WO2011071034A1 - 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート - Google Patents

充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート Download PDF

Info

Publication number
WO2011071034A1
WO2011071034A1 PCT/JP2010/071881 JP2010071881W WO2011071034A1 WO 2011071034 A1 WO2011071034 A1 WO 2011071034A1 JP 2010071881 W JP2010071881 W JP 2010071881W WO 2011071034 A1 WO2011071034 A1 WO 2011071034A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
filler
sheet
resin
filled
Prior art date
Application number
PCT/JP2010/071881
Other languages
English (en)
French (fr)
Inventor
真也 黒河
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Publication of WO2011071034A1 publication Critical patent/WO2011071034A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/06Homopolymers or copolymers of esters of polycarboxylic acids
    • C08L31/08Homopolymers or copolymers of esters of polycarboxylic acids of phthalic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a filled fluororesin sheet and a filled fluororesin sheet.
  • Filled fluororesin sheet is a sheet made by filling fluororesin with a filler. In addition to the chemical resistance and heat resistance of fluororesin, it has the unique functions and characteristics of the filler. By adding or improving creep resistance, which is a drawback of fluororesins, it is often used for sealing materials.
  • Patent Document 1 JP-A-2007-253519 a method for producing a filled fluororesin sheet containing a fluororesin, a filler, and a processing aid. Yes.
  • this manufacturing method high stress relaxation property and high airtightness are compatible, and a filled fluororesin sheet suitable for a gasket material can be obtained.
  • Patent Document 2 a method for producing a non-asbestos-based joint sheet containing a fluororesin, a thermosetting resin, a filler, and the like, and a non-obtained product obtained by the method.
  • An asbestos joint sheet is disclosed. This joint sheet is excellent in heat resistance and sealing properties.
  • Patent Document 1 and Patent Document 2 have room for further improvement in terms of mechanical strength.
  • the present invention has been made in view of the above problems, and provides a filled fluororesin sheet excellent in stress relaxation properties, particularly stress relaxation properties at high temperatures, airtightness, and mechanical strength, and a method for producing the same.
  • the purpose is to provide.
  • the method for producing a filled fluororesin sheet of the present invention is selected from fluororesin (A), filler (B), processing aid (C), phenol resin, thermosetting polyimide resin and diallyl phthalate resin.
  • a sheet-forming resin composition containing at least one thermosetting resin (D) is preformed, the resulting preform is rolled at a roll temperature of 40 to 80 ° C., and then fired. .
  • the amount of the processing aid (C) in the sheet-forming resin composition is 5 to 50 parts by weight with respect to a total of 100 parts by weight of the fluororesin (A) and the filler (B). Is preferred.
  • the processing aid (C) preferably comprises 30% by weight or more of a petroleum hydrocarbon solvent having a fractional distillation temperature of 120 ° C. or less (however, the weight of the processing aid is 100% by weight).
  • the fluororesin sheet with a filler according to the present invention includes a fluororesin (A), a filler (B), and at least one thermosetting resin (D) selected from a phenol resin, a thermosetting polyimide resin, and a diallyl phthalate resin. ) And satisfy the following characteristics (a) to (c): Property (a): The tensile strength measured according to JIS R3453 is 12 MPa or more.
  • Characteristic (b) When a hermetic test was performed with a surface pressure of 19.6 MPa and a nitrogen gas internal pressure of 0.98 MPa on a test piece of ⁇ 48 mm ⁇ ⁇ 67 mm ⁇ thickness 1.5 mm prepared from the fluororesin sheet containing the filler The amount of leakage is 8.0 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s or less, Characteristic (c): The stress relaxation rate measured in accordance with JIS R3453 (however, only the heating temperature is changed from 100 ° C. to 200 ° C.) is 39% or less.
  • the filler-containing fluororesin sheet can be produced by the above production method.
  • the method for producing a filled fluororesin sheet of the present invention it is possible to produce a filled fluororesin sheet having excellent stress relaxation properties, particularly stress relaxation properties at high temperatures, air tightness, and mechanical strength.
  • the filled fluororesin sheet of the present invention is excellent in stress relaxation properties, particularly stress relaxation properties at high temperatures, air tightness and mechanical strength.
  • the method for producing a filled fluororesin sheet of the present invention is selected from fluororesin (A), filler (B), processing aid (C), phenol resin, thermosetting polyimide resin and diallyl phthalate resin.
  • a sheet-forming resin composition containing at least one thermosetting resin (D) is preformed, the resulting preform is rolled at a roll temperature of 40 to 80 ° C., and then fired. .
  • the sheet-forming resin composition of the present invention is at least one selected from a fluororesin (A), a filler (B), a processing aid (C), and a phenol resin, a thermosetting polyimide resin, and a diallyl phthalate resin.
  • a fluororesin (A) is at least one selected from a fluororesin (A), a filler (B), a processing aid (C), and a phenol resin, a thermosetting polyimide resin, and a diallyl phthalate resin.
  • D thermosetting resin
  • fluororesin (A) examples include tetrafluoroethylene resin (PTFE), modified PTFE, vinylidene fluoride resin (PVDF), tetrafluoroethylene-ethylene copolymer resin (ETFE), and trifluoroethylene chloride resin (PCTFE). ), Tetrafluoroethylene-hexafluoropropylene ethylene copolymer resin (FEP), and tetrafluoroethylene-perfluoroalkyl copolymer resin (PFA) can be preferably used.
  • tetrafluoroethylene resin (PTFE) is preferable and PTFE obtained by emulsion polymerization is particularly preferable in terms of processability when performing extrusion molding, rolling, and the like.
  • the fluororesin other than the above-mentioned PTFE is contained in the fluororesin in a small amount, for example, 10% by weight (the total amount of fluororesin is 100% by weight) or less. May be included.
  • the fluororesin (A) a powdery one may be used as it is, or a dispersion in which fluororesin fine particles are dispersed in water may be used.
  • carbon-based fillers such as graphite, carbon black, expanded graphite, activated carbon, and carbon nanotubes
  • talc mica, clay, calcium carbonate, magnesium oxide, silicon carbide, alumina
  • An inorganic filler such as silica
