WO2011071077A1 - 発光素子およびその製造方法 - Google Patents

発光素子およびその製造方法 Download PDF

Info

Publication number
WO2011071077A1
WO2011071077A1 PCT/JP2010/072018 JP2010072018W WO2011071077A1 WO 2011071077 A1 WO2011071077 A1 WO 2011071077A1 JP 2010072018 W JP2010072018 W JP 2010072018W WO 2011071077 A1 WO2011071077 A1 WO 2011071077A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
type layer
light emitting
layer
electrode
Prior art date
Application number
PCT/JP2010/072018
Other languages
English (en)
French (fr)
Inventor
達憲 豊田
豊 大田
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US13/513,015 priority Critical patent/US8860294B2/en
Publication of WO2011071077A1 publication Critical patent/WO2011071077A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body

Definitions

  • the present invention relates to a light emitting device used as an LED or the like and a method for manufacturing the same.
  • Patent Document 1 for the purpose of reducing a leakage current accompanying an increase in emission intensity, damage to the active layer is reduced to prevent cracks during the formation of the active layer, and the warpage of the entire wafer is minimized.
  • Patent Document 2 includes a laminate in which an n-type layer, an active layer, and a p-type layer are laminated on a substrate in order to allow a uniform current to flow over the entire light emitting surface, and the laminate is an n-side electrode.
  • n-line electrodes are formed in the n-electrode formation regions, and light is transmitted over almost the entire surface of the p-type layer.
  • the n-line electrodes are separated from each other and arranged at equal intervals, and an n-pad electrode is formed at one end of each n-line electrode.
  • the n-line electrodes are alternately formed on the translucent electrode.
  • a comb-shaped electrode is proposed in which a line-shaped current diffusion conductor is formed so as to be equidistant from an adjacent n-line electrode and a p-pad electrode is formed at one end of the current diffusion conductor. Yes.
  • Patent Document 1 Examining Patent Document 1 from this point of view, this document is only for the purpose of avoiding damage to the light emitting portion under the bonding electrode during bonding.
  • the auxiliary electrode of the p electrode is used with the n electrode at the center. It was only going around.
  • Patent Document 2 proposes a comb-shaped electrode in which a pad electrode is formed at one end of a current spreading conductor.
  • a pad electrode is formed at one end of a current spreading conductor.
  • the present invention has been made under the above-described circumstances, and the problem to be solved is that a current is distributed to the semiconductor forming the light emitting layer without increasing the number of pad electrodes. It is providing the light emitting element which can be manufactured, and its manufacturing method.
  • the inventors conducted further research.
  • the contact resistance between the n-contact portion and the n-type layer is low even if the auxiliary electrode is extended so that the current spreads.
  • the current does not diffuse as desired, and that the current does not diffuse because the contact portion with the n-type layer extends over the entire n-electrode.
  • the present inventors do not increase the number of pad electrodes, but disperse and dispose the contact portions of two or more first conductivity type electrodes effectively in a discontinuous manner.
  • the inventors of the present invention have completed the present invention by conceiving that current can be distributed to the semiconductor forming the light-emitting layer by supplying current independently to the contact portion of the mold electrode using conductor wiring.
  • the first invention for solving the above-described problem is Having a laminated structure in which a first conductivity type layer and a second conductivity type layer are provided with a light emitting layer interposed therebetween; A groove structure that divides the second conductivity type layer and the light emitting layer into two parts, A second conductive type electrode pad electrically connected to the second conductive type layer on the divided second conductive type layer; A first conductivity type electrode pad on the divided second conductivity type layer; A light emitting device having two or more independent electrical contacts connected to the first conductivity type layer by conductive wiring extending from the first conductivity type electrode pad to the first conductivity type layer as a starting point.
  • the second invention is Having a laminated structure in which a first conductivity type layer and a second conductivity type layer are provided with a light emitting layer interposed therebetween;
  • the second conductivity type layer is divided into two parts by a groove structure that forms an exposed portion of the first conductivity type layer;
  • a second conductive type electrode pad electrically connected to the second conductive type layer on the divided second conductive type layer;
  • Two or more independent portions provided on the exposed portion of the first conductivity type layer, starting from the electrode pad of the first conductivity type, on the divided second conductive type layer and on the side surface of the divided portion. It is a light emitting element which has the conductive wiring extended toward this electrical contact.
  • the third invention is Having a laminated structure in which a first conductivity type layer and a second conductivity type layer are provided with a light emitting layer interposed therebetween;
  • the second conductivity type layer is divided into two parts by a groove structure that forms an exposed portion of the first conductivity type layer;
  • a second conductive type electrode pad electrically connected to the second conductive type layer on the divided second conductive type layer;
  • Two or more independent electrical contacts provided on the exposed portion of the first conductivity type layer are formed by conductive wiring extending from the first conductivity type electrode pad to the exposed first conductivity type layer. It is a light emitting element having.
  • the fourth invention is: The height from the bottom surface of the first conductivity type layer to the upper surface of the electrode pad of the second conductivity type is equal to the height from the bottom surface of the first conductivity type layer to the upper surface of the electrode pad of the first conductivity type. It is a light emitting element in any one of 3rd invention.
  • the fifth invention is: The light emission according to any one of the first to fourth aspects, wherein the number X of the first conductivity type electrode pads and the number Y of the second conductivity type electrode pads satisfy X ⁇ Y and X + Y ⁇ 3. It is an element.
  • the sixth invention is: Forming a laminated structure having a first conductivity type layer, a light emitting layer, and a second conductivity type layer on the substrate in order from the substrate side; A step of exposing the first conductivity type layer by etching from the second conductivity type layer side to form a groove structure that divides the second conductivity type layer into two parts, Forming a second conductivity type electrode pad on the divided second conductivity type layer; and Forming a conductive wiring extending from the divided second conductive type layer to the exposed portion of the first conductive type layer; Forming a first conductive type electrode pad on the divided second conductive type layer; The conductive wiring has a portion not extending with respect to a part of the exposed portion of the first conductivity type layer, A method of manufacturing a light emitting device, wherein two or more independent electrical contacts are formed with respect to an exposed portion of the first conductivity type layer, starting from the first conductivity type electrode pad.
  • the present invention since the current flows in a distributed manner in the semiconductor layer forming the light emitting layer, a light emitting element with less characteristic deterioration due to current concentration, less life shortening, and less mounting defects can be obtained.
  • FIG. 5B is a plan view after a pattern is formed by dry etching by photolithography.
  • C is a top view after forming the second electrode.
  • D is a top view after forming a first electrode.
  • E is a top view after forming an electrode pad. It is II sectional drawing of FIG.1 (e).
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 3 is an appearance photograph of about 48.5 times showing a light emitting state of the light emitting element according to Example 1.
  • FIG. 4 is a graph showing a relationship between an emission wavelength and a current in the light emitting element according to Example 1.
  • 6 is an appearance photograph of about 48.5 times showing a light emitting state of a light emitting element according to Comparative Example 1. It is a graph which shows the relationship between the light emission wavelength and electric current in the light emitting element which concerns on Example 1 and Comparative Examples 1 and 2.
  • FIG. FIG. 4 is a schematic plan view for each process in a processing example of a light emitting element chip according to Comparative Example 1, and description of each drawing of (a) to (e) is the same as FIG. FIG.
  • FIG. 6 is a schematic plan view for each process in a processing example of a light emitting element chip according to Comparative Example 2, and description of each drawing of (a) to (e) is the same as FIG.
  • FIG. 10 is a schematic plan view for each process in a processing example of a light emitting element chip according to Comparative Example 3, and description of each drawing of (a) to (e) is the same as FIG.
  • FIG. 1A to 1E are schematic plan views for each process in a processing example of a light emitting element chip according to the present invention.
  • FIG. 1A is a plan view before processing
  • FIG. 1B is a plan view after forming a pattern by dry etching
  • FIG. 1C is a plan view after forming a second electrode.
  • D is a top view after forming a first electrode
  • e is a plan view after forming an electrode pad.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG. 1 (e)
  • FIG. 3 is a cross-sectional view taken along the line II-II in FIG. 1 (e)
  • FIG. 1A is a plan view of the light emitting device chip 100 according to the present invention before processing, and the second conductivity type layer 111 can be seen.
  • a light emitting layer 112 (not shown) to be described later is formed below the second conductivity type layer 111, and a first conductivity type layer 113 is further formed below the light emission layer 112.
  • These layers are semiconductor layers formed on a growth substrate (not shown) such as a sapphire substrate.
  • the first conductivity type layer is an n-type AlGaN
  • the second conductivity type layer is a p-type AlGaN
  • the light emitting layer is an AlInGaN group III-V semiconductor.
  • n and p are reversed.
  • the semiconductor may be GaN, InGaN, or the like other than AlGaN.
  • a groove pattern is formed on the light emitting element chip 100 according to the present invention by dry etching after forming a mask pattern by photolithography (in the present invention, it may be described as “RIE”).
  • FIG. A SiO 2 mask is formed by CVD on the second conductivity type layer 111 of the light emitting element chip 100, and a mask pattern is formed by photolithography. After that, by RIE, the second conductive type layer 111, the light emitting layer 112, and the first conductive type layer 113 at portions where the mask is not provided are etched away, and the exposed portion 115 of the first conductive type layer is removed. Then, the first conductivity type layer 113 was exposed.
  • the first conductive type layer 113 was exposed in the same manner with a sufficient width to separate the adjacent light emitting element chips 100 later to form separation grooves.
  • the first conductive type layer 113 is partially removed by etching, the exposed portion 115 of the first conductive type layer is formed, and the first conductive type layer 113 is exposed is illustrated.
  • the etching is not limited to the middle of the first conductivity type layer 113, and the etching may be stopped when the first conductivity type layer is exposed, or the first conductivity type layer may be completely removed. . When the first conductivity type layer is completely removed, contact the exposed side surface of the first conductivity type layer or support the first conductivity type layer with a conductive substrate or the like. It ’s fine.
  • the groove pattern is for separating the n-electrode and the p-electrode between the individual light-emitting element chips 100 and the light-emitting element chip 100 and forming the n-electrode in the second conductivity type layer 111. As described above, This is for the effect that the current flows by uniformly diffusing through the first conductivity type layer.
  • the second conductivity type layer 111 is divided into a relatively small second conductivity type layer 111a and a relatively large second conductivity type layer 111b by the groove pattern. After the RIE, the SiO 2 mask is removed by etching. However, the SiO 2 mask on the second conductivity type layer 111a may be used because it can be used as an insulating film described later.
  • FIG. 1C is a plan view after the second electrode 121 is formed on the light emitting element chip 100 according to the present invention.
