WO2011071008A1 - 透過型電子顕微鏡及び試料観察方法 - Google Patents

透過型電子顕微鏡及び試料観察方法 Download PDF

Info

Publication number
WO2011071008A1
WO2011071008A1 PCT/JP2010/071810 JP2010071810W WO2011071008A1 WO 2011071008 A1 WO2011071008 A1 WO 2011071008A1 JP 2010071810 W JP2010071810 W JP 2010071810W WO 2011071008 A1 WO2011071008 A1 WO 2011071008A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electron
detection
side annular
scattered electrons
Prior art date
Application number
PCT/JP2010/071810
Other languages
English (en)
French (fr)
Inventor
長沖 功
俊明 谷垣
喜宏 大津
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/505,119 priority Critical patent/US8586922B2/en
Priority to EP10835928.2A priority patent/EP2511938A4/en
Publication of WO2011071008A1 publication Critical patent/WO2011071008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24475Scattered electron detectors

Definitions

  • the present invention relates to a transmission electron microscope and a sample observation method.
  • an annular aperture, a lens, and a pinhole are arranged between the sample and the electron detector, and unnecessary scattered electrons from the sample are removed by the annular aperture, and the necessary scattering after passing through the annular aperture.
  • Some devices detect electrons by focusing them on a pinhole with a lens (see Patent Document 1, etc.).
  • a converging lens that converges an electron beam generally has spherical aberration, and an expensive spherical aberration corrector is required to converge the scattered electrons that have passed through the annular aperture in the technique described in Patent Document 1 into a pinhole.
  • an expensive spherical aberration corrector is required to converge the scattered electrons that have passed through the annular aperture in the technique described in Patent Document 1 into a pinhole.
  • this type of microscope by detecting a scattering angle of 80 mrad or more, it becomes possible to measure the composition contrast as a HAADF (High-Angle-Annular-Dark-Field) image, and further, by detecting scattered electrons with a high scattering angle.
  • HAADF High-Angle-Annular-Dark-Field
  • An object of the present invention is to provide a transmission electron microscope and a sample observation method capable of detecting scattered electrons at a high scattering angle without being restricted by spherical aberration of an electron lens and improving depth resolution. .
  • the present invention relates to detecting scattered electrons that pass through the plurality of annular apertures by limiting the scattered electrons generated by irradiating a sample with an electron beam with the plurality of annular apertures.
  • the present invention relates to detecting scattered electrons generated by irradiating a sample with an electron beam with a single annular stop and detecting the scattered electrons passing through the annular stop with an electron detector having an annular light receiving surface.
  • the present invention it is possible to detect scattered electrons at a high scattering angle without being restricted by the spherical aberration of the electron lens, and to improve the depth resolution.
  • FIG. 1 is a schematic diagram of a transmission electron microscope according to a first embodiment of the present invention. It is one structural example of the standard sample used with the transmission electron microscope of this invention. It is another structural example of the standard sample used with the transmission electron microscope of this invention. It is the further another structural example of the standard sample used with the transmission electron microscope of this invention. It is a schematic diagram at the time of position adjustment of the irradiation side annular stop of the transmission electron microscope according to the first embodiment of the present invention.
  • an electron beam 2 ′ emitted from an electron gun 1 ′ is passed through a circular hole of a condenser aperture 3 ′, and a desired electron beam 2 ′ selected thereby is converged by a converging lens 4.
  • a configuration is known in which the sample 5 converges and is irradiated onto the sample 5.
  • the sample 5 ′ is crystalline. In some cases, a strong channeling phenomenon occurs depending on the crystal orientation.
  • the region of interest 6 ′ to be observed is inside the sample 5 ′, that is, at a specific location in the thickness direction (optical axis direction) in the sample 5 ′, a portion other than the region of interest 6 ′, for example, the region of interest 6 ′ Scattered electrons 7 'and 9' are generated from the electron gun 1 'side or the opposite layer, and these scattered electrons 7' and 8 'become noise, and the required depth resolution cannot be ensured. Therefore, it is desired to suppress the generation of scattered electrons 7 ′ and 8 ′ and efficiently generate the focused scattered electrons 8 ′ from the focused region 6 ′.
  • the convergence of the electron beam 2 ′ is achieved.
  • the depth resolution deteriorates accordingly.
  • the electron beam in the region that irradiates the sample 5 ′ in a cone shape (the electron beam on the outer periphery of the electron beam 2 ′ incident on the focal region at a relatively large irradiation angle ⁇ ) is large.
  • the electron beam that has passed through the vicinity of the center of the converging lens 4 ′ is an extra electron beam and can damage the sample 5 ′ more than necessary.
  • FIG. 2 As a scattered electron detection system of this comparative example, when applying the technique of an optical confocal microscope, for example, as shown in FIG. 2, there is a method in which a pinhole 12 ′ is arranged immediately before the electron detector 13 ′. Conceivable. In the configuration of FIG. 2, the focused scattered electrons 8 ′ having a large scattering angle ⁇ are converged on the pinhole 12 ′ by the lens 11 ′ disposed between the sample 5 ′ and the electron detector 13 ′.
  • annular aperture 10 ' is disposed between the sample 5' and the lens 11 '. If there is no annular stop 10 ', the scattered electrons from the region other than the region of interest 6' can also pass through the pinhole 13 'and reach the electron detector 13' due to the influence of the spherical aberration of the lens 11 '. For this reason, the pinhole 12 'does not function effectively.
  • the annular diaphragm 10 and further providing a spherical aberration corrector (not shown) between the lens 11 and the pinhole 12 scattered electrons from a region other than the region of interest 6 ′ are directed to the electron detector 13 ′. It is necessary to suppress incidence.
  • the spherical aberration corrector that corrects the spherical aberration of the lens 11 is an expensive part, and there is a problem that the scattering angle of the scattered electrons that can be corrected is limited.
  • the confocal microscope has an advantage that composition contrast can be measured as a HAADF (High-Angle-Annular-Dark-Field) image by detecting scattered electrons having a scattering angle of 80 mrad or more, and depth resolution is also improved. . Therefore, a scattered electron detection system capable of detecting scattered electrons at a high scattering angle without being affected by the spherical aberration of the electron lens is desired.
  • HAADF High-Angle-Annular-Dark-Field
  • FIG. 3 is a schematic diagram of a transmission electron microscope according to the first embodiment of the present invention.
  • the transmission electron microscope shown in FIG. 3 includes an electron gun 1 that irradiates a sample 5 with an electron beam 2, an irradiation-side annular diaphragm 14 that is positioned between the electron gun 1 and the sample 5, and the irradiation-side annular diaphragm.
  • a focusing lens 4 positioned between the sample 14 and the sample 4, an electron detector 13 for detecting scattered electrons transmitted through the sample 5 and scattered, and a first positioned between the electron detector 13 and the sample 5.
  • a control device 20 for controlling the electron gun 1, the converging lens 4 and the fine movement mechanism.
  • the irradiation-side annular diaphragm 14 has a ring-shaped slit formed between a circular hole 14a and a concentric circular shielding plate 14b disposed on the inside thereof.
  • the shielding plate 14b is supported inside the hole 14 through a plurality of thin support portions (not shown).
  • the hole 14a and the shielding plate 14b are arranged so that the optical axis of the electron beam 2 is approximately at the center thereof, and the inner diameter of the hole 14a is larger than the beam diameter of the electron beam 2 at the position of the irradiation side annular diaphragm 14. Is also formed small.
  • the electron beam 2 from the electron gun 1 is formed in a hollow shape with the vicinity of the optical axis blocked by the shielding plate 14b, the outer diameter and the inner diameter being limited by the hole 14a and the shielding plate 14b, respectively.
  • the electron beam 2 that has passed through the irradiation-side annular diaphragm 14 is converged by the converging lens 4 and converges on the region of interest 6 of the sample 5 at an irradiation angle ⁇ (0 ⁇ ⁇ 90 °) in a hollow cone shape.
  • ⁇ ⁇ 90 °
  • the convergence of the electron beam 2 is further enhanced.
  • the irradiation angle ⁇ of the electron beam 2 can be changed by moving the irradiation side annular diaphragm 14 up and down.
  • the first detection-side annular diaphragm 15 has a ring-shaped slit similarly to the irradiation-side annular diaphragm 14, and restricts the inner and outer diameters of the passage range of scattered electrons from the sample 5.
  • the slit diameter and the position in the optical axis direction of the first detection-side annular diaphragm 15 are adjusted so that the slit coincides with the trajectory of the focused scattered electrons 8 from the focused area 6.
