WO2011074210A1 - 帯電部材、プロセスカートリッジ及び電子写真装置 - Google Patents

帯電部材、プロセスカートリッジ及び電子写真装置 Download PDF

Info

Publication number
WO2011074210A1
WO2011074210A1 PCT/JP2010/007136 JP2010007136W WO2011074210A1 WO 2011074210 A1 WO2011074210 A1 WO 2011074210A1 JP 2010007136 W JP2010007136 W JP 2010007136W WO 2011074210 A1 WO2011074210 A1 WO 2011074210A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silsesquioxane
formula
alkyl group
substituted
Prior art date
Application number
PCT/JP2010/007136
Other languages
English (en)
French (fr)
Inventor
洋子 来摩
紀明 黒田
典子 長嶺
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to EP10837246.7A priority Critical patent/EP2515177B1/en
Priority to CN201080056626.4A priority patent/CN102656523B/zh
Priority to KR1020127017592A priority patent/KR101372650B1/ko
Priority to US13/080,594 priority patent/US8092358B2/en
Publication of WO2011074210A1 publication Critical patent/WO2011074210A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor

Definitions

  • the present invention relates to a charging member, a process cartridge, and an electrophotographic apparatus used in an electrophotographic apparatus.
  • a roller-shaped charging member for contacting the surface of the electrophotographic photosensitive member and charging the surface of the electrophotographic photosensitive member is generally made of resin.
  • An elastic layer is included.
  • Such a charging roller can secure a sufficient nip width with the electrophotographic photosensitive member, and as a result, the electrophotographic photosensitive member can be charged efficiently and uniformly.
  • the elastic layer contains a low molecular weight component of a plasticizer or a resin for softening. Therefore, the low molecular weight component may ooze out on the surface of the charging roller after long-term use.
  • Patent Document 1 has a conductive property in which the surface is covered with a breathing prevention layer formed of an inorganic oxide film formed by a sol-gel method, and low molecular weight components are prevented from bleeding into the surface.
  • a roll substrate is disclosed.
  • an object of the present invention is to provide a charging member that has little change in charging performance with time even after long-term use.
  • Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus that can stably form a high-quality electrophotographic image.
  • the charging member according to the present invention is a charging member having a support, a conductive elastic layer, and a surface layer in this order, and the surface layer includes polysiloxane and silsesquioxane
  • the polysiloxane includes a first unit represented by SiO 0.5 R 1 (OR 2 ) (OR 3 ), a second unit represented by SiO 1.0 R 4 (OR 5 ), and a third unit represented by SiO 1.5 R 6 .
  • the silsesquioxane is at least one compound selected from the group consisting of compounds represented by the following compounds (1) to (6):
  • R 1 , R 4 and R 6 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group
  • R 2 , R 3 and R 5 each independently represents a hydrogen atom or a substituted group. Or an unsubstituted alkyl group is shown.
  • R 101 to R 616 are each independently at least one selected from an unsubstituted alkyl group, a fluorinated alkyl group, an unsubstituted aryl group, or a group represented by the following formula (7).
  • R 101 to R 616 are each independently at least one selected from a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a group represented by the following formula (7). It is.
  • X, Y and Z are each independently at least one selected from a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group, and m is an integer of 1 to 20) ).
  • an electrophotographic apparatus includes the above-described charging member and an electrophotographic photosensitive member disposed in contact with the charging member.
  • the process cartridge according to the present invention integrally holds the charging member described above and at least one member selected from an electrophotographic photosensitive member, a developing unit, a transfer unit, and a cleaning unit, and is detachable from the main body of the electrophotographic apparatus. It is comprised so that attachment to can be carried out.
  • the present invention it is possible to obtain a charging member excellent in durability in which charging performance hardly changes even after long-term use.
  • the surface layer of the charging member according to the present invention is formed by filling the gaps of the polysiloxane according to the present invention with the silsesquioxane according to the compounds (1) to (6) at the molecular level. This is thought to be due to reinforcement. As a result, it is considered that the surface layer can maintain a uniform mechanical strength and is less likely to be worn by friction with the electrophotographic photosensitive member during contact charging.
  • FIG. 1 is a schematic view of an electrophotographic apparatus provided with a process cartridge according to the present invention.
  • the charging member according to the present invention is a charging member having a support, a conductive elastic layer, and a surface layer in this order, and the surface layer includes polysiloxane and silsesquioxane.
  • the polysiloxane is composed of a first unit represented by SiO 0.5 R 1 (OR 2 ) (OR 3 ), a second unit represented by SiO 1.0 R 4 (OR 5 ), and a third unit represented by SiO 1.5 R 6 .
  • R 1 , R 4 and R 6 each independently represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Examples of the unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • Examples of the substituted alkyl group include a fluorinated alkyl group and a glycidoxypropyl group in which at least one hydrogen atom of the above-described alkyl group is substituted with a perfluoroalkyl group having 1 to 10 carbon atoms. Moreover, a phenyl group is mentioned as an unsubstituted aryl group. Further, examples of the substituted aryl group include a pentafluorophenyl group and a 4-perfluorotolyl group.
  • R 2 , R 3 and R 5 each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group.
  • Examples of the unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group. Further, examples of the substituted alkyl include a 2-methoxyethyl group and an acetyl group.
  • first unit represented by SiO 0.5 R 1 (OR 2 ) (OR 3 ) means a range A1 surrounded by a square of polysiloxane as shown in the following formula (i). To do. In the range A1, an oxygen atom that is not an oxygen atom of the alkoxy group (O of Si—O—Si) is bonded to two silicon atoms, so that an oxygen atom bonded per one silicon atom ( The number of O) in Si—O—Si is considered to be 0.5.
  • the “second unit represented by SiO 1.0 R 4 (OR 5 )” is the same as the “first unit represented by SiO 0.5 R 1 (OR 2 ) (OR 3 )”, and specifically, Means a range A2 surrounded by a square of polysiloxane as shown in the following formula (ii).
  • the polysiloxane preferably has at least one group selected from the group consisting of a substituted alkyl group, an unsubstituted alkyl group, a substituted aryl group, and an unsubstituted aryl group.
  • the surface layer of the charging member containing the polysiloxane according to the present invention can be obtained, for example, through the following steps (I) to (III).
  • step (I) a condensation step of condensing a hydrolyzable silane compound and a hydrolyzable silane compound having a cationically polymerizable group by hydrolysis;
  • step (II) a mixing step of adding silsesquioxane represented by compounds (1) to (6) to the hydrolyzable condensate obtained in step (I),
  • step (III) A crosslinking step in which the mixture obtained in step (II) is crosslinked and cured by cleaving a cationically polymerizable group.
  • the amount of water used for hydrolysis in the condensation step of the step (I) is preferably in the range of 20 to 50% by mass with respect to the total amount of hydrolyzable silane compound used in the step (I).
  • the hydrolyzable silane compound is preferably a hydrolyzable silane compound having at least one group selected from substituted or unsubstituted aryl groups. Among these, a hydrolyzable silane compound having an aryl group having a structure represented by the following formula (8) is more preferable.
  • R 11 and R 12 each independently represent a substituted or unsubstituted alkyl group
  • Ar 11 represents a substituted or unsubstituted aryl group
  • a is an integer of 0 or more and 2 or less.
  • Examples of the substituted alkyl group include a fluorinated alkyl group, and examples of the unsubstituted alkyl group include methyl, ethyl, propyl, hexyl, and decyl.
  • the alkyl group represented by R 11 and R 12 is preferably a methyl group, an ethyl group, or a propyl group.
  • the aryl group Ar 11 in the formula (8) is preferably a phenyl group. When a in the formula (8) is 2, two R 11 may be the same or different. When b in the formula (8) is 2 or 3, two or three R 12 may be the same or different.
  • Specific examples of the hydrolyzable silane compound having an aryl group represented by the formula (8) are shown below.
  • the hydrolyzable silane compound having an aryl group may be used alone or in combination of two or more.
  • hydrolyzable silane compound having a group capable of cationic polymerization a hydrolyzable silane compound having a structure represented by the following formula (9) is preferable.
  • R 21 and R 22 each independently represents a substituted or unsubstituted alkyl group
  • Z 21 represents a divalent organic group
  • Rc 21 forms an oxyalkylene group by cleavage.
  • a group capable of cationic polymerization d is an integer of 0 or more and 2 or less
  • e is an integer of 1 or more and 3 or less
  • d + e 3.
  • Rc 21 examples include a cyclic ether group such as a glycidoxy group, an epoxy group, and an oxetane group, or a vinyl ether group.
  • a glycidoxy group or an epoxy group is preferable from the viewpoint of availability and reaction control.
  • the oxyalkylene group is a divalent group having a structure represented by —O—R— (—R—: alkylene group) (sometimes referred to as “alkylene ether group”).
  • Examples of the substituted alkyl group represented by R 21 and R 22 in the formula (9) include a fluorinated alkyl group, and examples of the unsubstituted alkyl group include methyl, ethyl, propyl, hexyl, decyl and the like. Among them, R 21 and R 22 are preferably an unsubstituted alkyl group having 1 to 3 carbon atoms or a branched alkyl group, and more preferably a methyl group or an ethyl group.
  • Examples of the divalent organic group Z 21 in the formula (9) include an alkylene group and an arylene group.
  • an alkylene group having 1 to 6 carbon atoms is preferable, and an ethylene group and a propylene group are more preferable.
  • e in the formula (9) is preferably 3.
  • two R 21 may be the same or different.
  • e in the formula (9) is 2 or 3
  • two or three R 22 may be the same or different.
  • Specific examples of the hydrolyzable silane compound having the structure represented by the formula (9) are shown below.
  • the hydrolyzable silane compound having a cationically polymerizable group may be used alone or in combination of two or more.
  • the resulting polysiloxane is a polysiloxane having a fluorinated alkyl group (perfluoroalkyl group).
  • R 31 and R 32 each independently represent a substituted or unsubstituted alkyl group
  • Z 31 represents a divalent organic group
  • Rf 31 has 1 to 11 carbon atoms.
  • a fluorinated alkyl group is shown.
  • f is an integer of 0 to 2
  • g is an integer of 1 to 3
  • f + g 3.
  • examples of the substituted alkyl group include a fluorinated alkyl group
  • examples of the unsubstituted alkyl group include methyl, ethyl, propyl, hexyl, decyl, and the like.
  • the alkyl group represented by R 31 and R 32 is preferably an alkyl group having 1 to 3 carbon atoms or a branched alkyl group, and more preferably a methyl group or an ethyl group.
  • the divalent organic group Z 31 in the formula (10) in, for example, alkylene groups or arylene groups. Among these, an alkylene group having 1 to 6 carbon atoms is preferable, and an ethylene group is more preferable.
  • the fluorinated alkyl group having 1 to 11 carbon atoms of Rf 31 in the formula (10) is particularly preferably a linear fluorinated alkyl group having 6 to 11 carbon atoms from the viewpoint of processability.
  • G in the formula (10) is preferably 3.
  • the equation (10) if f is 2 in, the two R 31 may be the same or may be different.
  • g in the formula (10) is 2 or 3
  • two or three R 32 may be the same or different.
  • Specific examples of the hydrolyzable silane compound having the structure represented by the formula (10) are shown below.
  • R in the following (10-1) to (10-6) represents a methyl group or an ethyl group.
  • the hydrolyzable silane compound having a fluorinated alkyl group may be used alone or in combination of two or more.
  • a hydrolyzable silane other than the above hydrolyzable silane compound may be further used in the step (I).
  • the hydrolyzable silane other than the above hydrolyzable silane compound include a hydrolyzable silane compound having a structure represented by the following formula (11).
  • R 41 represents a substituted or unsubstituted alkyl group.
  • R 42 represents a saturated or unsaturated monovalent hydrocarbon group.
  • H is an integer of 0 to 3
  • R 41 in the formula (11) is preferably an unsubstituted alkyl group having 1 to 21 carbon atoms.
  • h is preferably an integer of 1 to 3, and more preferably 1.
  • k is preferably an integer of 1 to 3, more preferably 3.
  • hydrolyzable silane compound having the structure represented by the formula (11) may be used alone or in combination of two or more. Specific examples of the hydrolyzable silane compound having the structure represented by the formula (11) are shown below.
  • the surface layer according to the present invention includes silsesquioxane having a specific chemical structure together with the above-described polysiloxane. Specifically, it includes at least one compound selected from the group consisting of the following compounds (1) to (6).
  • R 101 to R 616 are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a group represented by the following formula (7). At least one selected.
  • X, Y and Z are each independently at least one selected from a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group, and m is an integer in the range of 1 to 20 It is.
  • R 101 to R 616 are each independently at least one selected from an unsubstituted alkyl group having 1 to 20 carbon atoms and a group represented by the formula (7). It is preferable that Thereby, the solubility of silsesquioxane with respect to polysiloxane can be improved.
  • any substituent selected from R 101 to R 616 is the above formula (7)
  • X and Y are alkyl groups having 1 to 3 carbon atoms, and Z is 1 to 3 carbon atoms.
  • m is preferably 1. Since the difference in surface tension between polysiloxane and silsesquioxane can be reduced, the compatibility between the two can be improved.
  • the substituted alkyl group in R 101 to R 616 include a fluorinated alkyl group in which at least one hydrogen atom of an alkyl group having 1 to 20 carbon atoms is substituted with a fluorine atom, or a substituted or unsubstituted hydrogen atom.
  • R 201 to R 208 are a combination of a branched alkyl group having 1 to 20 carbon atoms or a group represented by the formula (7), and all of R 201 to R 208 being the same group. preferable.
  • R 201 to R 208 are groups represented by the above formula (7)
  • X and Y in the formula (7) are linear alkyl groups having 1 to 4 carbon atoms
  • Z is a cyclohexane.
  • An ethyl group modified with an alkenyl group (eg, 3-cyclohexen-1-yl) is preferable. Since the number of Si atoms constituting the silsesquioxane is not excessively large, it is preferably buried in the gaps in the polysiloxane network structure, and the mechanical strength of the surface layer film can be improved uniformly.
  • the standard of the content of silsesquioxane with respect to the polysiloxane is 1.0 mol or more and 50.0 mol or less, particularly 10.0 mol or more and 30.0 mol or less of silsesquioxane with respect to 100 mol of the polysiloxane. .
  • FIG. 1 is a schematic sectional view of a charging roller, which is an example of the charging member of the present invention, on a plane perpendicular to the axial direction.
  • 101 is a support
  • 102 is a conductive elastic layer
  • 103 is a surface layer.
  • the charging member includes a conductive elastic layer 102 between the support 101 and the surface layer 103, for example, as shown in FIG.
  • the provided structure is preferable.
  • the charging member includes the support 101, the conductive elastic layer 102 formed on the support 101, and the surface layer 103 formed on the conductive elastic layer 102.
  • One or more other layers may be provided between the support 101 and the conductive elastic layer 102 or between the conductive elastic layer 102 and the surface layer 103.
  • a charging member having a support, a conductive elastic layer formed on the support, and a surface layer formed on the conductive elastic layer will be described as an example.
  • a support for the charging member a support made of a metal (made of alloy) such as iron, copper, stainless steel, aluminum, an aluminum alloy, or nickel can be used.