  • the second electrode 121 is formed, for example, by forming a (Ni / Au) layer on the second conductivity type layer 111b.
  • the electrodes can be selected from known metal configurations.
  • the second electrode 121 is formed on the entire surface of the second conductivity type layer 111b, and is preferably a full surface electrode.
  • the full-surface electrode has a function of forming a contact with the second conductivity type layer 111b, diffusing a current from the pad electrode, and transmitting or reflecting light emitted from the light emitting layer.
  • FIG. 1D is a plan view after the first electrode 131 is formed on the light emitting element chip 100 according to the present invention.
  • the first electrode 131 is formed, for example, by forming a (Ti / Al / Ti) layer from the second conductivity type layer 111a to the exposed portion 115 of the first conductivity type layer.
  • the electrodes can be selected from known metal configurations. Details of the film formation of the first electrode 131 over the exposed portion 115 of the first conductivity type layer will be described later, but this is the film formation of the first electrode 131 on the convex portion of the second conductivity type layer 111a. 131a is formed from the convex portion to the exposed portion 115 of the first conductivity type layer.
  • a contact portion 135 between 131a, which is the film formation of the first electrode 131, and the first conductivity type layer 113 was formed around the convex portion.
  • the first electrode film formation 131b on the second conductivity type layer 111a that is not a convex portion does not contact the exposed portion 115 of the first conductivity type layer. That is, the first electrode film formation 131 has a portion that does not extend to a part of the exposed portion of the first conductivity type layer.
  • the first electrode 131 is formed from both ends of the convex portion of the second conductivity type layer 111a in the left-right direction to the exposed portion 115 of the first conductivity type layer, and the first conductivity type layer is exposed.
  • the first electrode film 131 c in contact with the portion 115 is formed.
  • a contact portion 136 between 131c, which is the film formation of the first electrode 131, and the first conductivity type layer 113 is formed from both ends of the convex portion in the left-right direction.
  • FIG. 1E is an example of a plan view after electrode pads are formed on the light emitting element chip 100 according to the present invention.
  • the electrode pad is obtained by forming, for example, a (Ti / Au) layer as the first conductor-side electrode pad 141 on the convex portion of the second conductivity type layer 111a.
  • a (Ti / Au) layer is formed as the conductor-side electrode pad 142.
  • the pad electrode can also be selected from known metal configurations.
  • the number X of the first conductivity type electrode pads and the number of the second conductivity type electrode pads 142 are such that the number of the first conductor side electrode pads 141 is one for the two second conductor side electrode pads 142.
  • the number Y of X is preferably set so that X ⁇ Y and X + Y ⁇ 3. These electrode pads are preferably arranged non-linearly.
  • an insulating protective film such as SiO 2 or resin is formed on the light emitting element chip 100, and then the first and second conductor sides are formed.
  • the protective film on the electrode pads 141 and 142 is removed.
  • FIG. 1 (e) is a cross-sectional view taken along the line II in FIG. 2, the cross-sectional view taken along the line II-II in FIG. 3, and the cross-sectional view taken along the line III-III in FIG. Further explanation will be given.
  • a semiconductor layer formed on a growth substrate such as a sapphire substrate has a first conductive type layer 113, a light emitting layer 112, and a second conductive type layer 111 formed from below. Has been.
  • a groove pattern is dug in the semiconductor layer, an exposed portion 115 of the first conductivity type layer is formed, and the first conductivity type layer 113 is exposed. Further, the groove pattern divides the second conductivity type layer 111 into a second conductivity type layer 111a and a second conductivity type layer 111b. A second electrode 121 is formed on the second conductivity type layer 111b. On the other hand, the first electrode 131 is formed on the second conductivity type layer 111a, but the first electrode 131 is formed not only on the second conductivity type layer 111a but also along the walls of the groove pattern. The contact portions 135 and 136 are formed in contact with the exposed first conductivity type layer 113 to ensure electrical contact.
  • electrical contact can also be formed on the upper surface of the first electrode 131 and the second conductivity type layer 111a, the side surface of the second conductivity type layer 111a, and the side surface of the light emitting layer 112.
  • the electrical contact to the second conductivity type layer 111a and the light emitting layer 112 can be ignored. Therefore, in the present invention, these electrical contacts are not considered to be electrical contacts.
  • the first conductor-side electrode pad 141 is the second conductive line that is the three conductive wirings that contact the exposed first conductive type layer 115 independently from each other, starting from the first conductive type electrode pad.
  • the film 131c is provided on the exposed portion 115 of the first conductivity type layer and is independent of each other, the first electrode film formation and the contact portion 135 between the first conductivity type layer and the left and right second conductivity type layer protrusions.
  • the first electrode film is formed in contact with the three portions of the contact portion 136 between the film formation of the first electrode and the first conductivity type layer from both ends of the portion in the left-right direction.
  • the island-shaped second conductivity type layer 111a is used to form contact portions with two or more independent first conductivity type layers 113 with respect to one first conductor-side electrode pad 141.
  • the shape is not limited to the exemplified shape.
  • the first electrode 131 is preferably electrically insulated from the second conductivity type layer 111 a and the light emitting layer 112. This is because current can be prevented from leaking to the semiconductor surface by the insulation.
  • a first conductor side electrode pad 141 is formed on the first electrode 131. Further, as shown in FIG. 4, a second conductor side electrode pad 142 is formed on the second electrode 121.
  • the pad electrode can be formed on the first conductor side and the second conductor side at the same time, or can be formed by changing the thickness in a separate process, and the film of the first electrode 131 and the second electrode 121 can be formed.
  • the dimensions from the first conductivity type layer 113 to the upper surfaces of the first and second conductor side electrode pads 141 and 142 are made equal to each other according to the thickness difference (in the present invention, the dimension difference is 200 nm or less). I can do it.
  • the dimensional difference from the first conductivity type layer 113 to the upper surface of the second conductor side electrode pad 142 is, for example, Since the thickness is 1.3 ⁇ m or more, it is difficult to match the height of the pad electrode except that the thickness of the first conductor-side electrode pad 141 is very large.
  • the plating method can be applied because the production cost is high in the vapor deposition method, but the thickness control in a few nm is possible in the plating method. Have difficulty.
  • the relatively small second conductivity type layer 111a is not removed by etching, so that the bonding position (height) is changed for each pn in the wire bonding process or flip chip mounting process of the light emitting element chip 100. This eliminates the need for bonding, facilitates bonding, and suppresses defects such as poor connection and tilting of the chip.
  • the light emitting element chip 100 When a current was passed through the light emitting element chip 100 according to the present invention, it was found that the light emitting element had high luminous efficiency. This is presumably because the uniformly diffused current flows through the first conductivity type layer 113 and the light emitting layer 112 emits light uniformly and with high efficiency.
  • the first conductivity type layer 113 is n-type AlGaN
  • the second conductivity type layer is p-type AlGaN
  • the light emitting layer is an AlInGaN III-V group semiconductor as an example. explain.
  • the electrons that flow into the first conductor-side electrode pad 141 easily pass through the first electrode 131 having metal conductivity, and flow into the first conductivity type layer 113 from the contact portions 135 and 136.
  • the contact portions 135 and 136 are dispersed on the first conductivity type layer 113 and provided over a wide range, electrons flow uniformly into the first conductivity type layer 113 over a wide range.
  • the electrons that flow into the first conductivity type layer 113 uniformly pass through the light emitting layer 112 over a wide range, and the light emitting layer 112 emits light uniformly and with high efficiency. Thereafter, it flows from the second conductivity type layer 111 to the second electrode 121 having metal conductivity, and further flows out from the second conductor side electrode pad 142.
  • the second conductor-side electrode pads 142 are provided in a plurality of locations to ensure that the electrons flowing into the first conductivity type layer 113 pass through the light emitting layer 112 uniformly over a wide range. is doing. That is, as in the description of the paragraph (0026), it is preferable that X ⁇ Y and X + Y ⁇ 3, and it is preferable to arrange them non-linearly.
  • a plurality of contact portions distributed to one pad electrode can be arranged.
  • a current can be uniformly diffused to the first conductive type layer, the light emitting layer, and the second conductive type layer, and a light emitting element with less characteristic deterioration due to current concentration and less lifespan can be obtained.
  • the heights of the first and second conductor side electrode pads can be easily made equal. As a result, there is no need to change the bonding position for each of the first and second conductor-side electrode pads during wire bonding or flip chip mounting, and bonding is facilitated and defects such as poor connection and tilting of the chip are suppressed. be able to.
  • the second conductive type layer 111a is relatively small, and the upper and side surfaces of the second conductive type layer 111a are used to form electrode wirings that branch to contact portions to the first conductive type layers that are dispersed independently of each other.
  • the shape of the first electrode 131 can be a comb shape, a radial shape, or the like.
  • Example 1 An AlN template having an AlN buffer on a sapphire substrate is prepared as a growth substrate (not shown), a superlattice buffer layer (not shown) having a thickness of 745 nm, a first conductivity type layer is formed on the growth substrate.
  • a n-AlGaN layer having a thickness of 1722 nm an MQW active layer having a thickness of 184 nm as the light emitting layer 112, a p-AlGaN layer having a thickness of 282 nm as the second conductivity type layer 111, and a contact layer (not shown).
  • a light-emitting structure sample having an emission wavelength of 465 nm and p-GaN having a thickness of 22 nm was produced.
  • the light emitting structure sample was subjected to appropriate surface cleaning and annealing, and then a RIE SiO 2 mask was formed on the p-GaN contact layer using a photolithography method. Then, the portion exposed from the SiO 2 mask is etched to a depth of about 1.3 ⁇ m using RIE so that a part of the n-AlGaN layer is exposed from the p-GaN contact layer to the n-AlGaN layer. went. By the etching, separation grooves that are exposed portions 115 of the first conductivity type layers that individually divide the elements according to the first embodiment are formed, and the light-emitting element chips 100 according to the first embodiment divided by the division grooves.
  • the relatively large second conductivity type layer 111b serving as a light emitter and the relatively small second conductivity type layer 111a serving as an n-electrode pad forming portion were divided by the dividing groove. Thereafter, the SiO 2 mask was removed.
  • a Ni layer having a thickness of 5 nm that is the second electrode 121 is formed on the p-GaN contact layer by sputtering, and the thickness is increased.
  • a 20-nm Au layer was formed to form a p-electrode, and portions other than the p-electrode were removed by etching.
  • the p-AlGaN layer which is the relatively small second conductivity type layer 111a, up to a part (each contact portion dispersed independently) on the n-AlGaN layer exposed from the p-GaN contact layer.
  • a resist mask is formed using a photolithography method so as to expose the film.
  • a resist mask is also formed on a part of the second conductivity type layer 111a so as to have an electric wiring shape in which the contact portions are dispersed independently. Then, after forming a 18-nm-thick Ti layer, a 300-nm-thick Al layer, and a 5-nm-thick Ti layer as the first electrode 131 by the sputtering method, lift-off is performed, and the first electrode 131 makes a round from the convex portion of the second conductivity type layer.