  • a resin powder such as PPS
  • a fiber material made of carbon fiber, aramid fiber, rock wool or the like and having a fiber length of 10 mm or less may be used as the filler (B).
  • the weight ratio of the fluororesin (A) to the filler (B) is preferably 1: 0.1 to 3, more preferably 1: 0. .1-2.
  • processing aid (C) examples include conventionally known processing aids such as petroleum hydrocarbon solvents, alcohols, and water.
  • the petroleum hydrocarbon solvent contains a petroleum hydrocarbon solvent having a fractional distillation temperature of 120 ° C. or lower of 30% by weight or more, preferably 40% or more, more preferably 50% or more (however, a processing aid)
  • the weight is preferably 100% by weight), and in particular, those consisting essentially of petroleum hydrocarbon solvents having a fractional distillation temperature of 120 ° C. or lower are preferred.
  • Typical examples of petroleum hydrocarbon solvents having a fractionation temperature of 120 ° C. or lower include paraffin solvents, and commercially available products such as Isopar C (hydrocarbon organic solvent, fractionation temperature: 97 to 104 ° C., Exxon Mobil (existing)).
  • components other than petroleum hydrocarbon solvents having a fractionation temperature of 120 ° C. or lower that may be contained in the processing aid (C) include petroleum hydrocarbon solvents having a fractionation temperature exceeding 120 ° C. .
  • Examples of petroleum hydrocarbon solvents having a fractional distillation temperature exceeding 120 ° C. include Isopar G (hydrocarbon organic solvent, fractional distillation temperature: 158 to 175 ° C., Exxon Mobil (existing)).
  • the content of the processing aid (C) is preferably 5 to 50 parts by weight with respect to a total of 100 parts by weight of the fluororesin (A) and the filler (B) in the sheet-forming resin composition. More preferably, it is 10 to 30 parts by weight.
  • the processing aid (C) is contained in such an amount, the fluororesin can be sufficiently swollen at the initial stage of the rolling process described later, and the inside of the resulting fluororesin sheet does not become porous.
  • thermosetting resin (D) is at least one resin selected from a phenol resin, a thermosetting polyimide resin, and a diallyl phthalate resin.
  • thermosetting resin is excellent in heat resistance, acid resistance and alkali resistance, and does not decompose, burn out, carbonize, etc. in the baking process described later, and the inside of the obtained fluororesin sheet with filler does not become porous. .
  • thermosetting resin has a powder form, a pellet form, a block form, and the like as a commercially available form, and is not particularly limited, but the thermosetting resin (D) used in the present invention is a volatilization in a rolling process described later.
  • a powdery material is desirable in order to obtain a filled fluororesin sheet having high stress relaxation properties, airtightness and mechanical strength.
  • phenolic resins and diallyl phthalate resins are commercially available in uncured and cured types. In order to obtain a filled fluororesin sheet with higher mechanical strength, Things are used.
  • the weight ratio of the fluororesin (A) to the thermosetting resin (D) is preferably 1: 0.005 to 0.15, more preferably 1: 0.01 to 0.10.
  • the thermosetting resin is contained in such an amount, it is possible to obtain a filled fluororesin sheet with high mechanical strength while maintaining high stress relaxation and high air tightness.
  • the sheet-forming resin composition essentially comprises only the above-described fluororesin (A), filler (B), processing aid (C), and thermosetting resin (D).
  • the above-mentioned components are added to the container at a time in an arbitrary order, or divided into a plurality of portions, and stirred, mixed, etc. do it.
  • the method of stirring and mixing is not particularly limited, but the fluorine-containing fluorine to be produced from the fluororesin (A), the inorganic filler (B), the processing aid (C) and the thermosetting resin (D). What is necessary is just to mix
  • the temperature at the time of stirring and mixing is preferably lower than the roll temperature in the rolling process so that the processing aid does not volatilize.
  • the method for producing a filled fluororesin sheet according to the present invention includes a preforming step, a rolling step, a drying step, and a firing step in this order.
  • Preliminary molding process In the pre-molding step, the resin composition for sheet formation is extruded to produce a preform (extruded product).
  • the shape of this preform is not particularly limited, but in consideration of the efficiency of subsequent sheet formation, the homogeneity of the sheet properties, etc., a rod shape or a ribbon shape is desirable.
  • the preforming step is performed at a temperature lower than the roll temperature in the rolling step so that the processing aid does not volatilize. It is preferable.
  • ⁇ Rolling process> In the rolling process subsequent to the preliminary forming process, the preform is rolled and formed into a sheet shape by passing between rolling rolls represented by a biaxial roll.
  • this rolling step is performed at a roll temperature of 40 to 80 ° C.
  • the processing aid (C) tends to be less volatile. Further, when rolling is performed at a temperature exceeding 80 ° C., the processing aid (C) is excessively volatilized, and the processing aid remaining at the initial stage of the rolling process is reduced, so that the fluororesin (A) is used. Sufficient swelling and fiberization cannot be achieved, and the strength of the obtained fluororesin sheet with a filler tends to be inferior. Further, the processing aid (C) in the composition is rapidly vaporized to cause a swelling phenomenon, and the hermeticity of the filled fluororesin sheet tends to decrease.
  • the sheet forming resin is used during rolling with a biaxial roll or the like.
  • the processing aid (C) in the composition (in the preform) is gradually volatilized and removed.
  • the processing aid (C) since the processing aid (C) is present in a large amount, the fluororesin (A) can be swollen and fiberized, and in the later stage of the rolling process, the processing aid (C) Since there is little residual amount, the formation of new holes inside the sheet based on the volatilization of the processing aid (C) is small, so that the sheet is prioritized to be deformed in the plane direction, and the sheet is densified. It is considered possible.
  • the method further includes a step of rolling the rolled sheet prepared by the rolling step, that is, the rolling step is repeated a plurality of times (for example, 3 to 50 times).
