その混合蒸気がノズル22の開口26から噴射され、基板28上に蒸着膜が蒸着(共蒸着)され、成膜される。ここで基板28に噴射される混合蒸気は、多成分の蒸着材料蒸気が均一に混合されたものであり、この均一に混合された多成分の蒸着材料蒸気が一元的に基板28に噴射される。また、混合室24が十分な容積を有している場合は、各開口26から噴射される混合蒸気の流れは開口26から基板に向けて直線方向に進む流れであるが、直線方向からある角度幅を有した流れ、又は殆ど拡散されない流れ(以下、「ストレート流」という)となる。そして、各開口26の間隔が短ければ、各開口26から噴射される混合蒸気の各流れは重なり合い、基板28上に成膜される蒸着膜の膜厚は、開口26の並び方向において膜の重なりによって平準化される。よって、基板28上に、各蒸着材料が所望の組成比で均質に化合した化合物で構成され、均一な厚さの蒸着膜を成膜することができる。
 また、配管18,20における各蒸気の蒸発量(飛散量)は、検出手段として配管18、20に設けられるセンサー21a及び21bにより測定される。このセンサー21a及び21bは、例えば、各蒸気の蒸発レート(単位時間当たりの蒸発量)を測定するものである。図1Aでは、これらのセンサー21a及び21bはノズル22との接合部に近いところに設けられているが、各配管上のセンサー21a及び21bの取り付け位置はノズルから遠く、坩堝(蒸発源)に近い場合も想定できる。また、両方の位置に配置してもよい。各センサーを各々自身の蒸発源に最も近く、相手方の蒸発源から最も遠く配置することによって、混じりのない単体としての材料のコントロールがより容易となる。このようなセンサーとしては、他に、例えば、水晶発振子の上に塗膜を付着させてその振動特性が変化することを利用した計測装置を用いることができる。配管18,20は直接に対向接続(合流接続)されるものではなく、配管18,20がそれぞれノズル22に接続される。このため、配管18(又は20)におけるセンサー21a(又は21b)にて蒸着材料A(又はB)の蒸気の蒸発量を測定する際に、配管20(又は18)からの蒸着材料B(又はA)の蒸気の、飛散の影響を受けることはない。その結果、各蒸気の飛散量を、センサー21a及び21bにて正確に測定することができる。このとき、センサー21a(又は21b)において、測定対象ではない蒸気の飛散の影響を低減させるためには、混合室24の容積を各蒸気の単位時間当たりの流量と比べて十分に大きく設けると共に、ノズル22の長さ(配管18,20の接続口間の距離)が十分に長く設けられればよい。混合室24内に導入された各蒸気はランダムに飛散されるため、ノズル22をこのように構成することで、配管18(又は20)からノズル22に供給された蒸気はランダムに飛散してノズル22の内壁と衝突され、蒸気が配管20(又は18)へと達する可能性は殆どなくなる。よって、混合室24内で各蒸気のミキシング(混合)が高いレベルで行われるようになる。
 更に、ノズル22において、ノズル22への各蒸気の供給方向(図1A中では左右方向)と、ノズル22からの混合蒸気の噴射方向(図1A中では上方向)とが異なるように、配管18,20の接続位置及び開口26の開口位置を設けている。その結果、混合室24での各蒸気の攪拌、混合性が更に高まる。各蒸気の供給方向と混合蒸気の噴射方向とは、直交させることが好ましい。蒸着材料を3種類以上用いる場合の蒸着源及び配管等の構成を図5において略式模式図で示す。基本構造は、図1Aの場合と同様であるので、異なる部分のみを説明すれば、蒸着材料Aの蒸着源14、蒸着材料Bの蒸着源16、更に、蒸着材料Cの蒸着源15、がそれぞれ図示しないチャンバー外に設けられる。蒸着源16からは配管20が延びておりノズル22に接続される。一方、蒸着源14からは配管18が延びており混合タンク23に接続され、蒸着源15からは配管19が延びており混合タンク23に接続される。これにより、予め蒸着材料A及びCが混合され、その混合蒸着材料が混合タンク23から延びる配管19aを通ってノズル22に接続される。このようにしてノズル22において、蒸着材料A及びCの混合材料(若しくは何らかの化学結合等を生じた結合材料AC)と蒸着材料Bが混合される。また、このような混合タンクを設けることなく、単に、合流配管17としてもよい(図6参照)。例えば、第1の蒸着材料及び第2の蒸着材料の各蒸気を合流させた合流蒸気を導通させる合流配管が、ノズル22の一端面(図1A中では例えば左端面)に接続され、第3の蒸着材料の蒸気を導通させる配管(図6参照)が、ノズル22の他端面(図1A中では例えば右端面)に接続される。ここで、図6の実施例は、蒸着材料Cの蒸着源15を図1A及び1Bの蒸着装置に追加したものであるので、異なる部分のみを説明する。