  • one or more elastic bodies such as rubber and thermoplastic elastomer used for the conventional elastic layer (conductive elastic layer) of the charging member can be used.
  • rubber are given below. Urethane rubber, silicone rubber, butadiene rubber, isoprene rubber, chloroprene rubber, styrene-butadiene rubber, ethylene-propylene rubber, polynorbornene rubber, styrene-butadiene-styrene rubber, acrylonitrile rubber, epichlorohydrin rubber or alkyl ether rubber.
  • thermoplastic elastomer examples include styrene elastomers and olefin elastomers.
  • examples of commercially available styrene elastomers include “Lavalon” (trade name, manufactured by Mitsubishi Chemical Corporation), “Septon Compound” (trade name, manufactured by Kuraray Co., Ltd.), and the like.
  • examples of commercially available olefin elastomers include “Thermolan” (trade name, manufactured by Ryo Chemicals Co., Ltd.), “Milastomer” (trade name, manufactured by Mitsui Chemicals, Inc.), “Sumitomo TPE” (trade name, Sumitomo). Chemical Co., Ltd.) or “Sant Plain” (trade name, manufactured by Advanced Elastomer Systems Co., Ltd.).
  • the electroconductivity can be set to a predetermined value by appropriately using a conductive agent in the conductive elastic layer.
  • the electrical resistance of the conductive elastic layer can be adjusted by appropriately selecting the type and amount of the conductive agent.
  • the preferred range of the electrical resistance is 10 2 to 10 8 ⁇ , and the more preferred range is 10 3 to 10 6 ⁇ .
  • Examples of the conductive agent used in the conductive elastic layer include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, an antistatic agent, and an electrolyte.
  • Examples of the cationic surfactant include quaternary ammonium salts. Specific examples of the quaternary ammonium ion of the quaternary ammonium salt include lauryltrimethylammonium ion and stearyltrimethylammonium ion. Specific examples of counter ions of quaternary ammonium ions include halide ions and perchlorate ions. Specific examples of the anionic surfactant include aliphatic sulfonates and higher alcohol sulfates.
  • antistatic agent examples include nonionic antistatic agents such as higher alcohol ethylene oxide and polyethylene glycol fatty acid ester.
  • examples of the electrolyte include salts of metals of Group 1 of the periodic table (Li, Na, K, etc.), specifically, salts of metals of Group 1 of the periodic table (LiCF 3 SO 3 , NaClO 4, etc.). Is mentioned.
  • Examples of the conductive agent include salts (such as Ca (ClO 4 ) 2 ) of metals of the second group of the periodic table (Ca, Ba, etc.).
  • Conductive agents such as conductive carbon black, graphite, metal oxides (tin oxide, titanium oxide, zinc oxide, etc.), metals (nickel, copper, silver, germanium, etc.), conductive polymers (polyaniline, polypyrrole, polyacetylene) Etc.) can also be used.
  • An inorganic or organic filler or a crosslinking agent may be added to the conductive elastic layer.
  • the filler include silica (white carbon), calcium carbonate, magnesium carbonate, clay, talc, bentonite, zeolite, alumina, barium sulfate, and aluminum sulfate.
  • the crosslinking agent include sulfur, peroxide, crosslinking aid, crosslinking accelerator, crosslinking acceleration aid, crosslinking retarder and the like.
  • the hardness of the conductive elastic layer is preferably 70 degrees or more in terms of Asker C hardness from the viewpoint of suppressing deformation of the charging member when the charging member and the electrophotographic photosensitive member that is a charged body are brought into contact with each other.
  • the angle is more preferably 73 degrees or more.
  • the Asker C hardness was measured under the condition of a load of 1000 g by bringing a pusher of an Asker C type hardness meter (manufactured by Kobunshi Keiki Co., Ltd.) into contact with the surface of the object to be measured.
  • hydrolysis is performed by hydrolyzing a hydrolyzable silane compound, a hydrolyzable silane compound having a cationically polymerizable group, and, if necessary, the other hydrolyzable silane compound in the presence of water.
  • a functional condensate is obtained (step I).
  • a hydrolyzable condensate having a desired degree of condensation can be obtained by controlling temperature, pH and the like.
  • the degree of condensation may be controlled by using a metal alkoxide or the like as a catalyst for the hydrolysis reaction.
  • a metal alkoxide or the like examples include aluminum alkoxide, titanium alkoxide, zirconium alkoxide, and the like, or complexes thereof (acetylacetone complex and the like).
  • the amount of water used for hydrolysis in the condensation step of the step (I) is preferably in the range of 20 to 50% by mass with respect to the total amount of hydrolyzable silane compound used in the step (I).
  • hydrolyzable silane compound it is preferable to use a hydrolyzable silane compound having at least one group selected from substituted and unsubstituted aryl groups.
  • a hydrolyzable silane compound having an aryl group having the structure represented by the formula (8) is more preferable.
  • each group which the polysiloxane obtained by opening a group capable of cationic polymerization in the step (III) has the following range with respect to the total mass of the polysiloxane.
  • ⁇ Aryl group content 2 mass% to 30 mass%
  • Alkyl group content 2 mass% to 30 mass%
  • Oxyalkylene group content 5 mass% to 50 mass% Content: 30% to 60% by mass
  • the total content of the aryl group, alkyl group, and oxyalkylene group is preferably 20 to 40% by mass, and more preferably 25 to 35% by mass. More preferably, the hydrolyzable silane compound having an aryl group is blended in an amount of 10 to 50 mol parts relative to the total hydrolyzable silane compound.
  • step (I) when a hydrolyzable silane compound having the structure represented by the formula (10) is used in combination, a polymer obtained by opening a group capable of cationic polymerization in the step (III) is used. It is preferable that each group which siloxane has becomes the following range with respect to the total mass in the said polysiloxane.
  • ⁇ Aryl group content 2 mass% to 30 mass%
  • Alkyl group content 2 mass% to 30 mass%
  • Oxyalkylene group content 5 mass% to 50 mass%
  • the total content of the aryl group, alkyl group, oxyalkylene group, fluorinated alkyl group and siloxane moiety is preferably 10 to 60% by mass, preferably 20 to 50% by mass, based on the total mass of the polysiloxane. It is more preferable. Further, the molar ratio of the hydrolyzable silane compound having a group capable of cationic polymerization and the hydrolyzable silane compound containing a fluorinated alkyl group is more preferably in the range of 10: 1 to 1:10. preferable.
  • step II one or more of the silsesquioxane compounds represented by the compounds (1) to (6) are added to and mixed with the resulting hydrolyzable condensate.
  • silsesquioxanes represented by the compounds (1) to (6) commercially available products can be used, and those synthesized by known methods can also be used. That is, silsesquioxane can be synthesized by hydrolyzing a silane compound having an arbitrary substituent and three hydrolyzable groups, followed by dehydration condensation. Examples of the hydrolyzable group include an alkoxy group and a chlorine atom.
  • octamethyl-polyoctasilsesquioxane can be obtained by hydrolyzing and dehydrating and condensing methyltrichlorosilane in the presence of water, a solvent, and a basic catalyst.
  • the basic catalyst examples include alkali metal oxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, and ammonium hydroxide salts such as tetramethylammonium hydroxide and benzyltrimethylammonium hydroxide. Of these, tetramethylammonium hydroxide is preferred because of its high catalytic activity.
  • Water used for hydrolysis can be supplemented from an aqueous solution of a basic catalyst, or may be added separately.
  • the amount of water is not less than an amount sufficient to hydrolyze the hydrolyzable group, preferably 1.0 to 1.5 times the theoretical amount.
  • alcohols such as methanol, ethanol, 2-propanol, or other polar solvents can be used. From the viewpoint of compatibility with water, lower alcohols having 1 to 6 carbon atoms are preferred.
  • the reaction temperature during the synthesis is preferably 0 to 60 ° C, more preferably 20 to 40 ° C. It can suppress that a hydrolyzable group remains in an unreacted state, and can suppress the increase in the molecular weight of the hydrolysis product due to the reaction rate being too high.
  • the reaction time is preferably 2 hours or longer in order to allow the hydrolysis to proceed sufficiently.
  • water or a water-containing reaction solvent may be separated.
  • a method for separating water or the water-containing reaction solvent a method such as evaporation under reduced pressure can be used.
  • a non-polar solvent is added to dissolve the hydrolysis product, this solution is washed with brine, and then dried with a desiccant such as anhydrous magnesium sulfate. It is possible to adopt means for making
  • the structure of the obtained silsesquioxane can be confirmed by using 29 Si nuclear magnetic resonance spectrum and Fourier transform infrared absorption spectrum.
  • the amount of silsesquioxane added in the compounds (1) to (6) is determined based on the compound (1) when the total amount of polysiloxane solids when the hydrolyzable silane compound is all dehydrated and condensed is 100 mol. ) To (6), the amount of silsesquioxane is 1.0 mol or more and 50.0 mol or less, particularly 10.0 mol or more and 30.0 mol or less.
  • a coating solution for forming a surface layer containing a hydrolyzable condensate and a silsesquioxane compound represented by compounds (1) to (6) is prepared, and a layer immediately below the surface layer, that is, an elastic layer A coating film of the coating solution is formed thereon.
  • a solvent may be used in addition to the hydrolyzable condensate for improving the coating property.
  • the solvent include alcohols such as ethanol or 2-butanol, ethyl acetate, methyl isobutyl ketone, methyl ethyl ketone, or a mixture thereof.
  • applying the coating liquid for surface layers on a conductive elastic layer methods, such as application
  • the coating film is irradiated with active energy rays. Then, the cationically polymerizable group of the hydrolyzable condensate contained in the coating film is cleaved. Thereby, the hydrolyzable condensate in the surface coating liquid layer can be crosslinked. The hydrolyzable condensate is cured by crosslinking, and when it is dried, a surface layer is formed (step III).
  • the ultraviolet ray is preferable as the active energy ray.
  • the hydrolyzable condensate can be crosslinked in a short time (within 15 minutes). In addition, there is little heat generation, and the surface layer is less likely to be wrinkled or cracked.
  • the cross-linking reaction is performed by ultraviolet rays with less heat generation, the adhesion between the conductive elastic layer and the surface layer is increased, and the surface layer can sufficiently follow the expansion / contraction of the conductive elastic layer. Wrinkles and cracks in the surface layer due to changes in environmental temperature and humidity can be suppressed.
  • the crosslinking reaction is performed using ultraviolet rays, it is possible to suppress deterioration of the conductive elastic layer due to thermal history, and thus it is possible to suppress a decrease in electrical characteristics of the conductive elastic layer.
  • a high-pressure mercury lamp, a metal halide lamp, a low-pressure mercury lamp, an excimer UV lamp, or the like can be used, and among these, an ultraviolet ray source containing abundant light having an ultraviolet wavelength of 150 to 480 nm is preferably used. .
  • UV integrated light quantity [mJ / cm 2 ] UV intensity [mW / cm 2 ] ⁇ irradiation time [s]
  • the adjustment of the integrated amount of ultraviolet light can be performed by the irradiation time, lamp output, distance between the lamp and the irradiated object, and the like. Moreover, you may give a gradient to integrated light quantity within irradiation time.
  • the accumulated amount of ultraviolet light is measured using an ultraviolet integrated light meter “UIT-150-A” (trade name) or “UVD-S254” (trade name) manufactured by USHIO INC. be able to.
  • an excimer UV lamp is used, the accumulated amount of ultraviolet light is measured using an ultraviolet integrated light meter “UIT-150-A” (trade name) or “VUV-S172” (trade name) manufactured by USHIO INC. be able to.
  • a cationic polymerization catalyst (polymerization initiator) is allowed to coexist from the viewpoint of improving the crosslinking efficiency.
  • a cationic polymerization catalyst polymerization initiator
  • an epoxy group exhibits high reactivity with respect to an onium salt of a Lewis acid activated by an active energy ray
  • the cationic polymerization catalyst is Lewis It is preferable to use an onium salt of an acid.
  • Examples of other cationic polymerization catalysts include borate salts, compounds having an imide structure, compounds having a triazine structure, azo compounds, and peroxides.
  • aromatic sulfonium salts and aromatic iodonium salts are preferable from the viewpoints of sensitivity, stability, and reactivity.
  • bis (4-tert-butylphenyl) iodonium salt and a compound having a structure represented by the following formula (12) (trade name: “ADEKA OPTOMA-SP150”, manufactured by ADEKA Corporation) are more preferable.
  • a compound having a structure represented by the following formula (13) (trade name: “Irgacure 261”, manufactured by Ciba Specialty Chemicals) is more preferable.
  • the amount of the cationic polymerization catalyst used is preferably 0.1 to 3% by mass relative to the hydrolyzable condensate.
  • the elastic modulus of the surface layer of the charging member is preferably 30 GPa or less.
  • the crosslinking density tends to decrease as the elastic modulus of the surface layer decreases.
  • the elastic modulus of the surface layer is preferably 100 MPa or more.
  • the standard of the layer thickness of the surface layer is 0.01 ⁇ m or more and 1.00 ⁇ m or less, particularly 0.05 ⁇ m or more and 0.50 ⁇ m or less. What is necessary is just to set suitably in said range, suppressing that the low molecular-weight component from an elastic layer oozes out on the surface of a charging member, and also considering the charging performance of a charging member.
  • FIG. 2 shows a schematic configuration of an example of an electrophotographic apparatus provided with a process cartridge having the charging member of the present invention.
  • the cylindrical electrophotographic photosensitive member 1 is driven to rotate at a predetermined peripheral speed in the direction of arrow A about the shaft 2.
  • a charging member 3 roller-shaped charging member in FIG. 2) according to the present invention is disposed in contact with the electrophotographic photoreceptor 1.
  • the charging member 3 rotates in the forward direction with respect to the rotation of the electrophotographic photosensitive member 1.
  • the surface of the electrophotographic photosensitive member 1 that is driven to rotate is uniformly charged to a predetermined positive or negative potential by the charging member 3.
  • exposure light (image exposure light) 4 output from exposure means (not shown) such as slit exposure or laser beam scanning exposure is received.
  • electrostatic latent images corresponding to the target image are sequentially formed on the surface of the electrophotographic photosensitive member 1.
  • a voltage of only a DC voltage or a voltage obtained by superimposing an AC voltage on the DC voltage is applied to the charging member 3 from a voltage applying unit (not shown).
  • the charging member of the present invention is preferably used in an electrophotographic apparatus having a voltage applying means for applying only a DC voltage to the charging member.
  • the DC voltage for example, when a voltage of ⁇ 1000 V is applied, it is preferable that the dark part potential at that time is about ⁇ 500 V and the light part potential is about ⁇ 100 V.
  • the electrostatic latent image formed on the surface of the electrophotographic photoreceptor 1 is developed (reversal development or regular development) with toner contained in the developer of the developing means 5 to become a toner image.
  • the toner image formed and supported on the surface of the electrophotographic photosensitive member 1 is sequentially transferred onto a transfer material (such as paper) P by a transfer bias from a transfer unit (such as a transfer roller) 6.
  • the transfer material P is taken out from the transfer material supply means (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 (contact portion) in synchronization with the rotation of the electrophotographic photoreceptor 1 and supplied. Sent.
  • the transfer material P that has received the transfer of the toner image is separated from the surface of the electrophotographic photosensitive member 1 and introduced into the fixing means 8 to receive the image fixing, and is printed out as an image formed product (print, copy). Is done.