  • the rolling step is repeated a plurality of times (for example, 3 to 50 times).
  • the inside of the fluororesin sheet can be further densified.
  • interval is narrowed every time rolling is repeated.
  • the distance between the rolls is set to 0.5 to 20 mm, and the roll surface moving speed (sheet extrusion speed) is set to 5 to 50 mm / sec. Can be rolled.
  • the processing aid is removed by leaving the rolled sheet at room temperature or heating it at a temperature below the melting point of the fluororesin.
  • the dried sheet is heated and sintered at a temperature equal to or higher than the melting point of the fluororesin.
  • the heating temperature varies slightly depending on the type of the fluororesin, for example, 340 to 370, considering that the entire sheet needs to be uniformly fired and that a fluorine-based harmful gas is generated at an excessively high temperature. ° C is suitable.
  • the dried sheet may be fired at 340 to 370 ° C. Specifically, the temperature is raised to 340 to 370 ° C. over 3 to 7 hours, and then at the temperature for 1 to 5 hours. It is preferable to bake with a program that maintains and finally slowly cools.
  • a filled fluororesin sheet By such a production method of the present invention, a filled fluororesin sheet is produced.
  • This filled fluororesin sheet has excellent stress relaxation properties, particularly stress relaxation properties at high temperatures, airtightness and mechanical strength.
  • the stress relaxation rate at 200 ° C. (according to JIS R3453, The heating temperature alone (changed from 100 ° C. to 200 ° C.) is preferably 42% or less, more preferably 39% or less.
  • the lower limit may be 30%, and the leakage amount (airtightness, ⁇ 48 ⁇ ⁇ 67 ⁇ (A surface pressure of 19.6 MPa and a nitrogen gas internal pressure of 0.98 MPa for a test piece having a thickness of 1.5 mm) is preferably 8.0 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s or less, and more preferably 7.0 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s or less, and the lower limit may be 3.0 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s, and the tensile strength (mechanical strength, conforming to JIS R3453) is , Preferably 12 MPa or more, more preferably Preferably, it is 15 MPa or more, and the upper limit may be 25 MPa.
  • the filled fluororesin sheet of the present invention has not only high stress relaxation and airtightness at high temperatures, but also excellent mechanical strength. Excellent deformation suppression due to high tightening force load in the attaching process and deformation suppression for internal pressure load during use.
  • Such a filled fluororesin sheet of the present invention can be used for a gasket, and a gasket made of the filled fluororesin sheet of the present invention can be used for a long time at a high temperature (for example, 200 ° C. or more). .
  • the gasket can be easily manufactured by cutting the filled fluororesin sheet of the present invention into a desired shape.
  • Test piece was prepared from a sheet having a thickness of 1.5 mm, and the stress relaxation rate, air tightness and tensile strength were measured as follows.
  • the load was applied so that After applying a nitrogen gas internal pressure of 0.98 MPa (1.0 kgf / cm 2 G) to the inner diameter side of the gasket from the pressure introduction through hole provided in the flange, the pressure introduction pipe was sealed and held for 1 hour.
  • the pressure change before and after holding was read with a pressure sensor, and the amount of leakage was determined from the pressure drop.
  • test piece was prepared from a sheet having a thickness of 1.5 mm, and the tensile strength of this test piece was measured according to JIS R3453.
  • a test piece was prepared from a sheet having a thickness of 1.5 mm, and the stress relaxation rate was measured according to JIS R3453 except that the heating temperature was changed from 100 ° C. to 200 ° C. for this test piece.
  • Example 1 400 g PTFE fine powder (CD-1, manufactured by Asahi Glass Co., Ltd.) NK-300 (fine powder clay, manufactured by Showa KDE Co., Ltd.) 600 g, 125 g of Isopar C (hydrocarbon organic solvent, fractional distillation temperature: 97 to 104 ° C., Exxon Mobil) Isopar G (hydrocarbon organic solvent, fractional distillation temperature: 158 to 175 ° C., Exxon Mobil) 125g, and phenol resin 1364A (uncured powdery phenol resin, manufactured by DIC) 4g After mixing with a kneader for 5 minutes, it was aged by leaving it to stand at room temperature (25 ° C.) for 16 hours to prepare a resin composition for sheet formation.
  • Isopar C hydrocarbon organic solvent, fractional distillation temperature: 97 to 104 ° C., Exxon Mobil
  • Isopar G hydrocarbon organic solvent, fractional distillation temperature: 158 to 175
  • This composition was extruded at room temperature (25 ° C.) with a 300 mm ⁇ 20 mm die extruder to prepare a preform.
  • the preform was rolled with a biaxial roll under the conditions of a roll diameter of 700 mm, a roll interval of 20 mm, a roll speed of 6 m / min, and a roll temperature of 40 ° C.
  • the obtained sheet was rolled again with a roll interval of 10 mm.
  • the obtained sheet was rolled again with a roll interval of 5 mm.
  • the obtained sheet was rolled again with a roll interval of 1.5 mm, and a sheet having a thickness of 1.5 mm was obtained.
  • the sheet was allowed to stand at room temperature (25 ° C.) for 24 hours to remove the solvent, and then baked in an electric furnace at 350 ° C. for 3 hours to obtain a filled fluororesin sheet.
  • Example 2 A filled fluororesin sheet was produced in the same manner as in Example 1 except that the amount of phenol resin used was changed to 10 g.
  • Example 3 A filled fluororesin sheet was produced in the same manner as in Example 1 except that the amount of phenol resin used was changed to 20 g.
  • the leakage amount (airtightness) of this filled fluororesin sheet was 6.0 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s, the tensile strength was 20 MPa, and the stress relaxation rate was 34%.
  • Example 4 A filled fluororesin sheet was produced in the same manner as in Example 1 except that the amount of phenol resin used was changed to 40 g.
  • the leakage amount (airtightness) of this filled fluororesin sheet was 6.3 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s, the tensile strength was 21 MPa, and the stress relaxation rate was 38%.
  • the leakage amount (airtightness) of this filled fluororesin sheet was 6.0 ⁇ 10 ⁇ 5 Pa ⁇ m 3 / s, the tensile strength was 10 MPa, and the stress relaxation rate was 40%.
  • the leakage amount (air tightness) of this filled fluororesin sheet was 2.0 ⁇ 10 ⁇ 3 Pa ⁇ m 3 / s, the tensile strength was 20 MPa, and the stress relaxation rate was 48%.