  • the second detection-side annular diaphragm 16 also has a ring-shaped slit like the annular diaphragms 14 and 15, and has an inner diameter and an outer diameter of the range of passage of scattered electrons that have passed through the first detection-side annular diaphragm 15. Limit further.
  • the slit diameter and the position in the optical axis direction of the second detection-side annular diaphragm 16 are also adjusted so that the slits coincide with the trajectory of the focused scattered electrons 8 from the focused area 6. Therefore, the slit diameter of the second detection-side annular diaphragm 16 is necessarily larger than that of the first detection-side annular diaphragm 15.
  • the fine movement mechanism 17-19 is a drive system using at least one of a motor and a piezoelectric element, and moves the annular diaphragm 14-16 in a plane direction (XY direction) and an optical axis direction (Z direction) orthogonal to the optical axis, respectively.
  • the sample 5 is also configured to be movable in the plane direction and the optical axis direction by a sample stage using at least one of a motor and a piezoelectric element.
  • the control device 20 is executed by the control device 20.
  • the resolution of the transmission electron microscope of the present embodiment is determined by the initial setting of the lens current of the converging lens 4 and the position of the annular diaphragm 14-16.
  • the standard sample 50a shown in FIG. 4A is an ideal configuration example.
  • the holding part 22 is formed of atoms that are lighter than the target 21.
  • the target 21 is fixed on the holding unit 22 and is preferably a single atom. However, when it is difficult to prepare a single atom, it may be replaced with a cluster which is an aggregate of several atoms.
  • the target 21 is a heavy atom (Pt, U, etc.)
  • the holding unit 22 is a light atom (C, etc.).
  • the scattered wave generation unit 25 is a portion having a thickness greater than that of the holding unit 22, and the constituent atoms may be the same as the holding unit 22.
  • the standard sample 50b shown in FIG. 4B is obtained by holding the target 21 in the holding unit 23.
  • the holding part 23 of the standard sample 50b has a thickness that allows the electron beam to easily pass therethrough.
  • Other points are the same as those of the standard sample 50a.
  • a standard sample 50c shown in FIG. 4C is an example in which an atomic wire having an atomic wire diameter is used as the target 24.
  • the target 24 is formed in the threading dislocation formed in the support portion 23.
  • Techniques for forming atomic wires at threading dislocations are generally known. When a single atom or cluster cannot be prepared, an atomic wire target 24 can be used as in this example.
  • FIG. 5 to FIG. 8 are schematic views showing a sequence of initial adjustment of the position of the annular diaphragm 14-16 and the current of the converging lens 4.
  • FIG. 5 to FIG. 8 are schematic views showing a sequence of initial adjustment of the position of the annular diaphragm 14-16 and the current of the converging lens 4.
  • the electron beam 2 from the electron gun 1 is converged by the convergence lens 4 without the sample and the detection-side annular diaphragms 15 and 16.
  • the crossover (focal point) is formed, electrons are detected by the lower electron detector 13.
  • the electrons detected at this time can be confirmed on an external monitor (not shown) as a two-dimensional electron detection image 26 (see FIGS. 5B and 5C). What appears in a ring shape in the electron detection image 26 is an image of an annular slit of the irradiation side annular stop 14 (as a simple method, the electron detector 13 may be replaced with a fluorescent plate).
  • FIG. 5B shows a state where the center of the slit image 28 of the irradiation side annular diaphragm 14 is deviated from the central axis of the converging lens 4.
  • the fine movement mechanism 17 is commanded, and the position of the irradiation side annular diaphragm 14 is set so that the center of the slit image 28 of the irradiation side annular diaphragm 14 coincides with the central axis of the converging lens 4 as shown in FIG. 5C. adjust.
  • the process proceeds to the adjustment of the converging lens 4. If there is an astigmatism in the converging lens 4, an electron is used even if the slit of the irradiation side annular diaphragm 14 is actually a perfect circle.
  • the slit image 28 on the detection image 26 does not become a perfect circle.
  • the astigmatism of the convergent lens 4 is corrected by an astigmatism adjustment mechanism (not shown) so that the slit image 28 becomes a perfect circle while looking on the electron detection image 26.
  • the sample stage (not shown) is driven to set the scattered wave generation unit 25 of the standard sample 50 at the focal position of the converging lens 4.
  • the generator 25 is irradiated with the electron beam 2 to generate a large amount of scattered waves.
  • the electron detection image 26 becomes bright overall.
  • the fine movement mechanism 18 is driven, and the first detection-side annular diaphragm 15 is inserted between the standard sample 50 and the electron detector 13 (see FIG. 6A).
  • a slit image 30 of the first detection-side annular diaphragm 15 appears in a ring shape in the electron detection image 26 (see FIGS. 6B and 6C).
  • the sample stage (not shown) is driven, and the target 21 of the standard sample 50 is crossed over, that is, the focal position of the focusing lens 4 as shown in FIG.
  • the standard sample 50 is scanned on the sample stage, and an electron beam scattered from the standard sample 50 at a high scattering angle passes through the slit of the first detection-side annular diaphragm 15 and is detected by the electron detector 13.
  • a scanning transmission electron microscope image is acquired, and the target 21 is adjusted to the focal position while viewing the electron microscope image.
  • the sample 50 is moved to a height at which the two-dimensional image is sharpest.
  • the target 21 is an atom heavier than the surrounding atoms constituting the holding unit 22, so that when the target 21 comes to the focal position, the detection signal of scattered electrons is detected. Is the strongest. Therefore, the scattered electron detection signal detected by the electron detector 13 is monitored, and the standard sample 50 is moved to a position where the detection signal is strongest. Thereby, the target 21 is focused.
  • the fine movement mechanism 19 is driven so that the second detection-side annular diaphragm 16 and the first detection-side annular diaphragm 15 and the electron detector as shown in FIG. 13 is inserted.
  • the second detection-side annular diaphragm 16 on the axis, the scattered electrons (noise) generated from the area other than the area of interest 6 and passing through the first detection-side annular diaphragm 15 are blocked,
  • the electron detector 13 can detect only the scattered electrons of interest 8 that have passed through one detection-side annular diaphragm 15.
  • the slit of the second detection-side annular diaphragm 16 is deviated from the orbit of the focused scattered electrons 8, the detection efficiency of the focused scattered electrons 8 is deteriorated.
  • the approximate position of the second detection-side annular diaphragm 16 is changed from the target 21 to the detection-side annular diaphragm 15. , 16 and the slit inner diameters R1, R2 of the detection-side annular diaphragms 15, 16 are obtained geometrically.
  • the second detection-side annular diaphragm 16 is moved to a geometrically calculated position, and the second detection-side annular is moved to a position where the detection intensity is maximized while monitoring the detection intensity of scattered electrons from there.
  • the diaphragm 16 is finely moved.
  • the adjustment for observation is completed through the above procedure.
  • the setting of the lens current of the convergent lens 4 and the position of the annular diaphragm 14-16 is stored in, for example, the storage unit of the control device 20 or an external memory, and is observed by fine adjustment from the stored setting at the next adjustment. Preparation work can be made more efficient.
  • FIG. 9 is a flowchart showing the above apparatus adjustment procedure.
  • the procedure is roughly divided, and the irradiation system adjustment 32 for irradiating the electron beam 2 to one point (target 21) with a hollow cone and only the focused scattered electrons 8 emitted from the one point (target 21).
  • Detection system adjustment 33 for detecting includes the position adjustment 34 (see FIG. 5) of the irradiation-side annular diaphragm 14 and the astigmatism correction 35 of the convergent lens 4 described above.
  • the adjustment 33 of the detection system includes the position adjustment 36 (see FIG. 6) of the first detection-side annular diaphragm 15, the position adjustment 37 (see FIG. 7) of the standard sample 50, and the position of the second detection-side annular diaphragm 16. It consists of adjustment 38 (see FIG. 8).
  • the apparatus adjustment procedure can be performed manually by the operator, but it is also conceivable that the apparatus is automatically executed by the control apparatus 20.
  • the apparatus is automatically executed by the control apparatus 20.
  • a control procedure of the control device 20 when the device adjustment is automatically executed will be described.
  • the control device 20 controls the fine movement mechanism 17 according to the previously set position information (or position information set separately) of the irradiation-side annular diaphragm 14 that has been stored. 1 and the converging lens 4, and the irradiation-side annular diaphragm 14 is moved up and down to determine the height so that the slit image 28 becomes sharpest. In this case, for example, the height at which the contrast of the slit image 28 is highest may be selected.