  • the developer (toner) that has not been transferred by the cleaning means (cleaning blade or the like) 7 is removed from the surface of the electrophotographic photosensitive member 1 after the transfer of the toner image.
  • the process cartridge according to the present invention integrally holds the charging member 3 according to the present invention and at least one member selected from the electrophotographic photosensitive member 1, the developing unit 5, the transfer unit 6, and the cleaning unit 7, and an electrophotographic apparatus. It is configured to be detachably mountable to the main body.
  • the electrophotographic photosensitive member 1, the charging member 3, the developing unit 5, and the cleaning unit 7 may be integrally supported to form a cartridge.
  • the process cartridge 9 may be detachably attached to the main body of the electrophotographic apparatus using guide means 10 such as a rail of the main body of the electrophotographic apparatus.
  • the electrophotographic apparatus according to the present invention includes the charging member according to the present invention and an electrophotographic photosensitive member arranged in contact with the charging member.
  • the electrophotographic apparatus preferably has voltage applying means for applying only a DC voltage to the charging means.
  • Parts in the examples means “parts by mass”.
  • Example 1 (Production of charging member)
  • the raw materials shown in Table 1 below were mixed in a 6-liter pressure kneader “TD6-15MDX” (trade name, manufactured by Toshin Co., Ltd.) for 16 minutes at a filling rate of 70 vol% and a blade rotation speed of 30 rpm, and the A kneaded rubber composition I got a thing.
  • TD6-15MDX trade name, manufactured by Toshin Co., Ltd.
  • a vulcanization accelerator and a vulcanizing agent shown in Table 2 below are added to the A kneaded rubber composition, and an open roll having a roll diameter of 12 inches is used with a front roll rotation speed of 8 rpm, a rear roll rotation speed of 10 rpm, and a roll gap of 2 mm. After turning back left and right a total of 20 times, a kneaded product I was obtained by thinning 10 times with a roll gap of 0.5 mm.
  • the kneaded product 1 is extruded into a cylindrical shape having an outer diameter of 9.4 mm and an inner diameter of 5.4 mm with a rubber extruder, cut into a length of 250 mm, and subjected to primary addition with steam at 160 ° C. for 30 minutes using a vulcanizer.
  • a primary vulcanization tube 1 for a conductive elastic layer was obtained.
  • thermosetting adhesive containing metal and rubber (trade name: “Metaloc U-20” in a region up to 115.5 mm on both sides across the center in the axial direction of the cylindrical surface of the support (a region having an axial width of 231 mm). ", Manufactured by Toyo Chemical Laboratory Co., Ltd.). This was dried at 80 ° C. for 30 minutes, and further dried at 120 ° C. for 1 hour.
  • This support is inserted into the primary vulcanization tube 1 for the conductive elastic layer, heated at 160 ° C. for 1 hour to secondary vulcanize the primary vulcanization tube 1 for the conductive elastic layer, The curable adhesive was cured.
  • the conductive elastic roller 1 before surface polishing was obtained.
  • both ends of the conductive elastic layer portion (rubber portion) of the conductive elastic roller 1 before surface polishing were cut so that the axial width of the conductive elastic layer portion was 231 mm. Furthermore, by polishing the surface of the conductive elastic layer portion with a rotating grindstone, a conductive elastic roller (conductive elastic roller after surface polishing) 2 was obtained.
  • the conductive elastic roller 2 has a crown-shaped conductive elastic layer having an end diameter of 8.2 mm and a central diameter of 8.5 mm, and the ten-point average roughness (Rzjis) of the surface of the conductive elastic layer. ) was 5.5 ⁇ m, and the deflection was 28 ⁇ m.
  • the Asker C hardness of the conductive elastic layer was 78 degrees.
  • the ten-point average roughness (Rzjis) was measured according to JIS B 0601: 2001.
  • the vibration was measured using a high-precision laser measuring instrument “LSM-430v” (trade name) manufactured by Mitutoyo Corporation.
  • LSM-430v trade name
  • the outer diameter is measured using the measuring device, and the difference between the maximum outer diameter value and the minimum outer diameter value is defined as the outer diameter difference run.
  • the value was the runout of the object to be measured.
  • the measurement of the Asker C hardness was performed under the condition of a load of 1000 g with the pusher of an Asker C type hardness meter (manufactured by Kobunshi Keiki Co., Ltd.) in contact with the surface of the measurement object as described above.
  • silsesquioxane no. 1 (product number: 52684-3, manufactured by Sigma-Aldrich Japan) diluted with methyl ethyl ketone (hereinafter referred to as MEK) to 10% by mass is a silsesquioxy with respect to a total addition amount of 0.320 mol of the hydrolyzable silane compound.
  • Sun No. 279.56 g was added so that 1 became 10.0 mol.
  • the condensate-containing solution 1 containing 1 was added to a mixed solvent of 2-butanol / ethanol to prepare a condensate-containing alcohol solution 1 having a solid content of 7% by mass.
  • an aromatic sulfonium salt (trade name: “ADEKA OPTMER SP-150”, manufactured by ADEKA Corporation) diluted with 10% by mass of methyl isobutyl ketone (hereinafter referred to as MIBK) as a photocationic polymerization initiator. 2 parts by mass were added to the condensate-containing alcohol solution 1. This was diluted with ethanol to prepare a surface layer coating solution 1 having a solid content of 2% by mass.
  • the surface layer coating liquid 1 was applied onto the conductive elastic layer of the conductive elastic roller (conductive elastic roller after surface polishing) 2 using a ring coating head (discharge amount: 0.008 ml / s). (Ring part speed: 30 mm / s, total discharge amount: 0.064 ml)). Then, the coating film of the coating liquid 1 on the conductive elastic layer is irradiated with ultraviolet light having a wavelength of 254 nm so that the integrated light quantity becomes 8500 mJ / cm 2, and the glycidoxy group of the hydrolysis condensate 1 in the coating film was cleaved, crosslinked, and left to dry for 3 seconds to form a surface layer.
  • a low-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co., Ltd. was used for ultraviolet irradiation.
  • a charging roller having a support, a conductive elastic layer formed on the support, and a surface layer formed on the conductive elastic layer was produced.
  • This charging roller is referred to as a charging roller 1.
  • Examples 2 to 5 Silsesquioxane No. 1 of Example 1. 1 is a silsesquioxane No. 1 shown in Table 4 below.
  • the charging rollers 2 to 5 were produced in the same manner as in Example 1 except that the number was changed to 2 to 5.
  • Example 6 Silsesquioxane No. 1 of Example 1.
  • No. 1 produced by the following Synthesis Example 1 A charging roller 6 was produced in the same manner as in Example 1 except that the number was changed to 6.
  • the obtained silsesquioxane No. 6 shows 29 Si CP / MAS nuclear magnetic resonance spectrum (manufactured by JEOL Ltd., hereinafter referred to as 29 Si-NMR), Fourier transform infrared absorption spectrum (manufactured by JASCO Corporation, hereinafter referred to as FT-IR), high performance liquid chromatography.
  • 29 Si-NMR 29 Si CP / MAS nuclear magnetic resonance spectrum
  • FT-IR Fourier transform infrared absorption spectrum
  • LC-MS high performance liquid chromatography
  • Examples 7 to 8> In the same manner as in Example 6, except that the starting material 1 used in Synthesis Example 1 of Example 6 was changed to starting material 2 and starting material 3 represented by the following formulas (15) to (16), respectively. Sun Nos. 7-8 were synthesized. Using these silsesquioxanes, charging rollers 7 and 8 were produced in the same manner as in Example 6. The amount of starting material 2 added was 28.55 g, and the amount of starting material 3 added was 29.47 g. Structural formula (15) (Starting material 2) Structural formula (16) (Starting material 3)
  • Example 9 to 12 The silsesquioxane No. 1 of Example 1 is shown in Table 5 below. Charging rollers 9 to 12 were produced in the same manner as in Example 1 except that the number was changed to 9 to 12.
  • Example 13 Silsesquioxane No. 13 was synthesized in the same manner as in Example 6 except that the starting material 1 used in Synthesis Example 1 of Example 6 was changed to the starting material 4 represented by the following formula (17). Using this silsesquioxane, a charging roller 13 was produced in the same manner as in Example 6. The amount of starting material 4 added was 20.43 g. Formula (17) (Starting material 4)
  • Example 14 Example 1 except that silsesquioxane No. 1 of Example 1 was changed to silsesquioxane No. 14 obtained simultaneously with synthesis of silsesquioxane No. 8 in Example 8.
  • the charging roller 14 was produced by the same method.
  • Example 15 Example 1 except that silsesquioxane No. 1 of Example 1 was changed to silsesquioxane No. 15 obtained simultaneously with synthesis of silsesquioxane No. 13 in Example 13.
  • the charging roller 15 was produced by the same method.
  • Example 16 The same as Example 1 except that Silsesquioxane No. 1 of Example 1 was changed to Silsesquioxane No. 16 obtained simultaneously with the synthesis of Silsesquioxane No. 8 in Example 8.
  • the charging roller 16 was produced by this method.
  • Example 17 In a solution obtained by diluting Silsesquioxane No. 1 of Example 1 to 10% by mass with MEK, 0.5 mol part of silsesquioxane No. 1 with respect to the total amount of the hydrolyzable silane compound added is 0.320 mol. 13.98g was added so that it might become. Otherwise, the charging roller 17 was produced in the same manner as in Example 1.
  • Example 18 In a solution obtained by diluting Silsesquioxane No. 1 of Example 1 to 10% by mass with MEK, 60.0 mol parts of silsesquioxane No. 1 with respect to the total amount of the hydrolyzable silane compound added is 0.320 mol. 1677.34g was added so that it might become. Otherwise, the charging roller 18 was produced in the same manner as in Example 1.
  • silsesquioxane Nos. 1 to 16 used in Examples 1 to 18 are shown below.
  • Table 6 shows the silsesquioxane used in each Example and the amount added.
  • All of R 201 to R 208 are groups represented by the following structural formula (18).
  • R 201 to R 207 are groups represented by the following formula (20).
  • R 208 is a group represented by the following formula (21).
  • Formula (22) R 208 is a group represented by the following formula (23).
  • Formula (24) Silsesquioxane no.
  • R 201 to R 208 are groups represented by the following formula (25).
  • Formula (31) Silsesquioxane no.
  • Elastic modulus of the surface layer The elastic modulus of the surface layer of the charging roller was measured using a surface film property testing machine (trade name: “Fischer Scope H100V”, manufactured by Fisher Instruments). The value obtained when the indenter was allowed to enter from the surface of the object to be measured at a speed of 1 ⁇ m / 7 sec was defined as the elastic modulus.
  • the surface layer coating solution was applied on an aluminum sheet so that the film thickness after curing was 10 ⁇ m or more, and the same conditions as the charging roller in the example or the comparative example. And UV-cured or heat-cured. The results are shown in Table 8.
  • the layer thickness of the surface layer of the charging roller is a scanning electron microscope (trade name: “S” after performing platinum vapor deposition from the cross-sectional side of the surface layer using a sample taken from the base layer in the vicinity of the surface layer of the charging roller. -4800 ", Hitachi High-Technologies Corporation) for observation and measurement. The obtained results are shown in Table 8.
  • the concentration of the gas component derived from each group generated from polysiloxane decomposed at each temperature of 400 to 500 ° C. was determined. Further, from the concentration of the gas component derived from each of these groups and the measured weight reduction rate, the weight reduction rate due to the gas component derived from each of the groups generated at each temperature was determined. This was integrated over the above 400 ° C. to 500 ° C., and the contents of oxyalkylene group, aryl group and alkyl group in the polysiloxane were determined.
  • fluorinated alkyl groups tridecafluoro-1,1,2,2, tetrahydrooctyltriethoxysilane having mass numbers (m / z) 51, 69, 119, and 131 are used. From a fluorinated alkyl group or a silsesquioxane substituent). From these peaks, the concentration of the gas component derived from the fluorinated alkyl group generated from the polysiloxane decomposed at each temperature of 500 ° C. to 650 ° C. was determined.
  • the weight reduction rate due to the gas component derived from the fluorinated alkyl group generated at each temperature was determined from the concentration of the gas component derived from the fluorinated alkyl group and the measured weight reduction rate. This was integrated over the temperature range of 500 ° C. to 600 ° C. to determine the content of fluorinated alkyl groups in the polysiloxane.
  • the residue after a heating was made into the siloxane part derived from the 1st unit, the 2nd unit, the 3rd unit, or silsesquioxane.
  • the cage structure refers to a skeletal portion constituted by a siloxane bond, excluding substituents, among the structures shown in the compound substances (1) to (6).
  • the peak around ⁇ 55 ppm is often mainly derived from a cage structure having 6 Si.
  • the peak near ⁇ 65 ppm is often mainly derived from a cage structure having 8 Si.
  • the peak in the vicinity of ⁇ 90 to ⁇ 100 ppm is often derived from a cage structure having a Si number of 10 to 16.
  • the peak area at each of the above -55, -65, and -90 to -100 ppm derived from the silsesquioxane cage structure is the mol of Si atoms constituting the silsesquioxane cage structure. It was a number. Then, the value obtained by dividing the peak area, which is the number of moles of Si atoms, by the number of Si atoms constituting the cage structure of the corresponding silsesquioxane of the specific structure is the number of moles of silsesquioxane. did.
  • the cage shape contained in the surface layer is a value obtained by dividing the peak area converted to the number of moles of the silsesquioxane by the sum of the peak areas derived from the first unit, the second unit, and the third unit. It was made into mol% of a structure.
  • each charging roller and the electrophotographic photosensitive member were assembled in a process cartridge (trade name: “EP-85 (black)”, manufactured by Canon Inc.) which integrally supports them.
  • the process cartridge was mounted on a laser beam printer (trade name: “LBP-5500”, manufactured by Canon Inc.) for vertical output of A4 paper.
  • the developing method of this laser beam printer is a reversal developing method, the output speed of the transfer material is 47 mm / s, and the image resolution is 600 dpi.
  • the electrophotographic photosensitive member incorporated in the process cartridge together with the charging roller is an organic electrophotographic photosensitive member formed by forming an organic photosensitive layer having a layer thickness of 14 ⁇ m on a support.
  • the organic photosensitive layer is a laminated photosensitive layer in which a charge generation layer and a charge transport layer containing a modified polyarylate (binder resin) are laminated from the support side.
  • the charge transport layer is an electrophotographic photosensitive layer. It is the surface layer of the body.
  • the toner used in the laser beam printer includes particles obtained by suspension polymerization of a polymerizable monomer system including a wax, a charge control agent, a dye, styrene, butyl acrylate, and an ester monomer in an aqueous medium.
  • This toner is a polymerized toner containing toner particles obtained by externally adding silica fine particles and titanium oxide fine particles to the particles, and has a glass transition temperature of 63 ° C. and a volume average particle size of 6 ⁇ m.
  • Image output was performed in an environment of 30 ° C./80% RH, an E character pattern with a printing rate of 4% was formed on A4 paper, and 6000 sheets were output at a process speed of 47 mm / s.
  • Abrasion resistance of the surface layer As an index of the wear resistance of the surface layer of each charging roller, the ratio of the layer thickness (nm) of the surface layer after outputting 6000 sheets to the initial layer thickness (nm) was calculated as the retention rate. The smaller the retention rate, the more worn out. The layer thickness of the surface layer was measured and compared by the method described above.
  • Table 13 below shows the results of the abrasion resistance evaluation and image evaluation of the surface layer.
  • the charging member according to the present invention is less likely to wear the surface layer even after repeated use, and the charging performance hardly changes even after use.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Silicon Polymers (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