Abstract

 フッ素樹脂(A)、充填材(B)、加工助剤(C)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有するシート形成用樹脂組成物を、予備成形し、得られたプリフォームを40~80℃のロール温度で圧延し、その後焼成することを特徴とする充填材入りフッ素樹脂シートの製造方法。

Description

充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート
 本発明は、充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート関する。
 充填材入りフッ素樹脂シートは、フッ素樹脂に充填材を充填してシート状に加工したものであり、フッ素樹脂の持つ耐薬品性、耐熱性に加えて、充填材の持つ固有の機能・特性を付加し、あるいはフッ素樹脂の欠点である耐クリープ性を改善することにより、シール材等に多く用いられている。
 このようなシール材として、本願出願人は、特開2007-253519号公報(特許文献1)において、フッ素樹脂、充填材および加工助剤を含む充填材入りフッ素樹脂シートの製造方法を開示している。この製造方法により、高い応力緩和性および高い気密性が両立し、ガスケット材料に適した充填材入りフッ素樹脂シートを得ることができる。
 また、本願出願人は、特開2005-225918号公報(特許文献2)において、フッ素樹脂、熱硬化性樹脂、充填材などを含む非石綿系ジョイントシートの製造方法および該製法により得られた非石綿系ジョイントシートを開示している。このジョイントシートは、耐熱性と、シール性に優れている。
特開2007-253519号公報 特開2005-225918号公報
 しかしながら、特許文献1および特許文献2に記載された、従来のフッ素樹脂シートには、機械的強度の点でさらなる改善の余地があった。
 本発明は、上記のような問題に鑑みてなされたものであり、応力緩和性、特に高温での応力緩和性、気密性および機械的強度に優れた充填材入りフッ素樹脂シートおよびその製造方法を提供することを目的とする。
 本発明の充填材入りフッ素樹脂シートの製造方法は、フッ素樹脂(A)、充填材(B)、加工助剤(C)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有するシート形成用樹脂組成物を予備成形し、得られたプリフォームを40~80℃のロール温度で圧延し、その後焼成することを特徴としている。
 前記フッ素樹脂(A)と前記熱硬化性樹脂(D)との重量比は、フッ素樹脂:熱硬化性樹脂=1:0.005~0.15であることが好ましい。
 前記フッ素樹脂(A)と前記充填材(B)との重量比は、フッ素樹脂:充填材=1:0.1~3であることが好ましい。
 前記シート形成用樹脂組成物中の前記加工助剤(C)の量は、前記フッ素樹脂(A)と前記充填材(B)との合計100重量部に対して5~50重量部であることが好ましい。