  • Film formation 131a of the first electrode largely extending to the first conductivity type layer, film formation 131b of the first electrode formed only on the second conductivity type layer in the second conductivity type layer, which is not the convex portion.
  • an n electrode having a first electrode film 131c that contacts the exposed portion of the first conductor via the electric wiring of the film 131b was integrally formed.
  • the n-electrode extends from the relatively small second conductivity type layer 111a to a part of the exposed n-AlGaN layer (each dispersed contact portion) including the side surfaces of the divided portions. Electric wiring.
  • an electrical contact between the p electrode and the p contact layer is formed in the relatively large second conductivity type layer 111b, and the periphery of the relatively small second conductivity type layer 111a is exposed.
  • Electrical contact was formed at the contact portion 135 between the first conductivity type layer 113 and the n-electrode and the left and right contact portions 136.
  • the first conductive side electrode pad 141 starts from the first conductive type electrode pad, and the first conductive side electrode pad 141 is formed on the convex portion of the second conductive type layer which is a conductive wiring extending to the exposed first conductive type layer.
  • the first conductive film 131a, the first conductive film 131b in the second conductive type layer that is not a convex portion, and the first conductive film 131c in contact with the exposed portion of the first conductor are used for the first conductive layer. From the both ends of the contact part 135 between the film formation of the first electrode and the first conductivity type layer and the left and right convex portions of the second conductivity type layer, which are provided in the exposed portion 115 of the mold layer and are independent from each other. Further, electrical contact was made at each of the three positions of the contact portion 136 between the film formation of the first electrode and the first conductivity type layer.
  • a Pt layer having a thickness of 50 nm, an Au layer having a thickness of 100 nm, and a Ti layer having a thickness of 5 nm were formed on the p electrode as a film (not shown) of the p electrode.
  • a resist mask is provided so that a part on the p electrode and the n electrode is exposed, and a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 500 nm, and a Ti layer having a thickness of 10 nm are used as the n electrode pad and the p electrode pad.
  • a pad electrode is formed by lift-off.
  • a SiO 2 layer is formed over the entire surface as a protective film, masked with a resist so that part of the p electrode pad and n electrode pad is exposed, and then the SiO 2 layer and Ti layer on the pad are removed by RIE. Then, an Au pad electrode to be the first conductor side electrode pad 141 and the second conductor side electrode pad 142 is formed. Thereafter, the resist mask was removed, and after cleaning, the substrate was ground and polished, and the separation grooves provided around the light emitting element chip 100 were scribed to obtain individually separated light emitting element chips 100.
  • FIG. 5 shows an external appearance photograph taken with an optical microscope of about 48.5 times, showing the light emitting state of the manufactured light emitting device according to Example 1.
  • the light emitting area of the light emitting element was 1.04 ⁇ 10 ⁇ 7 m 2 .
  • the forward voltage (Vf) when a current of 20 mA was passed through the light emitting element was 3.11 V
  • the light output (Po) by the integrating sphere was 3.22 mW.
  • the emission wavelength when a current of 1 to 70 mA was passed through the light emitting element was measured.
  • FIG. 6 is a graph in which measurement values of five light emitting element samples according to Example 1 are plotted with the measurement current value on the horizontal axis and the emission wavelength on the vertical axis.
  • Comparative Example 1 The exposed portion 115 of the first conductivity type layer, the film formation 131b of the first electrode in the portion of the second conductivity type layer that is not a convex portion, and the exposed portion contact of the first conductor described in “Detailed Description of the Invention”
  • a light emitting device according to Comparative Example 1 was manufactured by performing the same process as in Example 1 except that the first electrode film 131c was not provided.
  • FIG. 9 (a) to 9 (e) are plan views according to the light emitting device and the manufacturing method thereof according to Comparative Example 1.
  • FIG. 9 (a) to 9 (e) are plan views according to the light emitting device and the manufacturing method thereof according to Comparative Example 1.
  • the exposed portion 115 of the first conductive type layer was formed, and the first conductive type layer 113 was exposed.
  • the contact portion between the first electrode 131 and the first conductivity type layer 113 is only around the first conductor-side electrode pad 141 (that is, one continuous location), and Neither the exposed portion 115 of the first conductivity type layer nor the second conductivity type layer 111 is developed left and right.
  • the first conductive type layer exposed portion 115 does not expand from side to side in the comparative example 1, so that the second conductive type layer 111a is formed on the convex portion.
  • the first electrode 131 is formed from 131a to the exposed portion 115 of the first conductivity type layer.
  • a contact portion 135 between 131a, which is the film formation of the first electrode 131, and the first conductivity type layer 113 was formed around the convex portion.
  • a blue LED having an emission wavelength of 465 nm was manufactured as a light emitting element according to Comparative Example 1 by the above process.
  • FIG. 7 shows an external appearance photograph of about 48.5 times showing the light emitting state of the manufactured light emitting device according to Comparative Example 1.
  • the light emitting area of the light emitting element was 1.42 ⁇ 10 ⁇ 7 m 2 .
  • Vf was 3.03 V
  • Po was 3.45 mW.
  • the emission wavelength when a current of 1 to 70 mA was passed through the light emitting device of Comparative Example 1 was measured.
  • FIG. FIG. 8 is a graph in which the horizontal axis represents the measured current value, the vertical axis represents the emission wavelength, and the measurement results of three light emitting element samples according to Comparative Example 1 are averaged and plotted as ⁇ ⁇ ⁇ .
  • one measurement result selected from the light emitting element sample according to Example 1 is also plotted with-.
  • FIGS. 10A to 10E are plan views according to the light emitting device and the manufacturing method thereof according to Comparative Example 2.
  • the comparatively small second conductive type layer 111a in the comparative example 2 has only the periphery of the first conductor-side electrode pad 141 as in the comparative example 1, and the left and right developments. It was formed in the shape without.
  • the second conductivity type layer 111a does not expand left and right.
  • 131a which is the film formation of the first electrode 131
  • the first conductive type layers dispersed independently of each other are used although the upper surface and the side surface of the second conductive type layer 111a are used. Therefore, the contact portion (electrical contact) between the first electrode 131 and the first conductivity type layer 113 is not independent of each other. For this reason, the circumference
  • a blue LED having an emission wavelength of 465 nm was manufactured as a light emitting element according to Comparative Example 2 by the above process.
  • the light emitting area of the light emitting device according to Comparative Example 2 was 1.04 ⁇ 10 ⁇ 7 m 2 .
  • Vf was 3.01 V
  • Po was 3.52 mW.
  • the measurement results of the light emitting element sample according to Comparative Example 2 are also plotted with - ⁇ - in FIG.
  • Comparative Example 3 The same operation as in Example 1 was performed except that the relatively small second conductivity type layer was not formed and the first conductivity type layer at the relatively small second conductivity type layer in Comparative Example 2 was exposed. As a result, a light emitting device according to Comparative Example 3 was manufactured.
  • FIG. 11 (a) to 11 (e) are plan views according to the light emitting device and the manufacturing method thereof according to Comparative Example 2.
  • FIG. 11 (a) to 11 (e) are plan views according to the light emitting device and the manufacturing method thereof according to Comparative Example 2.
  • Comparative Example 3 does not form a SiO 2 mask in a portion that becomes a relatively small second conductivity type layer, and together with others when forming an exposed portion by RIE. Etching was removed, and the relatively small second conductivity type layer 111a was not formed.
  • the second conductive type layer 111a is not formed in the comparative example 3 unlike the first example, but the first electrode 131 is formed from the convex portion 131a.
  • the film is formed over the exposed portion 115 of the first conductivity type layer.
  • the first electrode 131 having the same shape as that of the first embodiment is directly formed on the first conductivity type layer 113.
  • the contact portion (electrical contact) between the first electrode 131 and the first conductivity type layer 115 is not independent from each other, and the entire periphery of the first conductor side electrode pad 141 and the wiring portion extending to the left and right are The point which is a continuous structure is the same as that of the comparative example 2.
  • a blue LED having an emission wavelength of 465 nm was manufactured as a light emitting element according to Comparative Example 3 by the above process.
  • the light emitting element according to Example 1 and the light emitting element according to Comparative Example 1 have different shapes of the first conductivity type layer. Due to the difference in shape, the shape of the second electrode and the light emitting area are different, and the light emitting element according to Comparative Example 1 has a larger light emitting area. Since the light emitting area is wide, the light emitting element according to Comparative Example 1 has a slightly lower Vf and a higher Po. However, the light emitting element according to Comparative Example 1 has a large shift amount of the emission wavelength due to the change in the amount of current passed through the light emitting element as shown in FIG. This is presumably because, in the light emitting element according to Comparative Example 1, the current flows in a concentrated manner in a part of the light emitting layer, so that heat is generated in the concentrated portion, and the emission wavelength is changed by the heat generation.
  • the light emitting device according to Example 1 and the light emitting device according to Comparative Example 2 are compared, both have the same light emitting area.
  • the electrical contacts are independent from each other, whereas in the light emitting element according to Comparative Example 2, there is a difference that the electrical contacts are continuous. Due to the difference in electrical contact, the light emitting device according to Comparative Example 2 has a slightly lower Vf and a higher Po than the light emitting device according to Example 1 when the current is applied at 20 mA.
  • the light emitting element according to Comparative Example 2 has a large shift amount of the emission wavelength due to the change in the amount of current passed through the light emitting element, like the light emitting element according to Comparative Example 1 described above.
  • the light emitting element which concerns on the comparative example 3 showed the tendency similar to the light emitting element which concerns on the comparative example 2 (not shown in FIG. 8). This is because, in the light emitting element according to Comparative Example 2, as in the light emitting element according to Comparative Example 1 described above, priority is given to the flow of current from the periphery of the pad electrode, and the current flows concentrated in a part of the light emitting layer. It is considered that heat is generated in the current concentration portion and the emission wavelength is changed by the heat generation.
  • the light-emitting element according to Example 1 is an excellent light-emitting element with no long-term lifetime and no deterioration in characteristics due to current concentration as compared with the light-emitting elements according to Comparative Examples 1, 2, and 3.
  • the light-emitting element according to Example 1 is a light-emitting element with excellent productivity that does not cause poor connection in the flip chip mounting process as compared with the light-emitting element according to Comparative Example 3. . From the above, it can be seen that the light-emitting element according to the present invention is a highly reliable light-emitting element in which characteristic deterioration due to current concentration, lifetime reduction, and mounting defects are small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 発光強度の高い半導体発光素子を提供する。発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、前記第2導電層が、前記第1導電型層の露出部を形成する溝構造により、大小2部分に分断されており、当該分断された大きい方の第2導電型層上に第2導電型の電極パッドを有し、当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、当該第1導電型の電極パッドは、当該第1導電型の電極パッドを起点とし、前記露出した第1導電型へ互いに独立してコンタクトする2本以上の導電配線により、前記第1導電型層の露出部に設けられた互いに独立した2箇所以上と、それぞれ電気的にコンタクトしている発光素子を提供する。