繰り返し使用しても優れた耐摩耗性を維持し得る帯電部材の提供。表面層を有する帯電部材において、該表面層が、化合物(1)、化合物(2)、化合物(3)、化合物(4)、化合物(5)、化合物(6)で示される構造をもつシルセスキオキサンから選ばれる少なくとも1つと、SiO0.51(OR2)(OR3)で示される第1のユニット、SiO1.04(OR5)で示される第2のユニット及びSiO1.56で示される第3のユニットを有するポリシロキサンとで構成されており、該シルセスキオキサンが該ポリシロキサンの中に含有されている表面層である帯電部材。

Description

帯電部材、プロセスカートリッジ及び電子写真装置
 本発明は電子写真装置に用いられる帯電部材、プロセスカートリッジ及び電子写真装置に関する。
 電子写真装置において、電子写真感光体の表面に接触し、当該電子写真感光体の表面を帯電させるためのローラ形状の帯電部材(以下、「帯電ローラ」ともいう)は、一般的に、樹脂を含む弾性層を有している。このような帯電ローラは、電子写真感光体とのニップ幅を十分に確保でき、その結果として、電子写真感光体を効率よく、かつ、均一に帯電させることができる。しかしながら、当該弾性層は、柔軟化のために可塑剤や樹脂の低分子量成分を含有している。そのため、長期の使用によって、当該低分子量成分が帯電ローラの表面に滲み出てくることがある。このような課題に対して、特許文献1は、ゾル-ゲル法によって形成される無機酸化物被膜からなるブリージング阻止層で表面を被覆し、低分子量成分が表面に滲みだすことを抑えた導電性ロール基材を開示している。
特開2001-173641号公報
 本発明者等の検討によれば、特許文献1に開示されたブリージング阻止層が表面層となっている導電性ロールは、繰り返しの使用によって摩耗していき、帯電性能が経時的に変化してしまうことを見出した。
 そこで、本発明の目的は、長期の使用によっても帯電性能の経時的変化が少ない帯電部材を提供することにある。また、本発明の他の目的は、高品位な電子写真画像を安定して形成することのできるプロセスカートリッジ及び電子写真装置を提供することにある。
 本発明に係る帯電部材は、支持体と、導電性の弾性層と、表面層とをこの順に有する帯電部材であって、該表面層は、ポリシロキサンとシルセスキオキサンとを含み、
該ポリシロキサンは、SiO0.51(OR2)(OR3)で示される第1のユニット、SiO1.04(OR5)で示される第2のユニットおよびSiO1.56で示される第3のユニットを有し、
該シルセスキオキサンは、下記の化合物(1)~(6)で示される化合物からなる群から選ばれる少なくとも1つの化合物であることを特徴とする:
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 
[R1、R4およびR6は各々独立に、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を示し、R2、R3およびR5は各々独立に、水素原子または置換もしくは無置換のアルキル基を示す。化合物(1)~(6)中、R101~R616は各々独立に無置換のアルキル基、フッ化アルキル基、無置換のアリール基または下記式(7)で示される基から選ばれる少なくとも1つである。化合物(1)~(6)中、R101~R616は各々独立に置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または下記式(7)で示される基から選ばれる少なくとも1つである。
Figure JPOXMLDOC01-appb-C000007
 
(式(7)中、X、Y、Zは各々独立に、置換もしくは無置換のアルキル基および置換もしくは無置換のアリール基から選ばれる少なくとも1つであり、mは1~20の整数である)。
 また、本発明に係る電子写真装置は、上記の帯電部材と該帯電部材と接触配置されている電子写真感光体とを有することを特徴とする。更に、本発明に係るプロセスカートリッジは、上記の帯電部材と、電子写真感光体、現像手段、転写手段及びクリーニング手段から選ばれる少なくとも1つの部材とを一体に保持し電子写真装置の本体に着脱自在に装着可能に構成されてなることを特徴とする。
 本発明によれば、長期の使用によっても帯電性能が変化しにくい、耐久性に優れた帯電部材を得ることができる。これは、本発明に係る帯電部材の表面層は、化合物(1)~(6)に係るシルセスキオキサンは、本発明に係るポリシロキサンの隙間を分子レベルで充填することにより、表面層が補強されたためであると考えられる。その結果、当該表面層は均一な機械強度を保持でき、また、接触帯電の際の電子写真感光体との摩擦によっても摩耗しにくくなっているものと考えられる。
本発明に係る帯電部材の軸方向に対し垂直な面における断面図である。 本発明に係るプロセスカートリッジを備えた電子写真装置の概略図である。
 本発明に係る帯電部材は、支持体と、導電性の弾性層と、表面層とをこの順に有する帯電部材であって、該表面層は、ポリシロキサンとシルセスキオキサンとを含む。
<ポリシロキサン>
ポリシロキサンは、SiO0.51(OR2)(OR3)で示される第1のユニット、SiO1.04(OR5)で示される第2のユニットおよびSiO1.56で示される第3のユニットを有する。ここでR1、R4およびR6は各々独立に、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を示す。無置換のアルキル基の例としては、メチル基、エチル基、プロピル基、ヘキシル基、デシル基などが挙げられる。また、置換アルキル基としては、先に挙げたアルキル基の少なくとも1つの水素原子が炭素数1~10のパーフロロアルキル基で置換されたフッ化アルキル基やグリシドキシプロピル基が挙げられる。また、無置換のアリール基としてはフェニル基が挙げられる。更に、置換アリール基としてペンタフルオロフェニル基や4-パーフルオロトリル基などが挙げられる。
2、R3およびR5は各々独立に、水素原子、または置換もしくは無置換のアルキル基を示す。無置換のアルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基、デシル基などが挙げられる。また、置換アルキルとして2-メトキシエチル基やアセチル基などが挙げられる。
 なお、上記の「SiO0.51(OR2)(OR3)で示される第1のユニット」とは、下記式(i)に示すようなポリシロキサンのうちの四角で囲んだ範囲A1を意味する。範囲A1の中の、アルコキシ基の酸素原子でない酸素原子(Si-O-SiのO)は、2個のケイ素原子と結合しているため、ケイ素原子1個あたりが結合している酸素原子(Si-O-SiのO)の数は0.5個と考える。
Figure JPOXMLDOC01-appb-C000008
 上記の「SiO1.04(OR5)で示される第2のユニット」も、「SiO0.51(OR2)(OR3)で示される第1のユニット」と同様であり、具体的には、下記式(ii)に示すようなポリシロキサンのうちの四角で囲んだ範囲A2を意味する。
Figure JPOXMLDOC01-appb-C000009
 上記の「SiO1.56で示される第3のユニット」も、「SiO0.51(OR2)(OR3)で示される第1のユニット」と同様であり、具体的には、下記式(iii)に示すようなポリシロキサンのうちの四角で囲んだ範囲A3を意味する。
Figure JPOXMLDOC01-appb-C000010
 前記ポリシロキサンは、置換のアルキル基、無置換のアルキル基、置換のアリール基、及び無置換のアリール基からなるグループから選ばれた少なくとも1種の基を有することが好ましい。
 本発明の、前記ポリシロキサンを含む帯電部材の表面層を構成するには、例えば、下記工程(I)乃至(III)を経て得ることができる。
(I)加水分解性シラン化合物と、カチオン重合可能な基を有する加水分解性シラン化合物とを加水分解によって縮合させる縮合工程、
(II)化合物(1)~化合物(6)で示されるシルセスキオキサンを、工程(I)により得られた加水分解性縮合物に加える混合工程、
(III)カチオン重合可能な基を開裂させることにより、工程(II)により得られた混合物を架橋し硬化させる架橋工程。
 前記工程(I)の縮合工程で、加水分解に用いる水の量は、前記工程(I)に用いる加水分解性シラン化合物の総量に対して20~50質量%の範囲にあることが好ましい。また、前記加水分解性シラン化合物としては、置換又は無置換のアリール基から選ばれた少なくとも一種の基を有する加水分解性シラン化合物を用いることが好ましい。これらのなかでは、下記式(8)で示される構造を有するアリール基を有する加水分解性シラン化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000011
 
(式中、R11及びR12は、それぞれ独立に、置換若しくは無置換のアルキル基を示し、Ar11は、置換もしくは無置換のアリール基を示す。aは、0以上2以下の整数であり、bは、1以上3以下の整数であり、a+b=3である。)
 置換アルキル基としてフッ化アルキル基などが挙げられ、無置換のアルキル基としてメチル、エチル、プロピル、ヘキシル、デシルなどが挙げられる。その中でも、R11及びR12で表されるアルキル基としては、メチル基、エチル基、プロピル基が好ましい。また、前記式(8)中のアリール基Ar11としては、フェニル基が好ましい。前記式(8)中のaが2の場合、2個のR11は同一であってもよく、異なっていてもよい。また、前記式(8)中のbが2又は3の場合、2個又は3個のR12は同一であってもよく、異なっていてもよい。以下に前記式(8)で表されるアリール基を有する加水分解性シラン化合物の具体例を示す。
(8-1):フェニルトリメトキシシラン
(8-2):フェニルトリエトキシシラン
(8-3):フェニルトリプロポキシシラン
 前記アリール基を有する加水分解性シラン化合物は、1種のみを用いてもよいし、2種以上用いてもよい。
 前記カチオン重合可能な基を有する加水分解性シラン化合物としては、下記式(9)で示される構造を有する加水分解性シラン化合物が好適である。
Figure JPOXMLDOC01-appb-C000012
 
式(9)中、R21及びR22は、それぞれ独立に、置換若しくは無置換のアルキル基を示し、Z21は、2価の有機基を示し、Rc21は、開裂によってオキシアルキレン基を生成しうるカチオン重合可能な基を示す。dは、0以上2以下の整数であり、eは、1以上3以下の整数であり、d+e=3である。前記式(9)中のカチオン重合可能な基Rc21は、開裂によってオキシアルキレン基を生成しうるカチオン重合可能な有機基を示す。Rc21の具体例としては、例えば、グリシドキシ基、エポキシ基、オキセタン基などの環状エーテル基、又はビニルエーテル基などが挙げられる。中でも、入手の容易性及び反応制御の容易性の観点から、グリシドキシ基またはエポキシ基が好ましい。また、前記オキシアルキレン基とは、-O-R-(-R-:アルキレン基)で示される構造を有する2価の基(「アルキレンエーテル基」と呼ばれることもある。)である。
 前記式(9)中のR21及びR22で表される置換アルキル基としてフッ化アルキル基などが挙げられ、無置換のアルキル基としてメチル、エチル、プロピル、ヘキシル、デシルなどが挙げられる。その中でも、R21及びR22としては、炭素数1~3の無置換のアルキル基若しくは分岐アルキル基が好ましく、さらには、メチル基、エチル基がより好ましい。
前記式(9)中の2価の有機基Z21としては、例えば、アルキレン基又はアリーレン基などが挙げられる。これらの中では、炭素数1~6のアルキレン基が好ましく、さらにはエチレン基、プロピレン基がより好ましい。また、前記式(9)中のeは3であることが好ましい。前記式(9)中のdが2の場合、2個のR21は同一であってもよく、異なっていてもよい。また、前記式(9)中のeが2又は3の場合、2個又は3個のR22は同一であってもよく、異なっていてもよい。以下に、前記式(9)で示される構造を有する加水分解性シラン化合物の具体例を示す。
(9-1):グリシドキシプロピルトリメトキシシラン
(9-2):グリシドキシプロピルトリエトキシシラン
(9-3):エポキシシクロヘキシルエチルトリメトキシシラン
(9-4):エポキシシクロヘキシルエチルトリエトキシシラン
 前記カチオン重合可能な基を有する加水分解性シラン化合物は、1種のみを用いてもよいし、2種以上用いてもよい。
 また、前記工程(I)において、アリール基を有する加水分解性シラン化合物及びカチオン重合可能な基を有する加水分解性シラン化合物だけでなく、さらに下記式(10)で示される構造を有する加水分解性シラン化合物を併用することが好ましい。これにより、製造される帯電部材の表面の離型性を向上させることができる。下記式(10)で示される構造を有する加水分解性シラン化合物を用いることによって、得られるポリシロキサンは、フッ化アルキル基(パーフルオロアルキル基)を有するポリシロキサンとなる。
Figure JPOXMLDOC01-appb-C000013
 