 追加された蒸着源15の周りには、ヒータ30cが配置され、蒸着材料Cが蒸発する温度以上に加熱されるが、ヒータ30a及び30bとは独立に制御することができる。蒸着材料Cの蒸気は、蒸着源15の内部空間に分散され、配管19に向かって流れる。このときの、蒸着源15の内圧は、少なくともチャンバー12内の内圧よりも高くなるように設定され、蒸着材料の種類に応じて加熱温度を調整することで、蒸着材料Cの蒸気圧が適宜調整される。配管19としては、流体用の管として慣用的に用いられる管が適用可能であるが、特に少なくとも部分的にフレキシブル管部を備えるのが好適である。また、配管19全体がフレキシブル管であってもよい。配管19の周りにはヒータ32cが配置され、配管19の内壁の温度が蒸着材料Cの連続飛行温度以上になるように調整される。この連続飛行温度は、蒸着源15の蒸着材料Cの蒸発温度よりも低い。また、蒸着源15は、チャンバー12外に設置されているので、チャンバー12の壁体にて放射熱(真空状態での主要な熱伝達)が遮られ、ノズル22及び基板28に及ぶ熱影響は少ない。蒸着源14及び15から延びる配管18及び19は、上述する合流配管17の二股になった2つの入り口に接続される。これにより、蒸着材料A及びCの蒸気が先に混合される。尚、それぞれの流量センサー21a及び21cは、この合流配管17に接続される手前に配置される。この合流配管17の出口は、ノズル22に接続され、蒸着材料A及びCの混合蒸気がノズル22内の混合室24に導入される。このような構成にすると、蒸着材料A及びCが先に混合され相互に何らかの結合(化学結合を含んでよい)をした場合、蒸着材料Bがこのような混合(又は結合)物と混合されることになり、選択的に、蒸着材料A及びBのみが結合(又は反応)することを防止することができる。この合流配管17にもヒータを備えることができ、他の配管18、19、20と同様に温度を制御することができる。
 以上より、ノズル22から噴射させる混合蒸気の混合比を、所望の比率に精度よく制御することができ、基板28上に成膜させる蒸着膜を所望の組成比に正確に制御することができる。
 本実施例に係る発明の蒸着装置は有機ELの蒸着膜の成膜にも適用できる。有機ELでは、近年、基板の大型化の要求が高まっており、その結果、成膜される有機EL薄膜については、高い生産性(成膜速度の高速化)が求められることは言うまでもなく、膜の均質化(膜全面に亘って膜質、膜厚が均一であること)が求められている。
 そこで、本実施例に係る発明の蒸着装置は、ノズル22から基板28に対して点状に混合蒸気を噴射させるのではなく、複数の開口26からライン状に混合蒸気を噴射(線状に噴射)させている。このため、本実施例に係る発明の蒸着装置は、有機EL薄膜の成膜速度の高速化に対応可能である。
 また、本実施例に係る発明の蒸着装置は、前述したように、ノズル22の混合室24の容積を十分に大きく設け、十分に均一化された混合蒸気を開口26から噴射させ、基板28に蒸着させるようにしている。このため、本実施例に係る発明の蒸着装置は、有機EL薄膜の均質化に対応可能である。
 一方、有機ELの基板28として、可撓性のあるフレキシブル基板が用いられる場合がある。このフレキシブル基板は樹脂製であるため、熱に弱いという問題がある。
 そこで、本実施例に係る発明の蒸着装置は、高温に加熱される蒸着源14,16をチャンバー12の外側に配置させている。配管やノズルの加熱温度は、蒸着源14,16と比べて低くて十分であるので、本実施例に係る発明の蒸着装置は、蒸着源をチャンバーの内に配置する従来装置と比較して、基板28への熱影響を少なくできる。これにより、基板28や、基板28に蒸着される蒸着膜に対する熱影響も少なくなる。よって、基板28に熱劣化が生じる(例えば、可撓性が損なわれる)おそれは少なく、また、蒸着膜においても熱劣化が生じるおそれは少ない(高品質の蒸着膜が得られる)。
 また、蒸着源14,16と基板28とはチャンバー12により物理的、熱的に遮断されているので、基板28に対する蒸着源14,16の熱影響を避けるべく、必要以上に蒸着源14,16とチャンバー12との距離を離す必要はなく、必要最低限の配管長さがあればよい。よって、本実施例に係る発明の蒸着装置では、蒸着源14,16がチャンバー12の外側に配置されているものの、蒸着源-基板間距離(T-S距離)は比較的短く保つことができる。
 更に、前述したように、本実施例に係る発明の蒸着装置は、噴射源がノズル22であり、かつ、蒸着源14,16と比べてノズル22の温度は低いので、坩堝を噴射源とし、坩堝から基板に直接噴射する従来装置と比べて、噴射源と基板との距離を短くすることができる。このため、噴射源と基板との間での、混合蒸気の材料ロス(基板に蒸着されない混合蒸気の割合)を減らすことができる。噴射源と基板との距離を短くすることができることもまた、T-S距離を短くすることに寄与している。また、配管18,20及びノズル22の各温度は、制御装置102により、連続飛行温度以上、蒸発温度以下に制御、すなわち配管18,20及びノズル22の内壁で固着が生じないように制御されていることから、これによっても、混合蒸気の材料ロス(基板に蒸着されない混合蒸気の割合)を減らすことができる。これらより、本実施例に係る発明の蒸着装置は、材料を高い効率で使用することができ、材料コストを低減することができる。
 又、蒸着源14,16をチャンバー12の外に配置することによって、大型基板に対するチャンバーのサイズを相対的に小さく(コンパクト化)することも可能となる。