  • control device 20 drives the fine movement mechanism 17 based on the acquired electron detection image 26 so that the center of the slit image 28 coincides with the origin of the guide line 27 to move the irradiation side annular diaphragm 14 in the horizontal direction. Move to.
  • the control device 20 instructs an astigmatism adjustment mechanism (not shown) based on the electron detection image 26 so that the slit image 28 on the electron detection image 26 becomes a perfect circle. Astigmatism of the convergent lens 4 is corrected.
  • ⁇ Position adjustment 36 of the first detection-side annular diaphragm 15> When adjusting the position of the first detection-side annular diaphragm 15, the control device 20 reads the sample stage (see FIG. 5) according to the previously set position information (or separately set position information) of the stored standard sample 50. (Not shown), the scattered wave generator 25 of the standard sample 50 is placed at the focal position of the converging lens 4, and the scattered wave generator 25 is irradiated with the electron beam 2 to generate a large amount of scattered waves.
  • the fine movement mechanism 18 is driven according to the previously set position information of the first detection-side annular diaphragm 15 stored (or set separately), and the first detection-side annular diaphragm 15 is moved to the standard sample 50 and the electron. Insert between detectors 13. Thereafter, the control device 20 adjusts the height of the first detection-side annular diaphragm 15 based on the electron detection image 26 so that the slit image 30 is sharpest, and the center of the slit image 28 is the guide line 27. The fine movement mechanism 18 is driven so as to coincide with the origin, and the first detection-side annular diaphragm 15 is moved in the horizontal direction.
  • ⁇ Position adjustment 37 of the standard sample 50> When adjusting the position of the standard sample 50, the control device 20 uses the two-dimensional or three-dimensional scanning transmission electron microscope image obtained by scanning the sample stage, so that the contrast of the slit image in the microscope image is the highest. At a height that increases, the standard sample 50 is moved to a position where the detection signal of scattered electrons is strongest.
  • the control device 20 stores the previously set position information of the second detection-side annular diaphragm 16 (or the first detection-side annular diaphragm). 15 and position information geometrically calculated from the position information of the standard sample 50), the fine movement mechanism 19 is driven, and the second detection-side annular diaphragm 16 is connected to the first detection-side annular diaphragm 15 and the electron detector 13. Insert between. Then, the second detection-side annular diaphragm 16 is finely moved to a position where the detection intensity of scattered electrons is maximized.
  • control device 20 can automatically perform device adjustment.
  • the electron beam 2 emitted from the electron gun 1 passes through the irradiation side annular diaphragm 14 and is formed into a hollow shape, converged by the converging lens 4 and formed into a hollow cone shape on the sample 5 with a large irradiation angle ⁇ . Irradiated.
  • the scattered electrons 8 of interest from the sample 5 are scattered with a large scattering angle ⁇ , pass through the detection-side annular stops 15 and 16, and are detected by the electron detector 13.
  • the electron beam 2 is scanned two-dimensionally or three-dimensionally on the region of interest 6 of the sample 5 by the operation of the sample stage. A transmission electron microscope image is created.
  • the two detection-side annular stops 15 and 16 in the detection system, scattered electrons (noise) from the region other than the region of interest 6 of the sample 5 are detected. , 16, and only the focused scattered electrons 8 can reach the electron detector 13. In the present embodiment, only the detection-side annular stops 15 and 16 are provided between the sample 5 and the electron detector 13.
  • the electronic lens of the detection system can be omitted, so that a spherical aberration corrector for correcting the spherical aberration of the electronic lens is not necessary.
  • the slit inner diameters R1 and R2 of the detection-side annular diaphragms 15 and 16 and the distances Z1 and Z2 from the sample 5 and the area of the electron detector 13 are appropriately designed, scattered electrons having any scattering angle can be detected. Therefore, even scattered electrons with a high scattering angle of, for example, 80 mrad or more can be easily detected, and high depth resolution can be ensured.
  • scattered electrons with a high scattering angle can be detected without being restricted by the spherical aberration of the electron lens, and the depth resolution can be improved.
  • the irradiation-side annular diaphragm 14 is arranged in the irradiation system so as to irradiate the electron beam 2 with a hollow cone, thereby blocking an extra electron beam at the center of the beam and contributing to depth resolution. It is possible to irradiate the sample 5 with only a high irradiation angle convergent electron beam. Thus, since an electron beam with a high irradiation angle can be efficiently irradiated while blocking an extra electron beam, the depth of focus can be reduced and the depth resolution can be improved.
  • the depth resolution can be further improved in combination with the configuration on the detection side for efficiently detecting only the scattered electrons of interest 8. Can be improved.
  • an electron lens is provided as the converging lens 4, so that the depth of focus becomes deep under the influence of spherical aberration, that is, the electron beam that has passed through the central part of the lens and the electron beam that has passed through the peripheral part. Deviation occurs at the convergence point. This itself causes a decrease in depth resolution.
  • the irradiation side annular stop 14 blocks the extra electron beam at the center of the beam and converges only the electron beam passing through the lens periphery. The influence of the spherical aberration of the converging lens 4 can be suppressed. This also contributes to the improvement of depth resolution.
  • the electron beam damage given to the sample 5 is also reduced by blocking the extra electron beam at the center of the beam.
  • the specimen In general three-dimensional electron microscope tomography observation of a thin film, the specimen is greatly inclined, resulting in an increase in the apparent sample thickness and difficulty in transmitting an electron beam, making accurate three-dimensional observation difficult. It was. Therefore, in order to transmit an electron beam with a large irradiation angle as much as possible, observation is performed while rotating the sample into a needle shape having a diameter of about 200 nm. However, in this case, the region where three-dimensional observation can be performed is physically limited to a range of about 200 nm. On the other hand, the present embodiment can be applied even when the sample is in the form of a thin film, so that a wider range can be observed three-dimensionally than in the past.
  • the detection system is provided with two detection-side annular diaphragms 15 and 16 has been described as an example.
  • the detection-side annular diaphragm may be increased to three or more as necessary. .
  • This embodiment is an electron detector 39 in which the second detection-side annular diaphragm 16 is omitted in the first embodiment, and the light-receiving surface is formed in an annular shape corresponding to the slit of the second detection-side annular diaphragm 16. This is an example in which the electron detector 13 is substituted.
  • the transmission electron microscope of this embodiment includes an electron gun 1 that irradiates a sample 5 with an electron beam 2, an irradiation-side annular diaphragm 14 that is positioned between the electron gun 1 and the sample 5, and the irradiation-side annular
  • the focusing lens 4 positioned between the diaphragm 14 and the sample 5, the electron detector 39 for detecting scattered electrons transmitted through the sample 5 and scattered, and the sample positioned between the electron detector 39 and the sample 5
  • a detection-side annular diaphragm 15 having a ring-shaped slit that restricts the inner diameter and outer diameter of the range in which scattered electrons pass through.
  • the irradiation-side annular diaphragm 14, the detection-side annular diaphragm 15, and the electron detector 39 are respectively arranged in the optical axis direction (Z direction) of the electron gun 1 and the surface direction (XY direction) perpendicular thereto.
  • a fine movement mechanism (fine movement mechanism 17-19 in the first embodiment) and a control device 20 are also provided.
  • Other configurations are the same as those of the first embodiment.
  • the detection system since the detection system has only one detection-side annular diaphragm 15, when the electron detector 13 of the first embodiment having a wide light receiving surface is used, scattered electrons other than the focused scattered electrons 8 are also generated as noise. It becomes easy to detect.
  • an electron detector 39 instead of the electron detector 13, an electron detector 39 whose light receiving surface itself is limited to an annular shape is used, so that scattered electrons other than the focused scattered electron 8 pass through the detection-side annular aperture 15.
  • no noise is detected because there is no light receiving surface on the trajectory. Therefore, the same effect as that of the first embodiment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 試料5に電子線2を照射する電子銃1と、試料5を透過して散乱する散乱電子を検出する電子検出器13と、この電子検出器13と試料5との間に位置し試料5からの散乱電子の通過範囲の内径及び外径を制限するリング状のスリットを有する第1の検出側環状絞り15と、この第1の検出側環状絞り15と電子検出器13との間に位置し第1の検出側環状絞り15を通過した散乱電子の通過範囲の内径及び外径をさらに制限するリング状のスリットを有する第2の検出側環状絞り16とを備えたことを特徴とする。 これにより、電子レンズの球面収差による制約を受けることなく高散乱角の散乱電子を検出し、深さ分解能を向上させることができる。

