WO2011068007A1 - 二酸化炭素分離回収装置 - Google Patents
二酸化炭素分離回収装置 Download PDFInfo
- Publication number
- WO2011068007A1 WO2011068007A1 PCT/JP2010/069613 JP2010069613W WO2011068007A1 WO 2011068007 A1 WO2011068007 A1 WO 2011068007A1 JP 2010069613 W JP2010069613 W JP 2010069613W WO 2011068007 A1 WO2011068007 A1 WO 2011068007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- absorption
- absorption liquid
- regeneration
- tower
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/22—Treatment of water, waste water, or sewage by freezing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/04—Specific amount of layers or specific thickness
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/18—Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention relates to a carbon dioxide separation and recovery device.
- an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas in an amine-based absorption liquid and an absorption liquid (rich liquid) that has absorbed carbon dioxide are supplied from the absorption tower, the rich liquid is heated, and the rich liquid
- a carbon dioxide recovery device including a regeneration tower that regenerates an absorbing solution by releasing carbon dioxide gas from the carbon dioxide is known (see, for example, Patent Document 1).
- Combustion exhaust gas contains oxygen and sulfur dioxide, which are absorbed by the absorption liquid together with carbon dioxide in the absorption tower.
- the absorption liquid that has absorbed oxygen and sulfur dioxide has deteriorated, resulting in a problem that carbon dioxide absorption performance deteriorates.
- An object of the present invention is to provide a carbon dioxide separation and recovery device that prevents a decrease in carbon dioxide absorption performance of an absorbing solution.
- the carbon dioxide separation and recovery device includes an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid and discharges the absorption liquid containing carbon dioxide, and an absorption liquid discharged from the absorption tower.
- the carbon dioxide gas containing vapor is removed from the absorption liquid supplied, and a regeneration tower for regenerating and discharging the absorption liquid is provided between the absorption tower and the regeneration tower, and is discharged from the regeneration tower.
- a regeneration heat exchanger for heating the absorption liquid discharged from the absorption tower and supplied to the regeneration tower, and supplied from the absorption tower to the regeneration tower
- An oxygen removing unit that removes oxygen from the absorbing solution, and the oxygen removing unit discharges the first collecting unit and the second collecting unit that collect oxygen contained in the absorbing solution and the absorbing tower.
- the first absorbing part or the front A first flow path switching section for supplying to the second collection section, and a second flow path switching section for supplying the absorption liquid discharged from the first collection section or the second collection section to the regenerative heat exchanger.
- the first flow path switching unit when the first flow path switching unit is supplying the absorption liquid to the first collection unit, the oxygen collected in the second collection unit is recovered, and the first flow path switching unit Includes a regeneration unit that collects oxygen collected in the first collection unit when the absorption liquid is supplied to the second collection unit.
- the carbon dioxide separation and recovery device includes an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid and discharges the absorption liquid containing carbon dioxide, and an absorption liquid discharged from the absorption tower.
- the carbon dioxide gas containing vapor is removed from the absorption liquid supplied, and a regeneration tower for regenerating and discharging the absorption liquid is provided between the absorption tower and the regeneration tower, and is discharged from the regeneration tower.
- a reactor that is provided in between, stores an absorption liquid supplied from the absorption tower to the regeneration tower, and generates sulfate ions by a reaction between oxygen and sulfite ions contained in the absorption liquid; and the sulfate ions From the absorption liquid
- a first removal unit that removes acid ions, and is provided between the regeneration heat exchanger and the absorption tower. The organic acid anions are removed from the absorption liquid that is discharged from the regeneration tower and from which the sulfate ions have been removed.
- a second removal unit that removes acid ions, and is provided between the regeneration heat exchanger and the absorption tower. The organic acid anions are removed from the absorption liquid that is discharged from the regeneration tower and from which the sulfate ions have been removed.
- the carbon dioxide separation and recovery device includes an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid and discharges the absorption liquid containing carbon dioxide, and an absorption liquid discharged from the absorption tower.
- the carbon dioxide gas containing vapor is removed from the absorption liquid supplied, and a regeneration tower for regenerating and discharging the absorption liquid is provided between the absorption tower and the regeneration tower, and is discharged from the regeneration tower.
- An absorption liquid supplied to the absorption tower as a heat source, a regenerative heat exchanger that heats the absorption liquid discharged from the absorption tower and supplied to the regeneration tower, and the absorption tower and the regeneration heat exchanger A reactor that is provided in between, stores an absorption liquid supplied from the absorption tower to the regeneration tower, and generates sulfate ions by a reaction between oxygen and sulfite ions contained in the absorption liquid; and the sulfate ions From the absorption liquid
- a first removal unit that removes acid ions, and is provided between the regeneration heat exchanger and the absorption tower. The organic acid anions are removed from the absorption liquid that is discharged from the regeneration tower and from which the sulfate ions have been removed.
- a first flow path switching section that supplies to the second collection section, a second flow path that supplies the absorption liquid discharged from the first collection section or the second collection section to the regeneration heat exchanger
- the switching unit and the first flow path switching unit supply the absorption liquid to the first collection unit, the oxygen collected in the second collection unit is recovered, and the first flow path is collected.
