WO2011072617A1 - 全封闭式制冷压缩机及其转子压缩机单元 - Google Patents

全封闭式制冷压缩机及其转子压缩机单元 Download PDF

Info

Publication number
WO2011072617A1
WO2011072617A1 PCT/CN2010/079919 CN2010079919W WO2011072617A1 WO 2011072617 A1 WO2011072617 A1 WO 2011072617A1 CN 2010079919 W CN2010079919 W CN 2010079919W WO 2011072617 A1 WO2011072617 A1 WO 2011072617A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
primary
compressor unit
working chamber
end cover
Prior art date
Application number
PCT/CN2010/079919
Other languages
English (en)
French (fr)
Inventor
吴少伟
杨帆
谢尔科夫·叶甫盖尼
Original Assignee
湖北新火炬科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北新火炬科技股份有限公司 filed Critical 湖北新火炬科技股份有限公司
Publication of WO2011072617A1 publication Critical patent/WO2011072617A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber

Definitions

  • the invention relates to the technical field of compressors, and in particular to a totally enclosed refrigeration compressor and a rotor compressor unit thereof. Background technique
  • Rotor compressors also known as rolling piston compressors, are volumetric rotary compressors.
  • the compressor unit includes main functional components such as a cylinder, an eccentric rotor and a sliding piece.
  • the sliding piece and the outer surface of the eccentric rotor or the inner wall of the cylinder are formed to form a contact sealing line, and the crescent-shaped space volume formed by the eccentric rotor and the cylinder member is separated into Two parts; During the working process, the two parts of the volume change with the rotation of the rotor, thereby achieving the process of suction, compression and exhaust.
  • US 2008/0232991 A1 discloses a rotor type compressor in which a rotor is placed between inner and outer nested cylinders and forms a two-stage chamber that is nested inside and outside.
  • the slider is relative to the cylinder. It is said to be fixed, and the sealing between the chambers makes the sealing between the chambers more reliable.
  • the clearance volume after the end of the air chamber exhaust of the solution is large, thereby affecting the volumetric efficiency of the rotor compressor.
  • the technical problem to be solved by the present invention is to provide a rotor compressor unit having higher work efficiency. Based on this, the present invention also provides a totally enclosed refrigeration compressor having the unit.
  • the inner rotor is built in the inner portion of the rotor; the outer rotor is set on the outside of the rotor; the three sliding sheets are respectively disposed in three radial sliding grooves on the rotor; each sliding piece The inner and outer ends respectively protrude through respective radial chutes, and respectively form an outer peripheral surface of the inner rotor and an inner wall of the outer rotor; and the bottom of the cylinder has a through hole.
  • the inner rotor and the outer rotor are coaxially disposed and eccentrically disposed with respect to the rotor, a primary working cavity is formed between the outer rotor and the rotor, and a secondary working cavity is formed between the rotor and the inner rotor; the primary working chamber and the secondary working chamber They are separated by three sliding sheets to form three relatively sealed working chambers.
  • the inner and outer end faces of the sliding piece respectively drive the inner rotor and the outer rotor to rotate eccentrically with respect to the rotor, and the volume of each of the relatively sealed working chambers periodically changes, sequentially forming An air suction space, a compression space and an exhaust space; a gas distribution passage is arranged between the end cover and the three rotors, so that the gas enters the primary working chamber through the end cover air inlet for primary compression, and the primary compressed gas enters The secondary working chamber undergoes secondary compression and the secondary compressed gas is discharged through the end cap vent.
  • the air distribution channel is fixedly disposed on an inner end surface of the end cover; the air distribution channel is specifically a communication air distribution channel disposed on an inner end surface of the end cover and disposed on the gas distribution spacer a primary air inlet, a primary air outlet, a secondary air inlet, and a secondary air outlet; wherein the primary air inlet communicates with an air inlet on an inner end surface of the end cover and an air intake space of the primary working chamber
  • the primary exhaust port communicates with the exhaust space of the primary working chamber and the communication on the inner end surface of the end cap a gas distribution passage; the secondary air inlet communicates with the air intake space of the communication air passage and the secondary working chamber; the secondary air outlet communicates with the exhaust space of the secondary working chamber and the row on the inner end surface of the end cover Air port.
  • the inner wall of the mating end of the outer rotor and the gas distribution spacer is provided with three concave exhaust passages, and the three exhaust passages are respectively disposed in three relatively sealed working chambers separated by three sliding sheets, In order to increase the flow area between the exhaust space of the primary working chamber and the primary exhaust port.
  • the rotor specifically includes a chassis and a cylindrical rotor body axially extending from an inner side surface of the chassis; a middle portion of the chassis has a through hole through which the transmission shaft is inserted, and the through hole and the transmission shaft are respectively disposed There is a matching stop surface for the drive shaft to drive the rotor to rotate; along the axial direction of the rotor, the two end faces of the three sliding plates respectively abut against the chassis and the gas distribution spacer of the rotor.
  • the three sliding sheets are evenly arranged along the circumferential direction of the rotor.
  • the inner and outer end faces of the three sliding sheets are plane; corresponding to each sliding piece, the outer circumferential surface of the inner rotor and the inner wall of the outer rotor are respectively provided with an end plane of the sliding piece The working plane of the phase 4 fit.
  • the flow cross section of the primary air inlet, the primary air outlet and the secondary air inlet on the gas distribution spacer gradually increases, and the flow of the secondary air outlet The section is gradually reduced.
  • the transmission shaft has an axial through hole, and the axial through hole is provided with a spiral oil guiding blade to facilitate extraction of lubricating oil with the rotation of the transmission shaft.
  • an inlet of the intake passage is disposed on an outer peripheral surface of the end cover, and an outlet of the exhaust passage is disposed at an axial end surface of the end cover.
  • the present invention provides a hermetic refrigeration compressor comprising a casing and a motor and a compressor unit disposed in the casing; the compressor unit adopting a rotor compressor unit as described above, and the rotor compressor unit