Description

透過型電子顕微鏡及び試料観察方法
 本発明は、透過型電子顕微鏡及び試料観察方法に関する。
 透過型電子顕微鏡において、環状絞り、レンズ、及びピンホールを、試料と電子検出器との間に配置し、試料からの余計な散乱電子を環状絞りで除去し、環状絞りを通過した必要な散乱電子をレンズでピンホールに収束させて検出するものがある(特許文献1等参照)。
特開2008-270056号公報
 しかし、電子線を収束する収束レンズには一般に球面収差があり、特許文献1に記載された技術において環状絞りを通過した散乱電子をピンホールに収束させるには、高価な球面収差補正器を要する。特に、この種の顕微鏡では、80mrad以上の散乱角を検出することで、HAADF(High Angle Annular Dark Field)像として組成コントラストの測定が可能となり、さらには高散乱角の散乱電子を検出することで深さ分解能も向上するメリットがあるところ、球面収差補正器によって補正可能な散乱電子の散乱角には限界がある。
 本発明は、電子レンズの球面収差による制約を受けることなく高散乱角の散乱電子を検出し、深さ分解能を向上させることができる透過型電子顕微鏡及び試料観察方法を提供することを目的とする。
 本発明は、電子線を試料に照射して発生させた散乱電子を複数の環状絞りで制限し、当該複数の環状絞りを通過した散乱電子を検出することに関する。
 または、電子線を試料に照射して発生させた散乱電子を1枚の環状絞りで制限し、当該環状絞りを通過した散乱電子を環状の受光面を有する電子検出器で検出することに関する。
 本発明によれば、電子レンズの球面収差による制約を受けることなく高散乱角の散乱電子を検出し、深さ分解能を向上させることができる。
比較例に係る電子顕微鏡の電子照射系の模式図である。 比較例係る電子顕微鏡の散乱電子検出系を電子照射系とともに表した模式図である。 本発明の第1実施形態に係る透過型電子顕微鏡の模式図である。 本発明の透過型電子顕微鏡で用いる標準試料の一構成例である。 本発明の透過型電子顕微鏡で用いる標準試料の他の構成例である。 本発明の透過型電子顕微鏡で用いる標準試料の更に他の構成例である。 本発明の第1実施形態に係る透過型電子顕微鏡の照射側環状絞りの位置調整時の模式図である。 本発明の第1実施形態に係る透過型電子顕微鏡における照射側環状絞りの位置調整の一説明図である。 本発明の第1実施形態に係る透過型電子顕微鏡における照射側環状絞りの位置調整の他の説明図である。 本発明の第1実施形態に係る透過型電子顕微鏡の第1の検出側環状絞りの位置調整時の模式図である。 本発明の第1実施形態に係る透過型電子顕微鏡における第1の検出側環状絞りの位置調整の一説明図である。 本発明の第1実施形態に係る透過型電子顕微鏡における第1の検出側環状絞りの位置調整の他の説明図である。 本発明の第1実施形態に係る透過型電子顕微鏡における標準試料の位置調整の説明図である。 本発明の第1実施形態に係る透過型電子顕微鏡における第2の検出側環状絞りの位置調整の説明図である。 本発明の第1実施形態に係る透過型電子顕微鏡の装置調整の全体手順を表したフローチャートである。 本発明の第2実施形態に係る透過型電子顕微鏡の模式図である。
 以下に図面を用いて本発明の実施形態を説明する。
 まず、比較例について説明する。
 近年、光学式の共焦点顕微鏡の技術の電子顕微鏡への応用が検討され始めているが、電子線は試料との相互作用が多く、さらには球面収差の影響も大きいため、光学式顕微鏡の技術を単純に転用することは難しい。
 図1に比較例として示したように、電子銃1’から発せられた電子線2’をコンデンサー絞り3’の円形の孔に通し、これによって選択された所望の電子線2’を収束レンズ4’で収束して試料5’に照射する構成が知られている。
 本比較例では、試料5’に照射される電子線2’のうち収束レンズ4’の中心付近を通過した電子線2’が試料5’をそのまま通過するため、例えば試料5’が結晶性の場合には結晶の方位によって強いチャネリング現象が発生する。この場合、観察すべき着目領域6’が試料5’の内部、すなわち試料5’中の厚み方向(光軸方向)の特定箇所にあるとき、着目領域6’以外の部分、例えば着目領域6’よりも電子銃1’側又はその反対側の層からの散乱電子7’,9’が発生し、これら散乱電子7’,8’がノイズとなって所要の深さ分解能が確保できない。そのため、散乱電子7’,8’の発生を抑制し着目領域6’からの着目散乱電子8’を効率的に発生させることが望まれる。
 このとき、図1の比較例では、高価な球面収差補正器を収束レンズ4’と試料5’の間に配置して収束レンズ4’の球面収差を補正しなければ、電子線2’の収束点が光軸方向に広がってしまう。このように収束点が広がれば、それだけ深さ分解能が悪化する。さらには、深さ分解能には、試料5’中をコーン状に照射する領域の電子線(比較的大きな照射角αで焦点域に入射する電子線2’のビーム外周部の電子線)が大きく寄与するため、収束レンズ4’の中心近傍を通過した電子線は余分な電子線であって必要以上に試料5’にダメージを与え得る。
 この比較例の散乱電子検出系としては、光学式の共焦点顕微鏡の技術を応用する場合、例えば、図2に示したように電子検出器13’の直前にピンホール12’を配置する方式が考えられる。図2の構成では、試料5’と電子検出器13’の間に配置されたレンズ11’で大きな散乱角βを持った着目散乱電子8’をピンホール12’に収束する。
 このとき、試料5’とレンズ11’の間には環状絞り10’が配置されている。仮に環状絞り10’がなければ、レンズ11’の球面収差の影響も相俟って注目領域6’以外の領域からの散乱電子もピンホール13’を通過し電子検出器13’に到達し得るため、ピンホール12’が有効に機能しない。環状絞り10を配置し、さらに球面収差補正器(図示せず)をレンズ11とピンホール12の間に設けることで、着目領域6’以外の領域からの散乱電子の電子検出器13’への入射を抑制する必要がある。
 しかし、レンズ11の球面収差を補正する球面収差補正器は高価なパーツである、また補正可能な散乱電子の散乱角にも限界がある等の問題がある。特に、共焦点顕微鏡では、80mrad以上の散乱角の散乱電子を検出することによってHAADF(High Angle Annular Dark Field)像として組成コントラストの測定が可能となる利点があり、さらには深さ分解能も向上する。従って、電子レンズの球面収差の影響を受けることなく高散乱角の散乱電子を検出することができる散乱電子検出系が望まれる。
 [第1実施形態]
 図3は本発明の第1実施形態に係る透過型電子顕微鏡の模式図である。
 図3に示した透過型電子顕微鏡は、試料5に電子線2を照射する電子銃1と、この電子銃1と試料5との間に位置する照射側環状絞り14と、この照射側環状絞り14と試料4との間に位置する収束レンズ4と、試料5を透過して散乱する散乱電子を検出する電子検出器13と、この電子検出器13と試料5との間に位置する第1の検出側環状絞り15と、この第1の検出側環状絞り15と電子検出器13との間に位置する第2の検出側環状絞り16と、環状絞り14-16をそれぞれ移動させる微動機構17-19と、電子銃1、収束レンズ4及び微動機構を制御する制御装置20とを有している。
 照射側環状絞り14は、円形の孔14aとその内側に配置された同心状の円形の遮蔽板14bとの間に形成されたリング状のスリットを有している。遮蔽板14bは複数の細い支持部(図示せず)を介して孔14の内側に支持されている。孔14a及び遮蔽板14bは、電子線2の光軸がおよそそれらの中心にくるように配置されていて、孔14aの内径は、当該照射側環状絞り14の位置において電子線2のビーム径よりも小さく形成されている。したがって、電子銃1からの電子線2は、光軸近辺が遮蔽板14bにより遮断され、孔14a及び遮蔽板14bによってそれぞれ外径及び内径が制限されて中空状に成形される。この照射側環状絞り14を通過した電子線2は、収束レンズ4により収束されてホローコーン状に照射角α(0<α<90°)で試料5の着目領域6に収束する。例えば一般にTEMで適用されているように、二段収束レンズに対物レンズを組み合わる等して収束レンズ4を複数設けた場合には、電子線2の収束性がより高まる。また、電子線2の照射角度αは照射側環状絞り14を上下に動かすことで変更可能である。
 第1の検出側環状絞り15は、照射側環状絞り14と同様にリング状のスリットを有しており、試料5からの散乱電子の通過範囲の内径及び外径を制限する。第1の検出側環状絞り15のスリット径や光軸方向の位置は、着目領域6からの着目散乱電子8の軌道上にスリットが一致するように調整されている。
 第2の検出側環状絞り16も、環状絞り14,15と同様にリング状のスリットを有しており、第1の検出側環状絞り15を通過した散乱電子の通過範囲の内径及び外径をさらに制限する。第2の検出側環状絞り16のスリット径や光軸方向の位置も、着目領域6からの着目散乱電子8の軌道上にスリットが一致するように調整されている。したがって、第2の検出側環状絞り16のスリット径は、必然的に第1の検出側環状絞り15のそれよりも大きい。