- the switching unit is supplying the absorption liquid to the second collection unit, there is a regeneration unit that collects the oxygen collected in the first collection unit.
- a third removal unit that is one with a.
- FIG. 1 is a schematic configuration diagram of a carbon dioxide separation and recovery device according to a first embodiment of the present invention. It is a flowchart explaining the oxygen removal method which concerns on the same 1st Embodiment. It is a figure which shows the example of flow-path switching in an oxygen removal part.
- It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus by a modification. It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus by a modification. It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus which concerns on the 2nd Embodiment of this invention. It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus by a modification. It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus by a modification. It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus by a modification. It is a schematic block diagram of the carbon dioxide separation-and-recovery apparatus by a modification. It
- FIG. 1 shows a schematic configuration of a carbon dioxide separation and recovery apparatus according to a first embodiment of the present invention.
- the carbon dioxide separation and recovery device recovers carbon dioxide contained in the combustion exhaust gas generated by the combustion of fossil fuel using an absorbing solution capable of absorbing carbon dioxide.
- an absorbing solution capable of absorbing carbon dioxide for example, an amine compound aqueous solution in which an amine compound is dissolved in water is used.
- the carbon dioxide separation and recovery apparatus 1 includes an oxygen removal unit 10, an absorption tower 103, a regeneration tower 105, a reboiler 106, a regeneration heat exchanger 107, a cooler 114, a gas cooler 116, and a condenser 117. .
- the absorption tower 103 causes the absorption liquid to absorb carbon dioxide contained in the combustion exhaust gas 102a.
- the regeneration tower 105 is supplied with an absorption liquid (hereinafter referred to as a rich liquid 104a) that has absorbed carbon dioxide from the absorption tower 103, and heats the rich liquid 104a to release carbon dioxide gas containing vapor from the absorption liquid.
- a rich liquid 104a absorption liquid
- the exhaust gas 102c containing carbon dioxide gas and steam is discharged and the absorbing solution is regenerated.
- the combustion exhaust gas 102a generated in a power generation facility such as a thermal power plant is supplied to the lower part of the absorption tower 103, and the combustion exhaust gas 102b from which carbon dioxide has been removed is discharged from the top of the absorption tower 103. .
- the reboiler 106 heats a part of the lean liquid 104 b stored in the regeneration tower 105 to raise its temperature to generate steam, and supplies the steam to the regeneration tower 105.
- a small amount of carbon dioxide gas is released from the lean solution 104b and supplied to the regeneration tower 105 together with the vapor.
- the rich liquid 104a is heated in the regeneration tower 105 by this steam, and carbon dioxide gas is released.
- Regenerative heat exchange is performed between the absorption tower 103 and the regeneration tower 105 by using the lean liquid 104b supplied from the regeneration tower 105 to the absorption tower 103 as a heat source and heating the rich liquid 104a supplied from the absorption tower 103 to the regeneration tower 105.
- a container 107 is provided and configured to recover the heat of the lean liquid 104b.
- the lean liquid 104 b from the regenerative heat exchanger 107 is cooled by the cooler 114 and supplied to the upper part of the absorption tower 103.
- the lean liquid 104 b supplied to the upper part of the absorption tower 103 descends from the upper part in the absorption tower 103.
- the flue gas 102 a supplied to the absorption tower 103 rises from the lower part toward the top in the absorption tower 103. Therefore, the combustion exhaust gas 102a containing carbon dioxide and the lean liquid 104b come into countercurrent contact (direct contact), and carbon dioxide is removed from the combustion exhaust gas 102a and absorbed by the lean liquid 104b, thereby generating the rich liquid 104a.
- the combustion exhaust gas 102 b from which carbon dioxide has been removed is discharged from the top of the absorption tower 103.
- the absorption tower 103 when carbon dioxide in the combustion exhaust gas 102a is absorbed by the lean liquid 104b, oxygen is also absorbed. Therefore, the rich liquid 104a contains oxygen.
- the oxygen removing unit 10 removes dissolved oxygen from the rich liquid 104a and will be described later in detail.
- the gas cooler 116 cools the exhaust gas 102c discharged from the regeneration tower 105 using cooling water (cooling medium), and supplies it to the condenser 117.
- the condenser 117 condenses (cools) the exhaust gas 102c and separates the carbon dioxide gas and the generated condensate.
- the carbon dioxide gas 102d discharged from the condenser 117 is stored in a storage facility (not shown).
- the condensate from the condenser 117 is supplied to the upper part of the regeneration tower 105.
- the oxygen removal unit 10 includes flow path switching units 11 and 12, oxygen collection units 13 and 14, and a regeneration unit 15.
- the oxygen collectors 13 and 14 adsorb oxygen in the rich liquid 104a and remove oxygen from the rich liquid 104a.
- the rich liquid 104 a from which oxygen has been removed is sent to the regenerative heat exchanger 107 via the flow path switching unit 12.
- a silver porous body can be used for the oxygen collectors 13 and 14.
- a reaction of 2Ag + O 2 ⁇ Ag 2 O occurs, and oxygen is removed from the rich liquid 104a.