Description

発光素子およびその製造方法
 この発明は、LED等として用いられる発光素子およびその製造方法に関する。
 近年、LEDを始めとする半導体発光素子の進歩は著しい。具体的には、発光強度の上昇を初めとする試みが進められている。
 例えば、特許文献1には、発光強度の上昇に伴うリーク電流の減少を目的として、活性層へのダメージを減らして活性層の成膜時のクラックを防止し、ウエハ全体の反りを極力少なくすることで、より均一な特性の窒化ガリウム系半導体発光素子を得る為、ボンディング電極下方のPN接合と、発光部のPN接合とを分離することが提案されている。
 特許文献2には、発光面全体に渡って均一な電流を流す為、基板上にn型層、活性層及びp型層が積層されてなる積層体を備え、その積層体はn側の電極をライン状に形成するためにn型層表面が露出された互いに平行なn電極形成領域を設けられ、そのn電極形成領域にそれぞれnライン電極が形成され、p型層のほぼ全面に透光性電極を形成され、nライン電極は互いに分離して等間隔に配置され、かつ、各nライン電極の一端にはそれぞれnパッド電極が形成され、透光性電極上にはnライン電極と交互に配置されかつ隣接するnライン電極から等距離になるようにライン状の電流拡散導体が形成され、その電流拡散導体の一端にそれぞれpパッド電極が形成された、櫛形形状の電極が提案されている。
特開2001-308380号公報 特開2005-328080号公報
 しかしながら本発明者らは、当該発光強度上昇の試みに伴い素子に流れる電流量が増大することが、これが半導体素子の発光特性や寿命へ悪影響を与えることに想到した。
 そこで当該悪影響を回避する為、本発明者等は、発光層を形成する半導体に均一な電流を流すことが好ましいことに想到した。そして当該観点から、特許文献1、2を検討した。
 当該観点から特許文献1を検討すると、当該文献は、あくまでもボンディング時のボンディング電極下の発光部ダメージ回避が目的であり、電流を分散させる方法については、n電極を中央としてp電極の補助電極を周回させるのみであった。
 また、特許文献2では、電流拡散導体の一端にそれぞれパッド電極が形成する櫛形形状の電極を提案している。しかし当該構成を採ると、発光層を形成する半導体に均一な電流を流す為には多数のパッド電極が必要となり、実用的でないと考えられた。
 本発明は、上述の状況の下でなされたものであり、その解決しようとする課題は、パッド電極の数を増やしたりすることなく、発光層を形成する半導体に分散して電流を流すことのできる発光素子およびその製造方法を提供することである。
 ここで本発明者らはさらに研究を進めた。そして、n型パッド電極および補助電極が全てn型層上に形成されている場合、電流が広がるように補助電極を延伸させても、nコンタクト部とn型層との間のコンタクト抵抗が低くなるにつれ、結局n型パッド電極に近い部分とp電極との距離の短いところに電流が集中して流れ易くなることを知見した。この結果、電流が所望のようには拡散しないこと、および、その電流が拡散しない原因が、n型層とのコンタクト部がn電極全体におよんでいる為であることに想到した。
 当該知見に基づき、本発明者らは、パット電極の数を増やすのではなく、2以上の第1導電型電極のコンタクト部を効果的に非連続に分散して配置し、それぞれの第1導電型電極のコンタクト部へ、導体配線を用いて独立に電流を供給すれば、発光層を形成する半導体に分散して電流を流すことが出来ることに想到し、本発明を完成した。
 即ち、上述の課題を解決するための第1の発明は、
 発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、
 前記第2導電型層と発光層を大小2部分に分断する溝構造を有し、
 当該分断された大きい方の第2導電型層上に第2導電型層と電気的に接続する第2導電型の電極パッドを有し、
 当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、
 当該第1導電型の電極パッドを起点として前記第1導電型層へ延伸する導電配線により、前記第1導電型層と接続し互いに独立した2箇所以上の電気的コンタクトを有する発光素子である。 
 第2の発明は、
 発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、
 前記第2導電型層が、前記第1導電型層の露出部を形成する溝構造により、大小2部分に分断されており、
 当該分断された大きい方の第2導電型層上に第2導電型層と電気的に接続する第2導電型の電極パッドを有し、
 当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、
 前記分断された小さい方の第2導電型層上および分断部側面に、前記第1導電型の電極パッドを起点とし、前記第1導電型層の露出部に設けられた互いに独立した2箇所以上の電気的コンタクトへ向けて延伸する導電配線を有する発光素子である。 
 第3の発明は、
 発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、
 前記第2導電型層が、前記第1導電型層の露出部を形成する溝構造により、大小2部分に分断されており、
 当該分断された大きい方の第2導電型層上に第2導電型層と電気的に接続する第2導電型の電極パッドを有し、
 当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、
 当該第1導電型の電極パッドを起点として前記露出した第1導電型層へ延伸する導電配線により、前記第1導電型層の露出部に設けられた互いに独立した2箇所以上の電気的コンタクトを有する発光素子である。
 第4の発明は、
 前記第1導電型層の底面から前記第2導電型の電極パッド上面迄の高さと、前記第1導電型層の底面から前記第1導電型の電極パッド上面迄の高さとが等しい第1から第3の発明のいずれかに記載の発光素子である。
 第5の発明は、
 前記第1導電型の電極パッドの個数Xと、前記第2導電型の電極パッドの個数Yとが、X<YかつX+Y≧3である第1から第4の発明のいずれかに記載の発光素子である。 
 第6の発明は、
 基板上に、当該基板側から順に、第1導電型層、発光層、第2導電型層を有する積層構造を形成する工程と、
 前記第2導電型層側からエッチングにより第1導電型層を露出させて、前記第2導電型層を大小2部分に分断する溝構造を形成する工程と、
 前記分断された大きい方の第2導電型層上に、第2導電型の電極パッドを形成する工程と、
 前記分断された小さい方の第2導電型層上から、前記第1導電型層の露出部へ延伸する導電配線を形成する工程と、
 前記分断された小さい方の第2導電型層上に、第1導電型の電極パッドを形成する工程を有し、
 前記導電配線は、第1導電型層の露出部の一部に対し延伸しない部分を有し、
 前記第1導電型の電極パッドを起点として、前記第1導電型層の露出部に対して互いに独立した2箇所以上の電気的コンタクトを形成する、発光素子の製造方法である。
 本発明によると、発光層を形成する半導体層中を、電流が分散して流れるので、電流集中による特性劣化や、寿命短縮が少なく、さらに実装不良も少ない発光素子を得ることができた。
本発明に係る発光素子チップの加工例における工程毎の模式的な平面図である。(a)は加工前の平面図である。(b)はフォトリソグラフィーによるドライエッチングにてパターンを形成した後の平面図ある。(c)は第2電極を成膜した後の平面図ある。(d)は第1電極を成膜した後の平面図ある。(e)は電極パッドを成膜した後の平面図である。 図1(e)のI-I断面図である。 図1(e)のII-II断面図である。 図1(e)のIII-III断面図である。 実施例1に係る発光素子の発光状態を示す約48.5倍の外観写真である。 実施例1に係る発光素子における発光波長と電流との関係を示すグラフである。 比較例1に係る発光素子の発光状態を示す約48.5倍の外観写真である。 実施例1、比較例1、2に係る発光素子における発光波長と電流との関係を示すグラフである。 比較例1に係る発光素子チップの加工例における工程毎の模式的な平面図であり、(a)~(e)の各図の説明は図1と同様である。 比較例2に係る発光素子チップの加工例における工程毎の模式的な平面図であり、(a)~(e)の各図の説明は図1と同様である。 比較例3に係る発光素子チップの加工例における工程毎の模式的な平面図であり、(a)~(e)の各図の説明は図1と同様である。
 以下、図面を参照しながら、本発明に係る発光体素子およびその製造方法について説明する。尚、当該発光体素子およびその製造方法は代表的な例を示したものであって、本発明はこの実施形態に限定されるものではない。
 図1の(a)~(e)は、本発明に係る発光素子チップの加工例における工程毎の模式的な平面図である。
 図1(a)は加工前の平面図であり、(b)はドライエッチングにてパターンを形成した後の平面図であり、(c)は第2電極を成膜した後の平面図であり、(d)は第1電極を成膜した後の平面図であり、(e)は電極パッドを成膜した後の平面図である。