 微動機構17-19は、モーター及び圧電素子の少なくとも一方を用いた駆動系であり、それぞれ環状絞り14-16を光軸に直交する平面方向(XY方向)及び光軸方向(Z方向)に移動させる。なお、特に図示していないが、試料5もモーター及び圧電素子の少なくとも一方を用いた試料ステージにより平面方向及び光軸方向に移動可能な構成となっており、観察像の取得時には、電子線2の焦点域に対して試料5を平面方向及び光軸方向に移動(走査)させ、試料ステージの位置情報と散乱電子の検出情報を連動させて観察像を取得する。こうした連動制御は制御装置20により実行される。
 ここで、実際に観察像を取得する際には、電子線の照射系の着目点つまり焦点位置に散乱電子の検出系の着目点が原子サイズオーダーで一致することが望まれる。そのため、収束レンズ4のレンズ電流及び環状絞り14-16の位置を詳細に調整する必要がある。本実施形態の透過型電子顕微鏡の分解能は、収束レンズ4のレンズ電流と環状絞り14-16の位置の初期設定で決定される。
 本実施形態では、これら条件を適正に設定するための標準試料が用意されている。標準試料の構成例を幾つか図4に示す。
 図4Aに示した標準試料50aは理想的な一構成例であり、薄膜状の保持部22と、この保持部22で保持した標的21と、保持部22の縁部に設けた散乱波生成部25とを備えている。保持部22は標的21よりも軽い原子で形成されている。標的21は保持部22上に固定されており、単原子であることが望ましいが、単原子を用意することが難しい場合は数個の原子の集合体であるクラスターで代替しても良い。保持部22と標的21の構成原子は標的21の方が重ければ良いが、本実施形態では、例えば、標的21を重原子(Pt、U等)、保持部22を軽原子(C等)とする。散乱波生成部25は、保持部22よりも厚みのある部分であり、構成原子は保持部22と同じで良い。
 図4Bに示した標準試料50bは、保持部23中に標的21を保持したものである。標準試料50bの保持部23は、電子線が容易に透過する程度の厚さである。その他の点は標準試料50aと同様である。
 図4Cに示した標準試料50cは、原子ワイヤーの直径を有する原子ワイヤーを標的24として用いた例である。標的24は、支持部23に形成された貫通転位に形成されている。貫通転位に原子ワイヤーを形成する技術は一般に知られている。単原子やクラスターを用意することができない場合は本例のように原子ワイヤーの標的24を用いることもできる。
 次に、環状絞り14-16の位置と収束レンズ4の電流の初期調整について説明する。環状絞り14-16の位置と収束レンズ4の電流の初期調整のシーケンスを表した模式図を図5-図8に示す。
 まず、図5を用いて照射側環状絞り14の位置調整について説明する。
 照射側環状絞り14の位置を調整する際には、まず図5Aに示したように試料及び検出側環状絞り15,16のない状態で電子銃1からの電子線2を収束レンズ4で収束させ、クロスオーバー(焦点)を形成させた後、下部の電子検出器13で電子を検出する。このとき検出された電子は二次元の電子検出像26(図5B及び図5C参照)として外部モニタ(図示せず)にて確認できる。電子検出像26でリング状に表れているのが照射側環状絞り14の環状のスリットの像である(簡便な手法として電子検出器13を蛍光板に置き換えることも考えられる)。このとき、電子検出像26には十字のガイド線27が表示されており、このガイド線27の原点に収束レンズ4の中心軸が重なるように予め調整されている。図5Bでは収束レンズ4の中心軸から照射側環状絞り14のスリット像28の中心がずれた状態を表している。この手順では、微動機構17に指令して、図5Cに示したように収束レンズ4の中心軸に照射側環状絞り14のスリット像28の中心が一致するように照射側環状絞り14の位置を調整する。
 照射側環状絞り14の位置調整が完了したら、収束レンズ4の調整に移行するが、収束レンズ4に非点がある場合、照射側環状絞り14のスリットが実際には真円であっても電子検出像26上のスリット像28が真円にならない。その場合には、電子検出像26上を見ながらスリット像28が真円となるように非点調整機構(図示せず)によって収束レンズ4の非点を補正する。
 続いて、図6を用いて第1の検出側環状絞り15の位置調整について説明する。
 第1の検出側環状絞り15の位置を調整する際には、試料ステージ(図示せず)を駆動して標準試料50の散乱波生成部25を収束レンズ4の焦点位置に設置し、散乱波生成部25に電子線2を照射して散乱波を多量に発生させる。これによって電子検出像26は全体的に明るくなる。その状態で微動機構18を駆動し、第1の検出側環状絞り15を標準試料50と電子検出器13の間に挿入する(図6A参照)。このとき電子検出像26(図6B及び図6C参照)でリング状に表れているのが第1の検出側環状絞り15のスリット像30である。この手順では、微動機構17に指令して、図6Bに示したように収束レンズ4の中心軸からスリット像30の中心がずれていれば、図6Cに示したように収束レンズ4の中心軸にスリット像30の中心が一致するように第1の検出側環状絞り15の位置を調整する。
 その後、試料ステージ(図示せず)を駆動し、図7に示したように標準試料50の標的21をクロスオーバーすなわち収束レンズ4の焦点位置に合わせる。この手順では、標準試料50を試料ステージで走査し、標準試料50から高散乱角で散乱した電子線が第1の検出側環状絞り15のスリットを通過して電子検出器13で検出される。こうして走査透過電子顕微鏡像を取得し、当該電子顕微鏡像を見ながら標的21を焦点位置に合わせる。まず、試料高さの調整の際、標的21の高さが焦点位置に来たときに最もシャープな二次元像が得られるので、この二次元像が最も鮮鋭になる高さに試料50を移動させる。次に、水平方向に試料位置を調整する際、標的21は保持部22を構成する周囲の原子に比して重い原子であるから、焦点位置に標的21が来たときに散乱電子の検出信号が最も強くなる。したがって、電子検出器13で検出される散乱電子検出信号をモニタし、検出信号が最も強くなる位置に標準試料50を移動させる。これによって標的21に合焦する。
 最後に、図8を用いて第2の検出側環状絞り16の位置調整について説明する。
 第2の検出側環状絞り16の位置を調整する際、微動機構19を駆動し、図8に示したように第2の検出側環状絞り16を第1の検出側環状絞り15と電子検出器13の間に挿入する。こうして第2の検出側環状絞り16を軸上に入れることで、着目領域6以外の領域から発生して第1の検出側環状絞り15を通過してくる散乱電子(ノイズ)を遮断し、第1の検出側環状絞り15を通過した着目散乱電子8のみを通して電子検出器13で検出できるようにする。このとき、第2の検出側環状絞り16のスリットが着目散乱電子8の軌道からずれていると、着目散乱電子8の検出効率が悪くなるので、微動機構19を用いて第2の検出側環状絞り16を三次元方向に微動させる必要があるが、着目散乱電子8の軌道が直線であることに鑑みれば、第2の検出側環状絞り16の凡その位置は標的21から検出側環状絞り15,16までの距離Z1,Z2及び検出側環状絞り15,16のスリット内径R1,R2から幾何学的に求められる。したがって、まず幾何学的に算出された位置に第2の検出側環状絞り16を移動し、そこから散乱電子の検出強度をモニタしながら、検出強度が最大になる位置に第2の検出側環状絞り16を微動する。
 上記手順を経て観察のための調整が完了する。収束レンズ4のレンズ電流や環状絞り14-16の位置の設定は、例えば制御装置20の記憶部又は外部メモリに記憶しておき、次回調整時には記憶しておいた設定から微調整することで観察準備の作業を効率化することができる。
 図9は上記の装置調整手順を表したフローチャートである。
 図9に示したように、当該手順は大別して、電子線2を一点(標的21)にホローコーン照射するための照射系の調整32、及び一点(標的21)から発せられた着目散乱電子8のみを検出するための検出系の調整33からなる。照射系の調整32は、前述した照射側環状絞り14の位置調整34(図5参照)と収束レンズ4の非点補正35からなる。検出系の調整33は、前述した第1の検出側環状絞り15の位置調整36(図6参照)、標準試料50の位置調整37(図7参照)、第2の検出側環状絞り16の位置調整38(図8参照)からなる。
 なお、装置調整の手順は作業者の手動操作で行うこともできるが、制御装置20によって自動で実行されるようにすることも考えられる。装置調整を自動で実行する場合の制御装置20の制御手順を次に説明する。
 <照射側環状絞り14の位置調整34>
 この手順において、制御装置20は、記憶しておいた照射側環状絞り14の前回の設定位置情報(又は別途設定された位置情報)に従って微動機構17を制御し、照射側環状絞り14を電子銃1と収束レンズ4の間に挿入し、照射側環状絞り14を昇降させてスリット像28が最も鮮鋭になるように高さを決める。この場合、例えばスリット像28のコントラストが最も高くなった高さを選択すれば良い。次に、制御装置20は、取得される電子検出像26を基に、スリット像28の中心がガイド線27の原点に一致するように微動機構17を駆動して照射側環状絞り14を水平方向に移動させる。