- the regenerating unit 15 separates and collects oxygen collected by the oxygen collecting units 13 and 14 to regenerate the oxygen collecting unit 13.
- the regeneration unit 15 regenerates the oxygen collection unit 13 in which the silver porous body is used
- the regeneration unit 15 discharges the collected absorbent to a tank (not shown) provided outside.
- the regeneration unit 15 supplies high-temperature (about 200 ° C.) water vapor, N 2 , CO 2 and the like supplied from the outside to the oxygen collecting unit 13.
- water vapor, N 2 , CO 2 and the like supplied from the regeneration unit 15 to the oxygen collection unit 13 (14) are simply referred to as gas.
- the oxygen scavenging portion 13 a reaction occurs that Ag 2 O ⁇ 2Ag + O 2 , oxygen is separated.
- the separated oxygen is recovered by the regeneration unit 15 together with the gas supplied from the regeneration unit 15. Thereby, the silver porous body of the oxygen collection part 14 is reproduced
- the regeneration unit 15 discharges the gas containing oxygen recovered from the oxygen collection units 13 and 14 to the outside.
- a heater may be provided in the oxygen collectors 13 and 14, and the reaction of Ag 2 O ⁇ 2Ag + O 2 may be caused by heating the heater to separate oxygen from the silver porous body.
- the gas supply from the regeneration unit 15 may be performed before heating by the heater or after heating.
- oxygen separated from the silver porous body of the oxygen collecting units 13 and 14 is recovered by the regenerating unit 15.
- regeneration part 15 is for collect
- the regeneration unit 15 regenerates the oxygen collection unit 13
- the rich liquid 104 a is supplied to the regeneration tower 105 via the flow path switching unit 11, the oxygen collection unit 14, and the flow path switching unit 12.
- gas is supplied from the regeneration unit 15 to the oxygen collection unit 13 via the flow path switching unit 12, and the liquid or gas discharged from the oxygen collection unit 13 is regenerated via the flow path switching unit 11. To be recovered.
- the regeneration unit 15 regenerates the oxygen collection unit 14
- the rich liquid 104 a is supplied to the regeneration tower 105 via the flow path switching unit 11, the oxygen collection unit 13, and the flow path switching unit 12.
- gas is supplied from the regeneration unit 15 to the oxygen collection unit 14 via the flow path switching unit 12, and the liquid or gas discharged from the oxygen collection unit 14 is regenerated via the flow path switching unit 11. To be recovered.
- a four-way valve can be used.
- FIG. 2 An example of a procedure for removing oxygen from the rich liquid 104a in the oxygen removing unit 10 and regenerating the oxygen collecting units 13 and 14 is shown in the flowchart shown in FIG. 2 and the flow path switching destinations of the flow path switching units 11 and 12 shown in FIG. It explains using.
- Step S101 The rich liquid 104a is supplied to the oxygen collection unit 13, and oxygen is removed.
- Step S102 It is determined whether or not the oxygen collection unit 13 is to be regenerated. For example, when a predetermined time has elapsed since the rich liquid 104a was supplied to the oxygen collection unit 13, it is considered that the oxygen adsorption performance in the oxygen collection unit 13 has deteriorated, and therefore it is determined to perform regeneration. . If playback is to be performed, the process proceeds to step S103, and if playback is not required, the process returns to step S101.
- Step S103 The flow paths of the flow path switching units 11 and 12 are switched. As illustrated in FIG. 3A, the flow path switching unit 11 supplies the rich liquid 104 a to the oxygen collection unit 14 and supplies the liquid or gas discharged from the oxygen collection unit 13 to the regeneration unit 15.
- the flow path switching unit 12 supplies the gas supplied from the regeneration unit 15 to the oxygen collection unit 13 and supplies the rich liquid 104a discharged from the oxygen collection unit 14 to the regeneration heat exchanger 107.
- Step S104 The oxygen collector 13 is regenerated. For example, the absorbing solution remaining in the oxygen collection unit 13 is collected by the regeneration unit 15.
- the regenerating unit 15 discharges all of the absorption liquid collected from the oxygen collecting unit 13 to the outside, and then supplies a high-temperature gas supplied from the outside to the oxygen collecting unit 13. Oxygen is separated from the silver porous body in the oxygen trap 13 by this high-temperature gas. The separated oxygen is recovered by the regeneration unit 15 together with the gas.
- Step S105 The rich liquid 104a is supplied to the oxygen collecting unit 14, and oxygen is removed.
- Step S106 It is determined whether or not the oxygen collection unit 14 is to be regenerated. If playback is to be performed, the process proceeds to step S108, and if playback is not required, the process proceeds to step S107.
- Step S107 When the operation of the carbon dioxide separation and recovery device 1 is continued, the process returns to Step S105.
- Step S108 The flow paths of the flow path switching units 11 and 12 are switched. As illustrated in FIG. 3B, the flow path switching unit 11 supplies the rich liquid 104 a to the oxygen collection unit 13 and supplies the liquid or gas discharged from the oxygen collection unit 14 to the regeneration unit 15.
- the flow path switching unit 12 supplies the gas supplied from the regeneration unit 15 to the oxygen collection unit 14 and supplies the rich liquid 104a discharged from the oxygen collection unit 13 to the regeneration heat exchanger 107.