 図2に、別の実施例である蒸着装置の概略を図解する。図1と共通する部材には、同一の符号を付しており、重複する説明は割愛する。この実施例である蒸着装置100では、チャンバー12に配管140を介してクライオポンプ(真空ポンプ)120が接続される。配管140の中途には、チャンバーバルブ142が設けられる。また、上述するようにチャンバー12内は、クライオポンプ120により、配管140及びチャンバーバルブ142を介して真空引きされる。この実施例では、配管18及び20は、ノズル22に対して、両端面にそれぞれ接続されているが、各蒸着材料の蒸気は、混合室24に真っ直ぐな流れ(ストレート流)として供給されるのではなく、混合室24にノズル22の内壁に沿って旋回する旋回流として供給される。このように旋回流として混合室24に各蒸着材料の蒸気を供給することにより、各蒸気同士の撹拌効果がより高まる。また、それぞれの配管18及び20には、流量のON/OFFが可能なオンオフ弁(ON/OFFバルブ)130及び132が配置される。これらの弁130、132を閉じることで、それぞれの蒸着源14及び16を、チャンバー12の真空を破ることなく、交換することができ便利である。
 図3は、モニタ及び制御系を示す概略図である。蒸着装置100Aは、1又はそれ以上の制御装置(モニター装置を含んでよい)102により、制御することができる。この制御装置102は、各蒸着材料の蒸気の温度をモニターしつつ、蒸着源である坩堝のヒータA(30a)及びヒータB(30b)、並びに、配管18及び20(フレキシブル管部18a及び20aを含む)のヒータA(32a)及びヒータB(32b)、そしてノズルヒータ34を制御し、各蒸着材料の蒸気の温度が上述してきたような最適な温度に制御される。各蒸着材料の蒸気の蒸発レートは、センサーをモニターしながら、専ら蒸着材料A及びBのそれぞれの蒸着源14及び16へ加える熱量(若しくは保持温度)を調整することによって変更できる。このような温度(若しくは熱量)制御により、ノズル22内にて各蒸気が所望の混合比に調整され、均一に混合された混合蒸気が得られ、ターゲットである基板28の表面に混合蒸着材料からなる均質な蒸着膜が成膜される。このように、各蒸気の蒸発レートをセンサー21a及び21bで測定し、各蒸着源の温度制御にフィードバックすることによって、所望の蒸発レートで各蒸気を蒸発させることができる。従って、各蒸着材料A及びBの混合比も混合前の各蒸気の蒸発レートを各々独立して制御することにより混合後の蒸気を目的の混合比として得ることができる。実際の混合比となっているかは、センサー36に付着した被膜の成分を図示しない分析装置により解析することにより検証が可能である。上述したように、蒸着源14及び16を交換するときは、オンオフ弁130及び132を締めた後に、交換対象の蒸着源14及び16が取り外され、新しい蒸着源14及び16が取り付けられる。その後、オンオフ弁130及び132を再び開放し、新しい蒸着材料で蒸着が行えるように制御する。また、チャンバー12そのものを開放する際には、チャンバーバルブ142を閉じた後にチャンバー12が開放される。チャンバー12を閉じた後は、チャンバーバルブ142を開けて再びチャンバー12内が真空引きされる。
 図4は、本実施例に用いることができるノズルを部分破断斜視図で示す。ほぼ円筒形を呈するノズル22は、左右端面(又は底面及び上面)に、フレキシブル管18a及び20aからなる配管が接続される。フレキシブル管20aの先端部を見れば分かるように、このフレキシブル管20aは、ノズル22の右端面にノズル22の混合室24に臨んで接合されているのではなく、混合室24にまでフレキシブル管20aを挿通した状態で接合されている。また、フレキシブル管20aの先端は、ノズル22の混合室24において、内壁に沿って渦を巻くように固定されている。図示されないフレキシブル管18aの先端も同様に、ノズル22の混合室24で、ノズル22の内壁に沿って渦を巻くように固定されている。このようにすれば、フレキシブル管18a及び20aから供給される各蒸着材料の蒸気同士の撹拌効果がより高まる。また、ノズル22の内壁には、少なくとも1つの拡散板(邪魔板)25を配置してもよい。拡散板25により、各蒸着材料の蒸気同士の撹拌効果を更に高めることができる。拡散板25は、開口26を取り囲む位置に配置することが好ましく、これにより、混合室24に供給された各蒸着材料の蒸気が、十分に混合されないまま開口26から噴射されにくくなり、各蒸着材料の蒸気同士がより混合し易くなる。ノズル22の周面には開口26、27が設けられ、図中奥側に4つの開口26が穿孔され、それらの開口26と対向する位置(円筒形で対向面)に別の4つの開口27(図4では2個のみを図示)が穿孔される。このようにノズル22の周面における対向する2種類の位置に、混合蒸着材料を噴射する開口26、27を設けたことにより、ノズル22の両側に配置された基板28に対して、同時に、かつ、均質に蒸着を行うことができる。尚、このようなノズル22に開けられる開口26、27の方向、数、大きさは、供給する蒸着源14及び16からの蒸着材料の流量に応じて適宜決定することができる。
 図8は、本発明の実施例において、更に別の移動装置例を備える蒸着装置の主要部10aの部分透視概略斜視図である。ここでは、透明に示した真空チャンバー12と、その中の上方に水平に置かれた被塗装材であるガラス基板28a(同様に透明として図示)と、その下に円筒形であって、その軸方向がこのガラス基板28aとほぼ平行に配置され、上向きに塗料等を噴射可能な開口を複数備えるノズル22と、このノズルの両端にそれぞれ接続された全体がフレキシブル管からなるフレキシブルホース18aと、ノズル22を固定する板状のビーム62及びこの両端を移動可能に支持するLMガイド64からなる移動装置60と、が描かれている。描かれていない他の構成要素については、図1A及び1Bと同様に装置を構成するが、簡単のためにここでは省かれている。