 <収束レンズ4の非点補正35>
 非点補正の手順では、制御装置20は、電子検出像26を基に、当該電子検出像26上のスリット像28が真円となるように非点調整機構(図示せず)に指令して収束レンズ4の非点を補正する。
 <第1の検出側環状絞り15の位置調整36>
 第1の検出側環状絞り15の位置を調整する際には、制御装置20は、記憶しておいた標準試料50の前回の設定位置情報(又は別途設定された位置情報)に従って試料ステージ(図示せず)を駆動し、標準試料50の散乱波生成部25を収束レンズ4の焦点位置に設置して、散乱波生成部25に電子線2を照射して散乱波を多量に発生させる。さらに、記憶しておいた(又は別途設定された)第1の検出側環状絞り15の前回の設定位置情報に従って微動機構18を駆動し、第1の検出側環状絞り15を標準試料50と電子検出器13の間に挿入する。その後、制御装置20は、電子検出像26を基に、スリット像30が最も鮮鋭になるように第1の検出側環状絞り15の高さを調整し、スリット像28の中心がガイド線27の原点に一致するように微動機構18を駆動して第1の検出側環状絞り15を水平方向に移動させる。
 <標準試料50の位置調整37>
 標準試料50の位置を調整する際には、制御装置20は、試料ステージを走査して得られる二次元又は三次元の走査透過電子顕微鏡像を基に、当該顕微鏡像におけるスリット像のコントラストが最も高くなる高さにおいて、散乱電子の検出信号が最も強くなる位置に標準試料50を移動させる。
 <第2の検出側環状絞り16の位置調整38>
 第2の検出側環状絞り16の位置を調整する際には、制御装置20は、記憶しておいた第2の検出側環状絞り16の前回の設定位置情報(又は第1の検出側環状絞り15と標準試料50の位置情報から幾何学的に算出された位置情報)に従って微動機構19を駆動し、第2の検出側環状絞り16を第1の検出側環状絞り15と電子検出器13の間に挿入する。そして、そこから散乱電子の検出強度が最大になる位置に第2の検出側環状絞り16を微動する。
 以上の手順をプログラムして制御装置20の記憶部に格納しておけば、制御装置20に装置調整を自動で実行させることができる。
 次に上記構成の透過型電子顕微鏡の動作及び作用効果を説明する。
 例えば図3において、電子銃1から発せられた電子線2は、照射側環状絞り14を通過して中空状に成形され、収束レンズ4により収束されて大きな照射角αをもって試料5にホローコーン状に照射される。そして、試料5からの着目散乱電子8は大きな散乱角βをもって散乱し、検出側環状絞り15,16を通過して電子検出器13で検出される。このとき、試料ステージの動作によって電子線2は試料5の着目領域6に二次元的又は三次元的に走査され、この走査と着目散乱電子8の検出動作を連動させることで、着目領域6の透過電子顕微鏡像が作成される。
 以上、本実施形態によれば、検出系に2枚の検出側環状絞り15,16を設けたことによって、試料5の着目領域6以外の領域からの散乱電子(ノイズ)を検出側環状絞り15,16のいずれかで遮断し、着目散乱電子8のみを電子検出器13に到達させることができる。本実施形態では、試料5と電子検出器13との間には検出側環状絞り15,16が設けられているのみである。このように単に2枚の検出側環状絞り15,16を設けることによって、検出系の電子レンズを省略することができるので、電子レンズの球面収差を補正する球面収差補正器も不要である。また、検出側環状絞り15,16のスリット内径R1,R2や試料5からの距離Z1,Z2、電子検出器13の面積を適宜設計すれば、いかなる散乱角の散乱電子でも検出することができる。したがって、例えば80mrad以上の高散乱角の散乱電子でも容易に検出することができ、高い深さ分解能を確保することができる。
 このように本実施形態によれば、電子レンズの球面収差による制約を受けることなく高散乱角の散乱電子を検出することができ、深さ分解能を向上させることができる。
 さらには、本実施形態では、照射系に照射側環状絞り14を配置して電子線2をホローコーン照射する構成としたことにより、ビーム中央の余分な電子線を遮断するとともに、深さ分解能に寄与する高照射角収束電子線のみを試料5に照射することができる。このように余分な電子線を遮断しつつ高照射角の電子線を効率的に照射することができるので、焦点深度を浅くすることができ、深さ分解能を向上させることができる。このように特定の高照射角の電子のみで一点を照射することができる構成としたことにより、着目散乱電子8のみを効率的に検出する検出側の構成とも相俟って深さ分解能を一層向上させることができる。
 また、照射系では、収束レンズ4として電子レンズを設けているので、球面収差の影響を受けて焦点深度が深くなる、すなわちレンズの中央部を通過した電子線と周辺部を通過した電子線の収束点にずれが生じる。このこと自体が深さ分解能の低下の原因となるところ、本実施形態では照射側環状絞り14によってビーム中央の余分な電子線を遮断し、レンズ周辺部を通過する電子線のみを収束することにより、収束レンズ4の球面収差の影響を抑制することができる。このことも深さ分解能の向上に貢献する。また、ビーム中央の余分な電子線を遮断することによって試料5に与える電子線ダメージも軽減される。
 なお、一般的な薄膜の三次元電子顕微鏡トモグラフィー観察においては、試料を大きく傾斜させることから見かけの試料厚さが厚くなり、電子線が透過し難くなることから正確な三次元観察が困難であった。そのため、少しでも大きな照射角の電子線を透過させるべく、試料を直径200nm程度の直径の針状にして回転させながら観察することが行われている。しかしこの場合、三次元観察することができる領域は物理的に200nm程度の範囲に制限されてしまう。それに対し、本実施形態は試料が薄膜状の場合にも適用することができるので、従来に比して広範囲を三次元観察することができる。
 なお、本実施形態では、検出系に2枚の検出側環状絞り15,16を設けた場合を例に挙げて説明したが、必要に応じて検出側環状絞りを3枚以上に増やしても良い。
 [第2実施形態]
 図10を参照して本発明の第2実施形態を説明する。
 本実施形態は、第1実施形態において、第2の検出側環状絞り16を省略し、第2の検出側環状絞り16のスリットに対応して受光面が環状に形成された電子検出器39で電子検出器13を代替した例である。
 すなわち、本実施形態の透過型電子顕微鏡は、試料5に電子線2を照射する電子銃1と、この電子銃1と試料5との間に位置する照射側環状絞り14と、この照射側環状絞り14と試料5との間に位置する集束レンズ4と、試料5を透過して散乱する散乱電子を検出する電子検出器39と、この電子検出器39と試料5との間に位置し試料からの散乱電子の通過範囲の内径及び外径を制限するリング状のスリットを有する検出側環状絞り15とを備えている。また特に図示していないが、照射側環状絞り14、検出側環状絞り15及び電子検出器39を、電子銃1の光軸方向(Z方向)及びこれに直交する面方向(XY方向)にそれぞれ移動させる微動機構(第1実施形態の微動機構17-19)や制御装置20も有している。その他の構成は第1実施形態と同様である。
 本実施形態では、検出系に1枚の検出側環状絞り15しかないので、広い受光面を有する第1実施形態の電子検出器13を用いた場合、着目散乱電子8以外の散乱電子もノイズとして検出され易くなる。しかし、本実施形態では、電子検出器13に代えて、受光面そのものが環状に制限された電子検出器39を用いることで、着目散乱電子8以外の散乱電子が検出側環状絞り15を通過してきても、その軌道上に受光面が存在しないためノイズが検出されない。したがって、第1実施形態と同様の効果を得ることができる。
1        電子銃
2        電子線
4        収束レンズ
5        試料
8        着目散乱電子
13       電子検出器
14       照射側環状絞り
14a      孔
14b      遮蔽板
15       第1の検出側環状絞り
16       第2の検出側環状絞り
17-19    微動機構
20       制御装置
21       標的
22       保持部
23       保持部
24       標的
25       散乱波生成部
26       電子検出像
27       ガイド線
28,30    スリット像
32       照射系の調整手順
33       検出系の調整手順
34       照射側環状絞りの位置調整手順
35       収束レンズの非点補正手順
36       第1の検出側環状絞りの位置調整手順
37       標準試料の位置調整手順
38       第2の検出側環状絞りの位置調整手順
39       電子検出器39
50,50a-c 標準試料
R1,2     スリット内径
Z1,2     距離
α        照射角
β        散乱角