- Step S109 The oxygen trap 14 is regenerated.
- the absorbing solution remaining in the oxygen collection unit 14 is collected by the regeneration unit 15.
- the regenerating unit 15 discharges all of the absorption liquid collected from the oxygen collecting unit 14 to the outside, and then supplies a high-temperature gas supplied from the outside to the oxygen collecting unit 14.
- Oxygen is separated from the silver porous body in the oxygen trap 14 by this high-temperature gas.
- the separated oxygen is recovered by the regeneration unit 15 together with the gas.
- oxygen can be removed from the absorption liquid circulating in the carbon dioxide recovery apparatus 1, it is possible to prevent a decrease in carbon dioxide absorption performance of the absorption liquid.
- the oxygen collection unit can be regenerated while continuously operating.
- the regeneration unit 15 supplies high temperature steam to the oxygen collection units 13 and 14, the high temperature steam may be received from the reboiler 106. Further, when impurities are contained in the high-temperature steam, after removing oxygen from the oxygen collection units 13 and 14, it may be washed with pure water.
- the regeneration unit 15 may have a boiler, generate high-temperature steam, and supply it to the oxygen collection units 13 and 14.
- the oxygen collectors 13 and 14 not only a porous silver body but also a sintered silver particle, a silver plated stainless steel mesh surface, a foamed urethane removed after the foamed urethane is removed, and the like are used. be able to. In the case where silver is dissolved from the oxygen collection units 13 and 14, it is preferable to provide a cation exchange resin or the like that can remove silver from the absorbing solution between the oxygen removal unit 10 and the regeneration tower 105.
- the oxygen collectors 13 and 14 not only silver but also a substance that easily adsorbs oxygen and does not affect the absorbing solution can be used, for example, iron fiber can be used.
- the iron fiber that has sufficiently adsorbed oxygen may be replaced with a new iron fiber.
- the absorption liquid recovered from the oxygen collectors 13 and 14 may be returned to the system of the carbon dioxide separation and recovery device 1 again.
- the absorbent can be returned between the regenerator 10 and the regenerative heat exchanger 107.
- the absorbent may be returned to the buffer tank 120 provided between the regenerative heat exchanger 107 and the cooler 114.
- FIG. 6 shows a schematic configuration of a carbon dioxide separation and recovery apparatus according to a second embodiment of the present invention.
- the present embodiment omits the oxygen removing unit 10 and is provided with an oxidation reactor 20, a sulfate ion removing unit 30, and an organic acid anion removing unit 40. Is different.
- the combustion exhaust gas 102a contains not only oxygen but also sulfur dioxide, and this sulfur dioxide is absorbed in the absorption liquid in the absorption tower 103 by the reaction of SO 2 + H 2 O ⁇ H + + HSO 3 ⁇ . Therefore, the rich liquid 104a contains oxygen and sulfurous acid.
- the rich liquid 104a is supplied to the oxidation reactor 20, and a reaction of 1 / 2O 2 + HSO 3 ⁇ ⁇ H + + SO 4 2 ⁇ occurs in the oxidation reactor 20. Since dissolved oxygen is fixed as sulfate ions by this reaction, deterioration of the absorbing solution due to oxygen can be prevented.
- the oxidation reactor 20 temporarily stores an absorbing solution in order to cause this reaction. For example, a tank can be used.
- Carbon dioxide is removed from the rich liquid 104 a discharged from the oxidation reactor 20 in the regeneration tower 105.
- the lean liquid 104b discharged from the regeneration tower 105 contains sulfate ions.
- the lean liquid 104b is cooled in the cooler 114 and then supplied to the sulfate ion removing unit 30 to remove sulfate ions.
- the lean solution 104b from which sulfate ions have been removed by the sulfate ion removal unit 30 is supplied to the organic acid anion removal unit 40, where the organic acid anions are removed.
- the lean liquid 104b is supplied to the absorption tower 103 after the removal of the organic acid anion.
- the sulfate ion removal unit 30 includes flow path switching units 31 and 32 and ion exchange resins 33 and 34.
- the ion exchange resins 33 and 34 adsorb sulfate ions in the lean liquid 104b, and for example, strong basic anion exchange resins can be used.
- the flow path switching unit 31 switches the supply destination of the lean liquid 104b to the ion exchange resin 33 or 34.
- the flow path switching unit 32 supplies the lean solution 104 b discharged from the ion exchange resin 33 or 34 to the organic acid anion removing unit 40.
- a three-way valve can be used for the flow path switching units 31 and 32.
- the sulfate ion in the lean liquid 104b is adsorbed in the ion exchange resin 33
- the sulfate ion can be separated from the ion exchange resin 34, removed, and regenerated. For example, it can be regenerated by flowing NaOH or the like through the ion exchange resin 34.
- the ion exchange resin 33 can be regenerated while the sulfate ions in the lean liquid 104b are adsorbed in the ion exchange resin 34.
- the organic acid anion removing unit 40 includes flow path switching units 41 and 42 and ion exchange resins 43 and 44.
- the ion exchange resins 43 and 44 adsorb the organic acid anions in the lean liquid 104b.