図1A及び1B又は7の蒸着装置と異なり、この装置では、ガラス基板28aが水平に置かれ、その下を水平にノズル22が移動することにより、ガラス基板28aの下面に所定の混合蒸着膜が形成される。このノズル22は、真空チャンバー12内の幅方向いっぱいに離れて平行かつ水平に置かれたLMガイド(Linear Motion Guide)64に両端を移動可能に支持されるビーム62に断熱的にねじで固定されている。このノズル22の両端に接続されるフレキシブルホース18aは、下に垂れ下がらないように簡易的に図示しない支持部材により支持されている。このビーム62は、移動装置60の駆動源13によりLMガイド上をスライドする。この駆動源は、真空チャンバー12内にあってもよいが、ここでは真空チャンバー外に配置される。このような移動装置60の例としては、例えば、真空用リニアスライダや、シリンダ又はボールネジ等の駆動源13で駆動されるスライダがある。
 フレキシブルホース18aは、蛇腹式や、直管をジョイントしていく方式(多関節式)でもよい。また、ノズル22が移動する際のフレキシブルホース18aの支持(ガイド)方法としては、ケーブルベア内にフレキシブルホース18a(又は、蛇腹を介した)を収納してLMガイド64に沿わせ、ノズル22の移動と共にケーブルベア先端がLMガイド64に沿って移動する方式でもよい。ノズル22の両端に接続されたフレキシブルホース18aにより、それぞれ異種又は同種の蒸着材料をノズル22へと導くことができる。フレキシブルホース18aは、伸縮が可能であるので、移動装置60を作動させ、ビーム62がガラス基板28aの延長方向(図中左右方向)に水平に移動すると、ノズル22の動きに合わせて、フレキシブルホース18aが伸縮される。つまり、配管であるフレキシブルホース18aは、ノズル22の動きに追従する。若しくは、フレキシブルホース18aを、それらを支持する支持部材と共に移動させるようにしてもよい。このときは、LMガイド64の上面にビーム62が載り支持されることがより好ましい。ここでは、ガラス基板28aが上側に配置された例を示しているが、上下逆さまにして、ガラス基板28aを下側に配置し、ガラス基板28aの上側を水平に延長方向に移動するノズル22によって蒸着膜が形成されてもよい。
 図9は、本発明の実施例において、また別の移動装置例を備える蒸着装置内のノズル22とガラス基板28aの位置関係を示す概略斜視図である。図8の場合と異なり、ここでは、ガラス基板28aが縦向きに配置されている。ノズル22には、その両端にフレキシブルホース18aが接続され、それぞれ異種又は同種の蒸着材料をノズル22へと導くことができる。ここでは、移動装置は特に図示していないが、図8と同様な又は異なる移動装置を備えることができる。この移動装置によりノズル22は、上及び/又は下にガラス基板28aに対して平行に移動し、ガラス基板28a上に蒸着膜を形成する。フレキシブルホース18aは伸縮でき、縮んだ状態でその形状を記憶させることにより、つるまきバネのように引張り抵抗力を備えさせることができる。従って、移動装置により上下に移動される場合であっても、フレキシブルホース18aは、垂れることなく伸縮することができる。
 以上述べてきたように、本発明によれば、複数の種類の蒸着材料を均一に混合することができ、基板全面に亘って均質な混合蒸着膜を基板に形成することができる。また、蒸着源であり、高温に加熱される坩堝はチャンバー外に配置しており、チャンバー内に配置されるノズルは坩堝よりも低い加熱温度で十分であるため、ノズルから混合蒸気を噴射する際に、基板に対する熱影響を抑制することができる。尚、ノズル内の内圧(混合室の内圧)と、ノズル外の圧力(チャンバー内圧)の圧力差によって蒸着材料の混合蒸気は開口より噴射させることも可能である。また、ノズルに形成する開口の位置を調整することで、混合蒸気の噴射方向を自在に決定することができる。尚、ここでは物理蒸着を中心に述べているが、化学蒸着であってもよく、また混合には、蒸着物質同士の化学反応を含めてもよい。
10、100、100A 蒸着装置    12 チャンバー
14、15、16 蒸着源    17 合流配管
18、19、20、122、124、140 フレキシブルホース(配管)
21a、21b、21c、36 センサー    22 ノズル
23 混合タンク    24 混合室    25 拡散板
26、27 開口    28 基板    28a ガラス基板
30a、30b、30c、32a、32b、32c、34 ヒータ
35、40、60 移動装置(移動手段)    102 制御装置
120 クライオポンプ
126、128、130、132、142 バルブ

Claims (12)

  1.  減圧可能な内部空間を有するチャンバーと、
     蒸着材料が収容され、その蒸着材料を気化させる少なくとも2つの蒸着源と、
     前記チャンバー内に設けられ、同じく前記チャンバー内に配置される基板に対して前記蒸着材料の蒸気を噴射するノズルと、
     前記少なくとも2つの蒸着源と前記ノズルとをそれぞれ接続する配管と、
     前記ノズル及び前記配管の少なくとも一方の部材に設けられるヒータと、を備え、
     前記ノズルは、その内部に、前記各蒸着材料の蒸気を混合させる混合室を有すると共に、
     前記ノズルの表面に、混合された前記蒸気を前記基板に向けて噴射させる少なくとも1つの開口を有する、
     ことを特徴とする蒸着装置。