Claims (11)

  1.  試料に電子線を照射する電子銃と、
     試料を透過して散乱する散乱電子を検出する電子検出器と、
     この電子検出器と試料との間に位置し、試料からの散乱電子の通過範囲の内径及び外径を制限するリング状のスリットを有する第1の検出側環状絞りと、
     この第1の検出側環状絞りと前記電子検出器との間に位置し、前記第1の検出側環状絞りを通過した散乱電子の通過範囲の内径及び外径をさらに制限するリング状のスリットを有する第2の検出側環状絞りと
    を備えたことを特徴とする透過型電子顕微鏡。
  2.  試料に電子線を照射する電子銃と、
     この電子銃と試料との間に位置し、前記電子銃から照射された電子線をホローコーン状に成形するリング状のスリットを有する照射側環状絞りと、
     この照射側環状絞りと試料との間に位置し、前記照射側環状絞りを通過した電子線を試料に収束させる収束レンズと、
     試料を透過して散乱する散乱電子を検出する電子検出器と、
     この電子検出器と試料との間に位置し、試料からの散乱電子の通過範囲の内径及び外径を制限するリング状のスリットを有する第1の検出側環状絞りと、
     この第1の検出側環状絞りと前記電子検出器との間に位置し、前記第1の検出側環状絞りを通過した散乱電子の通過範囲の内径及び外径をさらに制限するリング状のスリットを有する第2の検出側環状絞りと
    を備えたことを特徴とする透過型電子顕微鏡。
  3.  請求項2の透過型電子顕微鏡において、前記照射側環状絞り、前記第1の検出側環状絞り及び前記第2の検出側環状絞りを、前記電子銃の光軸方向及びこれに直交する面方向にそれぞれ移動させる微動機構を有していることを特徴とする透過型電子顕微鏡。
  4.  請求項3の透過型電子顕微鏡において、
     標的、当該標的を保持する保持部及び当該保持部よりも厚い散乱波生成部を有する標準試料と、
     前記試料を移動させる試料ステージと
     前記微動機構及び前記試料ステージを制御する制御手段とを有し、
     前記制御手段は、
     前記微動機構を制御して前記電子銃と前記収束レンズの間に前記照射側環状絞りを挿入し、電子検出像を基に、当該照射側環状絞りのスリット像のコントラストが最も高くなった高さで、前記スリット像の中心が前記収束レンズの光軸に一致するように前記照射側環状絞りを水平方向に移動させる手順と、
     前記試料ステージを駆動して前記散乱波生成部が前記収束レンズの焦点位置にくるように前記標準試料を挿入し、前記微動機構を駆動して前記標準試料と前記電子検出器の間に前記第1の検出側環状絞りを挿入し、電子検出像を基に当該第1の検出側環状絞りのスリット像の中心が前記収束レンズの光軸に一致するように前記第1の検出側環状絞りを水平方向に移動させる手順と、
     前記試料ステージを走査して得られる走査透過電子顕微鏡像を基に、前記標準試料の標的が前記収束レンズの焦点に来るように前記標準試料を移動させる手順と、
     前記微動機構を駆動して前記第2の検出側環状絞りを前記第1の検出側環状絞りと前記電子検出器の間に挿入し、電子検出像の散乱電子の検出強度が最大になる位置に前記第2の検出側環状絞りを移動させる手順と
    を実行することを特徴とする透過型電子顕微鏡。
  5.  試料に電子線を照射する電子銃と、
     試料を透過して散乱する散乱電子を検出するものであって受光部が環状に形成された電子検出器と、
     この電子検出器と試料との間に位置し、試料からの散乱電子の通過範囲の内径及び外径を制限するリング状のスリットを有する検出側環状絞りと
    を備えたことを特徴とする透過型電子顕微鏡。
  6.  試料に電子線を照射する電子銃と、
     この電子銃と試料との間に位置し、前記電子銃から照射された電子線をホローコーン状に成形するリング状のスリットを有する照射側環状絞りと、
     この照射側環状絞りと試料との間に位置し、前記照射側環状絞りを通過した電子線を試料に収束させる収束レンズと、
     試料を透過して散乱する散乱電子を検出するものであって受光部が環状に形成された電子検出器と、
     この電子検出器と試料との間に位置し、試料からの散乱電子の通過範囲の内径及び外径を制限するリング状のスリットを有する検出側環状絞りと
    を備えたことを特徴とする透過型電子顕微鏡。
  7.  請求項6の透過型電子顕微鏡において、前記照射側環状絞り、前記検出側環状絞り及び前記電子検出器を、前記電子銃の光軸方向及びこれに直交する面方向にそれぞれ移動させる微動機構を有していることを特徴とする透過型電子顕微鏡。
  8.  電子線を試料に照射して発生させた散乱電子を複数の環状絞りで制限し、当該複数の環状絞りを通過した散乱電子を検出することを特徴とする試料観察方法。
  9.  電子線を環状絞りで制限してホローコーン状に試料に照射し、
     前記試料からの散乱電子を複数の環状絞りで制限し、当該複数の環状絞りを通過した散乱電子を検出する
    ことを特徴とする試料観察方法。
  10.  電子線を試料に照射して発生させた散乱電子を1枚の環状絞りで制限し、当該環状絞りを通過した散乱電子を環状の受光面を有する電子検出器で検出することを特徴とする試料観察方法。
  11.  電子線を環状絞りで制限してホローコーン状に試料に照射し、
     前記試料からの散乱電子を1枚の環状絞りで制限し、当該環状絞りを通過した散乱電子を環状の受光面を有する電子検出器で検出する
    ことを特徴とする試料観察方法。
PCT/JP2010/071810 2009-12-07 2010-12-06 透過型電子顕微鏡及び試料観察方法 WO2011071008A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/505,119 US8586922B2 (en) 2009-12-07 2010-12-06 Transmission electron microscope and sample observation method
EP10835928.2A EP2511938A4 (en) 2009-12-07 2010-12-06 TRANSMISSION ELECTRONIC MICROSCOPE AND TEST SAMPLING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009277305A JP5208910B2 (ja) 2009-12-07 2009-12-07 透過型電子顕微鏡及び試料観察方法
JP2009-277305 2009-12-07