式(10)中、R31及びR32は、それぞれ独立に、置換若しくは無置換のアルキル基を示し、Z31は、2価の有機基を示し、Rf31は、炭素数1以上11以下のフッ化アルキル基を示す。fは、0~2の整数であり、gは、1~3の整数であり、f+g=3である。R31及びR32において、置換アルキル基としてフッ化アルキル基などが挙げられ、無置換のアルキル基としてメチル、エチル、プロピル、ヘキシル、デシルなどが挙げられる。その中でも、R31及びR32で表されるアルキル基としては、炭素数1~3のアルキル基若しくは分岐アルキル基が好ましく、さらにはメチル基、エチル基がより好ましい。また、前記式(10)中のZ31の2価の有機基としては、例えば、アルキレン基又はアリーレン基などが挙げられる。これらの中でも、炭素数1~6のアルキレン基が好ましく、さらにはエチレン基がより好ましい。また、前記式(10)中のRf31の炭素数1以上11以下のフッ化アルキル基としては、処理性の観点から、特に炭素数6~11の直鎖状のフッ化アルキル基が好ましい。前記式(10)中のgは3であることが好ましい。また、前記式(10)中のfが2の場合、2個のR31は同一であってもよく、異なっていてもよい。前記式(10)中のgが2又は3の場合、2個又は3個のR32は同一であってもよく、異なっていてもよい。以下に、前記式(10)で示される構造を有する加水分解性シラン化合物の具体例を示す。下記(10-1)~(10-6)中のRはメチル基又はエチル基を示す。
(10-1):CF3-(CH22-Si-(OR)3
(10-2):CF3-(CF2)-(CH22-Si-(OR)3
(10-3):CF3-(CF23-(CH22-Si-(OR)3
(10-4):CF3-(CF25-(CH22-Si-(OR)3
(10-5):CF3-(CF27-(CH22-Si-(OR)3
(10-6):CF3-(CF29-(CH22-Si-(OR)3 
前記(10-1)~(10-6)の中でも、(10-4)~(10-6)が好ましい。前記フッ化アルキル基を有する加水分解性シラン化合物は、1種のみを用いてもよいし、2種以上用いてもよい。
 本発明においては、前記工程(I)において、上述の加水分解性シラン化合物以外の加水分解性シランをさらに併用してもよい。上述の加水分解性シラン化合物以外の加水分解性シランとしては、例えば、下記式(11)で示される構造を有する加水分解性シラン化合物が挙げられる。
(R41h─Si─(OR42k    (11)
(式中、R41は、置換若しくは無置換のアルキル基を示す。R42は、飽和若しくは不飽和の1価の炭化水素基を示す。hは、0~3の整数であり、kは、1~4の整数であり、h+k=4である。)
 前記式(11)中のR41としては、炭素数1~21の無置換のアルキル基が好ましい。前記式(11)中のhは1~3の整数であることが好ましく、特には1であることがより好ましい。また、前記式(11)中のkは1~3の整数であることが好ましく、特には3であることがより好ましい。前記式(11)中のR42の飽和又は不飽和の1価の炭化水素基としては、例えば、アルキル基、アルケニル基又はアリール基などが挙げられる。これらの中でも、炭素数1~3の無置換のアルキル基若しくは分岐アルキル基が好ましく、さらにはメチル基、エチル基又はn-プロピル基がより好ましい。前記式(11)中のhが2又は3の場合、2個又は3個のR41は同一であってもよく、異なっていてもよい。また、前記式(11)中のkが2、3又は4の場合、2個、3個又は4個のR42は同一であってもよく、異なっていてもよい。前記式(11)で示される構造を有する加水分解性シラン化合物は、1種のみ用いてもよいし、2種以上用いてもよい。以下に、前記式(11)で示される構造を有する加水分解性シラン化合物の具体例を示す。
(11-1):メチルトリメトキシシラン
(11-2):メチルトリエトキシシラン
(11-3):メチルトリプロポキシシラン
(11-4):エチルトリメトキシシラン
(11-5):エチルトリエトキシシラン
(11-6):エチルトリプロポキシシラン
(11-7):プロピルトリメトキシシラン
(11-8):プロピルトリエトキシシラン
(11-9):プロピルトリプロポキシシラン
(11-10):ヘキシルトリメトキシシラン
(11-11):ヘキシルトリエトキシシラン
(11-12):デシルトリメトキシシラン
(11-13):デシルトリエトキシシラン
(11-14):デシルトリプロポキシシラン
<シルセスキオキサン>
本発明に係る表面層は、上記したポリシロキサンと共に特定の化学構造を有するシルセスキオキサンを含む。具体的には、下記化合物(1)~(6)からなる群から選ばれる少なくとも1つの化合物を含む。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 
前記化合物(1)~化合物(6)中の、R101~R616は、各々独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基および下記式(7)で示される基から選ばれる少なくとも1つである。
Figure JPOXMLDOC01-appb-C000020
 
式(7)中、X、YおよびZは各々独立に、置換もしくは無置換のアルキル基および置換もしくは無置換のアリール基から選ばれる少なくとも1つであり、mは、1~20の範囲の整数である。
 上記化合物(1)~(6)において、R101~R616は、各々独立に、炭素数が1~20の無置換のアルキル基および上記式(7)で示される基から選ばれる少なくとも1つであることが好ましい。これにより、ポリシロキサンに対するシルセスキオキサンの溶解性を向上させることができる。ここで、R101~R616から選ばれる何れかの置換基が上記式(7)である場合において、XおよびYは、炭素数1~3のアルキル基であり、Zは炭素数1~3のアルキル基またはシクロアルケニル変性アルキル基であり、mは1であることが好ましい。ポリシロキサンとシルセスキオキサンとの表面張力の差を小さくすることができるため、両者の相溶性を向上させることができる。その結果、ポリシロキサンの網目構造中への充填が、より均一となり、表面層の機械的強度のより一層の均一化を図ることができる。また、R101~R616における置換アルキル基の例としては、炭素数1~20のアルキル基の少なくとも1つの水素原子をフッ素原子で置換したフッ化アルキル基や、当該水素原子を置換もしくは無置換の脂環式炭化水素基、置換もしくは無置換のアリール基、さらには下記式(12)で示される基で置換されたアルキル基を挙げることができる。
Figure JPOXMLDOC01-appb-C000021
 