  2.  前記各配管は折曲自在なフレキシブルホースであり、
     前記ノズルを前記基板に沿って往復移動させる移動手段を更に備えることを特徴とする請求項1に記載の蒸着装置。
  3.  前記各蒸着源、前記各配管、及び前記ノズルには、前記蒸着材料及び前記蒸気を加熱するヒータがそれぞれ独立に設けられ、
     前記各蒸着源、前記各配管、及び前記ノズル内の圧力を制御すべく、前記各ヒータによる加熱温度を制御する制御手段と、
     前記各蒸着源から蒸発する前記各蒸着材料の流量を検出するものであって、前記各蒸着源から近い位置に配置された検出手段と、を更に備えたことを特徴とする請求項1又は2に記載の蒸着装置。
  4.  前記制御手段は、前記検出手段により検出した流量により、前記各蒸着源の加熱温度をリアルタイムに制御することを特徴とする請求項3に記載の蒸着装置。
  5.  前記少なくとも2つの蒸着源が、前記チャンバーの外部に配置され、
     前記チャンバーの外部に配置された前記各蒸着源と前記チャンバーとを接続する前記各配管の中途部に、前記各蒸着材料の蒸気の流れをON/OFFするON/OFFバルブをそれぞれ設けたことを特徴とする請求項1から4の何れか1つに記載の蒸着装置。
  6.  前記制御手段は、前記各ヒータをそれぞれ独立に制御することを特徴とする請求項3に記載の蒸着装置。
  7.  前記制御手段は、前記各蒸着源の前記各ヒータを独立に制御して所定の蒸発レートで前記各蒸着材料を蒸発させることを特徴とする請求項3に記載の蒸着装置。
  8.  前記制御手段は、前記各フレキシブルホースの前記ヒータを独立に制御して、前記各フレキシブルホースを、その長手方向に亘って蒸気の連続飛行温度以上の温度に加熱、保温することを特徴とする請求項3に記載の蒸着装置。
  9.  前記制御手段は、前記ノズルの前記ヒータを独立に制御して、前記ノズルを、混合された前記蒸気の内、前記連続飛行温度が最も低い蒸気の連続飛行温度以上に加熱、保温することを特徴とする請求項3に記載の蒸着装置。
  10.  前記ノズルは円筒状部材であり、
     前記ノズルに前記配管がそれぞれ接続され、
     前記ノズルの周面に、長手方向に沿って複数の前記開口を設けたことを特徴とする請求項1に記載の蒸着装置。
  11.  第1の蒸着材料及び第2の蒸着材料の各蒸気を合流させた合流蒸気を導通させる合流配管が前記ノズルの一端面に接続され、
     第3の蒸着材料の蒸気を導通させる配管がノズルの他端面に接続される、ことを特徴とする請求項1から10の何れか1つに記載の蒸着装置。
  12.  蒸着材料を収容し、蒸発させる少なくとも2つの蒸着源と、
     前記各蒸着源に接続され前記各蒸着材料の蒸気を導通させるそれぞれの配管と、
     これらの配管が接続されるものであって前記各蒸着材料の蒸気を混合させることが可能な混合室を備え、その混合された蒸気を噴射させる開口を備えるノズルと、
     前記各蒸着源から蒸発する前記各蒸着材料の流量を検出するものであって、前記各蒸着源に近い位置に備えられる検出手段と、を、減圧された空間の内部に有する蒸着装置を用いて、
     同じ種類の又は異なる種類の前記各蒸着材料の蒸気を混合して基板に噴射し、混合蒸着膜として基板に蒸着させる際、前記各蒸着源を、それぞれの前記各蒸着材料の蒸気が所定の蒸発レートを持つ或いはそれに相当する状態となるように加熱制御し、
     前記各配管及び/又は前記ノズルの内壁を、前記各蒸気の連続飛行温度以上、前記各蒸着材料の蒸発温度以下になるように加熱制御し、
     前記検出手段により検出された前記各蒸着材料の流量に基づき、前記各蒸着源の加熱温度を調整、制御し、
     前記各蒸着材料の蒸気を前記混合室内に供給して前記各蒸気を均一に攪拌、混合し、その混合蒸気を前記開口から実質的に拡散のない平行な流れとして基板に噴射し、
     前記基板上に混合蒸着膜を成膜する、ことを特徴とする方法。
PCT/JP2010/072410 2009-12-18 2010-12-13 真空蒸着方法及び装置 WO2011074551A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515002A JP5298189B2 (ja) 2009-12-18 2010-12-13 真空蒸着方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-288521 2009-12-18
JP2009288521 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074551A1 true WO2011074551A1 (ja) 2011-06-23

Family

ID=44167303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072410 WO2011074551A1 (ja) 2009-12-18 2010-12-13 真空蒸着方法及び装置

Country Status (2)

Country Link
JP (1) JP5298189B2 (ja)
WO (1) WO2011074551A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125078A1 (ja) * 2012-02-21 2013-08-29 日東電工株式会社 有機elデバイスの製造装置及び製造方法