  • the cylinder is fixedly connected to the casing, and its transmission shaft is fixedly connected to the rotor of the motor.
  • the rotor compressor unit provided by the invention has an inner rotor, a rotor and an outer rotor which are nested from the inside to the outside, forming a primary working chamber and a secondary working chamber;
  • the three sliding vanes in the groove respectively abut against the outer peripheral surface of the inner rotor and the inner wall of the outer rotor, and divide the two-stage volume chamber into three working chambers.
  • compressor The high-pressure gas in the casing acts on the rotor through the through hole at the bottom of the cylinder, so that the rotor and the gas distribution spacer are better fitted.
  • the rotor drives the inner rotor through the ends of the three sliding blades and
  • the outer rotor is eccentrically rotated, and the volume of each of the relatively sealed working chambers periodically changes during one rotation cycle, sequentially forming an intake space, a compression space, and an exhaust space.
  • a gas distribution channel is arranged between the end cover and the three rotors, so that the gas enters the primary working chamber through the end cover air inlet for primary compression, and the primary compressed gas enters the secondary working chamber for secondary compression and time.
  • the staged compressed gas is discharged through the end cap vent.
  • the pressure of the primary compression in the two-stage compression is relatively small, and the cylinder pressure of the present invention is small based on the same compression ratio, thereby reducing leakage and improving efficiency.
  • the solution omits the corresponding seals to reduce the manufacturing cost.
  • the gap between the mating surfaces is more uniform, and the rotor is still in close contact with the gas distribution spacer under the action of the high pressure gas, further reducing the leakage of the whole machine.
  • the inner and outer working chambers are connected by the gas distribution channel provided on the end cover, thereby reducing the invalid volume, increasing the cooling capacity, and further improving the effective performance coefficient of the compressor.
  • the uniform sliding structure design ensures the balance of the compressor operation without the use of counterweights, thus effectively reducing pressure pulsation and noise.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1;
  • Figure 3 is a side elevational view of the rotor compressor unit of the embodiment;
  • Figure 4 is a partial cutaway axial side view of the rotor compressor unit in the embodiment;
  • Figure 5 is a rotor compression of the embodiment An axial exploded view of the machine unit;
  • Figure 6 is a schematic view showing the overall structure of the rotor in a specific embodiment
  • Figure 7 is a half cross-sectional view showing the assembled relationship between the inner rotor, the rotor, the outer rotor and the drive shaft;
  • Figure 8 is a cross-sectional view taken along line B-B of Figure 7;
  • FIG. 9 is a schematic view showing the overall structure of the end cap in a specific embodiment
  • Figure 10 is a front elevational view of the gas distribution spacer in a specific embodiment
  • Figure 11 is a schematic view showing the assembly of the gas distribution spacer and the end cover in an integrated embodiment
  • Figure 12 is an exploded view showing the assembly relationship between the three rotors and the gas distribution spacer in the specific embodiment
  • Figure 13-1, Figure 13-2, Figure 13-3, Figure 13-4, Figure 13-5, and Figure 13-6 show the six characteristic positions of the rotor compressor unit operating cycle, respectively.
  • Vapor-liquid separator 10 casing 20, motor 30, motor rotor 301, compressor unit 40; cylinder 1, recessed housing portion 11, shaft 7 12, through hole 13, end cap 2, shaft 7 21, air inlet 22.
  • the core of the present invention is to provide a rotor compressor unit that can perform two-stage compression to effectively improve the operating efficiency of the rotor compressor unit.
  • FIG. 1 is a fully enclosed refrigeration compression device according to the embodiment.
  • Figure 2 is a cross-sectional view of the AA cut position shown in Figure 1.
  • the hermetic refrigeration compressor comprises a vapor-liquid separator 10, a casing 20, a motor 30 and a rotor compressor unit 40; wherein an outer cylinder of the rotor compressor unit 40 is fixedly connected to the casing 20, and a drive shaft thereof
  • the rotor of the motor 30 is fixedly coupled so as to be rotatable under the drive of the rotor of the motor; the vapor-liquid separator 10 is placed on one side of the casing 20, and its outlet is in communication with the intake duct of the rotor compressor unit 40 via a line.
  • FIG. 3 is a side view of the rotor compressor unit of the present embodiment
  • the rotor compressor unit includes a cylinder 1 having a recessed receiving portion 11, an end cap 2, a rotor 3, a drive shaft 4, an inner rotor 5, an outer rotor 6, three slides 7, and a gas distribution spacer 8.
  • the end cap 2 cooperates with the inner EJ receiving portion 11 of the cylinder 1 to form a sealed inner chamber in which the rotor 3 is placed; one end of the transmission shaft 4 is inserted into the end cap 2 via the cylinder 1, and passes through the cylinder respectively.
  • the bearing 12 on the 1 and the bearing 21 on the end cover 2 are carried, and the other end of the drive shaft 4 is connected to the motor rotor 301 to transmit power to the rotor 3 fitted to the drive shaft 4.
  • the drive shaft 4 and the rotor 3 are respectively provided with matching stop faces 41 and stop faces 31 to facilitate the rotation of the rotor by the drive shaft. It should be understood that a variety of designs may be utilized to achieve a mating relationship between the rotor 3 and the drive shaft 4 without circumferential relative motion, as long as the requirements for use are met within the scope of the claimed application.
  • FIG. 6 is a schematic diagram of the overall structure of the rotor.
  • the rotor 3 is composed of a chassis 32 and a cylindrical rotor body 33 projecting axially from the inner side surface of the chassis 32.
  • the middle portion of the chassis 32 has a through hole 34 through which the drive shaft 4 is attached, and the aforementioned stop surface 31 Located on the inner wall of the through hole 34.
  • the bottom of the cylinder 1 is provided with two through holes 13.
  • Figure 2 As shown, after the rotor compressor unit 40 is placed in the casing 20, the inner cavity of the cylinder 1 communicates with the chamber of the casing 20 above it through the two through holes 13. In the working state, the high-pressure gas in the casing 20 passes through the passage. The hole 13 acts on the rotor 3, thereby reducing the gap between the inner rotor 5, the outer rotor 6, the vane 7 and the gas distribution spacer 8, forming a relatively sealed working chamber.
  • Fig. 7 is a half cross-sectional view showing the assembled relationship between the inner rotor, the rotor, the outer rotor and the drive shaft