- anion exchange resins can be used.
- the flow path switching unit 41 switches the supply destination of the lean liquid 104b to the ion exchange resin 43 or 44.
- the flow path switching unit 42 supplies the lean liquid 104 b discharged from the ion exchange resin 43 or 44 to the absorption tower 103.
- a three-way valve can be used for the flow path switching units 41 and 42.
- the organic acid anion in the lean liquid 104b is adsorbed in the ion exchange resin 43
- the organic acid anion can be separated from the ion exchange resin 44, removed, and regenerated. For example, it can be regenerated by flowing NaOH or the like through the ion exchange resin 44.
- the ion exchange resin 43 can be regenerated while adsorbing the organic acid anions in the lean liquid 104b in the ion exchange resin 44.
- the dissolved oxygen in the absorption liquid is reacted with sulfurous acid and fixed as sulfate ions, thereby removing oxygen and preventing the carbon dioxide absorption performance of the absorption liquid from being lowered. Moreover, by removing the sulfate ions in the absorbent, it is possible to prevent the deterioration of the absorbent and the corrosion of the structural material of the carbon dioxide separation and recovery device.
- the organic acid anion removing unit 40 is provided on the downstream side of the sulfate ion removing unit 30. This is because the sulfate ions expel the organic acid anion adsorbed on the ion exchange resin. Therefore, it is preferable to provide the organic acid anion removing unit 40 on the downstream side of the sulfate ion removing unit 30.
- the ion exchange resins 33 and 34 for adsorbing sulfate ions can be switched at regular intervals.
- a sensor for measuring the sulfate ion concentration in the lean liquid supplied from the sulfate ion removing unit 30 to the organic acid anion removing unit 40 is provided, and the ion exchange resin to be used when the sulfate ion concentration exceeds a predetermined value. Switching may be performed to regenerate the ion exchange resin used so far.
- the ion exchange resins 43 and 44 for adsorbing the organic acid anion can be switched at regular intervals.
- a sensor for measuring the formate ion concentration in the lean liquid supplied from the organic acid anion removing unit 40 to the absorption tower 103 is provided, and when the formate ion concentration exceeds a predetermined value, the ion exchange resin to be used is switched. The ion exchange resin used so far may be regenerated.
- the oxidation reactor 20 is provided.
- the oxidation reactor 20 is not provided, and the rich liquid holding part at the lower part of the absorption tower 103 is enlarged, so that the reaction between the oxygen and sulfite ions occurs. It may be possible to hold the rich liquid for a long time.
- the sulfate ion removing unit 30 is provided on the downstream side of the cooler 114. However, as shown in FIG. 7, the sulfate ion removing unit 30 is disposed between the oxidation reactor 20 and the regenerative heat exchanger 107. You may make it provide.
- the flow rate of the combustion exhaust gas 102a is Fg (mol / h)
- the absorption liquid circulation amount of the carbon dioxide separation and recovery device is Fl (mol / h)
- the oxygen partial pressure of the combustion exhaust gas 102a is P O2 (atm)
- the oxygen solubility coefficient is set to k (mol / atm ⁇ mol)
- the sulfur dioxide concentration of the flue gas 102a is set to C SO2 (mol / mol)
- Equation 1) C SO2 ⁇ 2kP O2 Fl / Fg When satisfy
- the oxygen removing unit 10 is the same as that described in the first embodiment. By setting it as such a structure, oxygen and sulfur dioxide in an absorption liquid can be removed, and deterioration of an absorption liquid can be prevented.
- the sensor 52 for measuring the sensor 50 the sensor 51 for measuring the oxygen partial pressure P O2 of the combustion exhaust gas 102a, sulfur dioxide concentration C SO2 in the flue gas 102a for measuring the flow rate Fg flue gas 102a
- the sensor 53 for measuring the absorption liquid circulation amount Fl of the carbon dioxide separation and recovery device and the flow path switching units 61 and 62 may be provided.
- the rich liquid 104a discharged from the oxidation reactor 20 is circulated through the oxygen removing unit 10.
- the circulation route of the absorbing liquid can be appropriately switched.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Sorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
(式1)CSO2≧2kPO2Fl/Fg
を満たす場合、酸化反応器20における反応により吸収液中の溶存酸素を全て硫酸イオンとして固定できる。
13、14 酸素捕集部
15 再生部
20 酸化反応器
30 硫酸イオン除去部
33、34、43、44 イオン交換樹脂
40 有機酸アニオン除去部
103 吸収塔
105 再生塔
106 リボイラー
107 再生熱交換器
Claims (14)
- 燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、
前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、
前記吸収塔から前記再生塔に供給される吸収液から酸素を除去する酸素除去部と、
を備え、
前記酸素除去部は、
前記吸収液に含まれる酸素を捕集する第1捕集部及び第2捕集部と、
前記吸収塔から排出された吸収液を前記第1捕集部又は前記第2捕集部へ供給する第1流路切替部と、
前記第1捕集部又は前記第2捕集部から排出された吸収液を前記再生熱交換器へ供給する第2流路切替部と、
前記第1流路切替部が前記吸収液を前記第1捕集部へ供給している時は前記第2捕集部に捕集された酸素を回収し、前記第1流路切替部が前記吸収液を前記第2捕集部へ供給している時は前記第1捕集部に捕集された酸素を回収する再生部と、
を有することを特徴とする二酸化炭素分離回収装置。 - 前記再生部は、前記第1捕集部又は前記第2捕集部から、酸素の回収前に吸収液を回収し、前記回収した吸収液を当該二酸化炭素分離回収装置を循環する吸収液に加えることを特徴とするとする請求項1に記載の二酸化炭素分離回収装置。
- 前記第1捕集部及び前記第2捕集部は銀を含むことを特徴とする請求項1に記載の二酸化炭素分離回収装置。
- 前記第1捕集部及び前記第2捕集部は、前記再生部により酸素が回収される時に加熱されることを特徴とする請求項3に記載の二酸化炭素分離回収装置。
- 前記再生部は、前記再生塔に貯留されている吸収液の一部を加熱するリボイラーから水蒸気を受け取り、この水蒸気を用いて前記第1捕集部及び前記第2捕集部を加熱することを特徴とする請求項4に記載の二酸化炭素分離回収装置。
- 前記第1捕集部及び前記第2捕集部は鉄繊維を含むことを特徴とする請求項1に記載の二酸化炭素分離回収装置。
- 燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、
前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、
前記吸収塔と前記再生熱交換器との間に設けられ、前記吸収塔から前記再生塔に供給される吸収液を貯留し、当該吸収液に含まれる酸素と亜硫酸イオンとの反応により硫酸イオンを生成する反応器と、
前記硫酸イオンを含む吸収液から当該硫酸イオンを除去する第1除去部と、
前記再生熱交換器と前記吸収塔との間に設けられ、前記再生塔から排出され、前記硫酸イオンが除去された吸収液から有機酸アニオンを除去する第2除去部と、
を備える二酸化炭素分離回収装置。 - 前記第1除去部は、前記反応器と前記再生熱交換器との間、又は前記再生熱交換器と前記第2除去部との間に設けられることを特徴とする請求項7に記載の二酸化炭素分離回収装置。
- 前記第1除去部は、吸収液中の硫酸イオンを吸着する2つのイオン交換樹脂を有し、一方のイオン交換樹脂に吸収液が供給されている間に、他方のイオン交換樹脂に吸着している硫酸イオンを分離して除去することを特徴とする請求項7に記載の二酸化炭素分離回収装置。
- 前記第2除去部は、吸収液中の有機酸アニオンを吸着する2つのイオン交換樹脂を有し、一方のイオン交換樹脂に吸収液が供給されている間に、他方のイオン交換樹脂に吸着している有機酸アニオンを分離して除去することを特徴とする請求項7に記載の二酸化炭素分離回収装置。
- 前記イオン交換樹脂は、アニオン交換樹脂であることを特徴とする請求項9に記載の二酸化炭素分離回収装置。
- 燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、
前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、
前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、
前記吸収塔と前記再生熱交換器との間に設けられ、前記吸収塔から前記再生塔に供給される吸収液を貯留し、当該吸収液に含まれる酸素と亜硫酸イオンとの反応により硫酸イオンを生成する反応器と、
前記硫酸イオンを含む吸収液から当該硫酸イオンを除去する第1除去部と、
前記再生熱交換器と前記吸収塔との間に設けられ、前記再生塔から排出され、前記硫酸イオンが除去された吸収液から有機酸アニオンを除去する第2除去部と、
前記反応器から排出された吸収液に含まれる酸素を捕集する第1捕集部及び第2捕集部、前記反応器から排出された吸収液を前記第1捕集部又は前記第2捕集部へ供給する第1流路切替部、前記第1捕集部又は前記第2捕集部から排出された吸収液を前記再生熱交換器へ供給する第2流路切替部、及び前記第1流路切替部が前記吸収液を前記第1捕集部へ供給している時は前記第2捕集部に捕集された酸素を回収し、前記第1流路切替部が前記吸収液を前記第2捕集部へ供給している時は前記第1捕集部に捕集された酸素を回収する再生部を有する第3除去部と、
を備える二酸化炭素分離回収装置。 - 前記燃焼排ガスの流量を測定する第1センサと、
前記燃焼排ガスの酸素分圧を測定する第2センサと、
前記燃焼排ガスの二酸化硫黄濃度を測定する第3センサと、
当該二酸化炭素分離回収装置の吸収液循環量を測定する第4センサと、
前記第1~第4センサの測定結果に基づいて、前記反応器から排出される吸収液を前記第3除去部を介して前記再生熱交換器へ供給するか、又は前記第3除去部を介さずに前記再生熱交換器へ供給するかを切り替える第3流路切替部と、
をさらに備えることを特徴とする請求項12に記載の二酸化炭素分離回収装置。 - 前記第3流路切替部は、前記流量をFg(mol/h)、前記酸素分圧をPO2(atm)、酸素の溶解係数をk(mol/atm・mol)、前記二酸化硫黄濃度をCSO2(mol/mol)、前記吸収液循環量をFl(mol/h)とおき、CSO2≧2kPO2Fl/Fgが満たされる場合に前記反応器から排出される吸収液を前記第3除去部を介さずに前記再生熱交換器へ供給し、満たされない場合に前記反応器から排出される吸収液を前記第3除去部を介して前記再生熱交換器へ供給することを特徴とする請求項13に記載の二酸化炭素分離回収装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/505,158 US8926919B2 (en) | 2009-12-02 | 2010-11-04 | Carbon dioxide separation and recovery apparatus |
CN201080054558.8A CN102905773B (zh) | 2009-12-02 | 2010-11-04 | 二氧化碳分离和回收装置 |