 前記加工助剤(C)は、分留温度が120℃以下である石油系炭化水素溶剤を30重量%以上(ただし、加工助剤重量を100重量%とする。)含んでなることが好ましい。
 本発明の充填材入りフッ素樹脂シートは、フッ素樹脂(A)、充填材(B)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有し、下記の特性(a)~(c)を充足することを特徴としている;
 特性(a):JIS R3453に準拠して測定された引張り強さが12MPa以上である、
 特性(b):該充填材入りフッ素樹脂シートから作成したφ48mm×φ67mm×厚さ1.5mmの試験片に対して面圧19.6MPa、窒素ガス内圧0.98MPaとして気密試験を行った場合の漏洩量が8.0×10-5Pa・m/s以下である、
 特性(c):JIS R3453に準拠して(但し、加熱温度のみ100℃から200℃に変更する)測定された応力緩和率が39%以下である。
 前記充填材入りフッ素樹脂シートは、上記製造方法で製造することができる。
 本発明の充填材入りフッ素樹脂シートの製造方法によれば、応力緩和性、特に高温での応力緩和性、気密性および機械的強度に優れた充填材入りフッ素樹脂シートを製造することができる。
 本発明の充填材入りフッ素樹脂シートは、応力緩和性、特に高温での応力緩和性、気密性および機械的強度に優れている。
 以下、本発明をさらに詳細に説明する。
 [充填材入りフッ素樹脂シートの製造方法]
 本発明の充填材入りフッ素樹脂シートの製造方法は、フッ素樹脂(A)、充填材(B)、加工助剤(C)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有するシート形成用樹脂組成物を予備成形し、得られたプリフォームを40~80℃のロール温度で圧延し、その後焼成することを特徴としている。
 ≪シート形成用樹脂組成物≫
 本発明のシート形成用樹脂組成物は、フッ素樹脂(A)、充填材(B)、加工助剤(C)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有する。
 <フッ素樹脂(A)>
 前記フッ素樹脂(A)としては、四フッ化エチレン樹脂(PTFE)、変性PTFE、フッ化ビニリデン樹脂(PVDF)、四フッ化エチレン-エチレン共重合樹脂(ETFE)、三フッ化塩化エチレン樹脂(PCTFE)、四フッ化エチレン-六フッ化プロピレンエチレン共重合樹脂(FEP)および四フッ化エチレン-パーフロロアルキル共重合樹脂(PFA)など、従来より公知のフッ素樹脂をいずれも好ましく用いることができる。これらの中でも、押出成形、圧延などを行う際の加工性の面で、四フッ化エチレン樹脂(PTFE)が好ましく、乳化重合によって得られたPTFEが特に好ましい。
 前記フッ素樹脂(A)としてPTFEを用いる場合には、前記フッ素樹脂に上述したPTFE以外のフッ素樹脂が、少量、たとえば10重量%(フッ素樹脂の合計量を100重量%とする。)以下の量で含まれていても良い。
 前記フッ素樹脂(A)としては、粉末状のものをそのまま用いても良く、水にフッ樹脂微粒子を分散させたディスパージョンを用いてもよい。
 <充填材(B)>
 前記充填材(B)としては、目的に応じて、黒鉛、カーボンブラック、膨張黒鉛、活性炭、カーボンナノチューブ等の炭素系充填材;タルク、マイカ、クレー、炭酸カルシウム、酸化マグネシウム、シリコンカーバイド、アルミナ、シリカ等の無機充填材;またはPPS等の樹脂の粉体;等が用いられる。また、炭素繊維、アラミド繊維、ロックウール等からなる繊維長10mm以下の繊維材を充填材(B)として用いても良い。
 本発明によれば、フッ素樹脂(A)の充填率が低く、充填材(B)の充填率が高い場合であっても、高い応力緩和性と高い気密性とが両立し、さらに、機械的強度の高い充填材入りフッ素樹脂シートを得ることができ、前記フッ素樹脂(A)と前記充填材(B)との重量比は、好ましくは1:0.1~3、さらに好ましくは1:0.1~2である。
 <加工助剤(C)>
 前記加工助剤(C)としては、従来公知の加工助剤、たとえば、石油系炭化水素溶剤、アルコール類、水などが挙げられる。石油系炭化水素溶剤としては、分留温度が120℃以下である石油系炭化水素溶剤を30重量%以上、好ましくは40%以上、さらに好ましくは50%以上含んでいるもの(ただし、加工助剤重量を100重量%とする。)が望ましく、特に、本質的に、分留温度が120℃以下である石油系炭化水素溶剤のみからなるものが好ましい。
 分留温度が120℃以下である石油系炭化水素溶剤としては、代表例としてパラフィン系溶剤などが挙げられ、市販品であれば、たとえばアイソパーC(炭化水素系有機溶剤、分留温度:97~104℃、エクソンモービル(有))などが挙げられる。
 加工助剤(C)に含まれてもよい、分留温度が120℃以下である石油系炭化水素溶剤以外の成分としては、分留温度が120℃を超える石油系炭化水素溶剤などが挙げられる。分留温度が120℃を超える石油系炭化水素溶剤としては、市販品であればアイソパーG(炭化水素系有機溶剤、分留温度:158~175℃、エクソンモービル(有))などが挙げられる。
 この加工助剤(C)の含有量は、シート形成用樹脂組成物中に、フッ素樹脂(A)と充填材(B)との合計100重量部に対して、好ましくは5~50重量部、さらに好ましくは10~30重量部である。加工助剤(C)がこのような量で含まれていると、後述する圧延工程の初期段階で、フッ素樹脂を充分に膨潤させることができ、得られるフッ素樹脂シートの内部がポーラスにならない。
 <熱硬化性樹脂(D)>
 前記熱硬化性樹脂(D)は、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の樹脂であることを特徴とする。
 このような熱硬化性樹脂は、耐熱性、耐酸・アルカリ性に優れており、後述する焼成工程にて、分解、焼失、炭化等せず、得られる充填材入りフッ素樹脂シートの内部がポーラスにならない。
 熱硬化性樹脂は、市販されている形態として、粉末状、ペレット状、ブロック状等があり、特に制限はされないが、本発明で用いる熱硬化性樹脂(D)は、後述する圧延工程における揮発成分の揮発の制御の容易性のため、さらには、高い応力緩和特性、気密性および機械的強度を有する充填材入りフッ素樹脂シートを得るために、粉末状のものが望ましい。
 また、フェノール樹脂およびジアリルフタレート樹脂には、市販されている形態として、未硬化タイプと硬化済タイプがあるが、より機械的強度の高い充填材入りフッ素樹脂シートを得るために、未硬化タイプのものが使用される。
 前記フッ素樹脂(A)と前記熱硬化性樹脂(D)との重量比は、好ましくは1:0.005~0.15、さらに好ましくは1:0.01~0.10である。熱硬化性樹脂がこのような量で含まれていると、高い応力緩和性と高い気密性を維持したまま、機械的強度の高い充填材入りフッ素樹脂シートを得ることができる。
 シート形成用樹脂組成物は、本質的には、上記したフッ素樹脂(A)、充填材(B)、加工助剤(C)および熱硬化性樹脂(D)のみからなる。
 これらの成分が含まれたフッ素樹脂シート形成用樹脂組成物を調製するには、上記各成分を任意の順序で一度に、あるいは少量ずつ複数回に分けて容器内に添加し、攪拌・混合等すればよい。
 前記撹拌・混合する方法は、特に制限されないが、フッ素樹脂(A)、無機充填材(B)、加工助剤(C)および熱硬化性樹脂(D)を、製造しようとする充填材入りフッ素樹脂シートの組成に対応するように配合し、任意の順序で撹拌・混合すればよい。撹拌効率が悪い場合には、加工助剤を多く添加し、撹拌終了後に余分な加工助剤を濾過により除去しても良い。
 また、攪拌・混合する際の温度は、加工助剤が揮発しないよう、圧延工程におけるロール温度よりも低い温度が好ましい。
 ≪充填材入りフッ素樹脂シートの製造方法≫
 本発明の充填材入りフッ素樹脂シートの製造方法は、予備成形工程、圧延工程、乾燥工程、焼成工程をこの順序で含んでいる。
 <予備成形工程>
 予備成形工程では、前記シート形成用樹脂組成物を押出成形し、プリフォーム(押出成形物)を製造する。
 このプリフォームの形状は、特に限定されないが、その後のシート形成の効率、シート性状の均質性などを考慮すると、ロッド状またはリボン状が望ましい。
 本発明の製造方法においては、後述する圧延工程において加工助剤を徐々に揮発させるため、予備成形工程は、温度を加工助剤が揮発しないよう、圧延工程におけるロール温度よりも低い温度下で行うことが好ましい。
 <圧延工程>
 予備成形工程に続く圧延工程では、プリフォームを、二軸ロールに代表される圧延ロール間を通過させてシート状に圧延、成形する。
 本発明の製造方法においては、この圧延工程は、ロール温度を40~80℃として行う。
 ロール温度が上記範囲にあると、フッ素樹脂(A)の硬度がやや低下し、充填材入りフッ素樹脂シートをより緻密化しやすくなる。
 一方、圧延工程を40℃よりも低い温度で行うと、前記加工助剤(C)が揮発し難くなる傾向にある。また、80℃を越える温度で圧延を行うと、前記加工助剤(C)が過度に揮発してしまい、圧延工程初期の時点で残存する加工助剤が少なくなるため、フッ素樹脂(A)を充分に膨潤させ、繊維化させることができず、得られる充填材入りフッ素樹脂シートの強度が劣る傾向にある。また、組成物中の加工助剤(C)が急激に気化することにより膨れ現象が生じ、充填材入りフッ素樹脂シートの気密性も低下する傾向にある。
 前記加工助剤(C)として、分留温度が低い(120℃以下)石油系炭化水素溶剤を多く含む加工助剤を用いると、二軸ロール等による圧延を実施する間に、シート形成用樹脂組成物中の(プリフォーム中の)加工助剤(C)が徐々に揮発、除去される。したがって、圧延工程の初期段階では、加工助剤(C)が多く存在するためにフッ素樹脂(A)を膨潤させ繊維化させることができ、しかも圧延工程の後期段階では、加工助材(C)の残存量が少ないことから、加工助剤(C)の揮発に基づくシート内部での新たな空孔の形成が少ないため、シートの平面方向への変形に優先させてシート内部の緻密化を進めることができると考えられる。
 また、本発明の製造方法では、前記圧延工程により調製された圧延シートをさらに圧延する工程を含むこと、すなわち圧延工程を複数回(たとえば3~50回)繰り返すことが好ましい。圧延を繰り返すことにより、フッ素樹脂シート内部をさらに緻密化することができる。なお圧延工程を繰り返す場合には、圧延を繰り返すごとにロール間隔を狭くする。
 二軸ロールにより前記プリフォームを圧延してシート形成する際には、たとえばロール間距離を0.5~20mmにセットし、ロール表面移動速度(シート押出速度)を5~50mm/秒としてプリフォームを圧延すればよい。
 <乾燥工程>
 乾燥工程では、前記の圧延されたシートを常温で放置するか、フッ素樹脂の融点未満の温度で加熱することにより、加工助剤を除去する。
 <焼成工程>
 焼成工程では、乾燥後シートをフッ素樹脂の融点以上の温度で加熱し、焼結させる。加熱温度としては、シート全体を均一に焼成する必要があること、および、過度の高温ではフッ素系有害ガスが発生することなどを考慮すると、フッ素樹脂の種類によっても多少異なるが、たとえば340~370℃が適当である。
 この焼成工程では、乾燥後のシートを340~370℃で焼成すればよいが、具体的には、3~7時間かけて340~370℃まで昇温し、その後、1~5時間当該温度で維持し、最後に徐冷するようなプログラムで焼成することが好ましい。
 [充填材入りフッ素樹脂シート]
 このような本発明の製造方法によって、充填材入りフッ素樹脂シートが製造される。この充填材入りフッ素樹脂シートは、応力緩和性、特に高温での応力緩和性、気密性および機械的強度に優れており、具体的には、200℃での応力緩和率(JIS R3453に準拠、加熱温度のみ100℃から200℃に変更)は、好ましくは42%以下、さらに好ましくは39%以下であり、その下限値は30%であってもよく、漏洩量(気密性、φ48×φ67×厚さ1.5mmの試験片に対して面圧19.6MPa、窒素ガス内圧0.98MPa)は、好ましくは8.0×10-5Pa・m/s以下、さらに好ましくは7.0×10-5Pa・m/s以下であり、その下限値は3.0×10-5Pa・m/sであってもよく、引張り強さ(機械的強度、JIS R3453に準拠)は、好ましくは12MPa以上、さらに好ましくは15MPa以上であり、その上限値は25MPaであってもよい。
 本発明の充填材入りフッ素樹脂シートは、高温での応力緩和性および気密性のみならず、特に、機械的強度に優れているので、装着作業性、とりわけ大口径品装着時の破壊抑止、締付工程における高締付力負荷による変形抑止、使用中の内圧負荷に対する変形抑止などに優れる。
 このような本発明の充填材入りフッ素樹脂シートは、ガスケットに用いることができ、本発明の充填材入りフッ素樹脂シートからなるガスケットは、高温下(たとえば200℃以上)で長期に渡って使用できる。
 前記ガスケットは、本発明の充填材入りフッ素樹脂シートを所望の形状に切り抜くことにより容易に製造できる。
 以下、本発明の製造方法を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 <試験方法>
 厚さ1.5mmのシートから試験片を作成し、以下のように応力緩和率、気密性および引張強度を測定した。
 漏洩量(気密性);
 φ48mm×φ67mmの寸法に打ち抜いたガスケット試験片を、φ100mm×高さ50mm、表面粗さRmax=12μmの鋼フランジ間に装着し、圧縮試験機により面圧19.6MPa(200kgf/cmG)となるよう荷重を負荷した。フランジに設けられた圧力導入用の貫通孔からガスケット内径側に窒素ガス内圧0.98MPa(1.0kgf/cmG)を負荷した後圧力導入配管を封じ、1時間保持した。保持前後の圧力変化を圧力センサで読み取り、圧力降下から漏洩量を求めた。
 引張り強さ;
 厚さ1.5mmのシートから試験片を作成し、この試験片についてJIS R3453に準拠して引張り強さを測定した。
 応力緩和率;
 厚さ1.5mmのシートから試験片を作成し、この試験片について加熱温度を100℃から200℃に変更した点を除いてJIS R3453に準拠して応力緩和率を測定した。
 [実施例1]
 PTFEファインパウダー(CD-1、旭硝子(株)製)400g、
 NK-300(微粉末クレー、昭和KDE(株)製)600g、
 アイソパーC(炭化水素系有機溶剤、分留温度:97~104℃、エクソンモービル(有))125g、
 アイソパーG(炭化水素系有機溶剤、分留温度:158~175℃、エクソンモービル(有))125g、および
 フェノール樹脂1364A(未硬化タイプの粉末状フェノール樹脂、DIC製)4g
をニーダーで5分間混合した後、室温(25℃)で16時間放置することにより熟成させ、シート形成用樹脂組成物を調製した。
 この組成物を、室温(25℃)で、口金300mm×20mmの押出機で押出し、プリフォームを作成した。
 このプリフォームを、ロール径700mm、ロール間隔20mm、ロール速度6m/分、ロール温度40℃の条件下で二軸ロールにより圧延した。この圧延の直後に、得られたシートを、ロール間隔を10mmとして再度圧延した。さらに、この圧延の直後に、得られたシートを、ロール間隔を5mmとして再度圧延した。最後に、この圧延の直後に、得られたシートを、ロール間隔を1.5mmとして再度圧延し、厚さ1.5mmのシートが得られた。
 このシートを室温(25℃)で24時間放置し溶剤を除去した後、電気炉内350℃で3時間焼成し、充填材入りフッ素樹脂シートを得た。
 この充填材入りフッ素樹脂シートの漏洩量(気密性)は4.8×10-5Pa・m/s、引張り強さは16MPa、応力緩和率は38%であった。
[実施例2]
 フェノール樹脂の使用量を10gに変更した以外は実施例1と同様の方法で充填材入りフッ素樹脂シートを製造した。
 この充填材入りフッ素樹脂シートの漏洩量(気密性)は5.3×10-5Pa・m/s、引張り強さは18MPa、応力緩和率は35%であった。
[実施例3]
 フェノール樹脂の使用量を20gに変更した以外は実施例1と同様の方法で充填材入りフッ素樹脂シートを製造した。
 この充填材入りフッ素樹脂シートの漏洩量(気密性)は6.0×10-5Pa・m/s、引張り強さは20MPa、応力緩和率は34%であった。
 [実施例4]
 フェノール樹脂の使用量を40gに変更した以外は実施例1と同様の方法で充填材入りフッ素樹脂シートを製造した。
 この充填材入りフッ素樹脂シートの漏洩量(気密性)は6.3×10-5Pa・m/s、引張り強さは21MPa、応力緩和率は38%であった。
 [比較例1]
 フェノール樹脂を用いないこと以外は実施例1と同様の方法で充填材入りフッ素樹脂シートを製造した。
 この充填材入りフッ素樹脂シートの漏洩量(気密性)は6.0×10-5Pa・m/s、引張り強さは10MPa、応力緩和率は40%であった。
 [比較例2]
 フェノール樹脂の使用量を80gに変更した以外は実施例1と同様の方法で充填材入りフッ素樹脂シートを製造した。
 この充填材入りフッ素樹脂シートの漏洩量(気密性)は2.0×10-3Pa・m/s、引張り強さは20MPa、応力緩和率は48%であった。
Figure JPOXMLDOC01-appb-T000001
 

Claims (7)

  1.  フッ素樹脂(A)、充填材(B)、加工助剤(C)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有するシート形成用樹脂組成物を予備成形し、得られたプリフォームを40~80℃のロール温度で圧延し、その後焼成することを特徴とする充填材入りフッ素樹脂シートの製造方法。
  2.  前記フッ素樹脂(A)と前記熱硬化性樹脂(D)との重量比が、フッ素樹脂:熱硬化性樹脂=1:0.005~0.15であることを特徴とする請求項1に記載の充填材入りフッ素樹脂シートの製造方法。
  3.  前記フッ素樹脂(A)と前記充填材(B)との重量比が、フッ素樹脂:充填材=1:0.1~3であることを特徴とする請求項1または2に記載の充填材入りフッ素樹脂シートの製造方法。
  4.  前記シート形成用樹脂組成物中の前記加工助剤(C)の量が、フッ素樹脂(A)と充填材(B)との合計100重量部に対して5~50重量部であることを特徴とする請求項1~3の何れかに記載の充填材入りフッ素樹脂シートの製造方法。
  5.  前記加工助剤(C)が、分留温度が120℃以下である石油系炭化水素溶剤を30重量%以上(ただし、加工助剤重量を100重量%とする。)含んでなることを特徴とする請求項1~4の何れかに記載の充填材入りフッ素樹脂シートの製造方法。
  6.  フッ素樹脂(A)、充填材(B)、ならびに、フェノール樹脂、熱硬化性ポリイミド樹脂およびジアリルフタレート樹脂から選ばれる少なくとも1種の熱硬化性樹脂(D)を含有し、下記の特性(a)~(c)を充足することを特徴とする充填材入りフッ素樹脂シート;
     特性(a):JIS R3453に準拠して測定された引張り強さが12MPa以上である、
     特性(b):該充填材入りフッ素樹脂シートから作成したφ48mm×φ67mm×厚さ1.5mmの試験片に対して面圧19.6MPa、窒素ガス内圧0.98MPaとして気密試験を行った場合の漏洩量が8.0×10-5Pa・m/s以下である、
     特性(c):JIS R3453に準拠して(但し、加熱温度のみ100℃から200℃に変更する)測定された応力緩和率が39%以下である。
  7.  上記請求項1~5の何れかに記載の充填材入りフッ素樹脂シートの製造方法で製造されたこと特徴とする請求項6に記載の充填材入りフッ素樹脂シート。
PCT/JP2010/071881 2009-12-08 2010-12-07 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート WO2011071034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009278318A JP5578841B2 (ja) 2009-12-08 2009-12-08 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート
JP2009-278318 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011071034A1 true WO2011071034A1 (ja) 2011-06-16