 ポリシロキサンに対する溶解性の観点から、シルセスキオキサンとして、上記化合物(2)で示される構造を有するシルセスキオキサンを用いることが好ましい。このとき、R201~R208としては、炭素数が1~20の分岐アルキル基または式(7)で示される基であり、かつ、R201~R208を全て同じ基とすることの組み合わせが好ましい。そして、R201~R208を上記式(7)で示される基とする場合においては、式(7)中のXおよびYを炭素数1~4の直鎖状のアルキル基とし、Zをシクロアルケニル基(たとえば、3-シクロヘキセン-1-イルなど)で変性されたエチル基とすることが好ましい。シルセスキオキサンを構成するSi原子数が多くなりすぎないことで、ポリシロキサンの網目構造の隙間に好ましく埋まり、表層膜の機械強度を均一に向上させられる。
 シルセスキオキサンの前記ポリシロキサンに対する含有量の目安は、前記ポリシロキサン100molに対して、シルセスキオキサンを1.0mol以上50.0mol以下、特には、10.0mol以上30.0mol以下である。
次に、本発明の帯電部材の構成について、表面層の具体的な形成方法を含めて説明する。
図1に、本発明の帯電部材の一例である帯電ローラの、軸方向に対し垂直な面における断面模式図を示す。図1中、101は支持体であり、102は導電性弾性層であり、103は表面層である。電子写真感光体と帯電部材との当接ニップを十分に確保する観点から、帯電部材は、例えば図1に示したように、支持体101と表面層103との間に導電性弾性層102を設けた構成であることが好ましい。換言すれば、帯電部材は、支持体101、該支持体101上に形成された導電性弾性層102、及び、該導電性弾性層102上に形成された表面層103を有するものであることが好ましい。また、支持体101と導電性弾性層102との間や導電性弾性層102と表面層103との間に別の層を1つ又は2つ以上設けてもよい。
 以下、支持体、該支持体上に形成された導電性弾性層、及び、該導電性弾性層上に形成された表面層を有する帯電部材を例にとって説明する。
<支持体>
帯電部材の支持体としては鉄、銅、ステンレス、アルミニウム、アルミニウム合金、ニッケルなどの金属製(合金製)の支持体を用い得る。
<弾性層>
 導電性の弾性層を構成する材料として、従来の帯電部材の弾性層(導電性弾性層)に用いられているゴムや熱可塑性エラストマーなどの弾性体を1種又は2種以上用いることができる。ゴムの具体例を以下に挙げる。ウレタンゴム、シリコーンゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、ポリノルボルネンゴム、スチレン-ブタジエン-スチレンゴム、アクリロニトリルゴム、エピクロルヒドリンゴム又はアルキルエーテルゴムなど。
 前記熱可塑性エラストマーとしては、例えば、スチレン系エラストマー又はオレフィン系エラストマーなどが挙げられる。スチレン系エラストマーの市販品としては、例えば、「ラバロン」(商品名、三菱化学(株)製)、「セプトンコンパウンド」(商品名、クラレ(株)製)などが挙げられる。オレフィン系エラストマーの市販品としては、例えば、「サーモラン」(商品名、菱化学(株)製)、「ミラストマー」(商品名、三井化学(株)製)、「住友TPE」(商品名、住友化学(株)製)又は「サントプレーン」(商品名、アドバンストエラストマーシステムズ社製)などが挙げられる。
 また、導電性弾性層には、導電剤を適宜使用することによって、その導電性を所定の値にすることができる。導電性弾性層の電気抵抗は、導電剤の種類及び使用量を適宜選択することによって調整することができ、その電気抵抗の好適な範囲は102~108Ωであり、より好適な範囲は103~106Ωである。
 導電性弾性層に用いられる導電剤としては、例えば、陽イオン性界面活性剤、陰イオン性界面活性剤、両性イオン界面活性剤、帯電防止剤、電解質などが挙げられる。前記陽イオン性界面活性剤の例として第四級アンモニウム塩が挙げられる。第四級アンモニウム塩の第四級アンモニウムイオンの具体例としてはラウリルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン等が挙げられる。また、第四級アンモニウムイオンの対イオンの具体例としては、ハロゲン化物イオン、過塩素酸イオン等が挙げられる。また、前記陰イオン性界面活性剤の具体例としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等が挙げられる。
 帯電防止剤の具体例としては、高級アルコールエチレンオキサイド、ポリエチレングリコール脂肪酸エステル等の非イオン性帯電防止剤が挙げられる。電解質としては周期律表第1族の金属(LiやNaやKなど)の塩が挙げられ、具体的には、周期律表第1族の金属の塩(LiCF3SO3、NaClO4等)が挙げられる。 
 また、導電剤としては周期律表第2族の金属(CaやBaなど)の塩(Ca(ClO42など)が挙げられる。また、導電剤として、導電性のカーボンブラック、グラファイト、金属酸化物(酸化スズ、酸化チタン、酸化亜鉛等)、金属(ニッケル、銅、銀、ゲルマニウム等)、導電性ポリマー(ポリアニリン、ポリピロール、ポリアセチレン等)を用いることもできる。
 導電性弾性層には、無機又は有機の充填剤や架橋剤を添加してもよい。充填剤としては、例えば、シリカ(ホワイトカーボン)、炭酸カルシウム、炭酸マグネシウム、クレー、タルク、ベントナイト、ゼオライト、アルミナ、硫酸バリウム又は硫酸アルミニウムなどが挙げられる。架橋剤としては、例えば、イオウ、過酸化物、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤などが挙げられる。
 導電性弾性層の硬度は、帯電部材と被帯電体である電子写真感光体とを当接させた際、帯電部材の変形を抑制する観点から、アスカーC硬度で70度以上であることが好ましく、特には73度以上であることがより好ましい。本発明において、アスカーC硬度の測定は、測定対象の表面にアスカーC型硬度計(高分子計器(株)製)の押針を当接し、1000g加重の条件で行った。
 以下、表面層の具体的な形成方法の一例について説明する。まず、加水分解性シラン化合物及びカチオン重合可能な基を有する加水分解性シラン化合物、並びに、必要に応じて前記の他の加水分解性シラン化合物を水の存在下で加水分解反応させることによって加水分解性縮合物を得る(工程I)。加水分解反応の際、温度やpHなどを制御することで、所望の縮合度の加水分解性縮合物を得ることができる。
 また、加水分解反応の際、加水分解反応の触媒として金属アルコキシドなどを利用し、縮合度を制御してもよい。金属アルコキシドとしては、例えば、アルミニウムアルコキシド、チタニウムアルコキシド若しくはジルコニウムアルコキシドなど、又はこれらの錯体(アセチルアセトン錯体など)が挙げられる。
 前記工程(I)の縮合工程で、加水分解に用いる水の量は、前記工程(I)に用いる加水分解性シラン化合物の総量に対して20~50質量%の範囲にあることが好ましい。
 また、前記加水分解性シラン化合物としては、置換及び無置換アリール基から選ばれた少なくとも一種の基を有する加水分解性シラン化合物を用いることが好ましい。これらのなかでは、前記式(8)で示される構造を有するアリール基を有する加水分解性シラン化合物がより好ましい。
 また、前記工程(III)でカチオン重合可能な基を開列させて得られるポリシロキサンが有する各々の基が、前記ポリシロキサンの全質量に対して次の範囲となることが好ましい。
・アリール基の含有量     :2質量%以上30質量%以下
・アルキル基の含有量     :2質量%以上30質量%以下
・オキシアルキレン基の含有量 :5質量%以上50質量%以下
・シロキサン部分の含有量   :30質量%以上60質量%以下
 前記アリール基、アルキル基、オキシアルキレン基の含有量総計は、20~40質量%とすることが好ましく、25~35質量%とすることがより好ましい。アリール基を有する加水分解性シラン化合物を全加水分解性シラン化合物に対して10~50mol部の範囲になるように配合することがより好ましい。
 また、前記工程(I)において、前記式(10)で示される構造を有する加水分解性シラン化合物を併用する場合には、前記工程(III)でカチオン重合可能な基を開列させて得られるポリシロキサンが有する各々の基が、前記ポリシロキサン中の全質量に対して次の範囲となることが好ましい。
・アリール基の含有量     :2質量%以上30質量%以下
・アルキル基の含有量     :2質量%以上30質量%以下
・オキシアルキレン基の含有量 :5質量%以上50質量%以下
・フッ化アルキル基の含有量  :2質量%以上30質量%以下
・シロキサン部分の含有量   :30質量%以上70質量%以下
 前記アリール基、アルキル基、オキシアルキレン基、フッ化アルキル基及びシロキサン部分の含有量総計は、ポリシロキサンの全質量に対して、10~60質量%とすることが好ましく20~50質量%とすることがより好ましい。また、カチオン重合可能な基を有する加水分解性シラン化合物とフッ化アルキル基を含有する加水分解性シラン化合物とのモル比は10:1~1:10の範囲になるように配合することがより好ましい。
 次に、得られた加水分解性縮合物に、化合物(1)~(6)で示されるシルセスキオキサン化合物のいずれか、または2種類以上を添加して混合する(工程II)。
 化合物(1)~(6)で示されるシルセスキオキサンとしては市販品を用いることもでき、また公知の方法によって合成したものを用いることもできる。すなわち、シルセスキオキサンは、任意の置換基と3つの加水分解性基とを有するシラン化合物を加水分解させ、次いで、脱水縮合させることにより合成することができる。
加水分解性基としては、アルコキシ基、塩素原子などがあげられる。例えば、メチルトリクロロシランを、水・溶媒・塩基性触媒存在下で加水分解、および脱水縮合させることにより、オクタメチル-ポリオクタシルセスキオキサンを得ることができる。塩基性触媒としては水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属酸化物、テトラメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が挙げられる。中でも、触媒活性が高い点からテトラメチルアンモニウムヒドロキシドが好ましい。
 加水分解に用いる水は、塩基性触媒の水溶液から補充することもできるし、別途、加えてもよい。水の量は、加水分解性基を加水分解するに足る量以上、好ましくは理論量の1.0~1.5倍量である。溶媒としては、メタノール、エタノール、2-プロパノールなどのアルコール類、あるいは他の極性溶媒を用いることができる。水との相溶性の観点から、炭素数1~6の低級アルコールが好ましい。合成時の反応温度は、0~60℃が好ましく、20~40℃がより好ましい。加水分解性基が未反応の状態で残存することを抑制でき、また、反応速度が速すぎることによる加水分解生成物の高分子量化を抑制できる。また、反応時間は、加水分解を十分に進行させるためには2時間以上が好ましい。加水分解反応終了後は、水または水含有反応溶媒を分離してもよい。水または水含有反応溶媒を分離する手法としては、減圧蒸発等の手法を用いることができる。水分やその他の不純物を十分に除去するためには、非極性溶媒を添加して加水分解生成物を溶解させ、この溶液を食塩水等で洗浄し、その後、無水硫酸マグネシウム等の乾燥剤で乾燥させる手段が採用できる。
 得られたシルセスキオキサンの構造は、29Si 核磁気共鳴スペクトル、フーリエ変換赤外吸収スペクトルを用いることにより確認することができる。
 化合物(1)~(6)で示されるシルセスキオキサンの添加量の目安は、加水分解性シラン化合物が全て脱水縮合した場合のポリシロキサン固形分の総量を100molとしたときに、化合物(1)~(6)で示されるシルセスキオキサンの量が1.0mol以上50.0mol以下、特には、10.0mol以上30.0mol以下である。
 次に、加水分解性縮合物及び化合物(1)~(6)で示されるシルセスキオキサン化合物を含む表面層形成用の塗布液を調製し、表面層の直下となる層、すなわち、弾性層上に当該塗布液の塗膜を形成する。
 塗布液を調製する際には、塗布性向上のために、加水分解性縮合物以外に、溶剤を用いてもよい。溶剤としては、例えば、エタノール若しくは2-ブタノールなどのアルコール、酢酸エチル、メチルイソブチルケトン、メチルエチルケトン、又はこれらを混合したもの等が挙げられる。また、表面層用塗布液を導電性弾性層上に塗布する際には、ロールコーターを用いた塗布、浸漬塗布、リング塗布などの方法を採用することができる。
 次に、塗膜に活性エネルギー線を照射する。すると、塗膜に含まれる加水分解性縮合物が有するカチオン重合可能な基は開裂する。これによって、該表面塗布液層中の加水分解性縮合物を架橋させることができる。加水分解性縮合物は架橋によって硬化し、これを乾燥すると表面層が形成される(工程III)。
 前記活性エネルギー線としては紫外線が好ましい。架橋反応に紫外線を用いた場合、短時間(15分以内)に加水分解性縮合物を架橋することができる。加えて、熱の発生も少なく、表面層のシワやクラックが発生しにくい。また、架橋反応を熱の発生が少ない紫外線によって行えば、導電性弾性層と表面層との密着性が高まり、導電性弾性層の膨張・収縮に表面層が十分に追従できるようになるため、環境の温湿度の変化による表面層のシワやクラックを抑制できる。また、架橋反応を紫外線によって行えば、熱履歴による導電性弾性層の劣化を抑制することができるため、導電性弾性層の電気的特性の低下を抑制することもできる。紫外線の照射には、高圧水銀ランプ、メタルハライドランプ、低圧水銀ランプ、エキシマUVランプなどを用いることができ、これらのうち、紫外線の波長が150~480nmの光を豊富に含む紫外線源が好ましく用いられる。
 なお、紫外線の積算光量は、以下のように定義される。
紫外線積算光量[mJ/cm2]=紫外線強度[mW/cm2]×照射時間[s] 
 紫外線の積算光量の調節は、照射時間や、ランプ出力や、ランプと被照射体との距離などで行うことが可能である。また、照射時間内で積算光量に勾配をつけてもよい。低圧水銀ランプを用いる場合、紫外線の積算光量は、ウシオ電機(株)製の紫外線積算光量計「UIT-150-A」(商品名)や「UVD-S254」(商品名)を用いて測定することができる。エキシマUVランプを用いる場合、紫外線の積算光量は、ウシオ電機(株)製の紫外線積算光量計「UIT-150-A」(商品名)や「VUV-S172」(商品名)を用いて測定することができる。
 また、架橋反応の際、架橋効率向上の観点から、カチオン重合触媒(重合開始剤)を共存させておくことが好ましい。例えば、活性エネルギー線によって賦活化されるルイス酸のオニウム塩に対してエポキシ基は高い反応性を示すことから、前記のカチオン重合可能な基がエポキシ基である場合、カチオン重合触媒としては、ルイス酸のオニウム塩を用いることが好ましい。
 その他のカチオン重合触媒としては、例えば、ボレート塩、イミド構造を有する化合物、トリアジン構造を有する化合物、アゾ化合物、過酸化物などが挙げられる。各種カチオン重合触媒の中でも、感度、安定性及び反応性の観点から、芳香族スルホニウム塩や芳香族ヨードニウム塩が好ましい。特に、ビス(4-tert-ブチルフェニル)ヨードニウム塩や、下記式(12)で示される構造を有する化合物(商品名:「アデカオプトマ-SP150」、(株)ADEKA製)がより好ましい。また、下記式(13)で示される構造を有する化合物(商品名:「イルガキュア261」、チバスペシャルティーケミカルズ社製)もより好ましい。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 カチオン重合触媒の使用量は加水分解性縮合物に対して0.1~3質量%が好ましい。
 また、帯電部材の表面へのトナーや外添剤の固着を抑制する観点から、帯電部材の表面(=表面層の表面)の粗さ(Rzjis;JIS B 0601:2001に準拠して測定)は10μm以下であることが好ましく、7μm以下であることがより好ましい。また、電子写真感光体との当接ニップを十分に確保する観点から、帯電部材の表面層の弾性率は30GPa以下であることが好ましい。一方、一般的に、表面層の弾性率は小さくなるほど架橋密度が小さくなる傾向にある。このため、帯電部材に導電性弾性層を設ける場合には、導電性弾性層中の低分子量成分が帯電部材の表面にブリードアウトして電子写真感光体の表面を汚染してしまうのを抑制する観点から、表面層の弾性率は100MPa以上であることが好ましい。
 また、表面層の層厚の目安としては、0.01μm以上1.00μm以下、特には0.05μm以上0.50μm以下である。弾性層からの低分子量成分が帯電部材の表面に染み出すことを抑制し、また、帯電部材の帯電性能とを勘案して、上記の範囲で適宜設定すればよい。
 図2に本発明の帯電部材を有するプロセスカートリッジを備えた電子写真装置の一例の概略構成を示す。図2中、円筒状の電子写真感光体1は、軸2を中心に矢印Aの方向に所定の周速度で回転駆動される。電子写真感光体1には本発明に係る帯電部材3(図2においてはローラ形状の帯電部材)が接触配置されている。帯電部材3は電子写真感光体1の回転に対して順方向に回転するようになっている。回転駆動される電子写真感光体1の表面は帯電部材3により、正又は負の所定電位に均一に帯電される。次いで、スリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される露光光(画像露光光)4を受ける。こうして電子写真感光体1の表面に、目的の画像に対応した静電潜像が順次形成されていく。帯電部材3により電子写真感光体1の表面を帯電する際、帯電部材3には、電圧印加手段(不図示)から直流電圧のみの電圧あるいは直流電圧に交流電圧を重畳した電圧が印加される。本発明の帯電部材は、帯電部材に直流電圧のみの電圧を印加するための電圧印加手段を有する電子写真装置に使用することが好ましい。直流電圧としては、例えば、-1000Vの電圧を印加した場合、その際の暗部電位は-500V程度、明部電位は、-100V程度となることが好ましい。
 電子写真感光体1の表面に形成された静電潜像は、現像手段5の現像剤に含まれるトナーにより現像(反転現像若しくは正規現像)されてトナー像となる。次いで、電子写真感光体1の表面に形成担持されているトナー像が、転写手段(転写ローラなど)6からの転写バイアスによって、転写材(紙など)Pに順次転写されていく。このとき、転写材Pは、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送される。トナー像の転写を受けた転写材Pは、電子写真感光体1の表面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。トナー像転写後の電子写真感光体1の表面は、クリーニング手段(クリーニングブレードなど)7によって転写されなかった現像剤(トナー)が除去される。
 本発明に係るプロセスカートリッジは、本発明にかかる帯電部材3と、電子写真感光体1、現像手段5、転写手段6及びクリーニング手段7から選ばれる少なくとも1つの部材とを一体に保持し電子写真装置の本体に着脱自在に装着可能に構成されてなる。例えば、図2に示したように、電子写真感光体1、帯電部材3、現像手段5及びクリーニング手段7とを一体に支持してカートリッジ化してもよい。また、例えば、図2に示したように、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としてもよい。また、本発明に係る電子写真装置は、本発明に係る帯電部材と、該帯電部材と接触配置されている電子写真感光体とを有するものである。また、電子写真装置には、帯電手段に直流電圧のみを印加する電圧印加手段を有しているものが好ましい。
 以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。実施例中の「部」は「質量部」を意味する。
〈実施例1〉
(帯電部材の作製)
 下記表1に示した原材料を6リットル加圧ニーダー「TD6-15MDX」(商品名、株式会社トーシン製)にて、充填率70vol%、ブレード回転数30rpmで16分混合して、A練りゴム組成物を得た。
Figure JPOXMLDOC01-appb-T000001
 前記A練りゴム組成物に、下記表2に示す加硫促進剤及び加硫剤を加え、ロール径12インチのオープンロールにて、前ロール回転数8rpm、後ロール回転数10rpm、ロール間隙2mmで、左右の切り返しを合計20回実施した後、ロール間隙を0.5mmとして薄通し10回を行って混練物Iを得た。
Figure JPOXMLDOC01-appb-T000002
 次に、混練物1をゴム押出機で、外径9.4mm、内径5.4mmの円筒形に押し出し、250mmの長さに裁断し、加硫缶で160℃の水蒸気で30分間1次加硫することによって、導電性弾性層用1次加硫チューブ1を得た。
 一方、円柱形の鋼製の支持体(直径6mm、長さ256mm;表面をニッケルメッキ加工)を用意した。この支持体の円柱面軸方向中央を挟んで両側115.5mmまでの領域(あわせて軸方向幅231mmの領域)に、金属及びゴムを含む熱硬化性接着剤(商品名:「メタロックU-20」、(株)東洋化学研究所製)を塗布した。これを80℃で30分間乾燥した後、さらに120℃で1時間乾燥した。この支持体を、前記導電性弾性層用1次加硫チューブ1の中に挿入し、160℃で1時間加熱して導電性弾性層用1次加硫チューブ1を2次加硫し、熱硬化性接着剤を硬化した。このようにして、表面研磨前の導電性弾性ローラ1を得た。
 次に、表面研磨前の導電性弾性ローラ1の導電性弾性層部分(ゴム部分)の両端を切断し、導電性弾性層部分の軸方向幅を231mmとした。さらに、導電性弾性層部分の表面を回転砥石で研磨することによって、導電性弾性ローラ(表面研磨後の導電性弾性ローラ)2を得た。この導電性弾性ローラ2は、端部直径8.2mm、中央部直径8.5mmのクラウン形状の導電性弾性層を有しており、この導電性弾性層の表面の十点平均粗さ(Rzjis)は5.5μm、振れは28μmであった。また、導電性弾性層のアスカーC硬度は78度であった。
 前記十点平均粗さ(Rzjis)はJIS B 0601:2001に準拠して測定した。振れの測定は、ミツトヨ(株)製高精度レーザー測定機「LSM-430v」(商品名)を用いて行った。詳しくは、該測定機を用いて外径を測定し、最大外径値と最小外径値の差を外径差振れとし、この測定を5点で行い、5点の外径差振れの平均値を被測定物の振れとした。更に、前記アスカーC硬度の測定は、前述したように、測定対象の表面にアスカーC型硬度計(高分子計器(株)製)の押針を当接し、1000g加重の条件で行った。
 次に、下記表3に示す原料を混合した後、室温で攪拌し、次いで24時間加熱還流(120℃)を行うことによって、加水分解性シラン化合物の縮合物含有溶液1を得た。
Figure JPOXMLDOC01-appb-T000003
 この縮合物含有溶液1にシルセスキオキサンNo.1(商品番号:52684-3、シグマアルドリッチジャパン製)をメチルエチルケトン(以下、MEKという)で10質量%に希釈した溶液を、前記加水分解性シラン化合物の添加量の合計0.320molに対するシルセスキオキサンNo.1が10.0molになるように、279.56g添加した。この、シルセスキオキサンNo.1を含んだ縮合物含有溶液1を2-ブタノール/エタノールの混合溶剤に添加することによって、固形分7質量%の縮合物含有アルコール溶液1を調製した。さらに、光カチオン重合開始剤として芳香族スルホニウム塩(商品名:「アデカオプトマーSP-150」、(株)ADEKA製)をメチルイソブチルケトン(以下、MIBKという)で10質量%に希釈したものを、縮合物含有アルコール溶液1に対して2質量部添加した。これをエタノールで希釈することによって、固形分2質量%の表面層用塗布液1を調製した。
 次に、導電性弾性ローラ(表面研磨後の導電性弾性ローラ)2の導電性弾性層上に表面層用塗布液1をリング塗工ヘッドを用いて塗布した(吐出量:0.008ml/s(リング部のスピード:30mm/s、総吐出量:0.064ml))。そして、導電性弾性層上の塗布液1の塗膜に対して、波長254nmの紫外線を積算光量が8500mJ/cm2になるように照射して、塗膜中の加水分解縮合物1のグリシドキシ基を開裂させ、架橋させ、更に、3秒間放置して乾燥させることにより表面層を形成した。紫外線の照射には、ハリソン東芝ライティング(株)製の低圧水銀ランプを用いた。
 以上のようにして、支持体、該支持体上に形成された導電性弾性層、および該導電性弾性層上に形成された表面層を有する帯電ローラを作製した。この帯電ローラを帯電ローラ1とする。
〈実施例2~5〉
 実施例1のシルセスキオキサンNo.1を下記表4に示すシルセスキオキサンNo.2~5に変更した以外は実施例1と同様の方法で帯電ローラ2~5を作製した。
Figure JPOXMLDOC01-appb-T000004
〈実施例6〉
 実施例1のシルセスキオキサンNo.1を下記合成例1により作製したシルセスキオキサンNo.6に変更した以外は実施例1と同様の方法で帯電ローラ6を作製した。
≪合成例1≫
 撹拌機、滴下ロート、温度計を備えた反応容器に、溶媒として2-プロパノール(以下、IPAという)120mlと、塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(以下、TMAH水溶液という)9.40gを加えた。滴下ロートにIPA45mlと、下記式(14)に示す出発物質1を0.150mol(31.56g)入れ、反応溶液を撹拌しながら、室温で30分かけて滴下した。滴下終了後、加熱することなく2時間撹拌した。2時間撹拌後、溶媒を減圧下で除去した後、反応容器にトルエン250mlを加え、内容物を溶解した。当該内容物のトルエン溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮してシルセスキオキサンNo.6を得た。
Figure JPOXMLDOC01-appb-C000024
式(14)
(出発物質1)
 得られたシルセスキオキサンNo.6は、29Si CP/MAS 核磁気共鳴スペクトル(日本電子社製 以下、29Si-NMRという)、フーリエ変換赤外吸収スペクトル(日本分光(株)製 以下、FT-IRという)、高速液体クロマトグラフィー分離後の質量分析((株)島津製作所製 以下、LC-MSという)を用いる事により、シルセスキオキサンNo.6の構造、有機置換基の同定、および収率の計算を行った。
 29Si-NMRより、55ppm付近に、カゴ状構造に特有のシグナルが確認された。また、FT-IRより、2175cm-1および770cm-1にSi-C結合に特有のピークが確認され、また、1120cm-1に、Si-O-Si結合に特有のピークが確認された。更に、液体クロマトグラフ質量分析(LC-MS)より、質量数(m/z)847のベースピークが、Si原子が6つで構成されたシルセスキオキサンNo.6からプロトンが一つ失われてイオン化した構造由来であることが確認された。
さらに、LC-MSにおいて、質量数(m/z)847におけるクロマトグラムピークの面積と、上記出発物質1のイオン化物由来である質量数(m/z)209におけるクロマトグラムピークの面積との和に対する、質量数(m/z)847におけるクロマトグラムピークの比率を計算したところ、0.12であった。すなわち、シルセスキオキサンNo.6の収率が12%であることが確認された。
〈実施例7~8〉
 実施例6の合成例1で用いた出発物質1を各々下記式(15)~(16)で示される出発物質2および出発物質3に変更した以外は実施例6と同様の方法でシルセスキオキサンNo.7~8を合成した。これらのシルセスキオキサンを用いて実施例6と同様にして帯電ローラ7および8を作製した。なお、出発物質2の添加量は28.55g、出発物質3の添加量は、29.47gとした。
Figure JPOXMLDOC01-appb-C000025
構造式(15)
(出発物質2)
Figure JPOXMLDOC01-appb-C000026
構造式(16)
(出発物質3)
〈実施例9~12〉
実施例1のシルセスキオキサンNo.1を下記表5に示すシルセスキオキサンNo.9~12に変更した以外は実施例1と同様の方法で帯電ローラ9~12を作製した。
Figure JPOXMLDOC01-appb-T000005
〈実施例13〉
 実施例6の合成例1で用いた出発物質1を下記式(17)で示される出発物質4に変更した以外は実施例6と同様の方法でシルセスキオキサンNo.13を合成した。このシルセスキオキサンを用いて実施例6と同様にして帯電ローラ13を作製した。なお、出発物質4の添加量は20.43gとした。
Figure JPOXMLDOC01-appb-C000027
式(17)
(出発物質4)
〈実施例14〉
 実施例1のシルセスキオキサンNo.1を、実施例8にてシルセスキオキサンNo.8を合成したときに同時に得られたシルセスキオキサンNo.14に変更した以外は実施例1と同様の方法で帯電ローラ14を作製した。
〈実施例15〉
 実施例1のシルセスキオキサンNo.1を、実施例13にてシルセスキオキサンNo.13を合成したときに同時に得られたシルセスキオキサンNo.15に変更した以外は実施例1と同様の方法で帯電ローラ15を作製した。
〈実施例16〉
 実施例1のシルセスキオキサンNo.1を、実施例8においてシルセスキオキサンNo.8を合成した時に同時に得られたシルセスキオキサンNo.16に変更した以外は実施例1と同様の方法で帯電ローラ16を作製した。
〈実施例17〉
 実施例1のシルセスキオキサンNo.1をMEKで10質量%に希釈した溶液を、前記加水分解性シラン化合物の添加量の合計0.320molに対するシルセスキオキサンNo.1が0.5mol部になるように13.98g添加した。それ以外は実施例1と同様の方法で帯電ローラ17を作製した。
〈実施例18〉
 実施例1のシルセスキオキサンNo.1をMEKで10質量%に希釈した溶液を、前記加水分解性シラン化合物の添加量の合計0.320molに対するシルセスキオキサンNo.1が60.0mol部になるように1677.34g添加した。それ以外は実施例1と同様の方法で帯電ローラ18を作製した。
 実施例1~18で用いたシルセスキオキサンNo.1~16の構造を以下に示す。また、各実施例において用いたシルセスキオキサンおよびその添加量を表6に示す。
 