 図2は、図1(e)のI-I断面図であり、図3は、図1(e)のII-II断面図であり、図4(e)のIII-III断面図である。
 図1(a)は、本発明に係る発光素子チップ100の加工前の平面図であり、第2導電型層111が見えている。そして、当該第2導電型層111の下層には後述する発光層112(図示していない。)、さらにその下層には第1導電型層113が成膜されている。これらの層は、サファイア基板等の成長基板(図示していない。)上に成膜された半導体層である。
 本実施の形態では、第1導電型層がn型のAlGaN、第2導電型層がp型のAlGaN、発光層がAlInGaNのIII-V族半導体であるが、nとpとは逆転していても良く、半導体としてもAlGaN以外の、GaN、InGaN等であっても良い。
 図1(b)は、本発明に係る発光素子チップ100に、フォトリソグラフィーによるマスクパターン形成後のドライエッチング(本発明において、「RIE」と記載する場合がある。)にて溝パターンを形成した後の平面図である。
 発光素子チップ100の第2導電型層111へCVDによりSiOマスクを形成し、フォトリソグラフィーによりマスクパターンを形成する。その後、RIEにて、当該マスクが設けられていない箇所の第2導電型層111および発光層112および第1導電型層113の途中までをエッチング除去し、第1導電型層の露出部115を形成し、第1導電型層113を露出させた。
 また、図示しないが、隣り合う発光素子チップ100の間を、後に分離させるに十分な幅をもって、同様にして第1導電型層113を露出させて分離溝を形成した。
 以上、第1導電型層113の途中までをエッチング除去し、第1導電型層の露出部115を形成し、第1導電型層113を露出させる場合を例示した。尤も、当該第1導電型層113の途中までをエッチング除去に限られず、第1導電型層が露出した時点でエッチングを止めても良いし、第1導電型層を完全に除去しても良い。そして、第1導電型層を完全に除去した場合は、露出した第1導電型層の側面へのコンタクトをとるか、または、第1導電型層を導電性の基板等で支持する構成を採れば良い。
 当該溝パターンは、個々の発光素子チップ100間および発光素子チップ100のn電極とp電極とを分離し、n電極を第2導電型層111に形成させる為のもので、上述したように、電流が第1導電型層を均一に拡散して流れる効果をねらったものである。当該溝パターンにより第2導電型層111は、相対的に小さい第2導電型層111aと相対的に大きい第2導電型層111bとに分断される。
 RIE終了後、SiOマスクをエッチング除去するが、第2導電型層111a上のSiOマスクは後述する絶縁膜として使用出来る為、残しても良い。 
 図1(c)は、本発明に係る発光素子チップ100へ、第2電極121を成膜した後の平面図である。
 第2電極121は、例えば(Ni/Au)層を第2導電型層111b上に成膜したものである。電極は既知の金属構成から選択できる。なお図面では、第2電極121が、第2導電型層111b上の全面に形成されており、全面電極であることが好ましい。全面電極とは、第2導電型層111bとのコンタクトを形成すると共にパッド電極からの電流を拡散し、さらに発光層の発光を透過または反射する機能を有するものである。
 図1(d)は、本発明に係る発光素子チップ100へ、第1電極131を成膜した後の平面図である。
 第1電極131は、例えば(Ti/Al/Ti)層を、第2導電型層111aから第1導電型層の露出部115へかけて成膜するものである。電極は既知の金属構成から選択できる。当該第1導電型層の露出部115へかけての第1電極131の成膜の詳細は後述するが、第2導電型層111aであって凸部上の第1電極131の成膜である131aは、当該凸部から第1導電型層の露出部115へかけて成膜される。この結果、当該凸部の周辺に第1電極131の成膜である131aと第1導電型層113との接触部135が形成された。
 また、第2導電型層111a上であって凸部でない部分における第1電極の成膜131bは、第1導電型層の露出部115と接触しない。つまり、第1電極の成膜131は第1導電型層の露出部の一部に対し延伸しない部分を有する。そして第2導電型層111aの凸部の両端から左右方向に向けて、第1電極131の成膜は第1導電型層の露出部115へかけて成膜され、第1導電型層の露出部115と接触する第1電極の成膜131cとなる。この結果、凸部の両端から左右方向に向けて第1電極131の成膜である131cと第1導電型層113との接触部136が形成された。
 図1(e)は、本発明に係る発光素子チップ100へ電極パッドを成膜した後の平面図の一例である。
 電極パッドは、第2導電型層111aの凸部上へ第1導電体側電極パッド141として例えば(Ti/Au)層を成膜したものであり、第2電極121上の2箇所以上へ第2導電体側電極パッド142として例えば(Ti/Au)層を成膜したものである。パッド電極も既知の金属構成から選択できる。
 ここで、例えば、第2導電体側電極パッド142が2つに対し、第1導電体側電極パッド141が1つのように、第1導電型の電極パッドの個数Xと、第2導電型の電極パッドの個数Yとが、X<YかつX+Y≧3とすることが好ましい。また、これら電極パッドは非直線的に配置することが好ましい。当該構成を採ることで、発光体素子チップ100をフィリップ接合した場合においても、当該発光体素子チップが傾くことなく実装することができるからである。1個の発光体素子チップ100において傾きを防止する為には、最低限で3箇所の電極パッド数があれば良い。
 第1導電体側電極パッド141および第2導電体側電極パッド142の成膜後に、発光素子チップ100上に例えばSiOや樹脂などの絶縁性の保護膜を形成した後、第1および第2導電体側電極パッド141、142上の保護膜を除去する。
 ここで、図1(e)について、図2のI-I断面図、図3のII-II断面図、図1(e)あり、図4(e)のIII-III断面図を参照しながらさらに説明する。
 図2~4において、サファイア基板等の成長基板(図示していない)上に成膜された半導体層は、下方から第1導電型層113、発光層112および第2導電型層111が成膜されている。
 当該半導体層には溝パターンが掘られ、第1導電型層の露出部115が形成され、第1導電型層113が露出している。さらに当該溝パターンは、第2導電型層111を第2導電型層111aと第2導電型層111bとに分断する。第2導電型層111b上には第2電極121が成膜されている。一方、第2導電型層111a上には第1電極131が成膜されているが、当該第1電極131は、第2導電型層111a上のみでなく溝パターンの壁に沿っても成膜され、露出している第1導電型層113と接触して接触部135、136を形成し、電気的コンタクトを確保している。
 この際、当該第1電極131と第2導電型層111aの上面および第2導電型層111aの側面および発光層112の側面にも電気的接触が形成され得る。しかし、電流は第1導電体側電極パッド141から第1電極131を経由して第1導電型層のみへ流れるので、第2導電型層111aや発光層112への電気的接触は無視出来る。そこで本発明において、これらの電気的接触を電気的コンタクトであるとは考えないこととした。
 この結果、第1導電体側電極パッド141は、当該第1導電型の電極パッドを起点とし、前記露出した第1導電型層115へ互いに独立してコンタクトする3本の導電配線である第2導電型層の凸部上の第1電極の成膜131a、第2導電型層であって凸部でない部分における第1電極の成膜131b、第1導電体の露出部接触する第1電極の成膜131cにより、前記第1導電型層の露出部115に設けられ互いに独立した、第1電極の成膜と第1導電型層との接触部135、左右2箇所の第2導電型層の凸部の両端から左右方向に向けた第1電極の成膜と第1導電型層との接触部136の3箇所と、それぞれ電気的にコンタクトする。
 ここで、所望により、第1電極の構造を変えることで露出した第1導電型層へ互いに独立してコンタクトする導電配線を4本またはそれ以上とし、併せて、第1電極の成膜と第1導電型層との接触部、第2導電型層の凸部から各方向に向けた第1電極の成膜と第1導電型層との、互いに独立した接触部を4箇所以上設けることも好ましい構成である。
 尚、島状の第2導電型層111aを用いて、1つの第1導電体側電極パッド141に対して、2箇所以上の互いに独立した第1導電型層113との接触部を形成し、複数の電気的コンタクトを形成することが出来るものであれば、例示した形状に限られるものではない。
 ここで、第1電極131は、第2導電型層111aや発光層112とは電気的に絶縁されていることが好ましい。当該絶縁により、半導体表面に電流が漏れ流れてしまうのを防ぐことが出来るためである。