Family

ID=44145578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071881 WO2011071034A1 (ja) 2009-12-08 2010-12-07 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート

Country Status (2)

Country Link
JP (1) JP5578841B2 (ja)
WO (1) WO2011071034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130274406A1 (en) * 2012-04-13 2013-10-17 Xerox Corporation Reinforced fluoropolymer composites comprising surface functionalized nanocrystalline cellulose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026125A (ja) * 1988-06-27 1990-01-10 Oiles Ind Co Ltd 複層摺動部材ならびにその製造方法
JPH08505430A (ja) * 1993-11-03 1996-06-11 レンツィング アクチェンゲゼルシャフト ポリテトラフルオロエチレン製の一軸延伸成形品
JP2007253519A (ja) * 2006-03-24 2007-10-04 Nippon Valqua Ind Ltd 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026125A (ja) * 1988-06-27 1990-01-10 Oiles Ind Co Ltd 複層摺動部材ならびにその製造方法
JPH08505430A (ja) * 1993-11-03 1996-06-11 レンツィング アクチェンゲゼルシャフト ポリテトラフルオロエチレン製の一軸延伸成形品
JP2007253519A (ja) * 2006-03-24 2007-10-04 Nippon Valqua Ind Ltd 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130274406A1 (en) * 2012-04-13 2013-10-17 Xerox Corporation Reinforced fluoropolymer composites comprising surface functionalized nanocrystalline cellulose
CN103374188A (zh) * 2012-04-13 2013-10-30 施乐公司 含表面官能化纳米微晶纤维素的强化含氟聚合物复合物
US9328256B2 (en) * 2012-04-13 2016-05-03 Xerox Corporation Reinforced fluoropolymer composites comprising surface functionalized nanocrystalline cellulose

Also Published As

Publication number Publication date
JP2011122001A (ja) 2011-06-23
JP5578841B2 (ja) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5068043B2 (ja) 充填材入りフッ素樹脂シートおよび充填材入りフッ素樹脂シートの製造方法
JP4213167B2 (ja) 充填材入りフッ素樹脂シートの製造方法
JP5491758B2 (ja) 充填材入りフッ素樹脂シート、その製造方法およびガスケット
JP6163338B2 (ja) 配管シール用フッ素樹脂製ガスケット
JP4909969B2 (ja) ガスケット用フッ素樹脂シート、その製造方法及びシートガスケット
JP5391188B2 (ja) ガスケット用フッ素樹脂シート、ガスケット用フッ素樹脂シートの製造方法およびシートガスケット
JP5014692B2 (ja) 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート
JP5578841B2 (ja) 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート
JP4777389B2 (ja) ガスケット用充填材入りフッ素樹脂シートおよびガスケット
JP5226938B2 (ja) 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート
TW202146619A (zh) 密封材
JP5253273B2 (ja) フッ素樹脂シート、その製造方法およびガスケット
KR20120126107A (ko) 불소 수지 시트
JP2011153254A (ja) シート形成用組成物、充填材入りフッ素樹脂シートおよび充填材入りフッ素樹脂シートの製造方法
JP2005232365A (ja) 非石綿系ジョイントシートの製造方法および該製法により得られた非石綿系ジョイントシート
JP4443849B2 (ja) 非石綿系ジョイントシートの製造方法および該製法により得られた非石綿系ジョイントシート
JP2016104883A (ja) 配管シール用フッ素樹脂製ガスケット
WO2022224734A1 (ja) ガスケット用フッ素樹脂シートおよびシートガスケット
JP2005225918A (ja) 非石綿系ジョイントシートの製造方法および該製法により得られた非石綿系ジョイントシート
JP5897948B2 (ja) 配管シール用フッ素樹脂製ガスケットの製造方法
JP2012117676A (ja) ガスケット用フッ素樹脂シート、その製造方法及びシートガスケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835954

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835954

Country of ref document: EP

Kind code of ref document: A1