シルセスキオキサンNo.1
(Si原子数=8、分子量=873.616)
201~R208のすべてが下記構造式(18)で示される基である。
Figure JPOXMLDOC01-appb-C000028
式(18)
シルセスキオキサンNo.2
(Si原子数=8、分子量=1883.456)
201~R208のすべてが下記式(19)で示される基である。
Figure JPOXMLDOC01-appb-C000029
式(19)
シルセスキオキサンNo.3
(Si原子数=8、分子量=913.566)
201~R207が下記式(20)で示される基である。
Figure JPOXMLDOC01-appb-C000030
式(20)
208が下記式(21)で示される基である。
Figure JPOXMLDOC01-appb-C000031
式(21)
シルセスキオキサンNo.4
(Si原子数=8、分子量尾御=1113.796)
 R201~R207の全てが下記式(22)で示される基である。
Figure JPOXMLDOC01-appb-C000032
式(22)
208が下記式(23)で示される基である。
Figure JPOXMLDOC01-appb-C000033
式(23)
シルセスキオキサンNo.5
(Si原子数=8、分子量=1257.936)
  R101~R106の全てが下記式(24)で示される基である。
Figure JPOXMLDOC01-appb-C000034
 式(24)
シルセスキオキサンNo.6
(Si原子数=6、分子量=847.692)
  R201~R208の全てが下記式(25)で示される基である。
Figure JPOXMLDOC01-appb-C000035
式(25)
シルセスキオキサンNo.7
(Si原子数=6、分子量=727.272)
  R101~R106の全てが下記式(26)で示される基である。
Figure JPOXMLDOC01-appb-C000036
式(26)
シルセスキオキサンNo.8
(Si原子数=6、分子量=775.140)
  R101~R106の全てが下記式(27)で示される基である。
Figure JPOXMLDOC01-appb-C000037
式(27)
シルセスキオキサンNo.9
(Si原子数=10、分子量=1653.060)
  R301~R310の全てが下記式(28)で示される基である。
Figure JPOXMLDOC01-appb-C000038
式(28)
シルセスキオキサンNo.10
(Si原子数=10、分子量=1572.420)
  R301~R310の全てが下記式(29)で示される基である。
Figure JPOXMLDOC01-appb-C000039
式(29)
シルセスキオキサンNo.11
(Si原子数=12、分子量=1983.672)
  R401~R412の全てが下記式(30)で示される基である。
Figure JPOXMLDOC01-appb-C000040
式(30)
シルセスキオキサンNo.12
(Si原子数=12、分子量=1886.904)
  R401~R412の全てが下記式(31)で示される基である。
Figure JPOXMLDOC01-appb-C000041
式(31)
シルセスキオキサンNo.13
(Si原子数=14、分子量=939.736)
  R501~R514の全てがメチル基である。
 
シルセスキオキサンNo.14
(Si原子数=14、分子量=1808.660)
  R501~R514の全てがフェニル基である。
 
シルセスキオキサンNo.15
(Si原子数=16、分子量=1073.984)
  R601~R616の全てがメチル基である。
 
シルセスキオキサンNo.16
(Si原子数=16、分子量=2067.040) 
 R601~R616の全てがフェニル基である。
 
Figure JPOXMLDOC01-appb-T000006
〈比較例1〉
 下記表7に示す原料を混合した後、室温で攪拌し、次いで24時間加熱還流(100℃)を行うことによって、加水分解性シラン化合物の縮合物含有溶液C1を得た。その後、縮合物C1を160℃1時間で熱硬化することにより表面層を形成した以外は実施例1と同様にして帯電ローラC1を得て、物性を測定した。
Figure JPOXMLDOC01-appb-T000007
〈比較例2〉
 シリカフィラー(商品名:アドマファイン アドマテックス社製 平均粒子径=1.0μm 比表面積=3.6m2/g)を比較例1で用いた縮合物含有溶液C1に対して0.5質量部添加したこと以外は、実施例1と同様にして、帯電ローラC2を得て、物性を測定した。
(帯電ローラの物性の測定)
 前記実施例及び比較例の帯電ローラの物性を、以下に示す方法で測定した。
(1)表面層の弾性率;
 帯電ローラの表面層の弾性率は、表面皮膜物性試験機(商品名:「フィッシャースコープH100V」、フィッシャーインストルメンツ社製)を用いて測定した。圧子を測定対象の表面から1μm/7secの速度で進入させたときの値を弾性率とした。なお、弾性率測定用のサンプルには、アルミシート上に前記表面層用塗布液を、硬化後の膜厚が10μm以上になるように塗布し、前記実施例又は比較例における帯電ローラと同条件でUV硬化又は熱硬化させたものを使用した。結果を表8に示す。
(2)表面層の層厚;
 帯電ローラの表面層の層厚は、帯電ローラの表面層付近を基層から採取したものをサンプル片として、表面層の断面側から白金蒸着を施したのち、走査型電子顕微鏡(商品名:「S-4800」、(株)日立ハイテクノロジーズ)に組み込んで観察・計測を行った。得られた結果は表8に示した。
(3)表面層の十点平均粗さ;
 帯電ローラの表面層の十点平均粗さ(Rzjis)はJIS B 0601:2001に準拠して測定した。得られた結果は表8に示した。
Figure JPOXMLDOC01-appb-T000008
(4)ポリシロキサン中の官能基の含有量;
 10~1000倍の光学顕微鏡下、光学顕微鏡に設置した3次元粗微動マイクロマニピュレーター((株)ナリシゲ製)を用い、帯電ローラの表面層から1mg程度の試料を採取した。採取した試料を、熱重量測定-質量分析(TG-MS(Thermogravimetry - Mass Spectrometry)法;(TG装置にMS装置を直結))により、加熱時に発生する気体の質量数ごとの濃度変化を、重量変化と同時に、温度の関数として追跡した。測定条件を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 上記の条件で測定して得られた示差熱-熱重量同時測定(TG-DTA)の結果によると、400~500℃付近及び500~650℃付近において、2段階の顕著な重量減少が認められた。ここで、400~500℃で発生する気体について、下記表10に示すピークが確認された。
Figure JPOXMLDOC01-appb-T000010
 前記ピークから、前記400~500℃の各温度で分解されポリシロキサンから発生した前記の各基に由来する気体成分の濃度を求めた。また、これらの各基に由来する気体成分の濃度と測定された重量減少率から、各温度で発生した前記の各基に由来する気体成分による重量減少率を求めた。これを前記400℃~500℃にわたって積算し、ポリシロキサン中のオキシアルキレン基、アリール基及びアルキル基の含有量を求めた。
 また、500℃~650℃で発生する気体について、質量数(m/z)51、69、119、131のフッ化アルキル基(トリデカフルオロ-1,1,2,2,テトラヒドロオクチルトリエトキシシランのフッ化アルキル基由来、または、シルセスキオキサンの置換基由来)由来のピークが確認された。
これらのピークから、前記500℃~650℃の各温度で分解されたポリシロキサンから発生したフッ化アルキル基に由来する気体成分の濃度を求めた。
また、フッ化アルキル基に由来する気体成分の濃度と測定された重量減少率から、各温度で発生したフッ化アルキル基に由来する気体成分による重量減少率を求めた。これを前記500℃~600℃の温度範囲にわたって積算し、ポリシロキサン中のフッ化アルキル基の含有量を求めた。なお、加熱後の残渣は、第1のユニット、第2のユニット、第3のユニットあるいはシルセスキオキサン由来のシロキサン部分とした。
(5)表面層中のポリシロキサンが有する各種置換基の比率、およびシルセスキオキサンに由来するカゴ状構造の含有量;
 10~1000倍の光学顕微鏡下、光学顕微鏡に設置した3次元電動マイクロマニピュレーター(Three-axis motorized micromanipulator)(商品名:EMM-3NV;(株)ナリシゲ(NARISHIGE)製)を用い、帯電ローラの表面層から300mg程度の試料を採取した。採取した試料を、固体29Si CP/MAS 核磁気共鳴スペクトル(日本電子社製 以下、固体29Si-NMRという)により測定した。その結果、下記表11に示すピークが確認された。
Figure JPOXMLDOC01-appb-T000011
 カゴ状構造とは、化合物物(1)~(6)に示される構造のうち、置換基を除いた、シロキサン結合により構成されている骨格部分を指す。
固体29Si-NMRにおいて、-55ppm付近のピークは、主にSi数が6のカゴ状構造由来することが多い。-65ppm付近のピークは、主に、Si数が8のカゴ状構造に由来することが多い。また、-90~-100ppm付近のピークは、Si数が10~16のカゴ状構造に由来することが多い。そこで、シルセスキオキサンのカゴ状構造に由来する、上記-55、-65、-90~-100ppmの各々におけるピークの面積をシルセスキオキサンのカゴ状構造を構成しているSi原子のmol数とした。
そして、Si原子のmol数としたピーク面積を、対応する特定の構造のシルセスキオキサンのカゴ状構造を構成しているSi原子の数で割った値を、シルセスキオキサンのmol数とした。前記シルセスキオキサンのmol数に換算したピーク面積を、前記第1のユニット、第2のユニットおよび第3のユニットに由来するピーク面積の総和で割った値を、表面層に含まれるカゴ状構造のmol%とした。
 さらに、本発明に係るポリシロキサンの第1のユニットに由来する、-49、-61、-62ppmのピークの面積%の、第1~第3のユニットの各々に由来するピーク面積の総和で割った値を、第1のユニットのmol%(x)とした。同様に、第2のユニットのmol%を(y)および第3のユニットのmol%(z)を算出した。次いで、(x+y)/(x+y+z)の値を算出した。
 前記(4)および(5)の測定によって得られた、オキシアルキレン基、アリール基、アルキル基、フッ化アルキル基およびシロキサン部分の質量%、ならびに、(x+y)/(x+y+z)およびシルセスキオキサン由来のカゴ状構造の含有量を表12に示す。
Figure JPOXMLDOC01-appb-T000012
(帯電ローラの評価)
 前記実施例に係る帯電ローラ1~18および比較例に係る帯電ローラC1およびC2を用いて下記の評価を行った。まず、各帯電ローラと電子写真感光体とを、これらを一体に支持するプロセスカートリッジ(商品名:「EP-85(ブラック)」、キヤノン(株)製)に組み込んだ。次いで、当該プロセスカートリッジを、A4紙縦出力用のレーザービームプリンター(商品名:「LBP-5500」、キヤノン(株)製)に装着した。このレーザービームプリンターの現像方式は反転現像方式であり、転写材の出力スピードは47mm/sであり、画像解像度は600dpiである。
 なお、帯電ローラとともにプロセスカートリッジに組み込んだ電子写真感光体は、支持体上に層厚14μmの有機感光層を形成してなる有機電子写真感光体である。また、この有機感光層は、支持体側から電荷発生層と変性ポリアリレート(結着樹脂)を含有する電荷輸送層とを積層してなる積層型感光層であり、この電荷輸送層は電子写真感光体の表面層となっている。また、前記レーザービームプリンターに使用したトナーは、ワックス、荷電制御剤、色素、スチレン、ブチルアクリレート及びエステルモノマーを含む重合性単量体系を水系媒体中で懸濁重合して得られた粒子を含む、いわゆる、重合トナーである。このトナーは前記粒子にシリカ微粒子及び酸化チタン微粒子を外添してなるトナー粒子を含む重合トナーであって、そのガラス転移温度は63℃、体積平均粒子径は6μmである。画像出力は、30℃/80%RH環境下で行い、A4紙に印字率4%のE文字パターンを形成し、これを47mm/sのプロセススピードで6000枚出力した。
(1)表面層の耐磨耗性;
 各帯電ローラの表面層の耐摩耗性の指標として、初期の表面層の層厚(nm)に対する、6000枚出力後の表面層の層厚(nm)の比率を保持率として算出した。保持率が小さくなるほど摩耗しているものとした。表面層の層厚は上述の方法により測定して比較した。
(2)画像評価;
 帯電部材の表面層の摩耗に起因して帯電ムラが生じた場合に、電子写真画像に現れるスジの有無を観察した。観察に使用した画像として、A4紙に、電子写真感光体の回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像(ハーフトーン画像)を用いた。この画像の1枚目(初期)から6000枚目までの毎1000枚出力時に得られた出力画像を目視することによって行った。
 評価基準は以下のとおりである。
1:縦スジが全く出ていない
2:縦スジがごく少量発生した
3:縦スジが大量に発生した
上記した表面層の耐摩耗性の評価および画像評価の結果を下記表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13に示した通り、本発明に係る帯電部材は、繰り返しの使用によっても表面層が摩耗しにくく、また、使用によっても帯電性能が変化しにくいことが分かる。
101 支持体
102 導電性弾性層
103 表面層
この出願は2009年12月14日に出願された日本国特許出願第2009-282694からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

 

Claims (5)

  1.  支持体と、導電性の弾性層と、表面層とをこの順に有する帯電部材であって、該表面層は、ポリシロキサンとシルセスキオキサンとを含み、
    該ポリシロキサンは、SiO0.51(OR2)(OR3)で示される第1のユニット、SiO1.04(OR5)で示される第2のユニットおよびSiO1.56で示される第3のユニットを有し、
    該シルセスキオキサンは、下記の化合物(1)~(6)で示される化合物からなる群から選ばれる少なくとも1つの化合物であることを特徴とする帯電部材:
     
      
    Figure JPOXMLDOC01-appb-I000001
     
     
    Figure JPOXMLDOC01-appb-I000002
     
     
    Figure JPOXMLDOC01-appb-I000003
     
     
    Figure JPOXMLDOC01-appb-I000004
     
     
    Figure JPOXMLDOC01-appb-I000005
     
     
    Figure JPOXMLDOC01-appb-I000006
     
     
    [R1、R4およびR6は各々独立に置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を示し、R2、R3およびR5は各々独立に水素原子または置換もしくは無置換のアルキル基を示す。化合物(1)~(6)中、R101~R616は各々独立に置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基および下記式(7)で示される基から選ばれる少なくとも1つである。
      
    Figure JPOXMLDOC01-appb-I000007
     
     
    (式(7)中、X、YおよびZは各々独立に、置換もしくは無置換のアルキル基および置換もしくは無置換のアリール基から選ばれる少なくとも1つであり、mは1~20の整数である。)]
  2.  前記化合物(1)~(6)において、R101~R616は各々独立に炭素数が1~20の無置換のアルキル基および式(7)で示される基から選ばれる何れかであり、R101~R616から選ばれるいずれかの置換基が式(7)である場合において、式(7)中のXおよびYは炭素数1~3のアルキル基であり、Zは炭素数1~3のアルキル基またはシクロアルケニル変性アルキル基であり、mは1である請求項1に記載の帯電部材。
  3.  前記シルセスキオキサンが化合物(2)で示されるシルセスキオキサンであり、R201~R208が炭素数が1~20の分岐アルキル基、及び式(7)で示される基から選ばれる何れかであって、かつ、R201~R208の全てが同じ基である請求項2に記載の帯電部材。
  4.  請求項1乃至3のいずれか一項に記載の帯電部材と該帯電部材と接触配置されている電子写真感光体とを有することを特徴とする電子写真装置。
  5.  請求項1乃至3のいずれか一項に記載の帯電部材と、電子写真感光体1、現像手段5、転写手段6及びクリーニング手段7から選ばれる少なくとも1つの部材とを一体に保持し電子写真装置の本体に着脱自在に構成されていることを特徴とするプロセスカートリッジ。
PCT/JP2010/007136 2009-12-14 2010-12-08 帯電部材、プロセスカートリッジ及び電子写真装置 WO2011074210A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10837246.7A EP2515177B1 (en) 2009-12-14 2010-12-08 Charging member, process cartridge, and electrophotographic apparatus
CN201080056626.4A CN102656523B (zh) 2009-12-14 2010-12-08 充电构件、处理盒和电子照相设备
KR1020127017592A KR101372650B1 (ko) 2009-12-14 2010-12-08 대전 부재, 프로세스 카트리지 및 전자 사진 장치
US13/080,594 US8092358B2 (en) 2009-12-14 2011-04-05 Charging member, process cartridge and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009282694 2009-12-14
JP2009-282694 2009-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/080,594 Continuation US8092358B2 (en) 2009-12-14 2011-04-05 Charging member, process cartridge and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2011074210A1 true WO2011074210A1 (ja) 2011-06-23

Family

ID=44166984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007136 WO2011074210A1 (ja) 2009-12-14 2010-12-08 帯電部材、プロセスカートリッジ及び電子写真装置

Country Status (6)

Country Link
US (1) US8092358B2 (ja)
EP (1) EP2515177B1 (ja)
JP (1) JP4717959B1 (ja)
KR (1) KR101372650B1 (ja)
CN (1) CN102656523B (ja)
WO (1) WO2011074210A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729988B2 (ja) * 2009-12-15 2015-06-03 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
JP5264873B2 (ja) * 2009-12-28 2013-08-14 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
JP4948666B2 (ja) * 2010-08-17 2012-06-06 キヤノン株式会社 帯電部材及びその製造方法
WO2012042755A1 (ja) 2010-09-27 2012-04-05 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
JP4954344B2 (ja) 2010-09-27 2012-06-13 キヤノン株式会社 帯電部材及びその製造方法
JP4942233B2 (ja) 2010-09-27 2012-05-30 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
CN103154827B (zh) 2010-09-27 2015-07-01 佳能株式会社 充电构件、处理盒和电子照相设备
EP2626747B1 (en) * 2010-10-08 2018-01-03 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic device
CN103380403B (zh) 2011-02-15 2015-06-10 佳能株式会社 充电构件、其生产方法、处理盒和电子照相设备
CN103502894B (zh) 2011-04-27 2015-11-25 佳能株式会社 充电构件、处理盒、电子照相设备和充电构件的生产方法
WO2013145616A1 (ja) 2012-03-29 2013-10-03 キヤノン株式会社 電子写真用部材の製造方法及びコーティング液
JP2016038578A (ja) * 2014-08-08 2016-03-22 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真画像形成装置
US9921513B2 (en) * 2014-12-09 2018-03-20 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus
KR102491045B1 (ko) * 2020-08-20 2023-01-19 인하대학교 산학협력단 대면적 대전체 폴리머 필름, 그의 제조방법 및 그를 이용한 마찰전기 발전소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173641A (ja) 1999-12-15 2001-06-26 Suzuka Fuji Xerox Co Ltd 導電性ロール
JP2003119288A (ja) * 2001-10-10 2003-04-23 Chisso Corp ケイ素化合物
WO2005000857A1 (ja) * 2003-06-30 2005-01-06 Chisso Petrochemical Corporation 有機ケイ素化合物とその製造方法、およびポリシロキサンとその製造方法
JP2007332211A (ja) * 2006-06-13 2007-12-27 Univ Kansai 熱硬化性重合体組成物およびその硬化物
JP2008150478A (ja) * 2006-12-15 2008-07-03 Chisso Corp ポリシロキサン化合物とその製造方法
WO2008123122A1 (ja) * 2007-03-23 2008-10-16 Chisso Corporation 重合体および重合体を含む表面処理剤
JP2009282694A (ja) 2008-05-21 2009-12-03 Kyocera Mita Corp Icカードリーダおよび画像形成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168867B1 (en) * 1998-12-03 2001-01-02 Nexpress Solutions Llc Outer layer for fuser member having an aryl silane crosslinking agent
US6594461B2 (en) * 2001-02-02 2003-07-15 Fuji Xerox Co., Ltd. Charger and image formation apparatus using the charger
US6785494B2 (en) * 2001-07-12 2004-08-31 Fuji Xerox Co., Ltd. Image formation apparatus and charger used therewith
US6937835B2 (en) * 2002-08-28 2005-08-30 Seiko Epson Corporation Developer charging unit, developing device, image-forming apparatus, and computer system
US7112393B2 (en) * 2003-07-29 2006-09-26 Canon Kabushiki Kaisha Non-magnetic toner
JP4455454B2 (ja) * 2004-09-02 2010-04-21 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
KR100871048B1 (ko) * 2004-12-28 2008-12-01 캐논 가부시끼가이샤 대전 부재, 공정 카트리지, 및 전자 사진 장치
WO2007100069A1 (en) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus
US8064803B2 (en) * 2006-02-28 2011-11-22 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus
JP5729988B2 (ja) * 2009-12-15 2015-06-03 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173641A (ja) 1999-12-15 2001-06-26 Suzuka Fuji Xerox Co Ltd 導電性ロール
JP2003119288A (ja) * 2001-10-10 2003-04-23 Chisso Corp ケイ素化合物
WO2005000857A1 (ja) * 2003-06-30 2005-01-06 Chisso Petrochemical Corporation 有機ケイ素化合物とその製造方法、およびポリシロキサンとその製造方法
JP2007332211A (ja) * 2006-06-13 2007-12-27 Univ Kansai 熱硬化性重合体組成物およびその硬化物
JP2008150478A (ja) * 2006-12-15 2008-07-03 Chisso Corp ポリシロキサン化合物とその製造方法
WO2008123122A1 (ja) * 2007-03-23 2008-10-16 Chisso Corporation 重合体および重合体を含む表面処理剤
JP2009282694A (ja) 2008-05-21 2009-12-03 Kyocera Mita Corp Icカードリーダおよび画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2515177A4 *

Also Published As

Publication number Publication date
US8092358B2 (en) 2012-01-10
JP2011145660A (ja) 2011-07-28
KR20120099763A (ko) 2012-09-11
KR101372650B1 (ko) 2014-03-10
CN102656523B (zh) 2014-10-15
EP2515177B1 (en) 2016-04-27
EP2515177A4 (en) 2015-04-29
JP4717959B1 (ja) 2011-07-06
CN102656523A (zh) 2012-09-05
EP2515177A1 (en) 2012-10-24
US20110182617A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP4717959B1 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5729988B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
US7693457B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5038524B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP4841016B1 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
WO2012147301A1 (ja) 帯電部材、プロセスカートリッジ、電子写真装置、及び帯電部材の製造方法
KR101454138B1 (ko) 대전 부재, 프로세스 카트리지 및 전자 사진 장치
JP5818548B2 (ja) 帯電部材、その製造方法、プロセスカートリッジ及び電子写真装置
JP4948666B2 (ja) 帯電部材及びその製造方法
JP5170956B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP4863353B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP2011137109A (ja) ポリシロキサン含有膜形成用の組成物及び帯電部材
JP4854326B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP2008003205A (ja) 現像ローラ、その製造方法、現像装置及び電子写真プロセスカートリッジ
JP2011138052A (ja) ポリシロキサン含有膜形成用の組成物及び帯電部材
JP5213384B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP2009151161A (ja) 帯電部材、プロセスカートリッジおよび電子写真装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056626.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837246

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010837246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127017592

Country of ref document: KR

Kind code of ref document: A