 そして、第1電極131上には第1導電体側電極パッド141が成膜されている。さらに、図4に示すように第2電極121上には第2導電体側電極パッド142が成膜されている。パッド電極は第1導電体側と第2導電体側とを同時に形成することも、別の工程で厚さを変えて形成することも可能であり、第1電極131と、第2電極121との膜厚の差に合わせて、容易且つ正確に、第1導電型層113から第1および第2導電体側電極パッド141、142の上面までの寸法を等しく(本発明においては、寸法差200nm以下)にすることが出来る。従来のように露出した第1導電型層上に直接第1導電体側電極パッド141を形成する場合には、第1導電型層113から第2導電体側電極パッド142の上面までの寸法差は例えば1.3um以上となることから、第1導電体側電極パッド141の厚さを非常に厚くする以外にパッド電極の高さを合わせることは困難である。当該高さを合わせた厚さを有する第1導電体側電極パッドを形成する場合、蒸着法では生産コスト高となる為メッキ法の適用が考えられるものの、メッキ法では数nmでの厚さ制御は困難である。
 従って、当該構成により、相対的に小さい第2導電型層111aをエッチング除去しないことで、発光体素子チップ100のワイヤボンディング工程やフリップチップ実装工程において、ボンディング位置(高さ)をpn毎に変える必要が無く、ボンディングが容易になるとともに、接続不良やチップが傾くなどの不良を抑えることを、低コスト且つ精度よく達成することができた。
 本発明に係る発光素子チップ100に電流を流したところ、発光効率の高い発光素子であることが判明した。これは、第1導電型層113に均一に拡散した電流が流れ、発光層112において均一且つ高効率な発光が行われた為と考えられる。
 当該電流の流れについて、上述したように、第1導電型層113がn型のAlGaN、第2導電型層がp型のAlGaN、発光層がAlInGaNのIII-V族半導体である場合を例として説明する。
 第1導電体側電極パッド141に流れ込む電子は、金属伝導性を有する第1電極131を容易に通過して、接触部135、136から第1導電型層113へ流れ込む。本実施の形態において、接触部135、136は第1導電型層113上に分散し且つ広範囲に設けられているので、電子は広範囲な第1導電型層113中へ、均一に流れ込む。第1導電型層113中へ流れ込んだ電子は、広い範囲で均一に発光層112を通過し、発光層112において均一且つ高効率な発光が行われる。その後、第2導電型層111から金属伝導性を有する第2電極121へ流れ込み、さらに第2導電体側電極パッド142から流れ出て行く。ここで、第2導電体側電極パッド142が複数箇所分散して設けられていることも、第1導電型層113中へ流れ込んだ電子が、広い範囲で均一に発光層112を通過することを担保している。つまり、(0026)段落の説明と同様に、X<YかつX+Y≧3とすることが好ましく、非直線的に配置することが好ましい。
 以上、詳細に説明したように本発明によれば、1つのパッド電極に対して複数に分散された接触部を配置することが出来る。その結果、第1導電型層、発光層および第2導電型層へ均一に電流を拡散させることが出来、電流集中による特性劣化や、寿命短縮の少ない発光素子を得ることができた。
 さらに、本発明では第1および第2導電体側電極パッドの高さを容易に等しく出来る。この結果、ワイヤボンディングやフリップチップ実装の際、ボンディング位置を、第1および第2導電体側電極パッド毎に変える必要が無く、ボンディングが容易になるとともに、接続不良やチップが傾くなどの不良を抑えることができる。
 なお、相対的に小さい第2導電型層111aを残し、その上面および側面を利用して、互いに独立して分散した第1導電型層へのコンタクト部へ分岐する電極配線を形成する構成をとれば、チップサイズや第2電極パッド142の形状に合わせて、第1電極131の形状を櫛型や放射状等とすることもできる。
 以下、実施例を用いて、本発明をより具体的に説明する。
(実施例1)
 成長基板(図示していない。)としてサファイア基板にAlNバッファを有するAlNテンプレートを準備し、当該成長基板上に、厚さ745nmの超格子バッファ層(図示していない。)、第1導電型層113として厚さ1722nmのn-AlGaN層、発光層112として厚さ184nmのMQW活性層、第2導電型層111として厚さ282nmのp-AlGaN層、コンタクト層(図示していない。)として、厚さ22nmのp-GaNを有する発光波長465nmの発光構造サンプルを作製した。
 当該発光構造サンプルに対し、適宜な表面洗浄およびアニールの後、p-GaNコンタクト層上にフォトリソ法を用いてRIE用のSiOマスクを形成した。そして、当該SiOマスクから露出した部分を、RIEを用いてp-GaNコンタクト層からn-AlGaN層まで、n-AlGaN層の一部が露出するように、深さ約1.3μmのエッチングを行った。当該エッチングにより、実施例1に係る素子を個々に分割する第1導電型層の露出部115である分離溝が形成され、当該分割溝によって分割された個々の実施例1に係る発光素子チップ100において、さらに、当該分割溝により発光体となる相対的に大きい第2導電型層111bと、n電極パッド形成部となる相対的に小さい第2導電型層111aとを分割した。その後、SiOマスクを除去した。
 まず、相対的に大きい第2導電型層111bであるp-AlGaN層上においては、p-GaNコンタクト層上へ、スパッタ法により第2電極121である厚さ5nmのNi層、および、厚さ20nmのAu層を製膜してp電極を形成し、当該p電極以外の部分はエッチング除去した。
 一方、相対的に小さい第2導電型層111aであるp-AlGaN層上においては、p-GaNコンタクト層から露出したn-AlGaN層上の一部(独立して分散した各々のコンタクト部)までを露出するようにフォトリソ法を用いてレジストマスクを形成する。ここで、コンタクト部が独立して分散するような電気配線形状となるように、第2導電型層111a上の一部にもレジストマスクを形成する。そしてスパッタ法により第1電極131として、厚さ18nmのTi層、厚さ300nmのAl層、厚さ5nmのTi層を製膜後、リフトオフして、第2導電型層の凸部より一回り大きく第1導電型層へ延伸する形状の第1電極の成膜131a、第2導電型層であって凸部でない部分において第2導電型層上のみに形成される第1電極の成膜131b、成膜131bの電気配線を経由して第1導電体の露出部に接触する第1電極の成膜131cを有するn電極を一体的に形成した。この際、n電極は、相対的に小さい方の第2導電型層111a上から露出したn-AlGaN層上の一部(分散した各々のコンタクト部)まで、分割部の側面を含めて延伸した電気配線となる。
 ここで、550℃のアニールにより、相対的に大きい第2導電型層111bにおいてはp電極とpコンタクト層との電気的コンタクトが形成され、相対的に小さい第2導電型層111a周辺の露出した第1導電型層113とn電極との接触部135および左右の接触部136において電気的コンタクト(オーミック接続)が形成された。
 この結果、第1導電側電極パッド141は、当該第1導電型の電極パッドを起点とし、前記露出した第1導電型層へ延伸する導電配線である第2導電型層の凸部上の第1電極の成膜131a、第2導電型層であって凸部でない部分における第1電極の成膜131b、第1導電体の露出部接触する第1電極の成膜131cにより、前記第1導電型層の露出部115に設けられ互いに独立した、第1電極の成膜と第1導電型層との接触部135、左右2箇所の第2導電型層の凸部の両端から左右方向に向けた第1電極の成膜と第1導電型層との接触部136の3箇所とで、それぞれ電気的にコンタクトした。
 その後、p電極上へ、当該p電極の皮膜(図示していない。)として厚さ50nmのPt層、厚さ100nmのAu層、厚さ5nmのTi層を形成した。
 次に、p電極上およびn電極上の一部が露出するようにレジストマスクを設け、n電極パッドおよびp電極パッドとして厚さ5nmのTi層、厚さ500nmのAu層、厚さ10nmのTi層を製膜後、リフトオフによりパッド電極を形成する。次に、保護膜としてSiO層を全面に形成し、p電極パッドおよびn電極パッド上の一部が露出するようにレジストでマスク後、パッド上のSiO層およびTi層をRIEにて除去し、第1導電体側電極パッド141および第2導電体側電極パッド142となるAuパッド電極を形成する。
 その後、レジストマスクを除去し、洗浄後、基板の研削・研磨を経て発光素子チップ100の周囲に設けられた分離溝をスクライブすることにより、個々に分離された発光素子チップ100を得た。
 製造した実施例1に係る発光素子の発光状態を示す、約48.5倍の光学顕微鏡による外観写真を図5に示す。当該発光素子の発光面積は、1.04×10-7であった。そして、当該発光素子に20mAの電流を流したときの順方向電圧(Vf)は3.11V、積分球による光出力(Po)は3.22mWであった。
 さらに、当該発光素子に1~70mAの電流を流したときの発光波長を測定した。当該測定結果を図6に示す。図6は、横軸に測定電流の値をとり、縦軸に発光波長をとり、実施例1に係る発光素子試料5個の測定結果をプロットしたグラフである。