  • Fig. 8 is a cross-sectional view showing the position of the B-B cutaway shown in Fig. 7.
  • the inner rotor 5 is built in the inside of the rotor 3; the outer rotor 6 is fitted on the outside of the rotor 3; the inner rotor 5 and the outer rotor 6 are coaxially disposed and both are eccentrically disposed with respect to the rotor 3, and a primary is formed between the outer rotor 5 and the rotor 3.
  • the working chamber C1, the rotor 3 and the inner rotor 5 form a secondary working chamber C2; the three sliding vanes 7 are respectively disposed in the three radial chutes 35 on the rotor body 33; the inner and outer portions of each vane 7 The ends extend through the respective radial chutes 35, and respectively correspond to the outer peripheral surface of the inner rotor 5 and the inner wall of the outer rotor 6, respectively; along the axial direction of the rotor 3, the two end faces of the three sliding sheets 7 respectively In opposition to the chassis 32 of the rotor 3 and the gas distribution spacer 8, the separation spacer 8 is fixedly coupled to the end cover 2 via a pressure plate 85.
  • both the primary working chamber C1 and the secondary working chamber C2 are separated by three vanes 7 to form three relatively sealed working chambers.
  • the three sliders 7 rotate with the rotor 3, and a bushing 9 is nested in the inner rotor 5 to ensure smooth rotation of the inner and outer rotors with respect to the rotor.
  • the inner and outer end faces of the sliding piece 7 respectively drive the inner rotor 5 and the outer rotor 6 to rotate eccentrically with respect to the rotor 3, and the volume of each relatively sealed working cavity periodically changes, sequentially forming an air suction space, a compression space and an exhaust gas. space.
  • the three sliders 7 are uniformly disposed along the circumferential direction of the rotor 3 to better balance the working pulsation.
  • the inner and outer end faces of the three sliders 7 are flat; corresponding to each of the sliders 7, the outer peripheral surface of the inner rotor 5 and the inner wall of the outer rotor 6 are respectively provided with the end of the slider 7.
  • Figure 9 is a schematic view of the overall structure of the end cap.
  • the inner end surface of the end cover 2 is provided with an air inlet 22 and an exhaust port 23 respectively communicating with the intake and exhaust passages; the intake passage inlet 25 is disposed on the outer peripheral surface of the end cover 2, and the exhaust passage outlet 26 is disposed at the end cover 2 axial end faces.
  • a gas distribution passage is arranged between the end cover 2 and the three rotors, so that the gas enters through the end cover air inlet
  • the primary working chamber is subjected to primary compression, the primary compressed gas enters the secondary working chamber for secondary compression, and the secondary compressed gas is discharged through the end cap vent.
  • the transmission shaft 4 has an axial through hole 42 for oil guiding, and the axial through hole 42 is provided with a spiral oil guiding blade 43 so as to be along with the transmission shaft 4
  • the rotation extracts the lubricating oil to provide sufficient lubricating oil for the portion above the rotor compressor.
  • FIG. 10 is a front view of the gas distribution spacer
  • FIG. 11 is a schematic view of the gas distribution spacer and the end cover assembled integrally.
  • the foregoing gas distribution passage is specifically a communication passage 24 provided on the inner end surface of the end cover 2, and a primary air inlet 81, a primary exhaust port 82, a secondary air inlet 83 and a second provided on the gas distribution partition 8.
  • Level exhaust port 84 wherein, the primary air inlet 81 communicates with the intake port 22 on the inner end surface of the end cover 2 and the intake space of the primary working chamber C1; the primary exhaust port 81 communicates with the exhaust space of the primary working chamber C1 and The air distribution passage 24 on the inner end surface of the end cover 2; the secondary air inlet 83 communicates with the air intake space of the communication air passage 24 and the secondary working chamber C2; the secondary air outlet 84 communicates with the row of the secondary working chamber C2 The air space and the exhaust port 23 on the inner end surface of the end cap 2.
  • the flow cross sections of the primary intake port 81, the primary exhaust port 82, and the secondary intake port 83 on the gas distribution partition 8 are gradually increased, and the secondary exhaust port 84 is The flow cross section is gradually reduced.
  • Fig. 12 is an exploded view of the assembly relationship of the three rotors and the gas distribution spacer.
  • the inner wall of the mating end of the outer rotor 6 and the gas distribution spacer 8 is provided with three concave exhaust passages 61, and the three exhaust passages 61 are respectively disposed in three relatively sealed working chambers separated by three sliding sheets 7. In order to increase the flow area between the exhaust space of the primary working chamber C1 and the primary exhaust port 82.
  • cross-sectional shape of the exhaust passage 61 is not limited to the inner EJ inclined surface as shown in the drawing, as long as the use of the flow passage area is increased.
  • the rotor rotates counterclockwise as indicated by the arrow in the figure.
  • a working chamber with a primary working chamber illustrates a working cycle of primary compression.
  • the primary air suction process since the primary air inlet 81 of the gas distribution partition 8 communicates with the air inlet 22 of the end cover 2, the mixed gas enters the primary working chamber between the sliding plate 71 and the sliding plate 72 via the primary air inlet 81.
  • C1 as shown in Fig. 13-1; as the rotor rotates, the space volume of the primary working chamber C1 between the slider 71 and the slider 72 gradually increases, and the overlapping area between the space and the primary air inlet 81 is also Gradually increasing, as shown in Figure 13-2; until the volume of the space reaches the maximum limit, as shown in Figure 13-3; in this process, the primary working chamber C1 between the slider 71 and the slider 72 is sucked Gas space.
  • the volume of the primary working chamber C1 between the vane 71 and the vane 72 continues to decrease, the space is in communication with the primary exhaust port 82, and compression begins and exhaust begins.
  • the mixed gas after completion of the primary compression enters the communication passage 24 on the end cover 2 communicating with the primary exhaust port 82; in this process, the primary working chamber C1 between the vane 71 and the vane 72 is exhausted. space.
  • the exhaust passage 61 on the outer rotor 6 described above can further increase the flow area between the exhaust space and the primary exhaust port 82.
  • a working chamber of the secondary working chamber (the secondary working chamber space between the sliding vane 71 and the sliding vane 72) is taken as an example to illustrate a working cycle of the secondary compression.