JP2013204073A (ja) * 2012-03-28 2013-10-07 Hitachi Zosen Corp 真空蒸着装置および真空蒸着装置におけるるつぼ交換方法
CN103695848A (zh) * 2013-12-30 2014-04-02 京东方科技集团股份有限公司 蒸镀设备及其蒸镀方法
JP2014080659A (ja) * 2012-10-17 2014-05-08 Ulvac Japan Ltd 蒸着装置
JP2014129568A (ja) * 2012-12-28 2014-07-10 Canon Tokki Corp 蒸発源装置
KR20140092221A (ko) * 2013-01-15 2014-07-23 히다치 조센 가부시키가이샤 진공증착장치
KR101418713B1 (ko) 2012-12-26 2014-08-06 주식회사 선익시스템 증발원 및 이를 구비한 증착장치
WO2015159428A1 (ja) * 2014-04-18 2015-10-22 長州産業株式会社 ラインソース
FR3024162A1 (fr) * 2014-07-28 2016-01-29 Nexcis Dispositif et procede pour la formation d'une couche mince sur un substrat
KR20160080238A (ko) * 2014-12-29 2016-07-07 주식회사 에스에프에이 리니어 증발 소스
JP2016125135A (ja) * 2014-12-26 2016-07-11 株式会社オプトラン 成膜方法及び成膜装置
EP3241923A4 (en) * 2014-12-29 2018-02-07 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Linear evaporation source
CN108060393A (zh) * 2017-12-19 2018-05-22 成都亦道科技合伙企业(有限合伙) 金属复合材料制备装置及其制备方法
KR20190030993A (ko) * 2017-09-15 2019-03-25 주식회사 선익시스템 이종증착물질 증착을 위한 증발장치
JP2020020035A (ja) * 2018-07-30 2020-02-06 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置の製造装置、及び表示装置の製造方法
TWI691609B (zh) * 2016-12-30 2020-04-21 國家中山科學研究院 多鍍材線性蒸鍍裝置
WO2020077719A1 (zh) * 2018-10-17 2020-04-23 武汉华星光电半导体显示技术有限公司 蒸镀装置
WO2020133686A1 (zh) * 2018-12-29 2020-07-02 深圳市华星光电半导体显示技术有限公司 线源装置和 oled 蒸镀机
CN114318281A (zh) * 2021-12-30 2022-04-12 布劳恩惰性气体系统(上海)有限公司 加热样品台及具有其的真空镀膜系统
CN114525474A (zh) * 2022-03-10 2022-05-24 武汉华星光电半导体显示技术有限公司 蒸镀坩埚及蒸镀装置
EP3120939B1 (de) * 2015-07-13 2023-01-25 HEC High End Coating GmbH Beschichtete substrate und deren verwendung sowie anlagen zur herstellung der beschichteten substrate
WO2023011733A1 (en) * 2021-08-06 2023-02-09 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of operating an evaporation system, deflection device, and evaporation system
EP4190937A4 (en) * 2020-11-18 2023-12-27 Lg Chem, Ltd. DEPOSITION DEVICE FOR ORGANIC LIGHT-LIGHT DIODE
TWI849143B (zh) * 2019-06-14 2024-07-21 日商東洋鋼鈑股份有限公司 鍍覆處理用基板保持治具及鍍覆處理裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317957A (ja) * 2002-04-25 2003-11-07 Eastman Kodak Co 熱物理蒸着装置
JP2006063447A (ja) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd 有機物蒸着装置
JP2009041098A (ja) * 2007-08-11 2009-02-26 Sumitomo Electric Ind Ltd 成膜方法
JP2009097044A (ja) * 2007-10-18 2009-05-07 Canon Inc 成膜装置及び成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317957A (ja) * 2002-04-25 2003-11-07 Eastman Kodak Co 熱物理蒸着装置
JP2006063447A (ja) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd 有機物蒸着装置
JP2009041098A (ja) * 2007-08-11 2009-02-26 Sumitomo Electric Ind Ltd 成膜方法
JP2009097044A (ja) * 2007-10-18 2009-05-07 Canon Inc 成膜装置及び成膜方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171724A (ja) * 2012-02-21 2013-09-02 Nitto Denko Corp 有機elデバイスの製造装置及び製造方法
WO2013125078A1 (ja) * 2012-02-21 2013-08-29 日東電工株式会社 有機elデバイスの製造装置及び製造方法
CN103361607B (zh) * 2012-03-28 2017-03-01 日立造船株式会社 真空蒸镀装置和真空蒸镀装置的坩锅更换方法
JP2013204073A (ja) * 2012-03-28 2013-10-07 Hitachi Zosen Corp 真空蒸着装置および真空蒸着装置におけるるつぼ交換方法
CN103361607A (zh) * 2012-03-28 2013-10-23 日立造船株式会社 真空蒸镀装置和真空蒸镀装置的坩锅更换方法
JP2014080659A (ja) * 2012-10-17 2014-05-08 Ulvac Japan Ltd 蒸着装置
KR101418713B1 (ko) 2012-12-26 2014-08-06 주식회사 선익시스템 증발원 및 이를 구비한 증착장치
JP2014129568A (ja) * 2012-12-28 2014-07-10 Canon Tokki Corp 蒸発源装置
KR102180359B1 (ko) * 2013-01-15 2020-11-18 히다치 조센 가부시키가이샤 진공증착장치
KR20140092221A (ko) * 2013-01-15 2014-07-23 히다치 조센 가부시키가이샤 진공증착장치
JP2014136804A (ja) * 2013-01-15 2014-07-28 Hitachi Zosen Corp 真空蒸着装置
TWI596224B (zh) * 2013-01-15 2017-08-21 日立造船股份有限公司 真空蒸鍍裝置
CN103695848A (zh) * 2013-12-30 2014-04-02 京东方科技集团股份有限公司 蒸镀设备及其蒸镀方法
WO2015159428A1 (ja) * 2014-04-18 2015-10-22 長州産業株式会社 ラインソース
FR3024162A1 (fr) * 2014-07-28 2016-01-29 Nexcis Dispositif et procede pour la formation d'une couche mince sur un substrat
JP2016125135A (ja) * 2014-12-26 2016-07-11 株式会社オプトラン 成膜方法及び成膜装置
KR101649739B1 (ko) * 2014-12-29 2016-08-22 주식회사 에스에프에이 리니어 증발 소스
KR20160080238A (ko) * 2014-12-29 2016-07-07 주식회사 에스에프에이 리니어 증발 소스
EP3241923A4 (en) * 2014-12-29 2018-02-07 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Linear evaporation source
EP3120939B1 (de) * 2015-07-13 2023-01-25 HEC High End Coating GmbH Beschichtete substrate und deren verwendung sowie anlagen zur herstellung der beschichteten substrate
TWI691609B (zh) * 2016-12-30 2020-04-21 國家中山科學研究院 多鍍材線性蒸鍍裝置
KR20190030993A (ko) * 2017-09-15 2019-03-25 주식회사 선익시스템 이종증착물질 증착을 위한 증발장치
KR102454716B1 (ko) 2017-09-15 2022-10-14 (주)선익시스템 이종증착물질 증착을 위한 증발장치
CN108060393A (zh) * 2017-12-19 2018-05-22 成都亦道科技合伙企业(有限合伙) 金属复合材料制备装置及其制备方法
CN110783225A (zh) * 2018-07-30 2020-02-11 三星显示有限公司 用于制造显示装置的设备
JP2020020035A (ja) * 2018-07-30 2020-02-06 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置の製造装置、及び表示装置の製造方法
JP7240925B2 (ja) 2018-07-30 2023-03-16 三星ディスプレイ株式會社 表示装置の製造装置、及び表示装置の製造方法
CN110783225B (zh) * 2018-07-30 2024-07-05 三星显示有限公司 用于制造显示装置的设备
WO2020077719A1 (zh) * 2018-10-17 2020-04-23 武汉华星光电半导体显示技术有限公司 蒸镀装置
WO2020133686A1 (zh) * 2018-12-29 2020-07-02 深圳市华星光电半导体显示技术有限公司 线源装置和 oled 蒸镀机
TWI849143B (zh) * 2019-06-14 2024-07-21 日商東洋鋼鈑股份有限公司 鍍覆處理用基板保持治具及鍍覆處理裝置
EP4190937A4 (en) * 2020-11-18 2023-12-27 Lg Chem, Ltd. DEPOSITION DEVICE FOR ORGANIC LIGHT-LIGHT DIODE
WO2023011733A1 (en) * 2021-08-06 2023-02-09 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of operating an evaporation system, deflection device, and evaporation system
CN114318281A (zh) * 2021-12-30 2022-04-12 布劳恩惰性气体系统(上海)有限公司 加热样品台及具有其的真空镀膜系统
CN114318281B (zh) * 2021-12-30 2023-12-15 布劳恩惰性气体系统(上海)有限公司 加热样品台及具有其的真空镀膜系统
CN114525474A (zh) * 2022-03-10 2022-05-24 武汉华星光电半导体显示技术有限公司 蒸镀坩埚及蒸镀装置

Also Published As

Publication number Publication date
JPWO2011074551A1 (ja) 2013-04-25
JP5298189B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5298189B2 (ja) 真空蒸着方法及び装置
KR100780142B1 (ko) 기재의 코팅방법 및 기재에 층을 코팅하기 위한 장치
CN108715998B (zh) 一种用于大批量微纳米颗粒包裹的原子层沉积装置
KR100659762B1 (ko) 증발원, 증착장치 및 이를 이용한 증착방법
US20070194470A1 (en) Direct liquid injector device
US20070148348A1 (en) Evaporation source and method of depositing thin film using the same
US20070092635A1 (en) Apparatus and method for depositing thin films
CN108291291A (zh) 用于测量沉积率的测量组件、蒸发源、沉积设备及其方法
KR102062224B1 (ko) 증착장치
JP2003293140A (ja) 気相有機物の蒸着方法とこれを利用した気相有機物の蒸着装置
JP6640879B2 (ja) 堆積速度を測定するための測定アセンブリ及びその方法
KR20200033457A (ko) 리니어소스 및 그를 가지는 기판처리장치
KR101422533B1 (ko) 믹싱 영역이 포함된 선형 증발원
JP2019534938A (ja) 材料堆積装置、真空堆積システム、及び真空堆積を行う方法
TWI424600B (zh) 沈積有機薄膜之裝置及方法
KR101940602B1 (ko) 증착률을 측정하기 위한 측정 어셈블리 및 이를 위한 방법
KR100666571B1 (ko) 프로펠러형 분사 방식을 이용한 증착 장치
KR20130005273A (ko) 기상 증착 소스를 위한 정적 폐쇄 밸브
KR20020084102A (ko) 기재 상에 액체 형태의 전구체를 증착하는 방법과 장치
CN108027349A (zh) 用于振荡晶体的扩散阻挡物、用于测量沉积速率的测量组件及其方法
TWI816883B (zh) 蒸鍍裝置
CN115210403B (zh) 蒸镀控制装置以及利用其的显示器制造方法
KR20210093863A (ko) 증발 재료를 증착하기 위한 증착 소스, 증착 장치, 및 이를 위한 방법들
JP2005226154A (ja) 蒸着方法及び蒸着装置
JP2005203248A (ja) 蒸着方法及び蒸着装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011515002

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837577

Country of ref document: EP

Kind code of ref document: A1