(比較例1)
 「発明の詳細な説明」で説明した、第1導電型層の露出部115、第2導電型層であって凸部でない部分における第1電極の成膜131bおよび第1導電体の露出部接触する第1電極の成膜131cを設けなかった以外は、実施例1と同様の工程を行って、比較例1に係る発光素子を製造した。
 図9(a)~(e)は、比較例1に係る発光体素子およびその製造方法に係る平面図である。
 図9(b)に示すように、比較例1においても実施例1と同様に、第1導電型層の露出部115を形成し、第1導電型層113を露出させた。但し、実施例1に係る発光素子と異なり、第1電極131と第1導電型層113との接触部は、第1導電体側電極パッド141の周囲(即ち、連続する1箇所)のみとし、第1導電型層の露出部115、第2導電型層111とも左右に展開していない。
 図9(d)に示すように、比較例1では実施例1と異なり、第1導電型層の露出部115が左右に展開していないので、第2導電型層111aであって凸部上の第1電極131の成膜である131aは、当該凸部から第1導電型層の露出部115へかけて成膜される。この結果、当該凸部の周辺に第1電極131の成膜である131aと第1導電型層113との接触部135が形成された。
 図9(e)に示すように、上記工程により比較例1に係る発光素子として、発光波長465nmの青色LEDが製造された。 
 製造した比較例1に係る発光素子の発光状態を示す、約48.5倍の外観写真を図7に示す。当該発光素子の発光面積は、1.42×10-7であった。
 そして、当該発光素子に20mAの電流を流したときのVfは3.03V、Poは3.45mWであった。
 さらに、比較例1の発光素子に1~70mAの電流を流したときの発光波長を測定した。測定結果を図8に示す。図8は、横軸に測定電流の値をとり、縦軸に発光波長をとり、比較例1に係る発光素子試料3個の測定結果を平均して-□-にてプロットしたグラフである。尚、参考のため、図8には、実施例1に係る発光素子試料から選択した1個の測定結果も-◇-にてプロットした。
(比較例2)
 相対的に小さい第2導電型層の形状を、比較例1と同様の形状にした以外は、実施例1と同様の操作を行って、比較例2に係る発光素子を製造した。 図10(a)~(e)は、比較例2に係る発光体素子およびその製造方法に係る平面図である。
 図10(b)に示すように、比較例2においては相対的に小さい第2導電型層111aの形状を、比較例1と同様に第1導電体側電極パッド141の周囲のみとし、左右の展開のない形状に形成した。
 図10(d)に示すように、比較例2においては実施例1と異なり、第2導電型層111aが左右に展開していないが、第1電極131の成膜である131aは、当該凸部から第1導電型層の露出部115へかけて成膜される。
 この結果、比較例2に係る発光素子においては、実施例1に係る発光素子と異なり、第2導電型層111aの上面および側面を利用するものの、互いに独立して分散した第1導電型層のための電極配線を形成しておらず、第1電極131と第1導電型層113との接触部(電気的コンタクト)が互いに独立していない。この為、第1導電体側電極パッド141の周囲と、左右に延伸する配線部の全てが連続した構造を有している。
 図10(e)に示すように、上記工程により比較例2に係る発光素子として、発光波長465nmの青色LEDが製造された。
 比較例2に係る発光素子の発光面積は、1.04×10-7であった。そして、当該発光素子に20mAの電流を流したときの、Vfは3.01V、Poは3.52mWであった。
 比較例2に係る発光素子試料測定結果も、図8に-△-にてプロットした。
(比較例3)
 相対的に小さい第2導電型層を形成せず、比較例2の相対的に小さい第2導電型層の箇所の第1導電型層を露出させた以外は、実施例1と同様の操作を行って、比較例3に係る発光素子を製造した。 
 図11(a)~(e)は、比較例2に係る発光体素子およびその製造方法に係る平面図である。
 図11(b)に示すように、比較例3においては実施例1と異なり、相対的に小さい第2導電型層となる部分にSiOマスクを形成せず、RIEにより露出部形成時に他と共にエッチング除去し、相対的に小さい第2導電型層111aを形成しなかった。
 図11(d)に示すように、比較例3においては実施例1と異なり、第2導電型層111aが形成されていないが、第1電極131の成膜である131aは、当該凸部から第1導電型層の露出部115へかけて成膜される。
 この結果、実施例1と同様の形状の第1電極131の形成が、第1導電型層113上に直接行なわれた構造を有している。そして、第1電極131と第1導電型層115との接触部(電気的コンタクト)が互いに独立しておらず、第1導電体側電極パッド141の周囲と、左右に延伸する配線部の全てが連続した構造である点は、比較例2と同様である。
 図11(e)に示すように、上記工程により比較例3に係る発光素子として、発光波長465nmの青色LEDが製造された。 
(まとめ)
 実施例1に係る発光素子と比較例1に係る発光素子とでは、第1導電型層の形状が異なる。当該形状の違いにより第2電極の形状と発光面積が異なり、比較例1に係る発光素子の方が発光面積は広い。発光面積が広いため、比較例1に係る発光素子の方が、わずかにVfが低くPoも高い。しかしながら比較例1に係る発光素子は、図8に示すように当該発光素子に流す電流量の変化による発光波長のシフト量が多い。これは、比較例1に係る発光素子においては、電流が発光層の一部に集中して流れる為、当該集中部に発熱が起こり、当該発熱により発光波長が変化するのであると考えられる。
 また、実施例1に係る発光素子と比較例2に係る発光素子とを比較すると、両者とも発光面積は同じである。しかし、実施例1に係る発光素子では電気的コンタクトが互いに独立するのに対し、比較例2に係る発光素子では当該電気的コンタクトが連続するとの差異がある。当該電気的コンタクトの差異の為、20mA通電時において比較例2に係る発光素子は、実施例1に係る発光素子に比べ、わずかにVfが低くPoも高い。しかし、比較例2に係る発光素子は、図8に示すように上述した比較例1に係る発光素子と同様に、発光素子に流す電流量の変化による発光波長のシフト量が多い。なお、比較例3に係る発光素子は、比較例2に係る発光素子と同様の傾向を示した(図8には図示していない。)。
 これは、比較例2に係る発光素子においても、上述した比較例1に係る発光素子と同様にパッド電極周辺からの電流の流れが優先され、電流が発光層の一部に集中して流れる結果、当該電流集中部に発熱が起こり、当該発熱により発光波長が変化したものであると考えられる。当該状況は、比較例3に係る発光素子においても同様であると考えられる。
 さらに、当該発熱による発光効率の低下により、電流量が50mAを超えると、実施例1に係る発光素子および比較例2に係る発光素子のPoは同水準となる。
 室温下における電流量40mAでの通電寿命試験で、実施例1に係る発光素子は1000時間において初期出力の92%の出力が維持されたが、比較例2に係る発光素子は1000時間において初期出力の88%の出力となった。
 以上のことから、実施例1に係る発光素子は、比較例1、2および3に係る発光素子に比べ、電流集中による特性劣化がなく、寿命の長い優れた発光素子であることが判明した。
 一方、比較例3に係る発光素子においては、第1電極と第2電極との間の寸法差は1.3μmとなった。この結果、後工程であるフリップチップ実装工程において、第1導電体側電極パッドと第2導電体側電極パッド上に約100μmサイズの金バンプを接着後、熱圧着でチップを接着したところ、比較例3に係る発光素子には接続不良が5%発生した。
 これに対し、実施例1および比較例1、2に係る発光素子においては、上述した比較例3と同じ実装方法を実施した場合においても、接続不良は発生しなかった。
 以上のことから、実施例1に係る発光素子は、比較例3に係る発光素子に比べ、フリップチップ実装工程での接続不良が発生しないという、生産性に優れた発光素子であることが判明した。
 以上のことから、本発明に係る発光素子は、電流集中による特性劣化や、寿命短縮が少なく、さらに実装不良も少ないという、信頼性に優れた発光素子であることが分かる。
  100 発光素子チップ 
  111 第2導電型層
  111a 第2導電型層
  111b 第2導電型層
  112 発光層
  113 第1導電型層
  115 第1導電型層の露出部
  121 第2電極
  131 第1電極
  131a 第2導電型層の凸部上の第1電極の成膜
  131b 第2導電型層であって凸部でない部分における第1電極の成膜
  131c 第1導電体の露出部接触する第1電極の成膜
  135 第1電極の成膜と第1導電型層との接触部
  136 第2導電型層の凸部の両端から左右方向に向けた第1電極の成膜と第1導電体層との接触部
  141 第1導電体側電極パッド
  142 第2導電体側電極パッド

Claims (6)

  1.  発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、
     前記第2導電型層と発光層を大小2部分に分断する溝構造を有し、
     当該分断された大きい方の第2導電型層上に第2導電型層と電気的に接続する第2導電型の電極パッドを有し、
     当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、
     当該第1導電型の電極パッドを起点として前記第1導電型層へ延伸する導電配線により、前記第1導電型層と接続し互いに独立した2箇所以上の電気的コンタクトを有する発光素子。
  2.  発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、
     前記第2導電型層が、前記第1導電型層の露出部を形成する溝構造により、大小2部分に分断されており、
     当該分断された大きい方の第2導電型層上に第2導電型層と電気的に接続する第2導電型の電極パッドを有し、
     当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、
     前記分断された小さい方の第2導電型層上および分断部側面に、前記第1導電型の電極パッドを起点とし、前記第1導電型層の露出部に設けられた互いに独立した2箇所以上の電気的コンタクトへ向けて延伸する導電配線を有する発光素子。
  3.  発光層を挟んで第1導電型層、第2導電型層が設けられた積層構造を有し、
     前記第2導電型層が、前記第1導電型層の露出部を形成する溝構造により、大小2部分に分断されており、
     当該分断された大きい方の第2導電型層上に第2導電型層と電気的に接続する第2導電型の電極パッドを有し、
     当該分断された小さい方の第2導電型層上に第1導電型の電極パッドを有し、
     当該第1導電型の電極パッドを起点として前記露出した第1導電型層へ延伸する導電配線により、前記第1導電型層の露出部に設けられた互いに独立した2箇所以上の電気的コンタクトを有する発光素子。
  4.  前記第1導電型層の底面から前記第2導電型の電極パッド上面迄の高さと、前記第1導電型層の底面から前記第1導電型の電極パッド上面迄の高さとが等しい請求項1から3のいずれかに記載の発光素子。
  5.  前記第1導電型の電極パッドの個数Xと、前記第2導電型の電極パッドの個数Yとが、X<YかつX+Y≧3である請求項1から4のいずれかに記載の発光素子。
  6.  基板上に、当該基板側から順に、第1導電型層、発光層、第2導電型層を有する積層構造を形成する工程と、
     前記第2導電型層側からエッチングにより第1導電型層を露出させて、前記第2導電型層を大小2部分に分断する溝構造を形成する工程と、
     前記分断された大きい方の第2導電型層上に、第2導電型の電極パッドを形成する工程と、
     前記分断された小さい方の第2導電型層上から、前記第1導電型層の露出部へ延伸する導電配線を形成する工程と、
     前記分断された小さい方の第2導電型層上に、第1導電型の電極パッドを形成する工程を有し、
     前記導電配線は、第1導電型層の露出部の一部に対し延伸しない部分を有し、
     前記第1導電型の電極パッドを起点として、前記第1導電型層の露出部に対して互いに独立した2箇所以上の電気的コンタクトを形成する、発光素子の製造方法。
PCT/JP2010/072018 2009-12-08 2010-12-08 発光素子およびその製造方法 WO2011071077A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/513,015 US8860294B2 (en) 2009-12-08 2010-12-08 Light emitting element and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-278823 2009-12-08
JP2009278823 2009-12-08
JP2010271542A JP5713650B2 (ja) 2009-12-08 2010-12-06 発光素子およびその製造方法
JP2010-271542 2010-12-06

Publications (1)

Publication Number Publication Date
WO2011071077A1 true WO2011071077A1 (ja) 2011-06-16

Family

ID=44145621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072018 WO2011071077A1 (ja) 2009-12-08 2010-12-08 発光素子およびその製造方法

Country Status (3)

Country Link
US (1) US8860294B2 (ja)
JP (1) JP5713650B2 (ja)
WO (1) WO2011071077A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900284B2 (ja) * 2012-10-25 2016-04-06 豊田合成株式会社 半導体発光素子および発光装置
JP5971090B2 (ja) 2012-11-14 2016-08-17 豊田合成株式会社 半導体発光素子および発光装置
JP6485019B2 (ja) * 2013-12-19 2019-03-20 日亜化学工業株式会社 半導体発光素子
TWI607558B (zh) * 2017-01-10 2017-12-01 錼創科技股份有限公司 微型發光二極體晶片
US11056614B2 (en) * 2017-01-10 2021-07-06 PlayNitride Inc. Micro light-emitting diode chip
JP7087693B2 (ja) * 2018-06-07 2022-06-21 信越半導体株式会社 発光素子及びその製造方法
JP7279354B2 (ja) * 2018-12-17 2023-05-23 富士電機株式会社 半導体素子及び半導体素子の識別方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223930A (ja) * 1997-02-04 1998-08-21 Rohm Co Ltd 半導体発光素子
JP2001308380A (ja) * 2000-04-19 2001-11-02 Seiwa Electric Mfg Co Ltd 窒化ガリウム系半導体発光素子
JP2002319704A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップ
JP2003110139A (ja) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd 窒化物系半導体発光素子
WO2008038842A1 (en) * 2006-09-25 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having extensions of electrodes for current spreading
JP2008277358A (ja) * 2007-04-25 2008-11-13 Nichia Corp 半導体発光素子
JP2009094089A (ja) * 2006-10-05 2009-04-30 Mitsubishi Chemicals Corp GaN系LEDチップおよび発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069936B2 (ja) 2002-05-27 2008-04-02 日亜化学工業株式会社 窒化物半導体発光素子、発光素子、素子積層体、並びにそれらを用いた発光装置
JP5141608B2 (ja) * 2004-03-23 2013-02-13 豊田合成株式会社 固体素子デバイスの製造方法
KR100631969B1 (ko) * 2005-02-28 2006-10-11 삼성전기주식회사 질화물 반도체 발광소자
KR100706944B1 (ko) * 2005-10-17 2007-04-12 삼성전기주식회사 질화물계 반도체 발광소자
KR20090085594A (ko) 2006-10-05 2009-08-07 미쓰비시 가가꾸 가부시키가이샤 GaN 계 LED 칩을 사용하여 이루어지는 발광 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223930A (ja) * 1997-02-04 1998-08-21 Rohm Co Ltd 半導体発光素子
JP2001308380A (ja) * 2000-04-19 2001-11-02 Seiwa Electric Mfg Co Ltd 窒化ガリウム系半導体発光素子
JP2002319704A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップ
JP2003110139A (ja) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd 窒化物系半導体発光素子
WO2008038842A1 (en) * 2006-09-25 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having extensions of electrodes for current spreading
JP2009094089A (ja) * 2006-10-05 2009-04-30 Mitsubishi Chemicals Corp GaN系LEDチップおよび発光装置
JP2008277358A (ja) * 2007-04-25 2008-11-13 Nichia Corp 半導体発光素子

Also Published As

Publication number Publication date
US20120299465A1 (en) 2012-11-29
JP2011142308A (ja) 2011-07-21
US8860294B2 (en) 2014-10-14
JP5713650B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
US9209362B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
JP4804485B2 (ja) 窒化物半導体発光素子及び製造方法
JP5713650B2 (ja) 発光素子およびその製造方法
KR101327106B1 (ko) 반도체 발광소자
JP2009043934A (ja) フリップチップ型発光素子
KR20130111800A (ko) 반도체 발광장치 및 그 제조방법
JP2011199221A (ja) 発光ダイオード
US9450017B2 (en) Semiconductor light emitting device and method of fabricating the same
US20130015465A1 (en) Nitride semiconductor light-emitting device
JP2012054422A (ja) 発光ダイオード
TW201547058A (zh) 發光二極體及其製造方法
US20110079798A1 (en) Light emitting apparatus
JP5608589B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2012129281A (ja) 発光素子
KR20120067782A (ko) 발광소자
KR20110132160A (ko) 반도체 발광 소자 및 그 제조방법
KR102237144B1 (ko) 발광 소자 및 발광 소자 패키지
JP2013122950A (ja) Iii族窒化物半導体発光素子
KR20110132161A (ko) 반도체 발광 소자 및 그 제조방법
JP6190591B2 (ja) 半導体発光素子
JP2012054423A (ja) 発光ダイオード
JP5772213B2 (ja) 発光素子
JP2012043924A (ja) Ledの信頼性評価方法および評価用チップ
JP2014131000A (ja) 発光素子
JP2014116397A (ja) 発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13513015

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10835997

Country of ref document: EP

Kind code of ref document: A1