Description

全封闭式制冷压缩机及其转子压缩机单元 本申请要求于 2009 年 12 月 17 日提交中国专利局、 申请号为 200910260920.6, 发明名称为"全封闭式制冷压缩机及其转子压缩机单元" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及压缩机技术领域, 具体涉及一种全封闭式制冷压缩机及其 转子压缩机单元。 背景技术
转子式压缩机, 又称滚动活塞压缩机, 属于容积型回转式压缩机。 其 压缩机单元包括气缸、 偏心转子和滑片等主要功能部件, 滑片与偏心转子 外表面或者气缸内壁之间相抵形成一条接触密封线, 将偏心转子与气缸部 件形成的月牙状空间容积分隔成两部分; 工作过程中, 前述两部分容积随 着转子的转动而变化, 从而实现吸气、 压缩和排气过程。
众所周知, 传动转子式压缩机的滑片与偏心转子外表面或者气缸内壁 之间的泄漏、 摩擦和磨损较大, 从而限制了它的工作寿命及效率的提高。 为提高转子式压缩机的工作寿命, 本领域的研发人员提出了诸多的改进设 计。
比如,公开号为 US2008/0232991 A1公开了一种转子式压缩机,其转子 置于内外嵌套缸体之间并形成内外嵌套的两级腔室, 该方案中滑片相对于 缸体来说是固定的, 通过转子与滑片之间的配合结构使得腔室之间的密封 更加可靠。 然而, 该方案的气腔排气结束后的余隙容积较大, 从而影响转 子压缩机的容积效率。
有鉴于此, 亟待针对转子式压缩机进行优化设计, 以有效提高其工作 效率。 发明内容 针对上述缺陷, 本发明解决的技术问题在于, 提供一种具有较高工作 效率的转子压缩机单元。 在此基础上, 本发明还提供一种具有该单元的全 封闭式制冷压缩机。
本发明提供的转子压缩机单元, 包括具有内凹容纳部的气缸、 端盖、 转子、 传动轴、 内转子、 外转子和三个滑片; 所述端盖与所述气缸的内 W 容纳部配合形成内部腔室, 且其内侧端面设置有分别与进、 排气通道连通 的进、 排气口; 所述转子置于所述内部腔室中; 所述传动轴的一端经所述 气缸插装于所述端盖上、 另一端用于与电机转子相连, 且所述转子套装于 传动轴上。
所述内转子内置于所述转子的内部; 所述外转子套装于所述转子的外 部; 所述三个滑片分别设置在所述转子上的三个径向滑槽中; 每个滑片的 内、 外端分别经相应的径向滑槽伸出, 且分别与所述内转子的外周表面和 所述外转子的内壁相 ·ί氏; 且所述气缸的底部具有通孔。
所述内转子和外转子同轴设置且两者相对于转子偏心设置, 外转子与 转子之间形成初级工作腔、 转子与内转子之间形成次级工作腔; 初级工作 腔和次级工作腔均由三个滑片分隔形成三个相对密封的工作腔。
所述三个滑片与转子一并转动时, 且滑片的内、 外端面分别带动内转 子和外转子相对于转子偏心转动, 每个相对密封的工作腔的容积周期性的 改变, 依次形成吸气空间、 压缩空间和排气空间; 所述端盖与三个转子之 间设置有配气通道, 以便于气体经端盖进气口进入初级工作腔进行初级压 缩、 初级压缩后的气体进入次级工作腔进行次级压缩以及次级压缩后的气 体经端盖排气口排出。
优选地, 还包括固定设置在所述端盖的内侧端面上的配气隔离件; 所 述配气通道具体为设置在端盖内侧端面上的联通配气通道以及设置在所述 配气隔离件上的初级进气口、 初级排气口、 次级进气口和次级排气口; 其 中, 所述初级进气口连通端盖内侧端面上的进气口和初级工作腔的吸气空 间; 所述初级排气口连通初级工作腔的排气空间和端盖内侧端面上的联通 配气通道; 所述次级进气口连通联通配气通道和次级工作腔的吸气空间; 所述次级排气口连通次级工作腔的排气空间和端盖内侧端面上的排气口。
优选地, 所述外转子与配气隔离件配合端的内壁上设置有三个内凹的 排气通道, 且三个排气通道分别位于由三个滑片分隔形成三个相对密封的 工作腔内, 以便于增加初级工作腔的排气空间与初级排气口之间的通流面 积。
优选地, 所述转子具体包括底盘和由底盘的内侧表面轴向伸出的圆筒 状转子本体; 所述底盘的中部具有穿装传动轴的通孔, 且该通孔和传动轴 上分别设置有相适配的止动面, 以便于传动轴带动所述转子转动; 沿所述 转子的轴向, 三个滑片的两侧端面分别与转子的底盘和配气隔离件相抵。
优选地, 所述三个滑片沿转子的周向均布设置。
优选地, 所述三个滑片的内、 外端面为平面; 与每个滑片对应地, 所 述内转子的外周表面和所述外转子的内壁上分别设置有与滑片的端部平面 相 4氏配合的工作平面。
优选地, 沿所述转子的转动方向, 所述配气隔离件上的初级进气口、 初级排气口和次级进气口的通流截面逐渐增大、 次级排气口的通流截面逐 渐减小。
优选地, 所述传动轴具有轴向通孔, 且该轴向通孔内设置有螺旋导油 叶片, 以便于随着传动轴的转动提取润滑油。
优选地, 所述进气通道的入口设置于所述端盖的外周表面, 所述排气 通道的出口设置于所述端盖的轴向端面。
本发明提供的全封闭式制冷压缩机, 包括机壳和置于机壳内的电机和 压缩机单元; 所述压缩机单元采用如前所述的转子压缩机单元, 所述转子 压缩机单元的气缸与机壳固定连接, 且其传动轴与电机的转子固定连接。
与现有技术相比, 本发明提供的转子压缩机单元具有由内至外嵌套设 置的内转子、 转子和外转子, 形成了初级工作腔和次级工作腔; 插装于转 子径向滑槽中的三个滑片分别与所述内转子的外周表面和所述外转子的内 壁相抵, 并将两级容积腔室分隔形成三个工作腔。 在工作状态下, 压缩机 机壳内的高压气体通过气缸底部的通孔作用于转子, 使转子与配气隔离件 更好地贴合, 同时, 在电机的驱动下, 转子通过三个滑片的端部驱动内转 子和外转子偏心转动, 在一个转动周期中, 每个相对密封的工作腔的容积 周期性的改变, 依次形成吸气空间、 压缩空间和排气空间。 同时, 在端盖 与三个转子之间设置有配气通道, 以便于气体经端盖进气口进入初级工作 腔进行初级压缩、 初级压缩后的气体进入次级工作腔进行次级压缩以及次 级压缩后的气体经端盖排气口排出。
本发明结构设计合理、 紧凑, 加工工艺性较好; 其产生的有益技术效 果具体如下:
首先, 两级压缩中的初级压缩的压力相对较小, 基于相同的压缩比而 言, 本发明的气缸压力较小, 因而可减少泄露、 提高效率。
其次,由于压缩机机壳内的高压气体通过气缸底部的通孔作用于转子, 从而使得转子的下端面与配气隔离件紧密贴合, 从而减小了内转子、 外转 子、 滑片和配气隔离件之间的间隙, 形成相对密封的工作腔。 与现有技术 相比, 本方案省略了相应的密封件, 以降低制造成本。 此外, 随着各转子 和滑片的磨损,各配合面之间的间隙更加均匀,转子在高压气体的作用下, 仍然和配气隔离件紧密接触, 进一步降低整机的泄露。
再次, 利用端盖上设置的配气通道连通内外两个工作腔, 从而可减小 无效容积, 提高制冷量, 进而提高压缩机的有效性能系数。
第四, 在零件工作时依靠使用自动减少缝隙的方法, 保障了压缩机的 工作能力。
第五, 采用滑片均布的结构设计, 无需应用配重即可确保压缩机的运 转平衡, 进而有效降低压力脉动和噪声。
本发明提供的转子压缩机单元可适用于任何型式的压缩机, 特别适用 于全封闭式制冷压缩机。 附图说明 图 2是图 1中所示 A-A剖切位置的剖视图; 图 3是具体实施方式中所述转子压缩机单元的轴侧图; 图 4是具体实施方式中所述转子压缩机单元的局部剖切轴侧图; 图 5是具体实施方式中所述转子压缩机单元的轴向分解图;
图 6是具体实施方式中所述转子的整体结构示意图;
图 7是示出内转子、转子、外转子和传动轴之间装配关系的半剖视图; 图 8是图 7中所示 B-B剖切位置的剖视图;
图 9是具体实施方式中所述端盖的整体结构示意图;
图 10是具体实施方式中所述配气隔离件的主视图;
图 11是具体实施方式中所述配气隔离件与端盖装配为一体的示意图; 图 12 是具体实施方式中所述三个转子与配气隔离件的装配关系分解 图;
图 13-1、 图 13-2、 图 13-3、 图 13-4、 图 13-5和图 13-6分别示出了转 子压缩机单元运行周期的六个特征位置。
图中:
汽液分离器 10、 机壳 20、 电机 30、 电机转子 301、 压缩机单元 40; 气缸 1、 内凹容纳部 11、 轴 7 12、 通孔 13、 端盖 2、 轴 7 21、 进气口 22、 排气口 23、 联通配气通道 24、 转子 3、 止动面 31、 底盘 32、 转子本 体 33、 通孔 34、 径向滑槽 35、 传动轴 4、 止动面 41、 轴向通孔 42、 螺旋 导油叶片 43、 内转子 5、 外转子 6、 排气通道 61、 滑片 7 ( 71、 72、 73 )、 配气隔离件 8、 初级进气口 81、 初级排气口 82、 次级进气口 83、 次级排气 口 84、 衬套 9。 具体实施方式
本发明的核心是提供一种可进行两级压缩的转子压缩机单元, 以有效 提高转子压缩机单元的工作效率。
本文中所述的内、外等方位词是以传动轴的轴心作为内侧基准定义的; 应当理解, 前述方位词的使用不应当限制本申请请求保护的范围。
不失一般性, 以全封闭式制冷压缩机为例具体说明本实施方式。
请参见图 1和图 2, 其中, 图 1是本实施方式所述全封闭式制冷压缩 机的俯视图; 图 2是图 1中所示 A-A剖切位置的剖视图。
该全封闭式制冷压缩机包括汽液分离器 10、 机壳 20、 电机 30和转子 压缩机单元 40;其中,转子压缩机单元 40的外层气缸与机壳 20固定连接, 且其传动轴与电机 30的转子固定连接, 从而可在电机转子的驱动下转动; 汽液分离器 10置于机壳 20的一侧,且其出口经管路与转子压缩机单元 40 的进气管道连通。
需要说明的是, 前述汽液分离器 10、 机壳 20及电机 30等主要功能部 件与现有技术相同, 本领域的普通技术人员基于现有技术完全可以实现, 故本文不再赘述。下面将针对转子压缩单元 40的结构及工作原理进行详细 阐述。
请参见图 3、 图 4和图 5 , 其中, 图 3是本实施方式所述转子压缩机单 元的轴侧图, 图 4是图 3中所示转子压缩机单元的局部剖切轴侧图, 图 5 是本实施方式所述转子压缩机单元的轴向分解图。
该转子压缩机单元包括具有内凹容纳部 11的气缸 1、 端盖 2、 转子 3、 传动轴 4、 内转子 5、 外转子 6、 三个滑片 7和配气隔离件 8。
端盖 2与气缸 1 的内 EJ容纳部 11 配合形成密封的内部腔室, 转子 3 置于该内部腔室中; 传动轴 4的一端经气缸 1插装于端盖 2上, 且分别通 过气缸 1上的轴承 12和端盖 2上的轴承 21承载, 传动轴 4的另一端用于 与电机转子 301相连,从而将动力传递至套装于传动轴 4的转子 3。如图 5 所示, 传动轴 4与转子 3上相应设置有相适配的止动面 41和止动面 31 , 以便于传动轴带动所述转子转动。 应当理解, 可以采用多种设计实现转子 3与传动轴 4之间无周向相对运动的配合关系, 只要满足使用需要均在本 申请请求保护的范围。
具体地, 请参见图 6, 该图为转子的整体结构示意图。 图中所示, 转 子 3由底盘 32和由底盘 32的内侧表面轴向伸出的圆筒状转子本体 33; 底 盘 32的中部具有穿装传动轴 4的通孔 34,且前述止动面 31位于该通孔 34 的内壁上。
另夕卜, 如图 4和图 5所示, 气缸 1的底部设置有两个通孔 13。 如图 2 所示, 转子压缩机单元 40置于机壳 20内后, 气缸 1内腔通过两个通孔 13 与其上方的机壳 20腔室连通, 工作状态下, 机壳 20内的高压气体通过该 通孔 13作用于转子 3 , 从而减小了内转子 5、 外转子 6、 滑片 7和配气隔 离件 8之间的间隙, 形成相对密封的工作腔。
请参见图 7和图 8, 其中, 图 7为内转子、 转子、 外转子和传动轴之 间装配关系的半剖视图, 图 8为图 7中所示 B-B剖切位置的剖视图。
内转子 5内置于转子 3的内部; 外转子 6套装于转子 3的外部; 内转 子 5和外转子 6同轴设置且两者相对于转子 3偏心设置, 外转子 5与转子 3之间形成初级工作腔 Cl、 转子 3与内转子 5之间形成次级工作腔 C2; 三个滑片 7分别设置在转子本体 33上的三个径向滑槽 35中; 每个滑片 7 的内、外端分别经相应的径向滑槽 35伸出,且分别与内转子 5的外周表面 和外转子 6的内壁相 ·ί氐; 沿转子 3的轴向, 三个滑片 7的两侧端面分别与 转子 3的底盘 32和配气隔离件 8相抵, 该分离隔离件 8通过压板 85与端 盖 2固定连接。 这样, 初级工作腔 C1和次级工作腔 C2均由三个滑片 7分 隔形成三个相对密封的工作腔。
在电机的驱动下, 三个滑片 7与转子 3—并转动, 并且在内转子 5内 嵌套设置有衬套 9, 以确保内、 外转子相对于转子顺畅地偏心转动。 且滑 片 7的内、 外端面分别带动内转子 5和外转子 6相对于转子 3偏心转动, 每个相对密封的工作腔的容积周期性的改变, 依次形成吸气空间、 压缩空 间和排气空间。
具体地, 三个滑片 7沿转子 3的周向均布设置, 以较好地平衡工作脉 动。 如图 8所示, 三个滑片 7的内、 外端面为平面; 与每个滑片 7对应地, 内转子 5的外周表面和外转子 6的内壁上分别设置有与滑片 7的端部平面 相 4氏配合的工作平面。
请参见图 9, 该图是端盖的整体结构示意图。 端盖 2的内侧端面设置 有分别与进、 排气通道连通的进气口 22和排气口 23; 进气通道入口 25设 置于端盖 2的外周表面, 排气通道出口 26设置于端盖 2的轴向端面。
端盖 2与三个转子之间设置有配气通道, 以便于气体经端盖进气口进 入初级工作腔进行初级压缩、 初级压缩后的气体进入次级工作腔进行次级 压缩以及次级压缩后的气体经端盖排气口排出。
为提高润滑性能, 结合图 5和图 7所示, 传动轴 4具有导油用轴向通 孔 42, 且该轴向通孔 42内设置有螺旋导油叶片 43 , 以便于随着传动轴 4 的转动提取润滑油, 从而为转子压缩机上方的部分提供充足的润滑油液。
具体地, 请一并参见图 9、 图 10和图 11 , 其中, 图 10为配气隔离件 的主视图; 图 11为配气隔离件与端盖装配为一体的示意图。
前述配气通道具体为设置在端盖 2内侧端面上的联通配气通道 24以及 设置在配气隔离件 8上的初级进气口 81、 初级排气口 82、 次级进气口 83 和次级排气口 84; 其中, 初级进气口 81连通端盖 2内侧端面上的进气口 22和初级工作腔 C1的吸气空间; 初级排气口 81连通初级工作腔 C1的排 气空间和端盖 2内侧端面上的联通配气通道 24; 次级进气口 83连通联通 配气通道 24和次级工作腔 C2的吸气空间; 次级排气口 84连通次级工作 腔 C2的排气空间和端盖 2内侧端面上的排气口 23。
优选地, 沿转子 3的转动方向, 配气隔离件 8上的初级进气口 81、 初 级排气口 82和次级进气口 83的通流截面逐渐增大、次级排气口 84的通流 截面逐渐减小。
此外,请参见图 12,该图是三个转子与配气隔离件的装配关系分解图。 外转子 6与配气隔离件 8配合端的内壁上设置有三个内凹的排气通道 61 , 且三个排气通道 61分别位于由三个滑片 7分隔形成三个相对密封的工作腔 内, 以便于增加初级工作腔 C1的排气空间与初级排气口 82之间的通流面 积。
需要说明的是, 排气通道 61 的截面形状不局限于图中所示的内 EJ斜 面, 只要满足增加通流面积的使用需要均可。
下面结合特征位置组图 13-1、 13-2、 13-3、 13-4、 13-5、 13-6筒要说明 所述转子压缩机单元的工作原理。
工作过程中, 转子如图中箭头所示逆时针旋转。
一、以初级工作腔的一个工作腔 (滑片 71与滑片 72之间的初级工作腔 空间)为例, 说明初级压缩的一个工作循环。
初级吸气过程:由于配气隔离件 8的初级进气口 81与端盖 2的进气口 22连通, 混合气体经初级进气口 81进入滑片 71与滑片 72之间的初级工 作腔 C1 , 如图 13-1所示; 随着转子的转动, 滑片 71与滑片 72之间的初 级工作腔 C1的空间容积逐渐增大, 该空间与初级进气口 81之间重合面积 也逐渐增大, 如图 13-2所示; 直至该空间的容积至最大极限值, 如图 13-3 所示; 此过程中, 滑片 71与滑片 72之间的初级工作腔 C1为吸气空间。
初级压缩过程: 随着转子的转动, 滑片 71与滑片 72之间的初级工作 腔 C1与初级进气口 81断开, 压缩过程开始, 如图 13-4所示, 直至该空间 的容积减小至最小极限值, 如图 13-5所示; 此过程中, 滑片 71与滑片 72 之间的初级工作腔 C1为压缩空间。
初级排气过程: 随着转子的继续转动, 滑片 71与滑片 72之间的初级 工作腔 C1的空间容积继续减小,该空间与初级排气口 82连通,压缩结束、 排气开始,经初级压缩完成后的混合气体进入与初级排气口 82连通的端盖 2上的联通配气通道 24中; 此过程中, 滑片 71与滑片 72之间的初级工作 腔 C1为排气空间。 前述外转子 6上的排气通道 61可进一步增大该排气空 间与初级排气口 82之间通流面积。
二、以次级工作腔的一个工作腔 (滑片 71与滑片 72之间的次级工作腔 空间)为例, 说明次级压缩的一个工作循环。
次级吸气过程: 由于端盖 2上的联通配气通道 24与次级进气口 83连 通,经初级压缩后的混合气体经次级进气口 83进入滑片 71与滑片 72之间 的次级工作腔 C2, 随着转子的转动, 滑片 71与滑片 72之间的次级工作腔 C2的空间容积逐渐增大, 该空间与次级进气口 83之间重合面积也逐渐增 大, 如图 13-5所示; 直至该空间的容积至最大极限值, 如图 13-6所示; 此过程中, 滑片 71与滑片 72之间的次级工作腔 C2为吸气空间。
次级压缩过程: 随着转子的转动, 滑片 71与滑片 72之间的次级工作 腔 C2与次级进气口 83断开, 压缩过程开始, 如图 13-1所示, 直至该空间 的容积减小至最小极限值, 如图 13-2所示; 此过程中, 滑片 71与滑片 72 之间的次级工作腔 C2为压缩空间。
次级排气过程: 随着转子的继续转动, 滑片 71与滑片 72之间的次级 工作腔 C2的空间容积继续减小,该空间与次级排气口 84连通,压缩结束、 排气开始, 经次级压缩完成后的混合气体经与次级排气口 84连通的端盖 2 上的排气口 26排出; 此过程中, 滑片 71与滑片 72之间的次级工作腔 C2 为排气空间。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 转子压缩机单元, 包括:
气虹, 具有内凹容纳部;
端盖, 与所述气缸的内 EJ容纳部配合形成内部腔室, 且其内侧端面设 置有分别与进、 排气通道连通的进、 排气口;
转子, 置于所述内部腔室中; 和
传动轴, 其一端经所述气缸插装于所述端盖上、 另一端用于与电机转 子相连; 且所述转子套装于传动轴上; 其特征在于, 还包括:
内转子, 内置于所述转子的内部;
外转子, 套装于所述转子的外部; 和
三个滑片,分别设置在所述转子上的三个径向滑槽中;每个滑片的内、 外端分别经相应的径向滑槽伸出, 且分别与所述内转子的外周表面和所述 外转子的内壁相 ·ί氏; 且所述气缸的底部具有通孔;
所述内转子和外转子同轴设置且两者相对于转子偏心设置, 外转子与 转子之间形成初级工作腔、 转子与内转子之间形成次级工作腔; 初级工作 腔和次级工作腔均由三个滑片分隔形成三个相对密封的工作腔; 所述三个 滑片与转子一并转动时, 且滑片的内、 外端面分别带动内转子和外转子相 对于转子偏心转动, 每个相对密封的工作腔的容积周期性的改变, 依次形 成吸气空间、 压缩空间和排气空间; 所述端盖与三个转子之间设置有配气 通道, 以便于气体经端盖进气口进入初级工作腔进行初级压缩、 初级压缩 后的气体进入次级工作腔进行次级压缩以及次级压缩后的气体经端盖排气 口排出。
2、根据权利要求 1所述的转子压缩机单元, 其特征在于, 还包括固定 设置在所述端盖的内侧端面上的配气隔离件; 所述配气通道具体为设置在 端盖内侧端面上的联通配气通道以及设置在所述配气隔离件上的初级进气 口、 初级排气口、 次级进气口和次级排气口; 其中, 所述初级进气口连通 端盖内侧端面上的进气口和初级工作腔的吸气空间; 所述初级排气口连通 初级工作腔的排气空间和端盖内侧端面上的联通配气通道; 所述次级进气 口连通联通配气通道和次级工作腔的吸气空间; 所述次级排气口连通次级 工作腔的排气空间和端盖内侧端面上的排气口。
3、根据权利要求 2所述的转子压缩机单元, 其特征在于, 所述外转子 与配气隔离件配合端的内壁上设置有三个内凹的排气通道, 且三个排气通 道分别位于由三个滑片分隔形成三个相对密封的工作腔内, 以便于增加初 级工作腔的排气空间与初级排气口之间的通流面积。
4、根据权利要求 3所述的转子压缩机单元, 其特征在于, 所述转子具 体包括底盘和由底盘的内侧表面轴向伸出的圆筒状转子本体; 所述底盘的 中部具有穿装传动轴的通孔, 且该通孔和传动轴上分别设置有相适配的止 动面, 以便于传动轴带动所述转子转动; 沿所述转子的轴向, 三个滑片的 两侧端面分别与转子的底盘和配气隔离件相抵。
5、根据权利要求 4所述的转子压缩机单元, 其特征在于, 所述三个滑 片沿转子的周向均布设置。
6、根据权利要求 5所述的转子压缩机单元, 其特征在于, 所述三个滑 片的内、 外端面为平面; 与每个滑片对应地, 所述内转子的外周表面和所 述外转子的内壁上分别设置有与滑片的端部平面相抵配合的工作平面。
7、根据权利要求 6所述的转子压缩机单元, 其特征在于, 沿所述转子 的转动方向, 所述配气隔离件上的初级进气口、 初级排气口和次级进气口 的通流截面逐渐增大、 次级排气口的通流截面逐渐减小。
8、根据权利要求 1所述的转子压缩机单元, 其特征在于, 所述传动轴 具有轴向通孔, 且该轴向通孔内设置有螺旋导油叶片, 以便于随着传动轴 的转动提取润滑油。
9、根据权利要求 1所述的转子压缩机单元, 其特征在于, 所述进气通 道的入口设置于所述端盖的外周表面, 所述排气通道的出口设置于所述端 盖的轴向端面。
10、 全封闭式制冷压缩机, 包括机壳和置于机壳内的电机和压缩机单 元; 其特征在于, 所述压缩机单元采用权利要求 1至 9中任一项所述的转 子压缩机单元, 所述转子压缩机单元的气缸与机壳固定连接, 且其传动轴 与电机的转子固定连接。
PCT/CN2010/079919 2009-12-17 2010-12-17 全封闭式制冷压缩机及其转子压缩机单元 WO2011072617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102609206A CN101776078B (zh) 2009-12-17 2009-12-17 全封闭式制冷压缩机及其转子压缩机单元
CN200910260920.6 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011072617A1 true WO2011072617A1 (zh) 2011-06-23

Family

ID=42512631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079919 WO2011072617A1 (zh) 2009-12-17 2010-12-17 全封闭式制冷压缩机及其转子压缩机单元

Country Status (2)

Country Link
CN (1) CN101776078B (zh)
WO (1) WO2011072617A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485007A (zh) * 2016-01-20 2016-04-13 西安交通大学 单机二级压缩的旋转式压缩机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776078B (zh) * 2009-12-17 2011-09-07 湖北新火炬科技股份有限公司 全封闭式制冷压缩机及其转子压缩机单元
CN103171169B (zh) * 2011-12-23 2015-02-25 覃志庆 滑片式压榨机
CN103967788A (zh) * 2013-02-05 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 压缩组件、压缩机、空调器及热泵热水器
SG10201609481XA (en) * 2016-11-11 2018-06-28 Sanden Int Singapore Pte Ltd A revolving vane compressor and method of operating and manufacturing the same
CN111734494B (zh) * 2019-03-25 2023-08-29 宋洪涛 一种气动马达及其衍生的气体压缩机和内燃机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280272A (en) * 1940-05-13 1942-04-21 Citles Service Oil Company Fluid pump
GB1470563A (en) * 1973-04-13 1977-04-14 Fend H Rotary pumps
DE19539136A1 (de) * 1994-10-21 1996-04-25 Magneti Marelli Spa Drehkompressor mit Platten
CN1598320A (zh) * 2004-08-02 2005-03-23 白明 一种容积式压缩泵
CN201513346U (zh) * 2009-12-17 2010-06-23 湖北新火炬科技股份有限公司 全封闭式制冷压缩机及其转子压缩机单元
CN101776078A (zh) * 2009-12-17 2010-07-14 湖北新火炬科技股份有限公司 全封闭式制冷压缩机及其转子压缩机单元

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015441A (en) * 1976-03-10 1977-04-05 Robinet Sylvia J Refrigeration apparatus
JPS5874890A (ja) * 1981-10-30 1983-05-06 Hitachi Ltd ロ−タリベ−ン型圧縮機
FR2645599B1 (fr) * 1989-04-11 1994-03-25 Alcatel Cit Pompe a vide, seche, a palettes
CN2525282Y (zh) * 2001-11-27 2002-12-11 西安交通大学 套缸式滚动转子压缩机
CN101418797A (zh) * 2008-09-23 2009-04-29 邬志昂 空气压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280272A (en) * 1940-05-13 1942-04-21 Citles Service Oil Company Fluid pump
GB1470563A (en) * 1973-04-13 1977-04-14 Fend H Rotary pumps
DE19539136A1 (de) * 1994-10-21 1996-04-25 Magneti Marelli Spa Drehkompressor mit Platten
CN1598320A (zh) * 2004-08-02 2005-03-23 白明 一种容积式压缩泵
CN201513346U (zh) * 2009-12-17 2010-06-23 湖北新火炬科技股份有限公司 全封闭式制冷压缩机及其转子压缩机单元
CN101776078A (zh) * 2009-12-17 2010-07-14 湖北新火炬科技股份有限公司 全封闭式制冷压缩机及其转子压缩机单元

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485007A (zh) * 2016-01-20 2016-04-13 西安交通大学 单机二级压缩的旋转式压缩机
CN105485007B (zh) * 2016-01-20 2017-12-08 西安交通大学 单机二级压缩的旋转式压缩机

Also Published As

Publication number Publication date
CN101776078A (zh) 2010-07-14
CN101776078B (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2011072617A1 (zh) 全封闭式制冷压缩机及其转子压缩机单元
EP2050964A1 (en) A rotary piston compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
WO2021103552A1 (zh) 压缩机及制冷设备
US8562319B2 (en) Screw compressor having slide valve with inclined end face
JP2014005795A (ja) 回転型圧縮機
TW585975B (en) Vacuum pump
WO2009062365A1 (fr) Dispositif d'aspiration pour compresseur rotatif à capacité contrôlée
WO2018126758A1 (zh) 一种旋转压缩机、制冷系统及调温设备
US9689388B2 (en) Scroll compressor
KR20010035687A (ko) 압축기
CN210599411U (zh) 封闭式压缩机
CN215292888U (zh) 旋转式压缩机
KR102201409B1 (ko) 로터리 압축기
KR20150132613A (ko) 싱글 스크류 공기압축기
WO2019052080A1 (zh) 泵体组件、流体机械及换热设备
KR200381016Y1 (ko) 로터리 압축기의 흡입손실 저감 구조
JPH01253583A (ja) 低圧型回転圧縮機
EP2412980B1 (en) Single screw compressor
KR102004090B1 (ko) 누설 저감 구조가 적용된 로터리 압축기
US11891995B2 (en) Rotary compressor having improved vane chattering performance
CN215409201U (zh) 泵体及压缩机
CN109026696B (zh) 压缩机泵体、压缩机、空调器
CN211422901U (zh) 压缩机及具有其的空调器
JP5843729B2 (ja) 気体圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837054

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837054

Country of ref document: EP

Kind code of ref document: A1