Publications (1)

Publication Number Publication Date
WO2011071008A1 true WO2011071008A1 (ja) 2011-06-16

Family

ID=44145552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071810 WO2011071008A1 (ja) 2009-12-07 2010-12-06 透過型電子顕微鏡及び試料観察方法

Country Status (4)

Country Link
US (1) US8586922B2 (ja)
EP (1) EP2511938A4 (ja)
JP (1) JP5208910B2 (ja)
WO (1) WO2011071008A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044607A (ja) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd ゴム材料の観察方法
JP5767541B2 (ja) * 2011-09-14 2015-08-19 住友ゴム工業株式会社 ゴム材料のシミュレーション方法
JP2013054578A (ja) * 2011-09-05 2013-03-21 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP2013057638A (ja) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd ゴム材料のシミュレーション方法
JP6383650B2 (ja) * 2014-11-28 2018-08-29 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US9746415B2 (en) 2016-01-12 2017-08-29 The United States Of America, As Represented By The Secretary Of Commerce Sample holder, detector mask, and scope system
JP6677519B2 (ja) * 2016-02-03 2020-04-08 日本電子株式会社 電子顕微鏡および収差測定方法
US11430633B2 (en) * 2020-12-29 2022-08-30 Fei Company Illumination apertures for extended sample lifetimes in helical tomography

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105149A (ja) * 1983-11-11 1985-06-10 Jeol Ltd 電子線装置
JPH09167591A (ja) * 1995-12-15 1997-06-24 Hitachi Ltd 走査透過電子顕微鏡
JP2000021346A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 走査透過型電子顕微鏡
JP2000294184A (ja) * 1999-04-05 2000-10-20 Univ Osaka 電子顕微鏡装置
JP2007179753A (ja) * 2005-12-27 2007-07-12 Hitachi High-Technologies Corp 走査透過電子顕微鏡、及び収差測定方法
JP2008066057A (ja) * 2006-09-06 2008-03-21 Jeol Ltd 走査透過電子顕微鏡
JP2008204642A (ja) * 2007-02-16 2008-09-04 Hitachi High-Technologies Corp 走査透過荷電粒子線装置
JP2008270056A (ja) 2007-04-24 2008-11-06 National Institute For Materials Science 走査型透過電子顕微鏡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043749C3 (de) * 1970-08-31 1975-08-21 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Raster-Korpuskularstrahlmikroskop
US5866905A (en) * 1991-05-15 1999-02-02 Hitachi, Ltd. Electron microscope
US6051834A (en) 1991-05-15 2000-04-18 Hitachi, Ltd. Electron microscope
JP3987276B2 (ja) * 2000-10-12 2007-10-03 株式会社日立製作所 試料像形成方法
EP1577926A1 (en) * 2004-03-19 2005-09-21 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik Mbh High current density particle beam system
US8642959B2 (en) * 2007-10-29 2014-02-04 Micron Technology, Inc. Method and system of performing three-dimensional imaging using an electron microscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105149A (ja) * 1983-11-11 1985-06-10 Jeol Ltd 電子線装置
JPH09167591A (ja) * 1995-12-15 1997-06-24 Hitachi Ltd 走査透過電子顕微鏡
JP2000021346A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 走査透過型電子顕微鏡
JP2000294184A (ja) * 1999-04-05 2000-10-20 Univ Osaka 電子顕微鏡装置
JP2007179753A (ja) * 2005-12-27 2007-07-12 Hitachi High-Technologies Corp 走査透過電子顕微鏡、及び収差測定方法
JP2008066057A (ja) * 2006-09-06 2008-03-21 Jeol Ltd 走査透過電子顕微鏡
JP2008204642A (ja) * 2007-02-16 2008-09-04 Hitachi High-Technologies Corp 走査透過荷電粒子線装置
JP2008270056A (ja) 2007-04-24 2008-11-06 National Institute For Materials Science 走査型透過電子顕微鏡

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIRA SAITO: "Defection of interstitial atoms by hollow-cone-beam high-angle annular dark- field scanning transmission electron microscopy", REPORTS OF TOYODA PHYSICAL AND CHEMICAL RESEARCH INSTITUTE, vol. 60, 31 March 2007 (2007-03-31), pages 137 - 141, XP008161442 *
KONDO Y.: "New electron diffraction techniques using electronic hollow-cone illumination", JAPANESE JOURNAL OF APPLIED PHYSICS. PART 2. LETTERS, vol. 23, no. 3, 1984, pages 178 - 180, XP008161527 *
MICHIYOSHI TANAKA: "Hollow corn beam method in convergent-beam electron diffraction", SOLID STATE PHYSICS, vol. 21, no. 3, 1986, pages 155 - 160, XP008161438 *
See also references of EP2511938A4 *

Also Published As

Publication number Publication date
EP2511938A4 (en) 2014-03-12
US8586922B2 (en) 2013-11-19
JP5208910B2 (ja) 2013-06-12
US20120235035A1 (en) 2012-09-20
EP2511938A1 (en) 2012-10-17
JP2011119173A (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5208910B2 (ja) 透過型電子顕微鏡及び試料観察方法
JP4708854B2 (ja) 荷電粒子線装置
JP6955325B2 (ja) 適応2次荷電粒子光学系を用いて2次荷電粒子ビームを画像化するシステムおよび方法
WO2014188882A1 (ja) 荷電粒子線応用装置
JP4927345B2 (ja) 試料体の加工観察装置及び試料体の観察方法
JP5735262B2 (ja) 荷電粒子光学装置及びレンズ収差測定方法
JP5378185B2 (ja) 集束イオンビーム装置、及び集束イオンビーム加工方法
JP4679978B2 (ja) 荷電粒子ビーム応用装置
US9613779B2 (en) Scanning transmission electron microscope with variable axis objective lens and detective system
US10483084B2 (en) Object preparation device and particle beam device having an object preparation device and method for operating the particle beam device
WO2013108711A1 (ja) 荷電粒子線顕微鏡、荷電粒子線顕微鏡用試料ホルダ及び荷電粒子線顕微方法
JP4685637B2 (ja) モノクロメータを備えた走査電子顕微鏡
JP5380366B2 (ja) 透過型干渉顕微鏡
JP2012043563A (ja) 共焦点走査透過型電子顕微鏡装置及び3次元断層像観察方法
JP2006173027A (ja) 走査透過電子顕微鏡、及び収差測定方法、ならびに収差補正方法
JP5817360B2 (ja) 走査透過型電子顕微鏡の観察方法及び走査透過型電子顕微鏡
JP6406032B2 (ja) 試料台およびそれを備えた電子顕微鏡
JP7489348B2 (ja) 3d回折データを取得するための方法およびシステム
JP5809935B2 (ja) 走査透過電子顕微鏡、および試料観察方法
JP4845452B2 (ja) 試料観察方法、及び荷電粒子線装置
JP5228463B2 (ja) 電子線装置、電子線形状測定方法及び画像処理方法
JP6227866B2 (ja) 荷電粒子装置
JP2023117159A (ja) 測定方法および電子顕微鏡
JP2007139633A (ja) 走査型電子顕微鏡用試料の作成方法
JP2023517273A (ja) サンプル上に複数の荷電粒子ビームレットのアレイを投影するための装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010835928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13505119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE