WO2021103552A1 - 压缩机及制冷设备 - Google Patents

压缩机及制冷设备 Download PDF

Info

Publication number
WO2021103552A1
WO2021103552A1 PCT/CN2020/100762 CN2020100762W WO2021103552A1 WO 2021103552 A1 WO2021103552 A1 WO 2021103552A1 CN 2020100762 W CN2020100762 W CN 2020100762W WO 2021103552 A1 WO2021103552 A1 WO 2021103552A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
compressor
piston
exhaust
bearing
Prior art date
Application number
PCT/CN2020/100762
Other languages
English (en)
French (fr)
Inventor
朱晓涵
周杏标
江波
林淑敏
谷强
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Priority to EP20892459.7A priority Critical patent/EP3957855A4/en
Priority to KR1020217039016A priority patent/KR102542439B1/ko
Priority to JP2021570963A priority patent/JP2022534304A/ja
Publication of WO2021103552A1 publication Critical patent/WO2021103552A1/zh
Priority to US17/535,799 priority patent/US20220082309A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the two-cylinder compressor in the related art means that two cylinders are arranged in the axial direction of the crankshaft. Both cylinders can realize the process of inhalation, compression and exhaust of refrigerant, and discharge the shell through different air outlet channels to realize the compressor The dual pressure exhaust.
  • the current two-cylinder compressor considers factors such as ease of processing and ease of assembly.
  • the displacement of each cylinder of the two-cylinder compressor is equal, and when the compressor has dual discharge pressures, it corresponds to condensers with different pressure ratios.
  • the temperature is different, the inlet and outlet enthalpy difference is different, and the corresponding flow rate is also different.
  • the exhaust of the compressor of the same displacement can not make full use of the advantages of dual exhaust, and can not achieve the best effect.
  • This application aims to solve one of the technical problems existing in the prior art or related technologies.
  • the first aspect of the present application proposes a compressor.
  • the second aspect of the application proposes a refrigeration equipment.
  • an embodiment of the first aspect of the present application proposes a compressor, which includes: a housing on which a first air outlet port and a second air outlet port that are not connected to each other are provided; a first cylinder and a first piston ,
  • the first cylinder has a first accommodating cavity, the first piston is eccentrically arranged in the first accommodating cavity;
  • the second cylinder and the second piston the second cylinder has a second accommodating cavity, and the second piston is eccentrically arranged in the second accommodating cavity ;
  • the inner diameter of the first cylinder is D1
  • the eccentricity of the first piston relative to the first housing cavity is e1
  • the height of the first cylinder is H1
  • the exhaust pressure of the first cylinder is P1;
  • the inner diameter of the second cylinder is D2,
  • the eccentricity of the second piston relative to the second housing cavity is e2, the height of the second cylinder is H2, and the exhaust pressure of the second cylinder is P2;
  • the compressor provided in this embodiment includes a first cylinder, a first piston, a second cylinder, and a second piston.
  • the first cylinder is machined and formed with a housing cavity
  • the first piston is eccentrically arranged in the first housing cavity
  • the second cylinder is also
  • the second piston is eccentrically arranged in the second accommodating cavity, and the first piston can reciprocate in the first accommodating cavity, so that the first piston can achieve air suction by changing the volume of the first working cavity.
  • the first working chamber is part of the first containing chamber and is enclosed by the outer peripheral surface of the first piston, the first sliding vane assembly and the inner surface of the first cylinder; the second piston can The reciprocating movement in the second accommodating cavity allows the second piston to realize the process of inhalation, compressed air and exhaust by changing the volume of the second working cavity.
  • the second working cavity is part of the second accommodating cavity.
  • the outer peripheral surface of the two pistons, the second sliding plate assembly and the inner surface of the second cylinder are enclosed.
  • the dual exhaust function is realized by installing two cylinders and two pistons. Both the first cylinder and the second cylinder can realize the process of inhaling, compressing and exhausting the refrigerant. This arrangement avoids the need for multiple sets in the related technology.
  • the compressor realizes the dual exhaust function and causes the problem of high cost.
  • One compressor in this application can realize the functions that can be realized by two compressors in the related art, which reduces the processing cost and reduces the occupied space of the compressor. And it helps to improve the convenience of the compressor installation process.
  • the exhaust pressures of the first cylinder and the second cylinder are different. Different exhaust pressures can make the time for the refrigerant to reach the predetermined temperature and the energy required are different. It can be understood that according to the compressor According to different usage requirements, the first cylinder and the second cylinder realize different exhaust pressures, so that the condenser corresponding to the first cylinder and the second cylinder can efficiently realize the condensation function, avoiding the waste of energy, and making full use of the double cylinder The dual exhaust advantages of the compressor significantly improve the energy efficiency of the compressor.
  • the discharge pressure of the first cylinder and the second cylinder are different, and the inner diameter of the first cylinder is different from the inner diameter of the second cylinder, and the eccentricity of the first piston relative to the first housing cavity is different.
  • the height of the first cylinder is different from the height of the second cylinder, and the specific range is 0.6 ⁇ (e1 ⁇ (D1-e1) ⁇ H1) ⁇ (e2 ⁇ (D2) -e2) ⁇ H2) ⁇ 1.9, while the exhaust pressure of the first cylinder is different from that of the second cylinder, the displacement of the first cylinder is different from that of the second cylinder, so that the corresponding The condenser in the first cylinder and the second cylinder can efficiently realize the condensation function, avoid waste of energy, make full use of the dual exhaust advantages of the two-cylinder compressor, and significantly improve the energy efficiency of the compressor and the refrigeration equipment that uses the compressor .
  • the eccentricity of the first piston relative to the first accommodating cavity in the present application is the eccentricity of the first piston relative to the centerline of the first accommodating cavity by default, and the extension direction of the centerline is the same as the axial direction of the crankshaft. In the same direction.
  • the eccentricity of the second piston relative to the second accommodating chamber defaults to the eccentricity of the second piston relative to the centerline of the second accommodating chamber, and the extension direction of the centerline is the same as the axial direction of the crankshaft.
  • the first accommodating cavity is cylindrical or substantially cylindrical
  • the second accommodating cavity is cylindrical or substantially cylindrical.
  • the compressor further includes: a first bearing and a second bearing, the first bearing and the second bearing are spaced apart, and the first cylinder and the second cylinder are located between the first bearing and the second bearing;
  • the plate assembly is located between the first cylinder and the second cylinder; the first sliding vane assembly is arranged in the first accommodating cavity.
  • the first sliding vane assembly, the outer peripheral surface of the first piston and the inner surface of the first cylinder enclose a first A working chamber; a second sliding vane assembly arranged in the second accommodating cavity, the second sliding vane assembly, the outer circumferential surface of the second piston and the inner surface of the second cylinder enclose the second working cavity; the first exhaust outlet and The second exhaust outlet, the first working chamber is connected to the first outlet port through the first exhaust outlet, and the second working chamber is connected to the second outlet port through the second exhaust outlet.
  • the compressor also includes a first bearing, a second bearing, and a partition assembly.
  • the first bearing can provide support for the crankshaft
  • the second bearing can provide support for the first and second cylinders to improve the The installation stability of the second cylinder.
  • the diaphragm assembly is arranged between the first cylinder and the second cylinder, and the first cylinder and the second cylinder are also arranged between the first bearing and the second bearing, so that the first bearing and the diaphragm assembly are blocked between the two.
  • the first accommodating cavity of the first cylinder, the second bearing and the partition assembly block the second accommodating cavity of the second cylinder located between the two.
  • the first sliding vane assembly, the outer circumferential surface of the first piston and the inner surface of the first cylinder enclose a first working chamber
  • the second sliding vane assembly, the outer circumferential surface of the second piston and the inner surface of the second cylinder enclose a second working chamber.
  • Cavity, the movement of the first piston can change the volume of the first working chamber to compress gas
  • the movement of the second piston can change the volume of the second working chamber to compress the gas.
  • the compressor further includes a first exhaust outlet and a second exhaust outlet. The first exhaust outlet communicates with the first working chamber and the first outlet port, and the second exhaust outlet communicates with the second working chamber and the second outlet port.
  • first bearing and partition assembly abuts against the first cylinder
  • second bearing and partition assembly abuts against the second cylinder
  • the first exhaust outlet communicates with the first outlet port through the inner cavity of the housing, or the second exhaust outlet communicates with the second outlet port through the inner cavity of the housing. Further, the first exhaust outlet is arranged on the first cylinder or the first bearing or diaphragm assembly; the second exhaust outlet is arranged on the second cylinder or the second bearing or diaphragm assembly.
  • the first exhaust outlet is connected to the first outlet port through the inner cavity of the housing, so that the gas in the first working chamber is discharged through the first exhaust outlet, diffuses into the inner cavity of the housing, and then passes through the first exhaust port. An air outlet is exhausted.
  • the discharge pressure of the first cylinder is lower than the discharge pressure of the second cylinder, so that the gas pressure in the inner cavity of the casing is relatively low, which facilitates the oil return of the compressor and helps ensure the reliability of the compressor operation.
  • the second exhaust outlet can also be connected to the second outlet port through the inner cavity of the housing, so that the gas in the second working chamber is discharged through the second exhaust outlet, diffuses into the inner cavity of the housing, and then passes through the second exhaust outlet. The second air outlet is exhausted.
  • the inner cavity of the housing refers to the empty space in the housing.
  • the compressor further includes: a first sealing member and a first air outlet passage, the first sealing member and the first bearing enclose a first exhaust cavity, and the first exhaust outlet and the first exhaust cavity Connected, the first air outlet passage passes through the first bearing, the first cylinder, the partition assembly, the second cylinder and the second bearing, and the inner cavity of the housing; the second sealing member and the second air outlet passage, the second sealing member Encloses a second exhaust chamber with the second bearing.
  • the second exhaust outlet is connected to the second exhaust chamber.
  • the second outlet passage penetrates the second bearing, the second cylinder and the partition assembly, and passes through the exhaust on the first cylinder.
  • the air channel communicates with the second air outlet port.
  • the compressor also includes a first sealing element, a first air outlet channel, a second sealing element and a second air outlet channel.
  • the part and the second bearing enclose a second exhaust cavity.
  • first sealing element and the second sealing element are cover plates or mufflers. Connect to other locations by bolts or welding.
  • the compressor further includes: a first exhaust valve arranged on the first air outlet passage; and a second exhaust valve arranged on the second air outlet passage.
  • the first exhaust valve can conduct and block the first air outlet channel
  • the second exhaust valve can conduct and block the second air outlet channel.
  • a suction port can be provided on the housing, so that both the first working chamber and the second working chamber are communicated with one suction port.
  • the first working chamber is connected to the suction port through the first suction passage
  • the second working chamber is connected to the suction port through the second suction passage.
  • the first suction passage and the second suction passage are preferably communicated with each other.
  • the total length of the suction channel avoids over-processing of cylinders, bearings and other components to affect rigidity and reduces production costs.
  • the housing is provided with two suction ports
  • the compressor also includes a first suction channel and a second suction channel
  • the first working chamber is connected to a suction channel through the first suction channel Port
  • the second working chamber is connected to another suction port through the second suction channel. Further, the first suction channel and the second suction channel are not connected to each other.
  • the first sliding piece can also be hingedly connected with the first piston, which can also prevent the first sliding piece from falling out of the first sliding piece groove, thereby making the installation of the first sliding piece stable and improving the reliability of the product Sex.
  • the second sliding piece assembly includes a second sliding piece and a second elastic piece, and the second elastic piece is used to push the second sliding piece to compress the outer circumferential surface of the second piston.
  • the second sliding piece assembly includes a second sliding piece, and the second sliding piece and the second piston are an integral structure or the second sliding piece and the second piston are hingedly connected.
  • the compressor further includes: a crankshaft with a first eccentric part and a second eccentric part, the first piston is connected with the first eccentric part, and the second piston is connected with the second eccentric part; a motor assembly, and The crankshaft is connected to drive the crankshaft to rotate.
  • the compressor also includes a crankshaft and a motor assembly.
  • the motor assembly can drive the crankshaft to rotate.
  • the first eccentric part on the crankshaft is connected to the first piston, so that when the crankshaft rotates, the first eccentric part on the crankshaft drives the first piston.
  • the piston rotates, and the rotating first piston realizes the functions of inhaling, compressing and discharging gas.
  • the second eccentric part on the crankshaft is connected with the second piston, so that when the crankshaft rotates, the second eccentric part on the crankshaft drives the second piston to rotate, and the rotating second piston realizes the functions of inhaling, compressing and discharging gas.
  • the embodiment of the second aspect of the present application proposes a refrigeration equipment, including: a compressor as in any one of the above technical solutions, so the refrigeration equipment provided in this application has all of the compressors provided in any of the above technical solutions benefit.
  • the refrigeration equipment further includes: a first condenser connected to the first air outlet port of the compressor; a first throttle element connected to the first condenser; a first evaporator connected to the first section The flow element is connected; the first accumulator is connected to the first evaporator and the first suction passage of the compressor; the second condenser is connected to the second outlet port of the compressor; the second throttling element is connected to the second condenser The second evaporator is in communication with the second throttling element; the second accumulator is in communication with the second evaporator and the second suction passage of the compressor.
  • the compressor and the first condenser, the first throttling element, the first evaporator, and the first accumulator form a first group of refrigeration system
  • the second evaporator and the second accumulator form a second set of refrigeration systems, two independent refrigeration systems, that is, the refrigeration equipment realizes the multi-exhaust function realized by multiple compressors in the related technology through one compressor.
  • the processing cost of the refrigeration equipment is reduced, the space occupied by the refrigeration equipment is also reduced, and the convenience of installing the internal components of the refrigeration equipment is improved.
  • the discharge pressure of the first cylinder and the second cylinder are different, which makes it reach the first condenser Different from the discharge pressure of the second condenser, the refrigeration equipment can have double condensation temperature and double evaporation temperature, which is beneficial to realize the cascade utilization of energy and improve the energy efficiency of the refrigeration equipment. Especially when the displacements of the first cylinder and the second cylinder are different, the amount of refrigerant condensed by the first condenser and the second condenser is different, which further improves the energy efficiency of the refrigeration equipment.
  • the compressor and the third condenser, the third throttling element, the third evaporator, and the third accumulator form a third group of refrigeration system
  • the fourth evaporator and the third accumulator form a fourth group of refrigeration systems, two independent refrigeration systems, that is, the refrigeration equipment realizes the multi-exhaust function realized by multiple compressors in related technologies through one compressor.
  • the processing cost of the refrigeration equipment is reduced, the space occupied by the refrigeration equipment is also reduced, and the convenience of installing the internal components of the refrigeration equipment is improved.
  • the first suction channel and the second suction channel are connected with the third accumulator, thereby
  • the installation of an accumulator can meet the suction function of the first cylinder and the second cylinder, reduce the number of components in the refrigeration equipment, further reduce the processing cost of the refrigeration equipment, effectively reduce the volume of the refrigeration equipment, and improve the installation time of the refrigeration equipment.
  • the convenience because the exhaust pressures of the first cylinder and the second cylinder are different, the exhaust pressures reaching the third condenser and the fourth condenser are different, so that the refrigeration equipment can have double condensation temperature and double evaporation temperature, which is beneficial to realize energy
  • the use of cascades improves the energy efficiency of refrigeration equipment. Especially when the displacements of the first cylinder and the second cylinder are different, the amount of refrigerant condensed by the third condenser and the fourth condenser is different, which further improves the energy efficiency of the refrigeration equipment.
  • Fig. 1 shows a schematic diagram of a partial structure of a compressor according to an embodiment of the present application
  • Fig. 2 shows a partial structural diagram of a compressor according to another embodiment of the present application
  • Fig. 5 shows a partial structural diagram of a compressor according to another embodiment of the present application.
  • Figure 6 shows a schematic structural diagram of a compressor according to another embodiment of the present application.
  • Fig. 9 shows a partial structural diagram of a compressor according to another embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a refrigeration device according to another embodiment of the present application.
  • a compressor as shown in FIG. 1, includes a housing 140, a first cylinder 100, a first piston 110, a second cylinder 120, and a second piston 130.
  • the housing 140 is provided with a first air outlet port 142 and a second air outlet port 144 that are not connected to each other; the first cylinder 100 is machined and formed with a containing cavity, the first piston 110 is eccentrically arranged in the first containing cavity, and the second cylinder 120 The second piston 130 is eccentrically arranged in the second accommodating cavity.
  • the first piston 110 can reciprocate in the first accommodating cavity, so that the first piston 110 can be changed by changing the volume of the first working cavity. The process of air intake, compressed air and exhaust is realized.
  • the first working chamber is a part of the first containing chamber and is enclosed by the outer peripheral surface of the first piston 110, the first sliding vane assembly 280 and the inner surface of the first cylinder 100
  • the second piston 130 can reciprocate in the second containing cavity, so that the second piston 130 can realize the process of suction, compressed air and exhaust by changing the volume of the second working chamber, wherein the second working chamber belongs to A part of the second accommodating cavity is enclosed by the outer peripheral surface of the second piston 130, the second sliding vane assembly 290 and the inner surface of the second cylinder 120.
  • the first cylinder 100 is exhausted through the first outlet port 142
  • the second cylinder 120 is exhausted through the second outlet port 144.
  • the dual exhaust function is realized by providing two cylinders and two pistons.
  • Both the first cylinder 100 and the second cylinder 120 can realize the process of inhaling, compressing and exhausting the refrigerant. This arrangement avoids the need to set in the related art.
  • the problem of high cost caused by multiple compressors to achieve the dual exhaust function, one compressor in this application can achieve the functions that can be achieved by two compressors in the related art, which reduces the processing cost and reduces the compressor’s cost. It occupies space and helps to improve the convenience of the compressor installation process.
  • the present application further defines that the exhaust pressures of the first cylinder 100 and the second cylinder 120 are different. Different exhaust pressures can make the time for the refrigerant to reach the predetermined temperature and the energy required are different. It can be understood that, According to the different use requirements of the compressor, the first cylinder 100 and the second cylinder 120 achieve different exhaust pressures, so that the condensers corresponding to the first cylinder 100 and the second cylinder 120 can efficiently achieve the condensation function, avoiding energy consumption. Cause waste, make full use of the dual exhaust advantages of the dual-cylinder compressor, and significantly improve the energy efficiency of the compressor.
  • the value of (e1 ⁇ (D1-e1) ⁇ H1) ⁇ (e2 ⁇ (D2-e2) ⁇ H2) can be 0.8, 1.05, and 1.85.
  • P1 is the exhaust pressure of the first cylinder 100
  • D1 is the inner diameter of the first cylinder 100
  • e1 is the eccentricity of the first piston 110 relative to the first cylinder 100
  • H1 is the height of the first cylinder 100
  • P2 is the first cylinder 100.
  • D2 is the inner diameter of the second cylinder 120
  • e2 is the eccentricity of the second piston 130 relative to the second cylinder 120
  • H2 is the height of the second cylinder 120.
  • the ratio of e1 ⁇ (D1-e1) ⁇ H1 to e2 ⁇ (D2-e2) ⁇ H2 represents the ratio of the displacement of the first cylinder 100 to the displacement of the second cylinder 120.
  • the present application defines P1 ⁇ P2 to achieve the purpose of different discharge pressures of the first cylinder 100 and the second cylinder 120.
  • the eccentricity of a piston 110 relative to the first accommodating cavity is different from the eccentricity of the second piston 130 relative to the second accommodating cavity
  • the height of the first cylinder 100 is different from the height of the second cylinder 120
  • the specific range is 0.6 ⁇ ( e1 ⁇ (D1-e1) ⁇ H1) ⁇ (e2 ⁇ (D2-e2) ⁇ H2) ⁇ 1.9, which can realize that the exhaust pressure of the first cylinder 100 is different from that of the second cylinder 120 at the same time.
  • the displacement of the first cylinder 100 is different from the displacement of the second cylinder 120, so that the condensers corresponding to the first cylinder 100 and the second cylinder 120 can efficiently realize the condensation function and avoid waste of energy.
  • Figure 12 shows the energy efficiency curve that changes with the displacement ratio under different displacement ratios. From Figure 12, it can be seen that as the displacement ratio increases, the energy efficiency shows a trend of first increasing and then decreasing. It can be seen that making full use of the dual exhaust advantages of the dual-cylinder compressor can significantly improve the energy efficiency of the compressor and the refrigeration equipment that uses the compressor.
  • the first sliding vane assembly 280, the outer peripheral surface of the first piston 110 and the inner surface of the first cylinder 100 enclose a first working chamber
  • the second vane assembly 290, the outer peripheral surface of the second piston 130 and the inner surface of the second cylinder 120 The surface encloses the second working chamber.
  • the movement of the first piston 110 can change the volume of the first working chamber to compress gas
  • the movement of the second piston 130 can change the volume of the second working chamber to compress the gas.
  • the compressor also includes a first exhaust outlet 180 and a second exhaust outlet 190.
  • the first exhaust outlet 180 communicates with the first working chamber and the first outlet port 142
  • the second exhaust outlet 190 communicates with the second working chamber and
  • the second air outlet port 144 realizes the dual-pressure exhaust function of the compressor.
  • first exhaust outlet 180 and the second exhaust outlet 190 may also be provided on the first bearing 150 and the second bearing 160, respectively.
  • the partition assembly 170 includes a first partition 172 and a second partition 174.
  • the first partition 172 and the second partition 174 enclose a cavity, so that the A second exhaust outlet 190 is provided on the second partition 174, so that the compressed air in the second working chamber can be discharged into the cavity of the partition assembly 170 through the second exhaust outlet 190, and then the second air outlet channel 210 The compressed air is discharged to the second air outlet port 144.
  • a first air outlet 180 is provided on the first bearing 150, and the compressed air in the first working chamber can be discharged to the first air outlet port 142 through the first air outlet 180 , It is ensured that the first cylinder 100 and the second cylinder 120 can realize the independent exhaust function of each other, and the dual-pressure exhaust function of the compressor is realized.
  • the compressed air in the second working chamber is discharged into the other cavity through the second exhaust outlet 190, and then the compressed air is discharged to the second air outlet port 144 through the inner cavity of the housing 140, or is discharged to the second air outlet through the second air outlet channel 210.
  • Two outlet port 144 It is ensured that the exhaust processes of the first cylinder 100 and the second cylinder 120 do not affect each other, and the dual-pressure exhaust function of the compressor is realized.
  • the compressor further includes: a first sealing member 240 and a first air outlet channel 200, the first sealing member 240 and the first bearing 150 enclose the first An exhaust chamber 242.
  • the first working chamber is in communication with the first exhaust chamber 242.
  • the first air outlet passage 200 penetrates the first bearing 150, the first cylinder 100, the partition assembly 170, the second cylinder 120, and the second bearing 160.
  • the compressor further includes a first sealing element 240 and a second sealing element 250.
  • the first exhaust cavity 242 is enclosed by the first sealing element 240 and the first bearing 150, and the second sealing element 250 is connected to the first exhaust cavity 242.
  • the two bearings 160 surround the second exhaust cavity 252.
  • the second working chamber By connecting the second working chamber with the second air outlet passage 210 and making the second air outlet passage 210 penetrate the second bearing 160, the second cylinder 120 and the partition assembly 170, it passes through the exhaust passage on the first cylinder 100 and the first
  • the two gas outlet ports 144 are connected, so that the gas in the second working chamber moves to the position of the first cylinder 100 through the second gas outlet channel 210 and is discharged to the second gas outlet port 144 through the exhaust channel on the first cylinder 100.
  • first sealing member 240 and the second sealing member 250 are cover plates or mufflers. Connect to other locations by bolts or welding.
  • the compressor further includes: a first seal 240 and a second seal 250.
  • the first seal 240 and the first bearing 150 enclose a first exhaust chamber 242, the first working chamber is in communication with the first exhaust chamber 242, and the second seal 250 and the second bearing 160 enclose a second exhaust chamber 252 , The second working chamber is in communication with the second exhaust chamber 252.
  • the first air outlet passage 200 penetrates the first bearing 150, the first cylinder 100 and the partition assembly 170, and communicates with the second air outlet port 144 through the exhaust passage on the second cylinder 120; the second air outlet passage 210 penetrates the second bearing 160 ,
  • the second cylinder 120, the partition assembly 170, the first cylinder 100 and the first bearing 150 are in communication with the inner cavity of the housing 140.
  • the compressor further includes a lift limiter provided on the first bearing 150 and the second bearing 160, and the lift limiter can limit the exhaust speed of the first air outlet passage 200 and the second air outlet passage 210.
  • the first exhaust valve 260 is arranged on the first air outlet passage 200; the second exhaust valve is arranged on the second air outlet passage 210.
  • the housing 140 is provided with two suction ports 146.
  • the compressor further includes a first suction channel 220 and a second suction channel 230.
  • the cavity is connected to one suction port 146 through the first suction channel 220, and the second working cavity is connected to the other suction port 146 through the second suction channel 230.
  • the first suction channel 220 and the second suction channel 230 are not connected to each other.
  • first suction passage 220 is arranged on the first cylinder 100 or the first bearing 150 or the partition assembly 170; the second suction passage 230 is arranged on the second cylinder 120 or the second bearing 160 or the partition assembly 170.
  • first suction passage 220 is provided on the first cylinder 100, and the gas enters the first working chamber through the first suction passage 220, and is compressed in the first working chamber.
  • first suction passage 220 can also be The air passage 220 is arranged on the first bearing 150, and the gas enters into the first working cavity through the first suction passage 220 on the first bearing 150, so as to realize the process of sucking the gas into the first working cavity.
  • the second suction passage 230 is provided on the second cylinder 120. The gas enters the second working chamber through the second suction passage 230 and is compressed in the second working chamber.
  • the second suction passage 230 can also be It is arranged on the second bearing 160, and the gas enters into the second working chamber through the second suction channel 230 on the second bearing 160, so as to realize the process of sucking the gas into the second working chamber.
  • the first suction passage 220 is provided on the first cylinder 100, and the gas enters the first working chamber through the first suction passage 220 to realize the process of sucking the gas into the first working chamber;
  • the second suction passage 230 is arranged on the second cylinder 120 and communicates with the second working chamber. The gas enters the second working chamber through the second suction passage 230 to realize the process of sucking the gas into the second working chamber.
  • the first suction passage 220 is provided on the first cylinder 100 and communicates with the first working chamber, and the gas enters the first working chamber through the first suction passage 220, so as to realize the inhalation of the gas into the first working chamber.
  • the process of a working chamber; the second suction passage 230 is arranged on the second bearing 160 and communicates with the second working chamber, and the gas enters the second working chamber through the second suction passage 230, thereby realizing the inhalation of the gas into the second working chamber 2.
  • the process of working cavity is provided on the first cylinder 100 and communicates with the first working chamber, and the gas enters the first working chamber through the first suction passage 220, so as to realize the inhalation of the gas into the first working chamber.
  • the first suction channel 220 is arranged on the first bearing 150 and communicates with the first working chamber, and the gas enters the first working chamber through the first suction channel 220, so as to realize the gas The process of sucking into the first working chamber;
  • the second suction channel 230 is provided on the second cylinder 120, and the gas enters the second working chamber through the second suction channel 230, so as to realize the process of sucking the gas into the second working chamber.
  • the first suction channel 220 is provided on the first bearing 150, and the gas enters the first working cavity through the first suction channel 220, so as to realize the process of sucking the gas into the first working cavity;
  • the second suction channel 230 is arranged on the second bearing 160, and the gas enters the second working cavity through the second suction channel 230, so as to realize the process of sucking the gas into the second working cavity.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the first sliding piece assembly 280 includes a first sliding piece and a first elastic member, and the first sliding piece presses the outer circumference of the first piston 110
  • the first elastic member is connected with the end of the first sliding plate away from the first piston 110, so that during the movement of the first piston 110, the first elastic member can push the first sliding plate to keep pressing the first piston.
  • the outer peripheral surface of 110 ensures the tightness of the first working cavity.
  • the first sliding piece assembly 280 includes a first sliding piece
  • the first sliding piece may be an integral structure with the first piston 110, which can prevent the first sliding piece from falling from the first sliding piece groove, and ensure that the first sliding piece
  • the installation is stable, the reliability of the product is improved, and the mechanical performance of the integrated structure is good, so the connection strength between the first sliding plate and the first piston 110 can be improved.
  • the first sliding piece and the first piston 110 are made integrally, which is conducive to mass production, improves the processing efficiency of the product, and reduces the processing cost of the product.
  • the first sliding piece can also be hingedly connected with the first piston 110, which can also play a role in preventing the first sliding piece from falling out of the first sliding piece groove, so that the installation of the first sliding piece is stable and the product is improved. reliability.
  • the second sliding piece assembly 290 includes a second sliding piece and a second elastic piece.
  • the second sliding piece presses the outer circumferential surface of the second piston 130, and the second elastic piece is opposite to the end of the second sliding piece away from the second piston 130. Therefore, during the movement of the second piston 130, the second elastic member can push the second sliding piece to always keep pressing the outer peripheral surface of the second piston 130 to ensure the sealing of the second working chamber.
  • the second sliding piece assembly 290 includes a second sliding piece
  • the second sliding piece may be an integral structure with the second piston 130, which can prevent the second sliding piece from falling from the second sliding piece groove, and ensure that the second sliding piece
  • the installation is stable, the reliability of the product is improved, and the mechanical performance of the integrated structure is good, so the connection strength between the second sliding plate and the second piston 130 can be improved.
  • the second sliding piece and the second piston 130 are made integrally, which is conducive to mass production, improves the processing efficiency of the product, and reduces the processing cost of the product.
  • the second sliding piece can also be hingedly connected to the second piston 130, which can also prevent the second sliding piece from falling out of the second sliding piece groove, so that the installation of the second sliding piece is stable and the product is improved. reliability.
  • the compressor further includes: a crankshaft 260 and a motor assembly 270.
  • the motor assembly 270 includes a stator and a rotor.
  • the crankshaft 260 has a first eccentric portion and a first eccentric portion. Two eccentric parts, the first piston 110 is connected with the first eccentric part, and the second piston 130 is connected with the second eccentric part; the motor assembly 270 is connected with the crankshaft 260 to drive the crankshaft 260 to rotate.
  • the compressor also includes a crankshaft 260 and a motor assembly 270.
  • the motor assembly 270 can drive the crankshaft 260 to rotate.
  • the crankshaft 260 has a first eccentric part connected with the first piston 110 and a second eccentric part connected with the second piston 130. When rotating, the first eccentric portion on the crankshaft 260 drives the first piston 110 to rotate, and the rotating first piston 110 realizes the functions of sucking, compressing, and discharging gas.
  • the second eccentric portion on the crankshaft 260 drives the second piston 130 to rotate, and the rotating second piston 130 realizes the functions of sucking, compressing, and discharging gas.
  • crankshaft 260 drives the first piston 110 and the second piston 130 to rotate, a stream of low-pressure gas enters the first working chamber of the first cylinder 100 from the first suction passage 220, and completes suction and compression in the first working chamber. , The process of exhausting, exhausting through the first air outlet channel 200.
  • the second suction passage 230 of another low-pressure gas enters the second working chamber of the second cylinder 120, and the process of suction, compression, and exhaust is completed in the second working chamber, and exhausted through the second outlet passage 210, the crankshaft
  • the 260 completes the process of exhausting twice per revolution.
  • the embodiment of the second aspect of the present application provides a refrigeration equipment, including: the compressor as in any one of the above embodiments, so the refrigeration equipment provided in the present application has all of the compressors provided in any of the above embodiments benefit.
  • the refrigeration equipment further includes: a first condenser 350, a first throttling element 410, a first evaporator 360, a first accumulator 370, a second condenser 380, The second throttle element 420, the second evaporator 390 and the second accumulator 400.
  • the first air outlet port 142 of the compressor of the first condenser 350 is in communication, the first throttling element 410 is in communication with the first condenser 350, the first evaporator 360 is in communication with the first throttling element 410, and the first accumulator 370 is in communication The first evaporator 360 and the first suction passage 220 of the compressor.
  • the second condenser 380 is in communication with the second air outlet port 144 of the compressor, the second throttle element 420 is in communication with the second condenser 380, the second evaporator 390 is in communication with the second throttle element 420, and the second accumulator 400
  • the second suction passage 230 connecting the second evaporator 390 and the compressor.
  • the compressor and the first condenser 350, the first throttling element 410, the first evaporator 360, and the first accumulator 370 form a first group of refrigeration system
  • the second evaporator 390 and the second accumulator 400 form a second set of refrigeration systems, two sets of independent refrigeration systems, that is, the refrigeration equipment realizes the multiple rows of multiple compressors in the related technology through one compressor
  • the air function reduces the processing cost of the refrigeration equipment, reduces the space occupied by the refrigeration equipment, and improves the convenience when installing the internal components of the refrigeration equipment.
  • the discharge pressure of the first cylinder 100 and the second cylinder 120 are different, so The discharge pressures that reach the first condenser 350 and the second condenser 380 are different, which enables the refrigeration equipment to have double condensation temperature and double evaporation temperature, which is beneficial to realize the cascade utilization of energy and improve the energy efficiency of the refrigeration equipment, especially in the first cylinder.
  • the displacements of the 100 and the second cylinder 120 are different, the amount of refrigerant condensed by the first condenser 350 and the second condenser 380 is different, which further improves the energy efficiency of the refrigeration equipment.
  • the flow of refrigerant is as follows:
  • the first outlet port 142 of the compressor is connected to the first condenser 350 through pipes and other components.
  • the refrigerant flows into the first evaporator 360 through the first expansion valve, and flows from the first evaporator 360 into the suction channel of the first accumulator 370.
  • the first suction passage 220 of the first cylinder 100; the first outlet port 142 is connected to the second condenser 380 through a pipe assembly, the refrigerant flows into the second evaporator 390 through the second expansion valve, and the second evaporator 390 passes through the second condenser 380
  • the suction passage of the accumulator 400 flows into the second suction passage 230 of the second cylinder 120.
  • the refrigeration equipment further includes: a third condenser 430, a third throttling element, a third evaporator 440, a third accumulator 450, a fourth condenser 460, The fourth throttle element and the fourth evaporator 470.
  • the third condenser 430 is in communication with the first air outlet port 142 of the compressor, the third throttling element is in communication with the third condenser 430, the third evaporator 440 is in communication with the third throttling element, and the third accumulator 450 is in communication with the second The first suction passage 220 and the second suction passage 230 of the triple evaporator 440 and the compressor.
  • the fourth condenser 460 is in communication with the second air outlet port 144 of the compressor, the fourth throttling element is in communication with the fourth condenser 460, the fourth evaporator 470 is in communication with the fourth throttling element, and the third accumulator 450 is also in communication The fourth evaporator 470 and the first suction passage 220 and the second suction passage 230 of the compressor.
  • the compressor and the third condenser 430, the third throttling element, the third evaporator 440, and the third accumulator 450 form a third refrigeration system.
  • the compressor and the fourth condenser 460, the fourth throttling element, and the The four evaporators 470 and the third accumulator 450 form a fourth group of refrigeration systems, two independent refrigeration systems, that is, the refrigeration equipment realizes the multi-exhaust function realized by multiple compressors in related technologies through one compressor , Reduce the processing cost of the refrigeration equipment, and also reduce the space occupied by the refrigeration equipment, and improve the convenience when installing the internal components of the refrigeration equipment.
  • the first suction channel 220, the second suction channel 230 and the third accumulator 450 is connected, so that an accumulator can satisfy the suction function of the first cylinder 100 and the second cylinder 120, which reduces the number of components in the refrigeration equipment, further reduces the processing cost of the refrigeration equipment, and effectively reduces the volume of the refrigeration equipment. Improve the convenience of installing refrigeration equipment. Moreover, because the exhaust pressures of the first cylinder 100 and the second cylinder 120 are different, the exhaust pressures reaching the third condenser 430 and the fourth condenser 460 are different, so that the refrigeration equipment can have double condensation temperature and double evaporation temperature, It is beneficial to realize the cascade utilization of energy and improve the energy efficiency of refrigeration equipment.
  • the amount of refrigerant condensed by the third condenser 430 and the fourth condenser 460 is different, which further improves the energy efficiency of the refrigeration equipment.
  • the above two specific embodiments realize the function of a single compressor with dual exhaust parameters, and use the heat of the dual rows of high and low temperatures to effectively save energy.
  • the range of the dual-cylinder parameter ratio is reasonably specified, which can give full play to the advantages of the dual-row cycle and improve energy efficiency.
  • the term “plurality” refers to two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be It is directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机及制冷设备。压缩机包括壳体(140),壳体(140)上设有第一出气端口(142)和第二出气端口(144);第一气缸(100)具有容纳腔,第一活塞(110)偏心设置在第一容纳腔内,第二气缸(120)具有容纳腔,第二活塞(130)偏心设置在第二容纳腔内,第一气缸(100)的内径为D1,第一活塞(110)相对于第一容纳腔的偏心距为e1,第一气缸(100)的高度为H1,第一气缸(100)的排气压力为P1,第一气缸(100)经第一出气端口(142)排气;第二气缸(120)的内径为D2,第二活塞(130)相对于第二容纳腔的偏心距为e2,第二气缸(120)的高度为H2,第二气缸(120)的排气压力为P2,第二气缸(120)经第二出气端口(144)排气;P1<P2,0.6≤(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)≤1.9。可显著提升压缩机的能效。

Description

压缩机及制冷设备
本申请要求于2019年11月29日提交中国专利局、申请号为“201911205085.6”、发明创造名称为“压缩机及制冷设备”的中国专利申请的优先权,上述申请全部内容通过引用结合在本申请中。
技术领域
本申请属于制冷设备技术领域,具体而言,涉及一种压缩机及一种制冷设备。
背景技术
相关技术中的双缸压缩机指在曲轴的轴向上设置两个气缸,两个气缸内均能实现冷媒的吸入、压缩及排气过程,并经不同的出气通道排出壳体,实现压缩机的双压力排气。
但目前的双缸压缩机考虑加工便捷性、组装简易性等因素,双缸压缩机各缸的排量是相等,而在压缩机具有双排气压力的需求下,对应不同压比的冷凝器温度不同,进出口焓差不同,对应的流量也不同,压缩机等排量的排气实际上并不能充分利用双排气的优势,无法实现最佳的效果。
发明内容
本申请旨在解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种压缩机。
本申请的第二方面提出了一种制冷设备。
有鉴于此,本申请的第一方面实施例提出了一种压缩机,包括:壳体,壳体上设有互不连通的第一出气端口和第二出气端口;第一气缸和第一活塞,第一气缸具有第一容纳腔,第一活塞偏心设置在第一容纳腔内;第二气缸和第二活塞,第二气缸具有第二容纳腔,第二活塞偏心设置在第二容纳腔内;第一气缸的内径为D1,第一活塞相对于第一容纳腔的偏心距为e1,第一气缸的高度为H1,第一气缸的排气压力为P1;第二气缸的内径为D2, 第二活塞相对于第二容纳腔的偏心距为e2,第二气缸的高度为H2,第二气缸的排气压力为P2;其中,P1<P2,0.6≤(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)≤1.9。
本实施例提供的压缩机包括第一气缸、第一活塞、第二气缸和第二活塞,第一气缸被加工成型有容纳腔,第一活塞偏心设置在第一容纳腔内,第二气缸同样被加工成型有容纳腔,第二活塞偏心设置在第二容纳腔内,第一活塞能够在第一容纳腔内做往复运动,使得第一活塞通过改变第一工作腔的容积而实现吸气、压缩空气和排气过程,其中,第一工作腔属于第一容纳腔的一部分,被第一活塞的外周面、第一滑片组件及第一气缸的内表面围合而成;第二活塞能够在第二容纳腔内做往复运动,使得第二活塞通过改变第二工作腔的容积而实现吸气、压缩空气和排气过程,其中,第二工作腔属于第二容纳腔的一部分,被第二活塞的外周面、第二滑片组件及第二气缸的内表面围合而成。通过设置两个气缸以及两个活塞而实现了双排气功能,第一气缸和第二气缸均能实现对冷媒的吸入、压缩和排气过程,这种设置方式避免了相关技术中设置多台压缩机来实现双排气功能而造成成本高的问题,本申请中的一个压缩机就能实现相关技术中两个压缩机所能实现的功能,降低了加工成本,降低压缩机的占用空间,而且有利于提高对压缩机安装过程的便利性。
另外,本申请中限定第一气缸和第二气缸的排气压力不同,不同的排气压力能够使得冷媒到达预定温度的时间以及所需要的能量均是不同的,能够理解的是,根据压缩机的不同使用需求,第一气缸和第二气缸实现不同的排气压力,从而使得对应于第一气缸和第二气缸的冷凝器能够高效地实现冷凝功能,避免对能源造成浪费,充分利用双缸压缩机的双排气优势,显著提升压缩机的能效。
另外,通过限定P1<P2,达到第一气缸和第二气缸排出压力不同的目的,通过限定第一气缸的内径不同于第二气缸的内径、第一活塞相对于第一容纳腔的偏心距不同于第二活塞相对于第二容纳腔的偏心距、第一气缸的高度不同于第二气缸的高度,且具体范围为0.6≤(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)≤1.9,可在实现第一气缸的排气压力不同于第二气缸 的排气压力的同时,实现第一气缸的排量不同于第二气缸的排量,从而使得对应于第一气缸和第二气缸的冷凝器能够高效地实现冷凝功能,避免对能源造成浪费,充分利用双缸压缩机的双排气优势,显著提升压缩机及引用该压缩机的制冷设备的能效。
需要说明的是,本申请的第一活塞相对于第一容纳腔的偏心距,默认为第一活塞相对于第一容纳腔的中心线的偏心距,该中心线的延伸方向与曲轴的轴向同向。第二活塞相对于第二容纳腔的偏心距,默认为第二活塞相对于第二容纳腔的中心线的偏心距,该中心线的延伸方向与曲轴的轴向同向。第一容纳腔呈圆柱状或大致呈圆柱状,第二容纳腔呈圆柱状或大致呈圆柱状。
在一种可能的设计中,压缩机还包括:第一轴承和第二轴承,第一轴承与第二轴承间隔分布,第一气缸和第二气缸位于第一轴承与第二轴承之间;隔板组件,位于第一气缸与第二气缸之间;第一滑片组件,设置在第一容纳腔内,第一滑片组件、第一活塞的外周面与第一气缸的内表面围成第一工作腔;第二滑片组件,设置在第二容纳腔内,第二滑片组件、第二活塞的外周面与第二气缸的内表面围成第二工作腔;第一排气出口和第二排气出口,第一工作腔经第一排气出口连通第一出气端口,第二工作腔经第二排气出口连通第二出气端口。
在该设计中,压缩机还包括第一轴承、第二轴承和隔板组件,第一轴承能够对曲轴提供支撑,第二轴承能够对第一气缸、第二气缸提供支撑,提高第一气缸和第二气缸的安装稳定性。隔板组件设置于第一气缸和第二气缸之间,第一气缸和第二气缸还设置在第一轴承和第二轴承之间,实现了第一轴承和隔板组件封堵位于两者之间的第一气缸的第一容纳腔,第二轴承和隔板组件封堵位于两者之间的第二气缸的第二容纳腔。第一滑片组件、第一活塞的外周面和第一气缸的内表面围成第一工作腔,第二滑片组件、第二活塞的外周面和第二气缸的内表面围成第二工作腔,第一活塞移动能够改变第一工作腔的容积从而压缩气体,第二活塞移动能够改变第二工作腔的容积从而压缩气体。压缩机还包括第一排气出口和第二排气出口,使第一排气出口连通第一工作腔和第一出气端口,使第二排气出口连通第 二工作腔和第二出气端口。
进一步地,第一轴承及隔板组件与第一气缸相抵接,第二轴承及隔板组件与第二气缸相抵接。
在一种可能的设计中,第一排气出口经壳体的内腔连通第一出气端口,或第二排气出口经壳体的内腔连通第二出气端口。进一步地,第一排气出口设置在第一气缸或第一轴承或隔板组件上;第二排气出口设置在第二气缸或第二轴承或隔板组件上。
在该设计中,第一排气出口经壳体的内腔连通第一出气端口,使得第一工作腔内的气体经第一排气出口排出后,扩散到壳体的内腔,而后经第一出气端口排出。第一气缸的排气压力小于第二气缸的排气压力,使得壳体内腔中的气体压力相对较低,方便压缩机回油,有利于保证压缩机运行的可靠性。
当然,也可以使第二排气出口经壳体的内腔连通第二出气端口,使得第二工作腔内的气体经第二排气出口排出后,扩散到壳体的内腔,而后经第二出气端口排出。
另外,第一排气出口可以设置在第一气缸或第一轴承或隔板组件上;第二排气出口也可以设置在第二气缸或第二轴承或隔板组件上。
需要说明的是,在本申请中,壳体的内腔指壳体内的空余空间。
在一种可能的设计中,压缩机还包括:第一密封件和第一出气通道,第一密封件与第一轴承围合成第一排气腔,第一排气出口与第一排气腔连通,第一出气通道贯穿第一轴承、第一气缸、隔板组件、所述第二气缸及第二轴承与壳体的内腔连通;第二密封件和第二出气通道,第二密封件与第二轴承围合成第二排气腔,第二排气出口与第二排气腔连通,第二出气通道贯穿第二轴承、第二气缸及隔板组件,并经第一气缸上的排气通道与第二出气端口连通。
在该设计中,压缩机还包括第一密封件、第一出气通道、第二密封件和第二出气通道,通过第一密封件与第一轴承围合成第一排气腔,通过第二密封件与第二轴承围合成第二排气腔。通过将第一工作腔与第一出气通道连通,并使第一出气通道贯穿第一轴承、第一气缸、隔板组件、第二气 缸及第二轴承,而后与壳体的内腔连通,使得第一工作腔内的气体能够经第一出气通道到达第二气缸所在侧,而后扩散到壳体的内腔中与第一出气端口连通。通过将第二工作腔与第二出气通道连通,并使第二出气通道贯穿第二轴承、第二气缸及隔板组件后,经第一气缸上的排气通道与第二出气端口连通,实现了第二工作腔内的气体经第二出气通道移动到第一气缸所在位置,而经第一气缸上的排气通道排到第二出气端口。
进一步地,第一密封件和第二密封件为盖板或消音器。通过螺栓或焊接连接在其他位置上。
在一种可能的设计中,压缩机还包括:第一排气阀,设置在第一出气通道上;第二排气阀,设置在第二出气通道上。其中,第一排气阀能够导通和封堵第一出气通道,第二排气阀能够导通和封堵第二出气通道。
在一种可能的设计中,壳体上设有吸气端口,压缩机还包括第一吸气通道和第二吸气通道,第一工作腔经第一吸气通道连通吸气端口,第二工作腔经第二吸气通道连通吸气端口。进一步地,第一吸气通道与第二吸气通道相互连通。
在该设计中,可在壳体上设置一个吸气端口,而使得第一工作腔和第二工作腔均与一个吸气端口相连通。具体地,第一工作腔经第一吸气通道连通吸气端口,第二工作腔经第二吸气通道连通吸气端口,第一吸气通道和第二吸气通道优选相互连通,减小吸气通道总长度,避免对气缸、轴承等部件过度加工而影响刚度,减小生产成本。
在另一种可能的设计中,壳体上设有两个吸气端口,压缩机还包括第一吸气通道和第二吸气通道,第一工作腔经第一吸气通道连通一个吸气端口,第二工作腔经第二吸气通道连通另一个吸气端口。进一步地,第一吸气通道与第二吸气通道互不连通。
在该设计中,通过在壳体上设置两个吸气端口,并使一个工作腔与一个吸气端口连通,使得两个吸气通道内的气体不会相互混合,从而有利于保证每个气缸的吸气量。
在一种可能的设计中,第一吸气通道设置在第一气缸或第一轴承或隔板组件上;第二吸气通道设置在第二气缸或第二轴承或隔板组件上。
进一步地,第一吸气通道设置第一气缸上,气体通过第一吸气通道进入第一工作腔内,并在第一工作腔内进行压缩,同样地,也可以将第一吸气通道设置在第一轴承上,气体通过第一轴承上的第一吸气通道进入到第一工作腔内,从而实现将气体吸入至第一工作腔的过程。第二吸气通道设置第二气缸上,气体通过第二吸气通道进入第二工作腔内,并在第二工作腔内进行压缩,同样地,也可以将第二吸气通道设置在第二轴承上,气体通过第二轴承上的第二吸气通道进入到第二工作腔内,从而实现将气体吸入至第二工作腔的过程。
在一种可能的设计中,第一滑片组件包括第一滑片和第一弹性件,第一弹性件用于推动第一滑片压紧第一活塞的外周面。或第一滑片组件包括第一滑片,第一滑片和第一活塞为一体式结构,或第一滑片和第一活塞铰接相连。
在该设计中,第一滑片组件包括第一滑片和第一弹性件,第一滑片压紧第一活塞的外周面,并且,第一弹性件与第一滑片远离第一活塞的一端相连接,从而在第一活塞运动过程中,第一弹性件能够推动第一滑片始终保持压紧第一活塞的外周面,确保第一工作腔的密封性。或者,第一滑片组件包括第一滑片,第一滑片可以与第一活塞为一体式结构,能够防止第一滑片从第一滑片槽中掉落,确保第一滑片的安装稳定,提升产品的可靠性,而且一体式结构的力学性能好,因而能够提高第一滑片与第一活塞之间的连接强度。另外,第一滑片与第一活塞一体制成,有利于批量生产,提高产品的加工效率,降低产品的加工成本。
当然,第一滑片也可以与第一活塞铰接连接,同样可以起到防止第一滑片从第一滑片槽中掉出的作用,从而使得第一滑片的安装稳定,提升产品的可靠性。
在一种可能的设计中,第二滑片组件包括第二滑片和第二弹性件,第二弹性件用于推动第二滑片压紧第二活塞的外周面。或第二滑片组件包括第二滑片,第二滑片和第二活塞为一体式结构或第二滑片和第二活塞铰接相连。
在该设计中,第二滑片组件包括第二滑片和第二弹性件,第二滑片压 紧第二活塞的外周面,并且,第二弹性件与第二滑片远离第二活塞的一端相连接,从而在第二活塞运动过程中,第二弹性件能够推动第二滑片始终保持压紧第二活塞的外周面,确保第二工作腔的密封性。或者,第二滑片组件包括第二滑片,第二滑片可以与第二活塞为一体式结构,能够防止第二滑片从第二滑片槽中掉落,确保第二滑片的安装稳定,提升产品的可靠性,而且一体式结构的力学性能好,因而能够提高第二滑片与第二活塞之间的连接强度。另外,第二滑片与第二活塞一体制成,有利于批量生产,提高产品的加工效率,降低产品的加工成本。当然,第二滑片也可以与第二活塞铰接连接,同样可以起到防止第二滑片从第二滑片槽中掉出的作用,从而使得第二滑片的安装稳定,提升产品的可靠性。
在一种可能的设计中,压缩机还包括:曲轴,具有第一偏心部和第二偏心部,第一活塞与第一偏心部连接,第二活塞与第二偏心部连接;电机组件,与曲轴连接,以驱动曲轴转动。
在该设计中,压缩机还包括曲轴和电机组件,电机组件能够驱动曲轴转动,曲轴上的第一偏心部与第一活塞连接,使得曲轴在转动时,曲轴上的第一偏心部带动第一活塞转动,转动的第一活塞实现对气体的吸入、压缩和排出功能。同样地,曲轴上的第二偏心部与第二活塞连接,使得曲轴在转动时,曲轴上的第二偏心部带动第二活塞转动,转动的第二活塞实现对气体的吸入、压缩和排出功能。
本申请的第二方面实施例提出了一种制冷设备,包括:如上述技术方案中任一项的压缩机,因此本申请提供的制冷设备具有上述任一技术方案中所提供的压缩机的全部效益。
在一种可能的设计中,制冷设备还包括:第一冷凝器,与压缩机的第一出气端口连通;第一节流元件,与第一冷凝器连通;第一蒸发器,与第一节流元件连通;第一储液器,连通第一蒸发器和压缩机的第一吸气通道;第二冷凝器,与压缩机的第二出气端口连通;第二节流元件,与第二冷凝器连通;第二蒸发器,与第二节流元件连通;第二储液器,连通第二蒸发器和压缩机的第二吸气通道。
在该设计中,压缩机与第一冷凝器、第一节流元件、第一蒸发器、第 一储液器形成第一组制冷系统,压缩机与第二冷凝器、第二节流元件、第二蒸发器、第二储液器形成第二组制冷系统,两组相互独立的制冷系统,即制冷设备通过一个压缩机就实现了相关技术中多个压缩机所实现的多排气功能,降低了制冷设备的加工成本,也降低了制冷设备的占用空间,提高对制冷设备内部件进行安装时的便利性,由于第一气缸和第二气缸的排气压力不同,使得到达第一冷凝器和第二冷凝器的排气压力不同,可使制冷设备具有双冷凝温度和双蒸发温度,有利于实现能量的梯级利用,提高制冷设备的能效。尤其在第一气缸和第二气缸的排量不同的情况下,使得第一冷凝器和第二冷凝器冷凝的制冷剂的量也不相同,进一步提高制冷设备的能效。
在一种可能的设计中,制冷设备还包括:第三冷凝器,与压缩机的第一出气端口连通;第三节流元件,与第三冷凝器连通;第三蒸发器,与第三节流元件连通;第三储液器,连通第三蒸发器和压缩机的第一吸气通道和第二吸气通道;第四冷凝器,与压缩机的第二出气端口连通;第四节流元件,与第四冷凝器连通;第四蒸发器,与第四节流元件连通;第三储液器还连通第四蒸发器和压缩机的第一吸气通道和第二吸气通道。
在该设计中,压缩机与第三冷凝器、第三节流元件、第三蒸发器、第三储液器形成第三组制冷系统,压缩机与第四冷凝器、第四节流元件、第四蒸发器、第三储液器形成第四组制冷系统,两组相互独立的制冷系统,即制冷设备通过一个压缩机就实现了相关技术中多个压缩机所实现的多排气功能,降低了制冷设备的加工成本,也降低了制冷设备的占用空间,提高对制冷设备内部件进行安装时的便利性,第一吸气通道和第二吸气通道与第三储液器连通,从而设置一个储液器就能满足第一气缸和第二气缸的吸气功能,减少了制冷设备内的部件数量,进一步降低制冷设备的加工成本,有效降低制冷设备的体积,提高对制冷设备安装时的便利性。而且,由于第一气缸和第二气缸的排气压力不同,使得到达第三冷凝器和第四冷凝器的排气压力不同,可使制冷设备具有双冷凝温度和双蒸发温度,有利于实现能量的梯级利用,提高制冷设备的能效。尤其在第一气缸和第二气缸的排量不同的情况下,使得第三冷凝器和第四冷凝器冷凝的制冷剂的量 也不相同,进一步提高制冷设备的能效。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例的压缩机的局部结构示意图;
图2示出了本申请的另一个实施例的压缩机的局部结构示意图;
图3示出了本申请的又一个实施例的压缩机的局部结构示意图;
图4示出了本申请的又一个实施例的压缩机的结构示意图;
图5示出了本申请的又一个实施例的压缩机的局部结构示意图;
图6示出了本申请的又一个实施例的压缩机的结构示意图;
图7示出了本申请的又一个实施例的压缩机的结构示意图;
图8示出了本申请的又一个实施例的压缩机的局部结构示意图;
图9示出了本申请的又一个实施例的压缩机的局部结构示意图;
图10示出了本申请的一个实施例的制冷设备的结构示意图;
图11示出了本申请的另一个实施例的制冷设备结构示意图;
图12示出了本申请的一个实施例的制冷设备能效在两个气缸的排量的比值下的变化曲线示意图。
其中,图1至图11中附图标记与部件名称之间的对应关系为:
100第一气缸,110第一活塞,120第二气缸,130第二活塞,140壳体,142第一出气端口,144第二出气端口,146吸气端口,150第一轴承,160第二轴承,170隔板组件,172第一隔板,174第二隔板,180第一排气出口,190第二排气出口,200第一出气通道,210第二出气通道,220第一吸气通道,230第二吸气通道,240第一密封件,242第一排气腔,250第二密封件,252第二排气腔,260曲轴,270电机组件,280第一滑片组件,290第二滑片组件,350第一冷凝器,360第一蒸发器,370第一储液器,380第二冷凝器,390第二蒸发器,400第二储液器,410第一节流元 件,420第二节流元件;430第三冷凝器,440第三蒸发器,450第三储液器,460第四冷凝器,470第四蒸发器。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图12描述根据本申请一些实施例的压缩机及制冷设备。
实施例一:
一种压缩机,如图1所示,包括壳体140,第一气缸100、第一活塞110、第二气缸120和第二活塞130。壳体140上设有互不连通的第一出气端口142和第二出气端口144;第一气缸100被加工成型有容纳腔,第一活塞110偏心设置在第一容纳腔内,第二气缸120同样被加工成型有容纳腔,第二活塞130偏心设置在第二容纳腔内,第一活塞110能够在第一容纳腔内做往复运动,使得第一活塞110通过改变第一工作腔的容积而实现吸气、压缩空气和排气过程,其中,第一工作腔属于第一容纳腔的一部分,被第一活塞110的外周面、第一滑片组件280及第一气缸100的内表面围合而成;第二活塞130能够在第二容纳腔内做往复运动,使得第二活塞130通过改变第二工作腔的容积而实现吸气、压缩空气和排气过程,其中,第二工作腔属于第二容纳腔的一部分,被第二活塞130的外周面、第二滑片组件290及第二气缸120的内表面围合而成。第一气缸100经第一出气端口142排气,第二气缸120经第二出气端口144排气。通过设置两个气缸以及两个活塞而实现了双排气功能,第一气缸100和第二气缸120均能实现对冷媒的吸入、压缩和排气过程,这种设置方式避免了相关技术中设置多台压缩机来实现双排气功能而造成的成本高的问题,本申请中的一个压 缩机就能实现相关技术中两个压缩机所能实现的功能,降低了加工成本,降低压缩机的占用空间,而且有利于提高对压缩机安装过程的便利性。
另外,本申请中进一步限定第一气缸100和第二气缸120的排气压力不同,不同的排气压力能够使得冷媒到达预定温度的时间以及所需要的能量均是不同的,能够理解的是,根据压缩机的不同使用需求,第一气缸100和第二气缸120实现不同的排气压力,从而使得对应于第一气缸100和第二气缸120的冷凝器能够高效地实现冷凝功能,避免对能源造成浪费,充分利用双缸压缩机的双排气优势,显著提升压缩机的能效。
进一步地,本实施例中限定P1<P2,0.6≤(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)≤1.9。具体地,(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)的取值可以为0.8,1.05,1.85。其中,P1为第一气缸100的排气压力,D1为第一气缸100的内径,e1为第一活塞110相对于第一气缸100的偏心距,H1为第一气缸100的高度,P2为第二气缸120的排气压力,D2为第二气缸120的内径,e2为第二活塞130相对于第二气缸120的偏心距,H2为第二气缸120的高度。e1×(D1-e1)×H1与e2×(D2-e2)×H2的比值大小代表第一气缸100的排量与第二气缸120的排量的比值大小。
结合图1和图12所示,本申请限定P1<P2,达到第一气缸100和第二气缸120排出压力不同的目的,通过限定第一气缸100的内径不同于第二气缸120的内径、第一活塞110相对于第一容纳腔的偏心距不同于第二活塞130相对于第二容纳腔的偏心距、第一气缸100的高度不同于第二气缸120的高度,且具体范围为0.6≤(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)≤1.9,可在实现第一气缸100的排气压力不同于第二气缸120的排气压力的同时,实现了第一气缸100的排量不同于第二气缸120的排量,从而使得对应于第一气缸100和第二气缸120的冷凝器能够高效地实现冷凝功能,避免对能源造成浪费。
图12示出的是不同排量比下,随排量比变化而发生变化的能效变化曲线,从图12中可知,随着排量比增大,能效呈现先增大后减小的趋势,由此可见,充分利用双缸压缩机的双排气优势,能够显著提升压缩机及引用该压缩机的制冷设备的能效。
需要说明的是,本申请的第一活塞110相对于第一容纳腔的偏心距,默认为第一活塞110相对于第一容纳腔的中心线的偏心距,该中心线的延伸方向与曲轴260的轴向同向。第二活塞130相对于第二容纳腔的偏心距,默认为第二活塞130相对于第二容纳腔的中心线的偏心距,该中心线的延伸方向与曲轴260的轴向同向。第一容纳腔呈圆柱状或大致呈圆柱状,第二容纳腔呈圆柱状或大致呈圆柱状。
另外,相关技术中的双缸压缩机因其作用对象、加工便捷性、组装简易性各种因素影响,双缸压缩机各缸排气相等,而在本申请中,由于第一气缸100和第二气缸120的排气压力不同,对应不同压比的冷凝器温度不同,进出口焓差不同,对应的流量也不同,从而能够充分利用双排气的优势,实现最佳的效果。
实施例二:
结合图1、图4和图6所示,在实施例一的基础上,进一步限定压缩机还包括:第一轴承150、第二轴承160、隔板组件170、第一排气出口180、第二排气出口190、第一滑片组件280和第二滑片组件290。
第一轴承150与第二轴承160间隔分布,第一气缸100和第二气缸120位于第一轴承150与第二轴承160之间。第一轴承150能够对曲轴260提供支撑,第二轴承160能够对第一气缸100、第二气缸120提供支撑,提高第一气缸100和第二气缸120的安装稳定性。
隔板组件170设置于第一气缸100和第二气缸120之间,第一气缸100和第二气缸120还设置在第一轴承150和第二轴承160之间,实现了第一轴承150和隔板组件170封堵位于两者之间的第一气缸100的第一容纳腔,第二轴承160和隔板组件170封堵位于两者之间的第二气缸120的第二容纳腔。
第一滑片组件280、第一活塞110的外周面和第一气缸100的内表面围成第一工作腔,第二滑片组件290、第二活塞130的外周面和第二气缸120的内表面围成第二工作腔,第一活塞110移动能够改变第一工作腔的容积从而压缩气体,第二活塞130移动能够改变第二工作腔的容积从而压缩气体。压缩机还包括第一排气出口180和第二排气出口190,使第一排 气出口180连通第一工作腔和第一出气端口142,使第二排气出口190连通第二工作腔和第二出气端口144,实现压缩机的双压力排气功能。
进一步地,第一轴承150及隔板组件170与第一气缸100相抵接,第二轴承160及隔板组件170与第二气缸120相抵接。第一工作腔经第一排气出口180连通第一出气端口142,第二工作腔经第二排气出口190连通第二出气端口144。
进一步地,第一排气出口180设置在第一气缸100或第一轴承150或隔板组件170上;第二排气出口190设置在第二气缸120或第二轴承160或隔板组件170上;第一排气出口180经壳体140的内腔连通第一出气端口142,或第二排气出口190经壳体140的内腔连通第二出气端口144。
在一个具体的实施例中,第一排气出口180设置在第一气缸100上,使得第一工作腔内的压缩气体通过第一排气出口180排出,将第二排气出口190设置在第二气缸120上,使得第二工作腔内的压缩气体通过第二排气出口190排出,方便第一工作腔和第二工作腔的排气。
在另一个具体的实施例中,第一排气出口180和第二排气出口190还可以分别设置在第一轴承150和第二轴承160上。
如图1所示,在一个具体实施例中,在第一轴承150上设有第一排气出口180,使得第一工作腔内的压缩空气经第一轴承150上的第一排气出口180。在第二轴承160上设置第二排气出口190,使得第二工作腔内的压缩空气经过第二轴承160上的第二排气出口190,由于第一轴承150和第二轴承160位于两个气缸的两侧,相互远离,有效避免第一气缸100和第二气缸120的排气过程相互影响,实现压缩机的双压力排气功能。
如图2所示,在另一个具体实施例中,隔板组件170包括第一隔板172和第二隔板174,第一隔板172和第二隔板174围成空腔,从而可在第二隔板174上设置第二排气出口190,使得第二工作腔内的压缩空气能够通过第二排气出口190排出至隔板组件170的空腔内,再通过第二出气通道210将压缩空气排出至第二出气端口144,此时,第一轴承150上设有第一排气出口180,第一工作腔内的压缩空气能够通过第一排气出口180排至第一出气端口142,保证了第一气缸100和第二气缸120能够实现相互独 立的排气功能,实现了压缩机的双压力排气功能。
如图3所示,在又一个具体实施例中,隔板组件170包括第一隔板172和第二隔板174,第一隔板172和第二隔板174围成空腔,从而可在第一隔板172上设置有第一排气出口180,使得第一工作腔内的压缩空气能够通过第一排气出口180排出至隔板组件170的空腔内,再通过第一出气通道200将压缩空气排出至第一出气端口142。第二轴承160上设有第二排气出口190,第二工作腔内的压缩空气通过第二排气出口190排出至第二出气端口144。保证了第一气缸100和第二气缸120能够实现相互独立的排气功能,实现压缩机的双压力排气功能。
在又一个具体实施例中,隔板组件170包括第一隔板172、第二隔板174和分隔板,分隔板对第一隔板172和第二隔板174内的空腔进行分隔,从而将空腔分隔为两个相互独立的腔体。此时,可在第一隔板172上设置有第一排气出口180,使得第一工作腔内的压缩空气能够通过第一排气出口180排出至其中一个腔体内,再通过第一出气通道200将压缩空气排至第一出气端口142,或通过壳体140的内腔将压缩空气排至第一出气端口142;还可在第二隔板174上设置有第二排气出口190,第二工作腔内的压缩空气通过第二排气出口190排出至另外一个腔体内,再通过壳体140的内腔将压缩空气排至第二出气端口144,或通过第二出气通道210排出至第二出气端口144。保证了第一气缸100和第二气缸120的排气过程互不影响,实现压缩机的双压力排气功能。
结合图5、图8和图9所示,在又一个具体实施例中,压缩机还包括:第一密封件240和第一出气通道200,第一密封件240与第一轴承150围合成第一排气腔242,第一工作腔与第一排气腔242连通,第一出气通道200贯穿第一轴承150、第一气缸100、隔板组件170、第二气缸120及第二轴承160与壳体140的内腔连通;第二密封件250和第二出气通道210,第二密封件250与第二轴承160围合成第二排气腔252,第二工作腔与第二排气腔252连通,第二出气通道210贯穿第二轴承160、第二气缸120及隔板组件170,并经第一气缸100上的排气通道与第二出气端口144连通。
在该实施例中,压缩机还包括第一密封件240和第二密封件250,通过第一密封件240与第一轴承150围合成第一排气腔242,通过第二密封件250与第二轴承160围合成第二排气腔252。通过将第一工作腔与第一出气通道200连通,并使第一出气通道200贯穿第一轴承150、第一气缸100、隔板组件170、第二气缸120及第二轴承160,而后与壳体140的内腔连通,使得第一工作腔内的气体能够经第一出气通道200到达第二气缸120所在侧,而后扩散到壳体140的内腔中与第一出气端口142连通。通过将第二工作腔与第二出气通道210连通,并使第二出气通道210贯穿第二轴承160、第二气缸120及隔板组件170后,经第一气缸100上的排气通道与第二出气端口144连通,实现了第二工作腔内的气体经第二出气通道210移动到第一气缸100所在位置,而经第一气缸100上的排气通道排到第二出气端口144。
进一步地,第一密封件240和第二密封件250为盖板或消音器。通过螺栓或焊接连接在其他位置上。
在又一个具体实施例中,压缩机还包括:第一密封件240和第二密封件250。第一密封件240与第一轴承150围合成第一排气腔242,第一工作腔与第一排气腔242连通,第二密封件250与第二轴承160围合成第二排气腔252,第二工作腔与第二排气腔252连通。第一出气通道200贯穿第一轴承150、第一气缸100及隔板组件170,并经第二气缸120上的排气通道与第二出气端口144连通;第二出气通道210贯穿第二轴承160、第二气缸120、隔板组件170、第一气缸100及第一轴承150,与壳体140的内腔连通。
进一步地,压缩机还包括设置在第一轴承150和第二轴承160上的升程限位器,升程限位器能够限制第一出气通道200和第二出气通道210的排气速度。第一排气阀260设置在第一出气通道200上;第二排气阀设置在第二出气通道210上。
实施例三:
如图7所示,在实施例二的基础上,进一步限定壳体140上设有吸气端口146,压缩机还包括第一吸气通道220和第二吸气通道230,第一工作 腔经第一吸气通道220连通吸气端口146,第二工作腔经第二吸气通道230连通吸气端口146。进一步地,第一吸气通道220与第二吸气通道230相互连通。
在该实施例中,可在壳体140上设置一个吸气端口146,而使得第一工作腔和第二工作腔均与一个吸气端口146相连通。具体地,第一工作腔经第一吸气通道220连通吸气端口146,第二工作腔经第二吸气通道230连通吸气端口146,第一吸气通道220和第二吸气通道230优选相互连通,减小吸气通道总长度,避免对气缸、轴承等部件过度加工而影响刚度,减小生产成本。
实施例四:
如图4所示,在实施例二的基础上,进一步限定壳体140上设有两个吸气端口146,压缩机还包括第一吸气通道220和第二吸气通道230,第一工作腔经第一吸气通道220连通一个吸气端口146,第二工作腔经第二吸气通道230连通另一个吸气端口146。进一步地,第一吸气通道220与第二吸气通道230互不连通。
在该实施例中,通过在壳体140上设置两个吸气端口146,并使一个工作腔与一个吸气端口146连通,使得两个吸气通道内的气体不会相互混合,从而有利于保证每个气缸的吸气量。
实施例五:
在上述实施例三或实施例四的基础上,进一步限定第一吸气通道220设置在第一气缸100或第一轴承150或隔板组件170上;第二吸气通道230设置在第二气缸120或第二轴承160或隔板组件170上。
进一步地,第一吸气通道220设置第一气缸100上,气体通过第一吸气通道220进入第一工作腔内,并在第一工作腔内进行压缩,同样地,也可以将第一吸气通道220设置在第一轴承150上,气体通过第一轴承150上的第一吸气通道220进入到第一工作腔内,从而实现将气体吸入至第一工作腔的过程。第二吸气通道230设置第二气缸120上,气体通过第二吸气通道230进入第二工作腔内,并在第二工作腔内进行压缩,同样地,也可以将第二吸气通道230设置在第二轴承160上,气体通过第二轴承160 上的第二吸气通道230进入到第二工作腔内,从而实现将气体吸入至第二工作腔的过程。
本实施例的一个具体实施例中,第一吸气通道220设置在第一气缸100上,气体通过第一吸气通道220进入第一工作腔内,实现将气体吸入第一工作腔的过程;第二吸气通道230设置在第二气缸120上,并与第二工作腔连通,气体通过第二吸气通道230进入第二工作腔内,实现将气体吸入第二工作腔的过程。
在另一个具体实施例中,第一吸气通道220设置在第一气缸100上,并与第一工作腔连通,气体通过第一吸气通道220进入第一工作腔内,实现将气体吸入第一工作腔的过程;第二吸气通道230设置在第二轴承160上,并与第二工作腔连通,气体通过第二吸气通道230进入到第二工作腔内,从而实现将气体吸入第二工作腔的过程。
在又一个具体实施例中,第一吸气通道220设置在第一轴承150上,并与第一工作腔连通,气体通过第一吸气通道220进入到第一工作腔内,从而实现将气体吸入第一工作腔的过程;第二吸气通道230设置第二气缸120上,气体通过第二吸气通道230进入第二工作腔内,从而实现将气体吸入第二工作腔的过程。
在又一个具体实施例中,第一吸气通道220设置在第一轴承150上,气体通过第一吸气通道220进入到第一工作腔内,从而实现将气体吸入第一工作腔的过程;第二吸气通道230设置在第二轴承160上,气体通过第二吸气通道230进入到第二工作腔内,从而实现将气体吸入第二工作腔的过程。
实施例六:
在上述任一实施例的基础上,结合图4和图6所示,进一步限定第一滑片组件280包括第一滑片和第一弹性件,第一滑片压紧第一活塞110的外周面,并且,第一弹性件与第一滑片远离第一活塞110的一端相连接,从而在第一活塞110运动过程中,第一弹性件能够推动第一滑片始终保持压紧第一活塞110的外周面,确保第一工作腔的密封性。或者,第一滑片组件280包括第一滑片,第一滑片可以与第一活塞110为一体式结构,能 够防止第一滑片从第一滑片槽中掉落,确保第一滑片的安装稳定,提升产品的可靠性,而且一体式结构的力学性能好,因而能够提高第一滑片与第一活塞110之间的连接强度。另外,第一滑片与第一活塞110一体制成,有利于批量生产,提高产品的加工效率,降低产品的加工成本。当然,第一滑片也可以与第一活塞110铰接连接,同样可以起到防止第一滑片从第一滑片槽中掉出的作用,从而使得第一滑片的安装稳定,提升产品的可靠性。
第二滑片组件290包括第二滑片和第二弹性件,第二滑片压紧第二活塞130的外周面,并且,第二弹性件与第二滑片远离第二活塞130的一端相连接,从而在第二活塞130运动过程中,第二弹性件能够推动第二滑片始终保持压紧第二活塞130的外周面,确保第二工作腔的密封性。或者,第二滑片组件290包括第二滑片,第二滑片可以与第二活塞130为一体式结构,能够防止第二滑片从第二滑片槽中掉落,确保第二滑片的安装稳定,提升产品的可靠性,而且一体式结构的力学性能好,因而能够提高第二滑片与第二活塞130之间的连接强度。另外,第二滑片与第二活塞130一体制成,有利于批量生产,提高产品的加工效率,降低产品的加工成本。当然,第二滑片也可以与第二活塞130铰接连接,同样可以起到防止第二滑片从第二滑片槽中掉出的作用,从而使得第二滑片的安装稳定,提升产品的可靠性。
实施例七:
结合图1和图4所示,在上述任一实施例的基础上,进一步限定压缩机还包括:曲轴260和电机组件270,电机组件270包括定子和转子,曲轴260具有第一偏心部和第二偏心部,第一活塞110与第一偏心部连接,第二活塞130与第二偏心部连接;电机组件270,与曲轴260连接,以驱动曲轴260转动。
压缩机还包括曲轴260和电机组件270,电机组件270能够驱动曲轴260转动,曲轴260具有与第一活塞110连接的第一偏心部以及与第二活塞130连接的第二偏心部,曲轴260在转动时,曲轴260上的第一偏心部带动第一活塞110转动,转动的第一活塞110实现对气体的吸入、压缩和 排出功能。
曲轴260上的第二偏心部带动第二活塞130转动,转动的第二活塞130实现对气体的吸入、压缩和排出功能。
随着曲轴260带动第一活塞110和第二活塞130转动,低压气体一股从第一吸气通道220进入第一气缸100的第一工作腔内,在第一工作腔中完成吸气、压缩、排气的过程,经由第一出气通道200排气。另一股低压气体第二吸气通道230进入第二气缸120的第二工作腔内,在第二工作腔中完成吸气、压缩、排气的过程,经由第二出气通道210排气,曲轴260每转一圈完成排气两次过程。
本申请第二方面的实施例提供了一种制冷设备,包括:如上述实施例中任一项的压缩机,因此本申请提供的制冷设备具有上述任一实施例中所提供的压缩机的全部效益。
如图10所示,在一个具体实施例中,制冷设备还包括:第一冷凝器350、第一节流元件410、第一蒸发器360、第一储液器370、第二冷凝器380、第二节流元件420、第二蒸发器390和第二储液器400。
第一冷凝器350压缩机的第一出气端口142连通,第一节流元件410与第一冷凝器350连通,第一蒸发器360与第一节流元件410连通,第一储液器370连通第一蒸发器360和压缩机的第一吸气通道220。
第二冷凝器380与压缩机的第二出气端口144连通,第二节流元件420与第二冷凝器380连通,第二蒸发器390与第二节流元件420连通,第二储液器400连通第二蒸发器390和压缩机的第二吸气通道230。
压缩机与第一冷凝器350、第一节流元件410、第一蒸发器360、第一储液器370形成第一组制冷系统,压缩机与第二冷凝器380、第二节流元件420、第二蒸发器390、第二储液器400形成第二组制冷系统,两组相互独立的制冷系统,即制冷设备通过一个压缩机就实现了相关技术中多个压缩机所实现的多排气功能,降低了制冷设备的加工成本,也降低了制冷设备的占用空间,提高对制冷设备内部件进行安装时的便利性,由于第一气缸100和第二气缸120的排气压力不同,使得到达第一冷凝器350和第二冷凝器380的排气压力不同,可使制冷设备具有双冷凝温度和双蒸发温度, 有利于实现能量的梯级利用,提高制冷设备的能效,尤其在第一气缸100和第二气缸120的排量不同的情况下,使得第一冷凝器350和第二冷凝器380冷凝的制冷剂的量也不相同,进一步提高制冷设备的能效。
冷媒的流动过程如下:
压缩机的第一出气端口142通过管道等组件与第一冷凝器350相连,冷媒通过第一膨胀阀流入第一蒸发器360,由第一蒸发器360经由第一储液器370吸气通道流入第一气缸100的第一吸气通道220;第一出气端口142通过管道组件与第二冷凝器380相连,冷媒通过第二膨胀阀流入第二蒸发器390,由第二蒸发器390经由第二储液器400吸气通道流第二气缸120的第二吸气通道230。
如图11所示,在另一个具体实施例中,制冷设备还包括:第三冷凝器430、第三节流元件、第三蒸发器440、第三储液器450、第四冷凝器460、第四节流元件和第四蒸发器470。
第三冷凝器430与压缩机的第一出气端口142连通,第三节流元件与第三冷凝器430连通,第三蒸发器440与第三节流元件连通,第三储液器450连通第三蒸发器440和压缩机的第一吸气通道220和第二吸气通道230。
第四冷凝器460与压缩机的第二出气端口144连通,第四节流元件与第四冷凝器460连通,第四蒸发器470与第四节流元件连通,第三储液器450还连通第四蒸发器470和压缩机的第一吸气通道220和第二吸气通道230。
压缩机与第三冷凝器430、第三节流元件、第三蒸发器440、第三储液器450形成第三组制冷系统,压缩机与第四冷凝器460、第四节流元件、第四蒸发器470、第三储液器450形成第四组制冷系统,两组相互独立的制冷系统,即制冷设备通过一个压缩机就实现了相关技术中多个压缩机所实现的多排气功能,降低了制冷设备的加工成本,也降低了制冷设备的占用空间,提高对制冷设备内部件进行安装时的便利性,第一吸气通道220和第二吸气通道230与第三储液器450连通,从而设置一个储液器就能满足第一气缸100和第二气缸120的吸气功能,减少了制冷设备内的部件数 量,进一步降低制冷设备的加工成本,有效降低制冷设备的体积,提高对制冷设备安装时的便利性。而且,由于第一气缸100和第二气缸120的排气压力不同,使得到达第三冷凝器430和第四冷凝器460的排气压力不同,可使制冷设备具有双冷凝温度和双蒸发温度,有利于实现能量的梯级利用,提高制冷设备的能效。尤其在第一气缸100和第二气缸120的排量不同的情况下,使得第三冷凝器430和第四冷凝器460冷凝的制冷剂的量也不相同,进一步提高制冷设备的能效。
上述两个具体实施例实现了单台压缩机双排气参数的功能,利用双排高低温的热量,有效节约能耗。同时,合理的规定了双缸参数比值的范围,能充分发挥双排循环的优势,提升能效。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种压缩机,其中,包括:
    壳体,所述壳体上设有互不连通的第一出气端口和第二出气端口;
    第一气缸和第一活塞,所述第一气缸具有第一容纳腔,所述第一活塞偏心设置在所述第一容纳腔内;
    第二气缸和第二活塞,所述第二气缸具有第二容纳腔,所述第二活塞偏心设置在所述第二容纳腔内;
    所述第一气缸的内径为D1,所述第一活塞相对于所述第一容纳腔的偏心距为e1,所述第一气缸的高度为H1,所述第一气缸的排气压力为P1,所述第一气缸经所述第一出气端口排气;
    所述第二气缸的内径为D2,所述第二活塞相对于所述第二容纳腔的偏心距为e2,所述第二气缸的高度为H2,所述第二气缸的排气压力为P2,所述第二气缸经所述第二出气端口排气;
    其中,P1<P2,0.6≤(e1×(D1-e1)×H1)÷(e2×(D2-e2)×H2)≤1.9。
  2. 根据权利要求1所述的压缩机,其中,所述压缩机还包括:
    第一轴承和第二轴承,所述第一轴承与所述第二轴承间隔分布,所述第一气缸和所述第二气缸位于所述第一轴承与所述第二轴承之间;
    隔板组件,位于所述第一气缸与所述第二气缸之间;
    第一滑片组件,设置在所述第一容纳腔内,所述第一滑片组件、所述第一活塞的外周面与所述第一气缸的内表面围成第一工作腔;
    第二滑片组件,设置在所述第二容纳腔内,所述第二滑片组件、所述第二活塞的外周面与所述第二气缸的内表面围成第二工作腔;
    第一排气出口和第二排气出口,所述第一工作腔经所述第一出气出口连通所述第一出气端口,所述第二工作腔经所述第二排气出口连通所述第二出气端口。
  3. 根据权利要求2所述的压缩机,其中,
    所述第一排气出口设置在所述第一气缸或所述第一轴承或所述隔板组件上;
    所述第二排气出口设置在所述第二气缸或所述第二轴承或所述隔板组件上;
    所述第一排气出口经所述壳体的内腔连通所述第一出气端口,或所述第二排气出口经所述壳体的内腔连通所述第二出气端口。
  4. 根据权利要求2所述的压缩机,其中,所述压缩机还包括:
    第一密封件和第一出气通道,所述第一密封件与所述第一轴承围合成第一排气腔,所述第一排气出口与所述第一排气腔连通,所述第一出气通道贯穿所述第一轴承、所述第一气缸、所述隔板组件、所述第二气缸及所述第二轴承与所述壳体的内腔连通;
    第二密封件和第二出气通道,所述第二密封件与所述第二轴承围合成第二排气腔,所述第二排气出口与所述第二排气腔连通,所述第二出气通道贯穿所述第二轴承、所述第二气缸及所述隔板组件,并经所述第一气缸上的排气通道与所述第二出气端口连通。
  5. 根据权利要求3或4所述的压缩机,其中,所述压缩机还包括:
    第一排气阀,设置在所述第一出气通道上;
    第二排气阀,设置在所述第二出气通道上。
  6. 根据权利要求2至4中任一项所述的压缩机,其中,
    所述壳体上设有吸气端口,所述压缩机还包括第一吸气通道和第二吸气通道,所述第一工作腔经所述第一吸气通道连通所述吸气端口,所述第二工作腔经所述第二吸气通道连通所述吸气端口,所述第一吸气通道与所述第二吸气通道相互连通;或
    所述壳体上设有两个吸气端口,所述压缩机还包括第一吸气通道和第二吸气通道,所述第一工作腔经所述第一吸气通道连通一个所述吸气端口,所述第二工作腔经所述第二吸气通道连通另一个所述吸气端口,所述第一吸气通道与所述第二吸气通道互不连通。
  7. 根据权利要求6所述的压缩机,其中,
    所述第一吸气通道设置在所述第一气缸或所述第一轴承或所述隔板组件上;
    所述第二吸气通道设置在所述第二气缸或所述第二轴承或所述隔板组 件上。
  8. 根据权利要求2至4中任一项所述的压缩机,其中,
    所述第一滑片组件包括第一滑片和第一弹性件,所述第一弹性件用于推动所述第一滑片压紧所述第一活塞的外周面,或
    所述第一滑片组件包括第一滑片,所述第一滑片和所述第一活塞为一体式结构或所述第一滑片和所述第一活塞铰接相连;
    所述第二滑片组件包括第二滑片和第二弹性件,所述第二弹性件用于推动所述第二滑片压紧所述第二活塞的外周面,或
    所述第二滑片组件包括第二滑片,所述第二滑片和所述第二活塞为一体式结构或所述第二滑片和所述第二活塞铰接相连。
  9. 根据权利要求1至4中任一项所述的压缩机,其中,所述压缩机还包括:
    曲轴,具有第一偏心部和第二偏心部,所述第一活塞与所述第一偏心部连接,所述第二活塞与所述第二偏心部连接;
    电机组件,与所述曲轴连接,以驱动所述曲轴转动。
  10. 一种制冷设备,其中,包括:
    如权利要求1至9中任一项所述的压缩机。
  11. 根据权利要求10所述的制冷设备,其中,所述制冷设备还包括:
    第一冷凝器,与所述压缩机的第一出气端口连通;
    第一节流元件,与所述第一冷凝器连通;
    第一蒸发器,与所述第一节流元件连通;
    第一储液器,连通所述第一蒸发器和所述压缩机的第一吸气通道;
    第二冷凝器,与所述压缩机的第二出气端口连通;
    第二节流元件,与所述第二冷凝器连通;
    第二蒸发器,与所述第二节流元件连通;
    第二储液器,连通所述第二蒸发器和所述压缩机的第二吸气通道。
  12. 根据权利要求10所述的制冷设备,其中,所述制冷设备还包括:
    第三冷凝器,与所述压缩机的第一出气端口连通;
    第三节流元件,与所述第三冷凝器连通;
    第三蒸发器,与所述第三节流元件连通;
    第三储液器,连通所述第三蒸发器和所述压缩机的第一吸气通道和第二吸气通道;
    第四冷凝器,与所述压缩机的第二出气端口连通;
    第四节流元件,与所述第四冷凝器连通;
    第四蒸发器,与所述第四节流元件连通;
    所述第三储液器还连通所述第四蒸发器和所述压缩机的第一吸气通道和第二吸气通道。
PCT/CN2020/100762 2019-11-29 2020-07-08 压缩机及制冷设备 WO2021103552A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20892459.7A EP3957855A4 (en) 2019-11-29 2020-07-08 COMPRESSOR AND REFRIGERATION DEVICE
KR1020217039016A KR102542439B1 (ko) 2019-11-29 2020-07-08 압축기 및 냉방기기
JP2021570963A JP2022534304A (ja) 2019-11-29 2020-07-08 圧縮機及び冷凍機器
US17/535,799 US20220082309A1 (en) 2019-11-29 2021-11-26 Compressor and refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205085.6 2019-11-29
CN201911205085.6A CN110985384B (zh) 2019-11-29 2019-11-29 压缩机及制冷设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/535,799 Continuation US20220082309A1 (en) 2019-11-29 2021-11-26 Compressor and refrigeration device

Publications (1)

Publication Number Publication Date
WO2021103552A1 true WO2021103552A1 (zh) 2021-06-03

Family

ID=70088735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100762 WO2021103552A1 (zh) 2019-11-29 2020-07-08 压缩机及制冷设备

Country Status (6)

Country Link
US (1) US20220082309A1 (zh)
EP (1) EP3957855A4 (zh)
JP (1) JP2022534304A (zh)
KR (1) KR102542439B1 (zh)
CN (1) CN110985384B (zh)
WO (1) WO2021103552A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985384B (zh) * 2019-11-29 2023-11-17 安徽美芝精密制造有限公司 压缩机及制冷设备
EP4047209A4 (en) * 2020-10-21 2023-06-21 Anhui Meizhi Precision Manufacturing Co., Ltd. COMPRESSOR AND COOLING UNIT
DE102020007490A1 (de) 2020-12-08 2022-06-09 Truma Gerätetechnik GmbH & Co. KG Klimagerät
CN117145772A (zh) * 2022-05-23 2023-12-01 珠海格力电器股份有限公司 流体机械和换热设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057395A (ja) * 2006-08-30 2008-03-13 Toshiba Kyaria Kk 密閉型回転式圧縮機及び冷凍サイクル装置
US20110150683A1 (en) * 2009-12-22 2011-06-23 Lee Yunhi Rotary compressor
CN205858676U (zh) * 2016-07-28 2017-01-04 广东美芝制冷设备有限公司 双缸压缩机
CN107476979A (zh) * 2017-08-10 2017-12-15 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调器及压缩机的装配方法
CN107489620A (zh) * 2017-09-11 2017-12-19 珠海凌达压缩机有限公司 压缩机及具有其的空调器
CN107859623A (zh) * 2017-10-23 2018-03-30 珠海格力节能环保制冷技术研究中心有限公司 压缩机及制冷系统及空调器
CN108119955A (zh) * 2017-12-19 2018-06-05 珠海格力节能环保制冷技术研究中心有限公司 空调器系统及具有其的空调器
CN109058106A (zh) * 2018-09-13 2018-12-21 珠海凌达压缩机有限公司 泵体组件、压缩机及双温度空调系统
CN208749557U (zh) * 2018-06-25 2019-04-16 上海海立电器有限公司 空调系统及其压缩机与排气结构
CN110821833A (zh) * 2019-11-29 2020-02-21 安徽美芝精密制造有限公司 压缩机及制冷设备
CN110985384A (zh) * 2019-11-29 2020-04-10 安徽美芝精密制造有限公司 压缩机及制冷设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797715B2 (ja) * 2006-03-09 2011-10-19 ダイキン工業株式会社 冷凍装置
JP5040907B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 冷凍装置
US10254013B2 (en) * 2014-03-03 2019-04-09 Guangdong Meizhi Compressor Co., Ltd. Two-stage rotary compressor and refrigeration cycle device having same
JP2016114049A (ja) * 2014-12-15 2016-06-23 三星電子株式会社Samsung Electronics Co.,Ltd. 回転式圧縮機
EP3343040B1 (en) * 2015-08-24 2022-03-02 Guangdong Meizhi Compressor Co., Ltd. Rotary compressor and freezing circulation device having same
CN207437362U (zh) * 2017-10-23 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 压缩机及制冷系统及空调器
DE102018128557A1 (de) * 2018-11-14 2020-05-14 Wabco Gmbh Hubkolbenmaschine, Druckluftversorgungsanlage, Fahrzeug und Verfahren zur Herstellung einer Hubkolbenmaschine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057395A (ja) * 2006-08-30 2008-03-13 Toshiba Kyaria Kk 密閉型回転式圧縮機及び冷凍サイクル装置
US20110150683A1 (en) * 2009-12-22 2011-06-23 Lee Yunhi Rotary compressor
CN205858676U (zh) * 2016-07-28 2017-01-04 广东美芝制冷设备有限公司 双缸压缩机
CN107476979A (zh) * 2017-08-10 2017-12-15 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调器及压缩机的装配方法
CN107489620A (zh) * 2017-09-11 2017-12-19 珠海凌达压缩机有限公司 压缩机及具有其的空调器
CN107859623A (zh) * 2017-10-23 2018-03-30 珠海格力节能环保制冷技术研究中心有限公司 压缩机及制冷系统及空调器
CN108119955A (zh) * 2017-12-19 2018-06-05 珠海格力节能环保制冷技术研究中心有限公司 空调器系统及具有其的空调器
CN208749557U (zh) * 2018-06-25 2019-04-16 上海海立电器有限公司 空调系统及其压缩机与排气结构
CN109058106A (zh) * 2018-09-13 2018-12-21 珠海凌达压缩机有限公司 泵体组件、压缩机及双温度空调系统
CN110821833A (zh) * 2019-11-29 2020-02-21 安徽美芝精密制造有限公司 压缩机及制冷设备
CN110985384A (zh) * 2019-11-29 2020-04-10 安徽美芝精密制造有限公司 压缩机及制冷设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957855A4

Also Published As

Publication number Publication date
JP2022534304A (ja) 2022-07-28
US20220082309A1 (en) 2022-03-17
EP3957855A4 (en) 2022-10-26
CN110985384B (zh) 2023-11-17
KR102542439B1 (ko) 2023-06-14
CN110985384A (zh) 2020-04-10
EP3957855A1 (en) 2022-02-23
KR20220003053A (ko) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2021103552A1 (zh) 压缩机及制冷设备
CN203272136U (zh) 单缸多级压缩机
CN110778498B (zh) 压缩机及制冷设备
KR20090095378A (ko) 밀폐형 압축기
CN203335407U (zh) 单缸双级压缩泵体及压缩机
CN110821833A (zh) 压缩机及制冷设备
KR101587174B1 (ko) 로터리 압축기
CN110863987B (zh) 压缩机及制冷设备
CN102410221A (zh) 双缸旋转式压缩机
KR101587170B1 (ko) 로터리 압축기
WO2022082958A1 (zh) 压缩机和制冷设备
CN112360739B (zh) 压缩机
CN110863985A (zh) 压缩机及制冷设备
CN213360420U (zh) 压缩机和制冷设备
CN111005870A (zh) 双泵体组件、压缩机和空调系统
CN112253461B (zh) 压缩机、空调器及热水器
CN110863986B (zh) 压缩机及制冷设备
CN214837120U (zh) 多缸回转式压缩机和制冷循环装置
CN219529308U (zh) 压缩机及制冷设备
CN221033119U (zh) 泵体组件、压缩机及制冷设备
CN110836183A (zh) 压缩机及其压缩机构
CN108331733A (zh) 一种开启式中间补气双缸活塞制冷压缩机
CN215409201U (zh) 泵体及压缩机
CN112412785B (zh) 压缩机及冷冻循环装置
CN211343353U (zh) 双泵体组件、压缩机和空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570963

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217039016

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020892459

Country of ref document: EP

Effective date: 20211117

NENP Non-entry into the national phase

Ref country code: DE