EP10834460.7A EP2508246B1 (en) | 2009-12-02 | 2010-11-04 | Device for separating and recovering carbon dioxide |
AU2010327767A AU2010327767C1 (en) | 2009-12-02 | 2010-11-04 | Device for separating and recovering carbon dioxide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-274399 | 2009-12-02 | ||
JP2009274399A JP2011115709A (ja) | 2009-12-02 | 2009-12-02 | 二酸化炭素分離回収装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011068007A1 true WO2011068007A1 (ja) | 2011-06-09 |
Family
ID=44114865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069613 WO2011068007A1 (ja) | 2009-12-02 | 2010-11-04 | 二酸化炭素分離回収装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8926919B2 (ja) |
EP (2) | EP2786794B1 (ja) |
JP (1) | JP2011115709A (ja) |
CN (1) | CN102905773B (ja) |
AU (1) | AU2010327767C1 (ja) |
WO (1) | WO2011068007A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013128899A (ja) * | 2011-12-22 | 2013-07-04 | Babcock Hitachi Kk | Co2回収装置の制御方法 |
JP5606469B2 (ja) * | 2012-02-10 | 2014-10-15 | 株式会社東芝 | 二酸化炭素回収装置及びその方法 |
SI2695661T1 (en) * | 2012-08-08 | 2018-01-31 | Omya International Ag | A process for reducing the amount of CO2 using a regenerating ion exchange agent |
KR20160058826A (ko) * | 2013-09-19 | 2016-05-25 | 다우 글로벌 테크놀로지스 엘엘씨 | 풍부/희박 용매 재생을 위한 스트리퍼 공급 장치의 최적화 |
DK3096381T3 (en) * | 2014-01-15 | 2019-02-18 | Ngk Spark Plug Co | Fuel cell cartridge and fuel cell stack |
JP2015139748A (ja) * | 2014-01-29 | 2015-08-03 | 株式会社東芝 | 熱安定性塩除去システム、二酸化炭素回収システム及び熱安定性塩除去方法 |
CN104941393A (zh) * | 2015-07-07 | 2015-09-30 | 中国华能集团清洁能源技术研究院有限公司 | 一种回收二氧化碳再生气余热的再生系统 |
CN110312566A (zh) * | 2017-04-13 | 2019-10-08 | 关西电力株式会社 | 二氧化碳回收系统以及二氧化碳回收方法 |
CN108057332B (zh) * | 2017-12-26 | 2021-04-02 | 广西壮族自治区海洋环境监测中心站 | 循环利用腐植酸钠缓冲液分离提纯工业废气中co2的方法 |
GB2607400A (en) | 2021-04-02 | 2022-12-07 | Toshiba Kk | Gas processing equipment and gas processing method, and carbon dioxide capture system and carbon dioxide capture method |
JP2024035966A (ja) * | 2022-09-05 | 2024-03-15 | 株式会社神戸製鋼所 | ガス処理方法及びガス処理装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01290517A (ja) * | 1988-05-18 | 1989-11-22 | Nippon Steel Corp | 高純度液化炭酸製造プラントにおける原料ガスの処理方法及び装置 |
JPH0889756A (ja) * | 1994-09-28 | 1996-04-09 | Tokyo Electric Power Co Inc:The | 被処理ガス中の二酸化炭素の処理方法及び吸収液 |
JP2001019416A (ja) * | 1999-06-10 | 2001-01-23 | Praxair Technol Inc | 酸素含有混合物からの二酸化炭素の回収方法及び装置 |
JP2004323339A (ja) | 2003-04-30 | 2004-11-18 | Mitsubishi Heavy Ind Ltd | 二酸化炭素の回収方法及びそのシステム |
WO2006107026A1 (ja) * | 2005-04-04 | 2006-10-12 | Mitsubishi Heavy Industries, Ltd. | 吸収液、co2又はh2s又はその双方の除去方法及び装置 |
JP2007137725A (ja) * | 2005-11-18 | 2007-06-07 | Toshiba Corp | 二酸化炭素回収システムおよび二酸化炭素回収方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4804522A (en) * | 1980-05-21 | 1989-02-14 | Union Oil Company Of California | Process for removing SOx and NOx compounds from gas streams |
US6592829B2 (en) | 1999-06-10 | 2003-07-15 | Praxair Technology, Inc. | Carbon dioxide recovery plant |
CN1887405A (zh) * | 2005-06-27 | 2007-01-03 | 成都华西化工研究所 | 从烟道气中脱除和回收二氧化碳的方法 |
US20070148069A1 (en) * | 2005-12-23 | 2007-06-28 | Shrikar Chakravarti | Carbon dioxide recovery from flue gas and the like |
CN101479022A (zh) * | 2006-05-17 | 2009-07-08 | 赛欧所威有限公司 | 处理气体流的方法 |
CN100453146C (zh) * | 2006-11-10 | 2009-01-21 | 浙江大学 | 芳烃氧化尾气的净化方法与装置 |
JP2010069371A (ja) | 2008-09-17 | 2010-04-02 | Hitachi Ltd | 火力発電プラントにおける石炭ボイラ排ガス中の二酸化炭素回収装置、及び二酸化炭素回収方法 |
-
2009
- 2009-12-02 JP JP2009274399A patent/JP2011115709A/ja not_active Withdrawn
-
2010
- 2010-11-04 CN CN201080054558.8A patent/CN102905773B/zh not_active Expired - Fee Related
- 2010-11-04 AU AU2010327767A patent/AU2010327767C1/en not_active Ceased
- 2010-11-04 EP EP14171712.4A patent/EP2786794B1/en not_active Not-in-force
- 2010-11-04 WO PCT/JP2010/069613 patent/WO2011068007A1/ja active Application Filing
- 2010-11-04 EP EP10834460.7A patent/EP2508246B1/en not_active Not-in-force
- 2010-11-04 US US13/505,158 patent/US8926919B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01290517A (ja) * | 1988-05-18 | 1989-11-22 | Nippon Steel Corp | 高純度液化炭酸製造プラントにおける原料ガスの処理方法及び装置 |
JPH0889756A (ja) * | 1994-09-28 | 1996-04-09 | Tokyo Electric Power Co Inc:The | 被処理ガス中の二酸化炭素の処理方法及び吸収液 |
JP2001019416A (ja) * | 1999-06-10 | 2001-01-23 | Praxair Technol Inc | 酸素含有混合物からの二酸化炭素の回収方法及び装置 |
JP2004323339A (ja) | 2003-04-30 | 2004-11-18 | Mitsubishi Heavy Ind Ltd | 二酸化炭素の回収方法及びそのシステム |
WO2006107026A1 (ja) * | 2005-04-04 | 2006-10-12 | Mitsubishi Heavy Industries, Ltd. | 吸収液、co2又はh2s又はその双方の除去方法及び装置 |
JP2007137725A (ja) * | 2005-11-18 | 2007-06-07 | Toshiba Corp | 二酸化炭素回収システムおよび二酸化炭素回収方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2508246A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2508246B1 (en) | 2016-01-06 |
JP2011115709A (ja) | 2011-06-16 |
CN102905773A (zh) | 2013-01-30 |
EP2508246A4 (en) | 2013-12-04 |
US20120230875A1 (en) | 2012-09-13 |
US8926919B2 (en) | 2015-01-06 |
EP2786794B1 (en) | 2016-03-16 |
AU2010327767C1 (en) | 2014-08-28 |
EP2508246A1 (en) | 2012-10-10 |
EP2786794A1 (en) | 2014-10-08 |
CN102905773B (zh) | 2015-04-29 |
AU2010327767B2 (en) | 2014-02-27 |
AU2010327767A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011068007A1 (ja) | 二酸化炭素分離回収装置 | |
JP4875522B2 (ja) | Co2回収装置及び廃棄物抽出方法 | |
JP4881412B2 (ja) | 二酸化炭素回収装置 | |
JP5693368B2 (ja) | 二酸化炭素回収方法における二酸化炭素吸収液の再生方法 | |
WO2013039041A1 (ja) | Co2回収装置およびco2回収方法 | |
JP6016513B2 (ja) | Co2回収装置およびco2回収方法 | |
JP5931834B2 (ja) | リクレーミング装置及び方法、co2又はh2s又はその双方の回収装置 | |
JP5864281B2 (ja) | Co2分離回収装置 | |
JP2011177685A (ja) | 浄化装置及び二酸化炭素回収システム | |
WO2010103392A1 (en) | Flue gas treatment system and the method using amonia solution | |
JP4831834B2 (ja) | Co2回収装置及びco2吸収液回収方法 | |
WO2015115275A1 (ja) | ガス吸収・再生装置及びその運転方法 | |
JP5703240B2 (ja) | アミン回収装置、アミン回収方法、及び二酸化炭素回収システム | |
JP5117612B2 (ja) | 二酸化炭素回収装置 | |
JP4725974B2 (ja) | 窒素酸化物の除去方法および窒素酸化物の除去装置 | |
WO2013145899A1 (ja) | 二酸化炭素回収システム | |
JP2019135034A (ja) | 酸性ガス回収装置および酸性ガス回収方法 | |
JP5726589B2 (ja) | 二酸化炭素回収システム | |
JP2013163611A (ja) | 二酸化炭素回収装置及びその方法 | |
KR101750902B1 (ko) | 연료전지유닛과 연계된 가스 처리 장치 | |
JP2023108268A (ja) | Co2回収方法およびco2回収装置 | |
JP2004121902A (ja) | 窒素酸化物の除去方法および窒素酸化物の除去装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080054558.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834460 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010327767 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13505158 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010834460 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010327767 Country of ref document: AU Date of ref document: 20101104 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |