WO2013145899A1 - 二酸化炭素回収システム - Google Patents

二酸化炭素回収システム Download PDF

Info

Publication number
WO2013145899A1
WO2013145899A1 PCT/JP2013/053184 JP2013053184W WO2013145899A1 WO 2013145899 A1 WO2013145899 A1 WO 2013145899A1 JP 2013053184 W JP2013053184 W JP 2013053184W WO 2013145899 A1 WO2013145899 A1 WO 2013145899A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
amount
gas
scavenger
absorption tower
Prior art date
Application number
PCT/JP2013/053184
Other languages
English (en)
French (fr)
Inventor
佐藤 大樹
晃平 吉川
金枝 雅人
菅野 周一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP13767708.4A priority Critical patent/EP2832419A4/en
Priority to US14/379,424 priority patent/US20150298044A1/en
Priority to CA2863174A priority patent/CA2863174A1/en
Publication of WO2013145899A1 publication Critical patent/WO2013145899A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4148Multiple layers positioned apart from each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide (CO2) recovery system using a carbon dioxide (CO2) scavenger.
  • CO2 carbon dioxide
  • the specific component in order to adsorb and separate a specific component in a sample gas, the specific component is first adsorbed on the adsorbent of the adsorption tower containing the adsorbent, and then the specific component is adsorbed in a certain amount.
  • the adsorbent is regenerated by desorbing specific components by heating and aeration of the adsorption tower.
  • the gas to be circulated is water vapor that can be easily gas-liquid separated at room temperature.
  • the CO2 scavenger is regenerated by circulation of heated steam, the steam may condense due to contact with the CO2 trap having a temperature lower than that of the heated steam, thereby generating liquid water.
  • the CO2 trapping agent is immersed in water, there is a possibility that the CO2 trapping function may not be performed.
  • Patent Document 2 discloses a CO2 recovery system using a difference in the amount of captured CO2 caused by a change in the pressure of a CO2 capturing agent.
  • An object of the present invention is to obtain CO2 generated by CO2 capture reaction heat in a CO2 recovery system that captures CO2 from a CO2-containing gas and then distributes CO2 by circulating a high-temperature regeneration gas to regenerate the CO2 capture agent.
  • the object is to suppress a decrease in the amount of CO2 trapped with the temperature rise in the absorption tower.
  • the present invention allows a carbon dioxide-containing gas to flow through a carbon dioxide absorption tower having a carbon dioxide scavenger to capture carbon dioxide, and then causes a regeneration gas that is a gas other than carbon dioxide to flow through the carbon dioxide absorption tower.
  • the carbon dioxide capture agent is dependent on the temperature dependence of the carbon dioxide capture amount or the carbon dioxide partial pressure dependence of the carbon dioxide capture amount.
  • a plurality of types of carbon dioxide scavengers, at least one of which is different, is installed from the upstream side to the downstream side of the carbon dioxide-containing gas flow direction of the carbon dioxide absorption tower.
  • the desorption peak temperature at which the amount of carbon dioxide desorption of multiple types of carbon dioxide scavenger is maximized under the same partial pressure of carbon dioxide as the carbon dioxide-containing gas is measured.
  • the scavenger is installed from the upstream side to the downstream side in the flow direction of the carbon dioxide-containing gas in the carbon dioxide absorption tower in the order of decreasing desorption peak temperature.
  • the same partial pressure of carbon dioxide as the carbon dioxide-containing gas is provided on the uppermost stream side in the direction of carbon dioxide-containing gas distribution.
  • a carbon dioxide scavenger having the largest effective loading amount AB which is the difference between the carbon dioxide trapping amount A at the same temperature as the regeneration gas and the carbon dioxide trapping amount B at the same temperature as the carbon dioxide-containing gas.
  • the carbon dioxide trapping amount C at the same carbon dioxide partial pressure as the carbon dioxide containing gas and the carbon dioxide scavenger temperature at 100 ° C., the carbon dioxide partial pressure of 50 kPa and the carbon dioxide
  • the effective loading amount (CD) which is the difference between the scavenger temperature and the carbon dioxide trapping amount D at the same temperature as the regeneration gas, is the largest. It established a carbon oxide scavengers, other carbon dioxide sorbent is characterized by being installed from the downstream side of the effective loading
  • the carbon dioxide scavenger installed upstream of the direction of carbon dioxide-containing gas distribution is zeolite, high specific surface area carbon, silica, MOF (Molecular® Organic Framework), ZIF (Zeolitic® Imidasolate® Framework) and interlayer
  • the carbon dioxide scavenger selected from at least one of the compounds and installed on the downstream side in the flow direction of the carbon dioxide-containing gas is alkali metal oxide, alkaline earth metal oxide, lanthanoid oxide, manganese oxide, alumina, titania , Zirconia, yttria, and at least one of these composite oxides.
  • a regeneration gas that is a gas other than carbon dioxide is circulated through the carbon dioxide absorption tower to generate carbon dioxide.
  • the carbon dioxide scavenger is at least one of the temperature dependency of the carbon dioxide capture amount or the carbon dioxide partial pressure dependency of the carbon dioxide capture amount.
  • Two or more types of carbon dioxide scavengers with different types are installed from the upstream side to the downstream side of the carbon dioxide-containing gas flow direction of the carbon dioxide absorption tower, and the regeneration gas in the regeneration process for recovering carbon dioxide from the carbon dioxide scavenger
  • the regenerative gas inflow line and the carbon dioxide recovery line for recovering the desorbed carbon dioxide The carbon absorption tower, characterized by being installed in a direction intersecting the flow direction of the gas containing carbon dioxide in the acquisition process.
  • a partition plate that separates the regeneration gas flowing in from each regeneration gas line from the regeneration gas flowing in from other regeneration gas lines is moved between a plurality of carbon dioxide scavengers. It is characterized by being installed freely.
  • a regeneration gas that is a gas other than carbon dioxide is circulated through the carbon dioxide absorption tower.
  • a carbon dioxide recovery system that recovers carbon dioxide by desorbing carbon dioxide from the carbon dioxide scavenger, the temperature dependence of the carbon dioxide capture amount or the carbon dioxide partial pressure dependence of the carbon dioxide capture amount as a carbon dioxide scavenger
  • recovery system of this invention The graph which shows the desorption curve of the CO2 capture
  • recovery system in Example 2 of this invention The graph which shows the desorption curve of the CO2 capture
  • 10 is a graph showing a desorption curve of the CO 2 capture agent 130 in Comparative Example 3.
  • Comparative Example 1 First, as Comparative Example 1, a CO2 recovery system using one type of CO2 scavenger shown in FIG. 11 will be described.
  • the CO2 absorption tower 124 in FIG. 11 uses one type of CO2 scavenger 125.
  • CO 2 of the CO 2 -containing gas flowing in from the CO 2 -containing gas line 126 is captured by the CO 2 capturing agent 125, and the CO 2 removal gas is discharged from the CO 2 removal gas line 127.
  • the CO2 scavenger 125 generates heat due to the CO2 capture reaction during CO2 capture.
  • the temperature of the CO2 trapping agent 125 is initially raised by the CO2 trapping reaction. However, when the trapping amount approaches the saturated state, the CO2 trapping agent 125 is always in contact with the CO2 trapping gas. Cool to temperature. On the other hand, on the downstream side of the CO2 absorption tower 124, the CO2-containing gas heated by the CO2 capture reaction heat gradually flows, and the CO2 capture reaction starts later than the upstream side. Become.
  • FIG. 13 shows the CO2 recovery rate with respect to the passage time of the CO2-containing gas.
  • the CO2 recovery rate is expressed as a percentage obtained by subtracting the leaked CO2 amount from the CO2 amount flowing into the CO2 absorption tower and dividing this by the CO2 amount flowing into the CO2 absorption tower.
  • the CO2 recovery rate is set to, for example, 90% or more, it is understood that the CO2 containing gas performance and the volume of the capturing material are preferably within 20 minutes as the CO2 containing gas circulation time.
  • FIG. 14 shows the temperature distribution with respect to the position of the CO2 scavenger in the CO2 absorption tower 124 and the change over time of the CO2 trapping amount.
  • the temperature rose to 105 ° C. in about 70% of the CO 2 capture agent, and the CO 2 capture amount decreased to 0.36 mol / L accordingly.
  • the portion near the inlet was cooled to 50 ° C., the same as the CO 2 -containing gas temperature, because it was cooled by the CO 2 -containing gas after the trapped amount was saturated.
  • Comparative Example 2 the effective loading amount when the CO2 capture agent 125 is used is calculated.
  • the effective loading amount is represented by the difference between the CO2 capture amount in the capture step and the CO2 capture amount in the regeneration step.
  • FIG. 15 shows a graph of the CO2 capture amount with respect to the temperature of the CO2 capture agent 125.
  • the amount of CO2 trapped in the trapping process was 0.95 mol / L downstream of the CO2 absorber tower downstream under the conditions upstream of the CO2 absorber tower (CO2 trapping agent temperature: 50 ° C., CO2 partial pressure: 13 kPa). It is 0.36 mol / L under the conditions on the side (CO2 scavenger temperature: 105 ° C., CO2 partial pressure: 13 kPa).
  • the regeneration gas temperature was 150 ° C.
  • the CO 2 partial pressure in the regeneration gas was 13 kPa.
  • the CO2 partial pressure on the downstream side from the middle stream of the CO2 absorption tower 124 rises due to the CO2 desorbed from the CO2 trap 125 on the upstream side of the CO2 absorption tower 124.
  • the amount of CO2 desorbed that is, the effective amount of CO2 actually recovered, was calculated.
  • the effective loading amount when the CO2 partial pressure from the middle stream to the downstream side increases to 50 kPa in the regeneration process is calculated from FIG.
  • the CO2 trapping amount in the trapping process is 0.95 mol / L on the upstream side of the CO2 absorption tower, and 0.36 mol / L on the downstream side from the middle stream. Since the CO2 partial pressure upstream of the CO2 absorption tower in the regeneration step is 13 kPa and the CO2 scavenger temperature is 150 ° C., the CO2 trapping amount is 0.12 mol / L.
  • the CO2 partial pressure on the downstream side of the CO2 absorption tower in the regeneration step is 50 kPa, and the CO2 scavenger temperature is 150 ° C., so the CO2 trapping amount is 0.36 mol / L.
  • the effective loading amounts on the upstream side and on the downstream side from the middle stream are 0.83 mol / L and 0.00 mol / L, respectively. That is, it can be seen that CO2 is not desorbed in the regeneration process from the middle stream to the downstream side.
  • Table 4 The results are summarized in Table 4.
  • the effective loading amount when the CO2 partial pressure from the middle stream to the downstream side increases to 100 kPa in the regeneration process is calculated from FIG.
  • the CO2 trapping amount in the trapping step is 0.95 mol / L on the upstream side of the CO2 absorption tower, and 0.36 mol / L on the downstream side from the middle stream. Since the CO2 partial pressure upstream of the CO2 absorption tower in the regeneration step is 13 kPa and the CO2 scavenger temperature is 150 ° C., the CO2 trapping amount is 0.12 mol / L.
  • the CO2 partial pressure on the downstream side of the CO2 absorption tower in the regeneration step is 100 kPa and the CO2 scavenger temperature is 150 ° C., so the CO2 trapping amount is 0.56 mol / L.
  • the effective loading amounts on the upstream side and on the downstream side from the middle stream are 0.83 mol / L and ⁇ 0.20 mol / L, respectively. That is, it can be seen that CO2 desorbed on the upstream side is recaptured from the middle stream to the downstream side in the regeneration step.
  • Table 5 The results are summarized in Table 5.
  • Comparative Example 3 In Comparative Example 3, the effective loading amount when the CO2 capture agent 130 is used in the CO2 absorption tower 124 shown in FIG. 8 is calculated.
  • FIG. 16A shows a graph of the desorption curve of the CO2 capture agent 130
  • FIG. 16B shows a graph of the CO2 capture amount versus temperature.
  • the CO2 partial pressure of the CO2-containing gas is 13 kPa
  • the temperature is 50C.
  • the temperature was assumed to rise to 105 ° C. in the downstream from the middle stream of the CO 2 absorption tower 124 as in Comparative Examples 1 and 2.
  • the CO2 trapping amount in the trapping step is 0.80 mol / L under the conditions upstream of the CO2 absorption tower (CO2 trapping agent temperature: 50 ° C., CO2 partial pressure: 13 kPa), CO2 It is 0.63 mol / L under conditions downstream of the absorption tower middle stream (CO2 scavenger temperature: 105 ° C., CO2 partial pressure: 13 kPa).
  • the regeneration gas temperature is 150 ° C.
  • the CO 2 partial pressure in the regeneration gas is 13 kPa.
  • the CO2 partial pressure on the downstream side from the middle stream of the CO2 absorption tower 124 rises due to the CO2 desorbed from the CO2 capture agent 125 on the upstream side of the CO2 absorption tower 124.
  • the amount of CO2 desorbed was calculated for the case where the CO2 partial pressure on the downstream side from this midstream increased to 50 kPa and the case where it increased to 100 kPa.
  • the effective loading amount when the CO2 partial pressure on the downstream side increases from the middle stream to 50 kPa in the regeneration process is calculated from FIG. 16B.
  • the CO2 trapping amount in the trapping process is 0.80 mol / L on the upstream side of the CO2 absorption tower and 0.63 mol / L on the downstream side from the middle stream. Since the CO2 partial pressure upstream of the CO2 absorption tower in the regeneration step is 13 kPa and the CO2 scavenger temperature is 150 ° C., the CO2 trapping amount is 0.26 mol / L. On the other hand, the CO2 partial pressure downstream of the CO2 absorption tower in the regeneration step is 50 kPa, and the CO2 scavenger temperature is 150 ° C., so the CO2 trapping amount is 0.52 mol / L.
  • the effective loading amount is calculated from FIG. 16B when the CO2 partial pressure on the downstream side increases from the middle stream to 100 kPa in the regeneration process.
  • the CO2 trapping amount in the trapping step is 0.80 mol / L on the upstream side of the CO2 absorption tower, and 0.63 mol / L on the downstream side from the middle stream. Since the CO2 partial pressure upstream of the CO2 absorption tower in the regeneration step is 13 kPa and the CO2 scavenger temperature is 150 ° C., the CO2 trapping amount is 0.26 mol / L.
  • the CO2 partial pressure on the downstream side of the CO2 absorption tower in the regeneration step is 100 kPa, and the CO2 scavenger temperature is 150 ° C., so the CO2 trapping amount is 0.63 mol / L.
  • the effective loading amounts on the upstream side and on the downstream side from the middle stream are 0.54 mol / L and 0.00 mol / L, respectively. That is, it can be seen that CO2 is not desorbed in the regeneration process from the middle stream to the downstream side.
  • Table 7 The results are summarized in Table 7.
  • FIG. 1 is a schematic diagram showing a CO2 recovery system of the present invention.
  • the left side of FIG. 1 shows a CO2 absorption tower in the capturing step for capturing CO2.
  • the right side of FIG. 1 shows the regeneration process of the CO2 scavenger that desorbs CO2.
  • the CO2-containing gas flowing from the CO2-containing gas line 103 flows into the CO2 absorption tower 100.
  • the CO2-containing gas comes into contact with the CO2 capture agent B102 and the CO2 capture agent A101 to capture CO2, and is discharged from the CO2 removal gas line 104 as a gas from which CO2 has been removed.
  • the regeneration gas flows into the CO2 absorption tower 100 from the regeneration gas line 105, comes into contact with the CO2 capture agent B102 and the CO2 capture agent A101, desorbs CO2, and removes CO2 desorbed from the CO2 recovery line 106. to recover.
  • the temperatures of the CO2 capturing agent A101 and the CO2 capturing agent B102 in the CO2 absorption tower 100 rise due to the reaction heat of the CO2 capturing reaction.
  • the generated heat moves to the downstream side of the CO2 absorption tower 100 by the flow of the flowing CO2-containing gas. Since the temperature is higher on the downstream side than on the upstream side, it is desirable that the CO2 capture agent A101 installed on the downstream side has a higher CO2 capture amount at a higher temperature than the CO2 capture agent B102 installed on the upstream side.
  • the CO2 scavenger A101 and the CO2 scavenger B102 materials showing temperature-programmed desorption curves as shown in FIGS. 2A and 2B are suitable. That is, the CO2 capture agent A101 installed on the downstream side of the absorption tower has a higher peak temperature (hereinafter referred to as desorption peak temperature) with the highest CO2 desorption amount than the CO2 capture agent B102 installed on the upstream side. If the agent is used, it is possible to suppress a decrease in the amount of captured CO2 even on the downstream side where the temperature is higher than the upstream.
  • desorption peak temperature peak temperature
  • CO 2 in the CO 2 -containing gas flowing in from the CO 2 -containing gas line 103 is captured by the two types of CO 2 capturing agent A 101 and CO 2 capturing agent B 102, and the CO 2 removal gas is discharged from the CO 2 removal gas line 104.
  • CO2 capture reaction heat is generated during CO2 capture.
  • the CO2 capture agent installed upstream is cooled to the CO2-containing gas temperature by contact with the CO2-containing gas.
  • the CO2 scavenger installed downstream from the middle stream is higher than the upstream CO2-containing gas temperature due to the capture reaction heat.
  • the CO2 trapping agent temperature at the end of the trapping step is roughly divided into an upstream CO2 containing gas temperature and a middle to downstream CO2 trapping agent temperature.
  • the CO2 partial pressure at the end of the capturing step is equal to the CO2 partial pressure of the CO2-containing gas because the CO2 capturing reaction is almost completed. Therefore, as shown in FIG. 3, the upstream CO2 trapping amount when the CO2 trapping agent A101 is used is a, and the downstream CO2 trapping amount from the midstream is b.
  • the upstream CO2 capture amount is c, and the downstream CO2 capture amount from the midstream is d.
  • the regeneration gas is circulated from the regeneration gas line 105 to the CO2 absorption tower 100 to desorb the CO2 captured by the CO2 capture agent A101 and the CO2 capture agent B102.
  • the regeneration gas has a higher temperature than the CO2-containing gas in order to heat the CO2 scavenger.
  • a more desirable regeneration gas temperature is higher than the CO2 scavenger temperature downstream from the midstream in the capture step.
  • the CO2 partial pressure on the upstream side becomes almost the same as the CO2 partial pressure of the regeneration gas due to the desorption of CO2 from the upstream CO2 trapping agent.
  • the CO2 partial pressure increases. If sufficient time can be taken for the regeneration process, the CO2 partial pressure from the middle stream to the downstream side will be almost the same as the CO2 partial pressure of the regeneration gas.
  • the CO2 partial pressure downstream from the midstream at the end is higher than the CO2 partial pressure of the regeneration gas.
  • the CO2 partial pressure of the regeneration gas is assumed to be the same as the CO2 partial pressure of the CO2-containing gas.
  • the upstream CO2 capture amount when the CO2 capture agent A101 at the end of the regeneration process is used is e, and the downstream CO2 capture amount is f from the midstream.
  • the upstream CO2 capture amount is g
  • the downstream CO2 capture amount from the midstream is h.
  • the effective loading amount on the upstream side when using the CO2 scavenger A101 is (ae), and the effective loading amount on the downstream side from the midstream is (bf).
  • the effective loading amount on the upstream side is (c ⁇ g), and the effective loading amount on the downstream side from the midstream is (d ⁇ h).
  • the CO2 partial pressure on the downstream side increases from 10 to 100 kPa. If the CO2 capture agent temperature at the start of the capture process is 50 ° C, and the CO2 partial pressure of the capture process and the regeneration process is 13 kPa, the CO2 capture agent temperature downstream from the middle stream at the end of the capture process is 80 to 150 ° C, and the regeneration process is completed. The CO2 partial pressure downstream from the midstream of the time is 23 to 113 kPa.
  • the conditions for comparing the effective loading amounts of two or more types of CO2 capture agents are as follows: 100 ° C. as the temperature downstream from the midstream at the end of the capture step, 50 kPa as the partial pressure of CO2 downstream from the midstream at the end of the regeneration step It is most desirable to adopt.
  • Example 1 the effective loading amount when the two types of CO2 capture agent 125 and CO2 capture agent 130 described in Comparative Example 2 and Comparative Example 3 are used in the CO2 absorption tower shown in FIG. 4A is calculated.
  • FIG. 4B also shows the desorption curves of the CO 2 capture agent 125 and the CO 2 capture agent 130.
  • the volume of the CO2 scavenger is the same as in Comparative Examples 1 to 3.
  • the CO2 capture agent 125 is installed up to a position of 20% from the upstream side of the CO2 absorption tower 100, and the CO2 capture agent 130 is installed in a volume of 80% downstream from the remaining middle stream.
  • the CO2 partial pressure of the CO2-containing gas is 13 kPa, and the temperature is 50C.
  • the temperature rises to 105 ° C. as in Comparative Examples 1 to 3 on the downstream side from the middle stream of the tower.
  • the regeneration gas temperature is 150 ° C. and the CO 2 partial pressure in the regeneration gas is 13 kPa in the regeneration process.
  • the CO2 partial pressure on the downstream side from the middle stream of the CO2 absorption tower 100 rises due to the CO2 desorbed from the CO2 capture agent 125 on the upstream side of the CO2 absorption tower 124.
  • the amount of CO2 desorbed was calculated for the case where the CO2 partial pressure on the downstream side from this midstream increases to 50 kPa and to 100 kPa.
  • the effective loading amount when the CO2 partial pressure on the downstream side increases from the middle stream to 50 kPa is calculated according to FIG.
  • the amount of CO2 trapped in the trapping step is 0.95 mol / L for using the CO2 trapping agent 125 on the upstream side of the CO2 absorption tower, and 0.63 mol / L for using the CO2 trapping agent 130 on the downstream side from the middle stream.
  • the CO2 partial pressure on the upstream side of the CO2 absorption tower is 13 kPa and the CO2 trapping agent temperature is 150 ° C., so that the CO2 trapping amount of the CO2 trapping agent 125 installed on the upstream side is 0.12 mol / L.
  • the CO2 partial pressure on the downstream side of the CO2 absorption tower is 50 kPa and the CO2 trapping agent temperature is 150 ° C. Therefore, the CO2 trapping amount of the CO2 trapping agent 130 installed downstream from the middle stream is 0.52 mol / L. Therefore, the effective loading amounts on the upstream side and on the downstream side from the middle stream are 0.83 mol / L and 0.11 mol / L, respectively.
  • Example 8 summarizes the above results.
  • Example 1 compared with Table 4 of Comparative Example 2, the effective loading amount on the downstream side from the middle stream is increased, and compared with Table 6 of Comparative Example 3, the upstream effective loading amount is increased. . Therefore, the total effective loading amount can be increased by installing two kinds of CO2 scavengers, compared to the case of using one kind of CO2 scavengers as in Comparative Example 2 and Comparative Example 3.
  • the effective loading amount when the CO2 partial pressure from the middle stream to the downstream side increases to 100 kPa is calculated from FIG.
  • the upstream side of the CO2 absorption tower is 0.95 mol / L for using the CO2 trapping agent 125, and the downstream side from the middle stream is 0.63 mol / L for using the CO2 trapping agent 130.
  • the CO2 partial pressure on the upstream side of the CO2 absorption tower is 13 kPa and the CO2 trapping agent temperature is 150 ° C., so that the CO2 trapping amount of the CO2 trapping agent 125 installed on the upstream side is 0.12 mol / L.
  • the CO2 partial pressure on the downstream side of the CO2 absorption tower is 100 kPa and the CO2 trapping agent temperature is 150 ° C. Therefore, the CO2 trapping amount of the CO2 trapping agent 130 installed downstream from the middle stream is 0.63 mol / L. Therefore, the effective loading amounts on the upstream side and on the downstream side from the middle stream are 0.83 mol / L and 0.00 mol / L, respectively.
  • Example 9 summarizes the above results.
  • the effective loading amount on the downstream side from the middle stream is increased as compared with Table 5 in Comparative Example 2, and the upstream effective loading amount is increased as compared with Table 7 in Comparative Example 3. . Therefore, the total effective loading amount can be increased by installing two types of CO2 scavengers as compared with the case of using one type of CO2 scavengers as in Comparative Examples 2 and 3.
  • alkali metal oxides alkaline earth metal oxides, lanthanoid oxides, manganese oxides, alumina, titania, zirconia, yttria, and complex oxides thereof that bind strongly to CO2 are desirable.
  • the CO2 scavenger B102 is preferably a zeolite that binds weakly to CO2, high specific surface area carbon, silica, MOF (Molecular Organic Framework), ZIF (Zeolitic Imidasolate Framework), and an intercalation compound. Even if a CO2 scavenger having the same chemical composition is used, if the desorption peak temperature is slightly different due to the difference in the preparation method or the structure, the material having the desorption peak temperature on the high temperature side is referred to as CO2.
  • the amount of captured CO2 can be improved as compared with the case of using only one kind of the CO2 scavenger. .
  • Example 2 describes an example in which three types of CO2 scavengers, CO2 scavenger A108, CO2 scavenger B109, and CO2 scavenger C110, are installed inside the CO2 absorber 107 shown in FIG.
  • the CO 2 -containing gas flowing from the CO 2 -containing gas line 111 flows into the CO 2 absorption tower 107.
  • the CO2-containing gas comes into contact with the CO2 capture agent C110, the CO2 capture agent B109, and the CO2 capture agent A108 to capture CO2, and is discharged from the CO2 removal gas line 104 as a gas from which CO2 has been removed.
  • the regeneration gas flows into the CO2 absorption tower 107 from the regeneration gas line 113 and comes into contact with the CO2 capture agent C110, the CO2 capture agent B109, and the CO2 capture agent A108 to desorb CO2 from the CO2 recovery line 114. The desorbed CO2 is recovered.
  • the temperatures of the CO2 capturing agent A108, the CO2 capturing agent B109, and the CO2 capturing agent C110 in the CO2 absorption tower 107 are increased by the reaction heat of the CO2 capturing reaction.
  • the generated heat moves to the downstream side of the CO2 absorption tower 107 by the flow of the CO2-containing gas. Since the temperature is higher on the downstream side than on the upstream side, it is desirable that the CO2 capture agent A108 installed on the downstream side has a higher CO2 capture amount at a higher temperature than the CO2 capture agent C110 installed on the upstream side.
  • the CO2 scavenger A108, the CO2 scavenger B109, and the CO2 scavenger C110 materials showing temperature-programmed desorption curves as shown in FIGS. 8A to 8C are suitable. That is, as the CO2 scavenger A108 installed on the downstream side of the absorption tower, the CO2 capture agent having the highest peak CO2 desorption amount (hereinafter, desorption peak temperature) is higher than the CO2 scavenger C110 installed on the upstream side. If the agent is used, it is possible to suppress a decrease in the amount of captured CO2 even on the downstream side where the temperature is higher than the upstream.
  • desorption peak temperature the CO2 capture agent having the highest peak CO2 desorption amount
  • the temperature of the CO2 capture agent B109 increases due to the heat of CO2 capture reaction and the heat transfer of the gas in the CO2 capture agent C110, but the CO2 desorption peak temperature is higher than that of the CO2 capture agent C110.
  • the amount of captured CO2 increases.
  • the temperature of the CO2 trapping agent A108 rises higher than that of the CO2 trapping agent B109 due to the heat of CO2 trapping reaction and gas heat transfer in the CO2 trapping agent B109, but the CO2 desorption peak temperature is higher than that of the CO2 trapping agent B109. Therefore, the amount of captured CO2 is larger than that of the CO2 capture agent B109.
  • the CO2 capture amount at a higher temperature than the CO2 capture agent C110 can be increased, but the CO2 desorption temperature is increased, Since the energy required for regeneration also increases, it is desirable to use the CO2 scavenger B109.
  • the CO2 capture amount is increased while suppressing the thermal energy required for the regeneration process. can do.
  • the CO2 trapping amount can be improved by installing the CO2 trapping agent in the order from the lowest desorption peak temperature from the most upstream side to the downstream side of the absorption tower.
  • Example 3 shows an example of a CO2 recovery system that suppresses an increase in CO2 partial pressure on the downstream side from the middle stream due to CO2 desorption from the upstream CO2 capture agent in the regeneration step.
  • Example 3 shown in FIG. 9 an example is shown in which CO2 capture agent A116, CO2 capture agent B117, and CO2 capture agent C118, which are three types of CO2 capture agents, are installed in the CO2 absorption tower 115.
  • the desorption curves of these three types of CO2 capture agents are shown in FIGS. 10A to 10C. This is similar to FIGS. 8A-8C.
  • the CO2 containing gas is circulated from the CO2 containing gas line 119 to the CO2 absorption tower 115, and the CO2 removing gas is exhausted from the CO2 removing gas line 120.
  • a partition plate 123 is installed between the scavengers, the regeneration gas is circulated from the plurality of regeneration gas lines 121, and CO 2 is recovered from the CO 2 recovery line 122.
  • the partition plate 123 can be configured to be arbitrarily movable by providing moving means.
  • the CO2 containing gas is circulated from the CO2 containing gas line 119 to the CO2 absorption tower 115, and the CO2 removing gas is exhausted from the CO2 removing gas line 120.
  • the regeneration gas is circulated from the plurality of regeneration gas lines 121 and CO 2 is recovered from the CO 2 recovery line 122. Thereby, the movement distance of CO2 from the CO2 desorption position to the CO2 recovery line 122 can be shortened, and recapture to the CO2 capture agent can be suppressed.
  • the movement of the partition plate 123 between the CO2 capture agents only during the regeneration process by the moving means limits the movement of the desorbed CO2 and quickly collects it. Is also possible.
  • the partition plate 123 is configured to be able to enter and exit the partition position by a moving means (not shown).
  • the number of regenerative gas lines 121 and CO2 recovery lines 122 need not be the same as the number of types of CO2 capture agents, and any number may be installed.
  • various temperature sensors, pressure sensors, and the like are provided in a plurality of CO2 capture agent installation regions, and the optimal CO2 capture condition of the CO2 capture agent in each region is controlled using a control device according to the sensor output. In this case, it is possible to perform optimal control for more accurate CO2 capture.
  • the present invention not only recovers CO2, but also recovers gas species such as hydrocarbons such as methane, various gases such as hydrogen, oxygen, alcohol, etc., which recovers a gas scavenger from upstream to downstream. By arranging them in order of increasing temperature, it is possible to increase the amount of gas that can be recovered in one set of capture process and regeneration process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 CO2捕捉剤を収容したCO2吸収塔内において、CO2捕捉反応熱のために吸収塔内の温度が上昇することによりCO2捕捉量が低下することを抑制する。CO2含有ガスからCO2を回収するCO2回収システムにおいて、異なる二種類以上のCO2捕捉剤を吸収塔に設置する。

Description

二酸化炭素回収システム
 本発明は、二酸化炭素(CO2)捕捉剤を利用した二酸化炭素(CO2)回収システムに関する。
 地球温暖化を抑制するために、温室効果ガスとして影響が大きい二酸化炭素(CO2)の排出量削減が求められている。CO2排出抑制の具体的方法としては、吸収液や吸着材等を用いた分離回収技術がある。
 特許文献1に示す吸着分離技術では、試料ガス中のある特定成分を吸着分離するため、まず吸着剤を収容した吸着塔の吸着剤に特定成分を吸着させ、その後、特定成分を一定量吸着させた吸着塔への加熱と通気により、特定成分を脱離させて吸着剤を再生している。
 回収した特定成分のガス純度の低下を防止するためには、流通させるガスとして、常温で容易に気液分離が可能な水蒸気が望ましい。しかし、加熱水蒸気の流通によってCO2捕捉剤を再生すると、加熱水蒸気よりも低い温度であるCO2捕捉剤と接触することにより、水蒸気が凝縮して液体の水が生成する可能性がある。また、CO2捕捉剤が水に浸漬すると、CO2捕捉機能を果たさなくなる恐れがあった。
 そのため、実用化されているCO2捕捉剤を用いたCO2回収システムとしては、CO2捕捉剤の再生時に加熱水蒸気を流通する方式ではなく、吸着量の圧力差を利用した方式が大半である。例えば、特許文献2にはCO2捕捉剤の圧力変化によって生じるCO2捕捉量差を用いたCO2回収システムが開示されている。
特開平6-91127号公報 特開2009-220101号公報
 本発明の目的は、CO2含有ガス中からCO2を捕捉した後、CO2捕捉剤を再生するために高温の再生ガスを流通してCO2を脱離させるCO2回収システムにおいて、CO2捕捉反応熱で生じるCO2吸収塔内の温度上昇に伴うCO2捕捉量の低下を抑制することにある。
 本発明は、二酸化炭素捕捉剤を有する二酸化炭素吸収塔に二酸化炭素含有ガスを流通させて二酸化炭素を捕捉させた後、二酸化炭素吸収塔に二酸化炭素以外のガスである再生ガスを流通させることにより二酸化炭素捕捉剤から二酸化炭素を脱離させて二酸化炭素を回収する二酸化炭素回収システムにおいて、二酸化炭素捕捉剤として、二酸化炭素捕捉量の温度依存性または二酸化炭素捕捉量の二酸化炭素分圧依存性の少なくとも一つが異なる複数種類の二酸化炭素捕捉剤を、二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側に沿って設置したことを特徴とする。
 また、二酸化炭素回収システムにおいて、二酸化炭素含有ガスと同一の二酸化炭素分圧下で複数種類の二酸化炭素捕捉剤の二酸化炭素脱離量が最大となる脱離ピーク温度を測定し、複数種類の二酸化炭素捕捉剤を脱離ピーク温度が低い順に従って、二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側へ設置したことを特徴とする。
 また、二酸化炭素回収システムにおいて、二酸化炭素吸収塔内に設置する複数種類の二酸化炭素捕捉剤のうち、二酸化炭素含有ガス流通方向の最上流側には、二酸化炭素含有ガスと同一の二酸化炭素分圧において、再生ガスと同一温度における二酸化炭素捕捉量Aと二酸化炭素含有ガスと同一温度における二酸化炭素捕捉量Bの差である実効ローディング量A-Bが最も大きい二酸化炭素捕捉剤を設置し、二酸化炭素含有ガス流通方向の最下流側には、二酸化炭素含有ガスと同一の二酸化炭素分圧下でかつ二酸化炭素捕捉剤温度が100℃における二酸化炭素捕捉量Cと、二酸化炭素分圧50kPa下でかつ二酸化炭素捕捉剤温度が再生ガスと同一温度における二酸化炭素捕捉量Dとの差である実効ローディング量(C-D)が最も大きい二酸化炭素捕捉剤を設置し、他の二酸化炭素捕捉剤は実効ローディング量(C-D)が大きい順に二酸化炭素含有ガス流通方向の下流側から上流側へ設置したことを特徴とする。
 また、二酸化炭素回収システムにおいて、二酸化炭素含有ガス流通方向の上流側に設置する二酸化炭素捕捉剤は、ゼオライト、高比表面積カーボン、シリカ、MOF(Molecular Organic Framework)、ZIF(Zeolitic Imidasolate Framework)及び層間化合物の少なくとも一つから選択し、二酸化炭素含有ガス流通方向の下流側に設置する二酸化炭素捕捉剤は、アルカリ金属酸化物、アルカリ土類金属酸化物、ランタノイド酸化物、マンガン酸化物、アルミナ、チタニア、ジルコニア、イットリア、及びこれらの複合酸化物の少なくとも一つから選択したことを特徴とする。
 さらに、二酸化炭素捕捉剤を有する二酸化炭素吸収塔に二酸化炭素含有ガスを流通させることにより二酸化炭素を捕捉させた後、二酸化炭素吸収塔に二酸化炭素以外のガスである再生ガスを流通させて二酸化炭素捕捉剤から二酸化炭素を脱離させて二酸化炭素を回収する二酸化炭素回収システムにおいて、二酸化炭素捕捉剤として、二酸化炭素捕捉量の温度依存性または二酸化炭素捕捉量の二酸化炭素分圧依存性の少なくとも一つが異なる複数種類の二酸化炭素捕捉剤を、二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側に沿って設置するとともに、二酸化炭素捕捉剤から二酸化炭素を回収する再生工程における再生ガスを流入する再生ガス流入ライン及び脱離した二酸化炭素を回収する二酸化炭素回収ラインを、二酸化炭素吸収塔内で、捕捉工程における二酸化炭素含有ガスの流通方向と交差する方向に設置したことを特徴とする。
 さらに、二酸化炭素回収システムにおいて、再生工程の際に、複数の二酸化炭素捕捉剤の間に各再生ガスラインから流入する再生ガスを他の再生ガスラインから流入する再生ガスと分離する仕切り板を移動自在に設置したことを特徴とする。
 本発明によれば、二酸化炭素捕捉剤を有する二酸化炭素吸収塔に二酸化炭素含有ガスを流通させて二酸化炭素を捕捉させた後、二酸化炭素吸収塔に二酸化炭素以外のガスである再生ガスを流通させることにより二酸化炭素捕捉剤から二酸化炭素を脱離させて二酸化炭素を回収する二酸化炭素回収システムにおいて、二酸化炭素捕捉剤として、二酸化炭素捕捉量の温度依存性または二酸化炭素捕捉量の二酸化炭素分圧依存性の少なくとも一つが異なる複数種類の二酸化炭素捕捉剤を、二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側に沿って設置することにより、吸収塔内にCO2が捕捉された際に捕捉反応熱で吸収塔内の温度が上昇しても、CO2捕捉量が低下することを抑制することが可能となる。
本発明のCO2回収システムを示す模式図。 図1におけるCO2捕捉剤Aの脱離曲線を示すグラフ。 図1におけるCO2捕捉剤Bの脱離曲線を示すグラフ。 CO2捕捉剤の温度に対するCO2捕捉量の変化を示すグラフ。 本発明の実施例1におけるCO2回収システムを示す模式図。 本発明の実施例1における2種類のCO2捕捉剤の脱離曲線を示すグラフ。 本発明の実施例1のCO2分圧50kPaでのCO2捕捉量を示すグラフ。 本発明の実施例1のCO2分圧100kPaでのCO2捕捉量を示すグラフ。 本発明の実施例2におけるCO2回収システムを示す模式図。 図3におけるCO2捕捉剤Aの脱離曲線を示すグラフ。 図3におけるCO2捕捉剤Bの脱離曲線を示すグラフ。 図3におけるCO2捕捉剤Cの脱離曲線を示すグラフ。 本発明の実施例3におけるCO2回収システムを示す模式図。 図6におけるCO2捕捉剤Aの脱離曲線を示すグラフ。 図6におけるCO2捕捉剤Bの脱離曲線を示すグラフ。 図6におけるCO2捕捉剤Cの脱離曲線を示すグラフ。 本発明の比較例1におけるCO2回収システムを示す模式図。 比較例1におけるCO2捕捉剤125の脱離曲線を示すグラフ。 比較例1におけるCO2含有ガス流通経過時間に対するCO2回収率を示すグラフ。 比較例1のCO2吸収塔内温度分布とCO2捕捉量分布の経時変化を示す模式図。 比較例2におけるCO2捕捉剤温度に対するCO2捕捉量を示すグラフ。 比較例3におけるCO2捕捉剤130の脱離曲線を示すグラフ。 比較例3におけるCO2捕捉量を示すグラフ。
 以下に、本発明の比較例を説明し、次に本発明の実施例を比較例との対比で説明する。
[比較例1]
 まず、比較例1として、図11に示す一種類のCO2捕捉剤を用いたCO2回収システムについて説明する。図11のCO2吸収塔124は、一種類のCO2捕捉剤125を利用している。
 捕捉工程においては、CO2含有ガスライン126から流入したCO2含有ガスのCO2がCO2捕捉剤125によって捕捉され、CO2除去ガスがCO2除去ガスライン127から排出される。CO2捕捉剤125はCO2捕捉時にCO2捕捉反応によって発熱する。
 CO2吸収塔124の上流側では、最初はCO2捕捉反応によってCO2捕捉剤125の温度が上昇するが、捕捉量が飽和状態に近付くとCO2含有ガスに常に接触するためCO2捕捉剤125はCO2含有ガス温度まで冷却される。一方、CO2吸収塔124の下流側では、CO2捕捉反応熱によって加熱されたCO2含有ガスが徐々に流入し、またCO2捕捉反応が上流側より遅れて始まることから、上流側よりも遅れて高温になる。
 CO2捕捉剤125として、図12に示す脱離曲線を持つ材料を用いた場合のCO2回収率、CO2吸収塔内温度、及びCO2捕捉量の経時変化を計算した。ただし、計算の諸条件は表1~表3に示した値を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図13にCO2含有ガス流通経過時間に対するCO2回収率を示す。ここでCO2回収率は、CO2吸収塔に流入したCO2量から漏出したCO2量を引き、これをCO2吸収塔に流入したCO2量で割った百分率で表す。
 CO2回収率を例えば90%以上に設定すると、このCO2捕捉剤性能及び捕捉材容積では、CO2含有ガス流通時間として20分以内が望ましいことが分かる。
 次に、CO2吸収塔124内のCO2捕捉剤位置に対する温度分布、及びCO2捕捉量の経時変化を図14に示す。20分経過後にはCO2捕捉剤の約7割で温度が105℃まで上昇しており、それに伴いCO2捕捉量は0.36mol/Lまで減少していた。一方、入口に近い部分では、捕捉量が飽和した後にCO2含有ガスによって冷却されたため、CO2含有ガス温度と同一の50℃まで低下していたことを確認した。
 この結果、50℃においてはCO2は0.95mol/L捕捉可能だが、温度が105℃まで上昇すると50℃の時の半分以下である0.36mol/Lしか捕捉できないことが判明した。
[比較例2]
 比較例2では、CO2捕捉剤125を使用した場合の実効ローディング量を算出する。
実効ローディング量とは、捕捉工程におけるCO2捕捉量と再生工程におけるCO2捕捉量の差で表わされる。
 図15に、CO2捕捉剤125の温度に対するCO2捕捉量のグラフを示す。捕捉工程におけるCO2捕捉量は比較例1で計算した通り、CO2吸収塔上流側の条件(CO2捕捉剤温度:50℃、CO2分圧:13kPa)で0.95mol/L、CO2吸収塔中流から下流側の条件(CO2捕捉剤温度:105℃、CO2分圧:13kPa)で0.36mol/Lである。
 再生工程では、再生ガス温度を150℃、再生ガス中のCO2分圧を13kPaとした。再生工程では、CO2吸収塔124の上流側でCO2捕捉剤125より脱離したCO2によって、CO2吸収塔124の中流から下流側のCO2分圧は上昇する。中流から下流側におけるCO2分圧が50kPaまで上昇する場合と、100kPaまで上昇する場合について、脱離するCO2量すなわち実際に回収されたCO2量である実効ローディング量を算出した。
 まず、再生工程で中流から下流側におけるCO2分圧が50kPaまで上昇する場合の実効ローディング量を図12より算出する。捕捉工程におけるCO2捕捉量は、前述した通り、CO2吸収塔の上流側で0.95mol/L、中流から下流側で0.36mol/Lである。再生工程におけるCO2吸収塔上流側のCO2分圧は13kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.12mol/Lとなる。一方、再生工程におけるCO2吸収塔下流側のCO2分圧は50kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.36mol/Lとなる。
 従って、上流側、及び中流から下流側における実効ローディング量は、それぞれ0.83mol/L、0.00mol/Lとなる。すなわち、中流から下流側においては、再生工程でCO2は脱離しないことが分かる。以上の結果をまとめて表4に示す。
Figure JPOXMLDOC01-appb-T000004
 同様に、再生工程で中流から下流側におけるCO2分圧が100kPaまで上昇する場合の実効ローディング量を図15より算出する。捕捉工程におけるCO2捕捉量は、CO2吸収塔の上流側で0.95mol/L、中流から下流側で0.36mol/Lである。
再生工程におけるCO2吸収塔上流側のCO2分圧は13kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.12mol/Lとなる。一方、再生工程におけるCO2吸収塔下流側のCO2分圧は100kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.56mol/Lとなる。
 従って、上流側、及び中流から下流側における実効ローディング量は、それぞれ0.83mol/L、-0.20mol/Lとなる。すなわち、再生工程では上流側で脱離したCO2が中流から下流側で再捕捉されることが分かる。以上の結果をまとめて表5に示す。
Figure JPOXMLDOC01-appb-T000005
[比較例3]
 比較例3では、CO2捕捉剤130を図8に示すCO2吸収塔124に使用した場合の実効ローディング量を算出する。図16AにCO2捕捉剤130の脱離曲線のグラフ、図16Bに温度に対するCO2捕捉量のグラフを示す。比較例1及び2の場合と同じく、CO2含有ガスのCO2分圧は13kPa、温度は50℃とする。また捕捉工程において、CO2吸収塔124の中流から下流側で温度も比較例1及び2と同様に、105℃まで上昇すると仮定した。
 図16Bの温度に対するCO2捕捉量のグラフより、捕捉工程におけるCO2捕捉量は、CO2吸収塔上流側の条件(CO2捕捉剤温度:50℃、CO2分圧:13kPa)で0.80mol/L、CO2吸収塔中流から下流側の条件(CO2捕捉剤温度:105℃、CO2分圧:13kPa)で0.63mol/Lである。
 再生工程では、再生ガス温度を150℃、再生ガス中のCO2分圧を13kPaとする。また再生工程では、CO2吸収塔124の上流側でCO2捕捉剤125より脱離したCO2によって、CO2吸収塔124の中流から下流側のCO2分圧は上昇する。この中流から下流側におけるCO2分圧が50kPaまで上昇する場合と、100kPaまで上昇する場合について、脱離するCO2量、すなわち実効ローディング量を算出した。
 まず、再生工程で中流から下流側におけるCO2分圧が50kPaまで上昇する場合の実効ローディング量を図16Bより算出する。捕捉工程におけるCO2捕捉量は、前述した通り、CO2吸収塔の上流側で0.80mol/L、中流から下流側で0.63mol/Lである。再生工程におけるCO2吸収塔上流側のCO2分圧は13kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.26mol/Lとなる。一方、再生工程におけるCO2吸収塔下流側のCO2分圧は50kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.52mol/Lとなる。
 従って、上流側、及び中流から下流側における実効ローディング量は、それぞれ0.54mol/L、0.11mol/Lとなる。以上の結果をまとめて表6に示す。
Figure JPOXMLDOC01-appb-T000006
 同様に、再生工程で中流から下流側におけるCO2分圧が100kPaまで上昇する場合の実効ローディング量を図16Bより算出する。捕捉工程におけるCO2捕捉量は、CO2吸収塔の上流側で0.80mol/L、中流から下流側で0.63mol/Lである。再生工程におけるCO2吸収塔上流側のCO2分圧は13kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.26mol/Lとなる。
 一方、再生工程におけるCO2吸収塔下流側のCO2分圧は100kPa、かつCO2捕捉剤温度は150℃なので、CO2捕捉量は0.63mol/Lとなる。
 従って、上流側、及び中流から下流側における実効ローディング量は、それぞれ0.54mol/L、0.00mol/Lとなる。すなわち、中流から下流側においては、再生工程でCO2は脱離しないことが分かる。以上の結果をまとめて表7に示す。
Figure JPOXMLDOC01-appb-T000007
 次に、本発明の構成を実施例について説明する。
〔発明の基本構成〕
 本発明を実施するための基本形態として、CO2吸収塔100の例を用いて説明する。図1は本発明のCO2回収システムを示す模式図である。図1の左側には、CO2を捕捉する捕捉工程のCO2吸収塔を示している。図1の右側には、CO2を脱離させるCO2捕捉剤の再生工程を示している。この二つの工程をガスラインの切換で実施する。
 捕捉工程では、CO2含有ガスライン103から流入するCO2含有ガスがCO2吸収塔100に流入する。CO2含有ガスは、CO2捕捉剤B102及びCO2捕捉剤A101と接触してCO2を捕捉され、CO2を除去したガスとしてCO2除去ガスライン104から排出される。また再生工程では、CO2吸収塔100に再生ガスライン105から再生ガスが流入し、CO2捕捉剤B102及びCO2捕捉剤A101と接触してCO2を脱離させ、CO2回収ライン106より脱離したCO2を回収する。
 捕捉工程では、CO2捕捉反応の反応熱によって、CO2吸収塔100内のCO2捕捉剤A101及びCO2捕捉剤B102の温度が上昇する。発生した熱は流通するCO2含有ガスの流れによってCO2吸収塔100の下流側へ移動する。上流側より下流側の方が温度は高くなるため、下流側に設置するCO2捕捉剤A101は、上流側に設置するCO2捕捉剤B102よりも高温でCO2捕捉量が多いことが望ましい。
 CO2捕捉剤A101及びCO2捕捉剤B102としては、図2A、2Bのような昇温脱離曲線を示す材料が適当である。すなわち、吸収塔下流側に設置するCO2捕捉剤A101としては、上流側に設置するCO2捕捉剤B102よりも、CO2脱離量が最も大きなピークの温度(以下、脱離ピーク温度)が高いCO2捕捉剤を利用すれば、上流よりも高温になる下流側でもCO2捕捉量の減少を抑制できる。
〔CO2捕捉剤の選択と実効ローディング量〕
 設置する複数のCO2捕捉剤の選択方法としては、簡易的には前記の脱離ピーク温度の序列でも評価できるが、再生工程も考慮した実効ローディング量で評価することが最も望ましい。ここで、実効ローディング量は、捕捉工程におけるCO2捕捉量と再生工程におけるCO2捕捉量の差で表わされる。図3に示したCO2捕捉剤A101とCO2捕捉剤B102における、温度に対するCO2捕捉量のグラフを用いて説明する。
 捕捉工程では、CO2含有ガスライン103から流入したCO2含有ガス中のCO2が、二種類のCO2捕捉剤A101とCO2捕捉剤B102によって捕捉され、CO2除去ガスがCO2除去ガスライン104から排出される。CO2捕捉時にCO2捕捉反応熱が発生する。CO2吸収塔100の上流側では、捕捉工程開始時はCO2捕捉反応によって温度が上昇する。しかし捕捉工程終了時には、上流側に設置したCO2捕捉剤はCO2含有ガスとの接触によりCO2含有ガス温度まで冷却されている。一方、中流から下流側に設置したCO2捕捉剤は、捕捉反応熱により上流側のCO2含有ガス温度より高くなっている。
 つまり、捕捉工程終了時のCO2捕捉剤温度は大きく分けて、上流側のCO2含有ガス温度と、中流から下流側のCO2捕捉剤温度に分けられる。また、捕捉工程終了時のCO2分圧は、CO2捕捉反応がほぼ終了しているため、CO2含有ガスのCO2分圧と等しくなっている。従って、図3よりCO2捕捉剤A101を使用した場合の上流側のCO2捕捉量はa、中流から下流側のCO2捕捉量はbとなる。CO2捕捉剤B102を使用した場合の上流側のCO2捕捉量はc、中流から下流側のCO2捕捉量はdとなる。
 図1における再生工程では、再生ガスライン105より再生ガスをCO2吸収塔100に流通させることにより、CO2捕捉剤A101及びCO2捕捉剤B102に捕捉されたCO2を脱離させる。このときCO2脱離反応を促進させるためには、CO2捕捉剤を加熱するために再生ガスはCO2含有ガスより高い温度のものが望ましい。より望ましい再生ガスの温度は、捕捉工程における中流から下流側のCO2捕捉剤温度より高い温度である。
 再生工程におけるCO2分圧に着目すると、上流側のCO2捕捉剤からCO2が脱離することにより、上流側のCO2分圧は再生ガスのCO2分圧とほぼ同じになるが、中流から下流側のCO2分圧は上昇する。もし再生工程に十分な時間を取ることができれば、いずれは中流から下流側のCO2分圧も再生ガスのCO2分圧とほぼ同じになるが、実際には十分な時間は取れないため、再生工程終了時の中流から下流側におけるCO2分圧は、再生ガスのCO2分圧より高い。ここでは、再生ガスのCO2分圧もCO2含有ガスのCO2分圧と同じと考えて説明する。
〔実効ローディング量による選択〕
 図3より、再生工程終了時のCO2捕捉剤A101を使用した場合の上流側のCO2捕捉量はe、中流から下流側のCO2捕捉量はfとなる。CO2捕捉剤B102を使用した場合の上流側のCO2捕捉量はg、中流から下流側のCO2捕捉量はhとなる。
 以上の結果をまとめると、CO2捕捉剤A101を用いた場合の上流側の実効ローディング量は(a-e)、中流から下流側の実効ローディング量は(b-f)となる。一方、CO2捕捉剤B102を用いた場合の上流側の実効ローディング量は(c-g)、中流から下流側の実効ローディング量は(d-h)となる。
 捕捉工程及び再生工程の一回のサイクルで、できるだけ多くのCO2を回収するためには、上流側及び中流から下流側のそれぞれの場所に実効ローディング量が大きいCO2捕捉剤を設置することが望ましい。すなわち、上流側では実効ローディング量が(c-g)>(a-e)であるため、CO2捕捉剤B102を設置し、中流から下流側では実効ローディング量が(b-f)>(d-h)であるためCO2捕捉剤A101を設置することが望ましい。
〔CO2捕捉剤温度とCO2分圧〕
 材料及び設置する量にもよるが、より具体的には、捕捉工程終了時には中流から下流側のCO2捕捉剤温度は、捕捉工程開始時と比べて30~100℃上昇し、再生工程終了時には中流から下流側のCO2分圧は10~100kPa上昇する。捕捉工程開始時のCO2捕捉剤温度を50℃、捕捉工程及び再生工程のCO2分圧が13kPaとすると、捕捉工程終了時の中流から下流側のCO2捕捉剤温度は80~150℃、再生工程終了時の中流から下流側のCO2分圧は23~113kPaとなる。
 従って、二種類以上のCO2捕捉剤の実効ローディング量を比較する条件としては、捕捉工程終了時における中流から下流側の温度として100℃、再生工程終了時における中流から下流側のCO2分圧として50kPaを採用することが最も望ましい。
 実施例1では、比較例2及び比較例3に記載した二種類のCO2捕捉剤125とCO2捕捉剤130を、図4Aに示すCO2吸収塔に使用した場合の実効ローディング量を算出する。
 図4BにCO2捕捉剤125、CO2捕捉剤130の脱離曲線を併せて示す。CO2捕捉剤の容積は、比較例1~3と同じとする。
 図4Aに示すように、CO2捕捉剤125をCO2吸収塔100の上流側から20%の位置まで設置し、残りの中流から下流側80%分の容積にCO2捕捉剤130を設置する。比較例1から3の場合と同じく、CO2含有ガスのCO2分圧は13kPa、温度は50℃とする。また捕捉工程において、塔の中流から下流側で温度も比較例1から3と同様に105℃まで上昇すると仮定する。
 比較例1~3と同様に、再生工程では再生ガス温度を150℃、再生ガス中のCO2分圧を13kPaとして想定する。また再生工程では、CO2吸収塔124の上流側でCO2捕捉剤125より脱離したCO2によって、CO2吸収塔100の中流から下流側のCO2分圧は上昇する。この中流から下流側におけるCO2分圧が50kPaまで上昇する場合と100kPaまで上昇する場合について、脱離するCO2量すなわち実効ローディング量を算出した。
 まず、再生工程において、図5により中流から下流側におけるCO2分圧が50kPaまで上昇する場合の実効ローディング量を算出する。捕捉工程におけるCO2捕捉量は、CO2吸収塔の上流側ではCO2捕捉剤125を利用するため0.95mol/L、中流から下流側ではCO2捕捉剤130を利用するため0.63mol/Lである。
 再生工程におけるCO2吸収塔上流側のCO2分圧は13kPa、かつCO2捕捉剤温度は150℃なので、上流側に設置したCO2捕捉剤125のCO2捕捉量は0.12mol/Lとなる。一方、CO2吸収塔下流側のCO2分圧は50kPa、かつCO2捕捉剤温度は150℃なので、中流から下流側に設置したCO2捕捉剤130のCO2捕捉量は0.52mol/Lとなる。従って、上流側、及び中流から下流側における実効ローディング量は、それぞれ0.83mol/L、0.11mol/Lとなる。
 以上の結果をまとめて表8に示す。実施例1では、比較例2の表4と比べると、中流から下流側の実効ローディング量が増えており、比較例3の表6と比べると上流側の実効ローディング量が増えていることが分かる。従って、比較例2及び比較例3のように一種類のCO2捕捉剤を用いる場合よりも、二種類のCO2捕捉剤を設置した方が全体の実効ローディング量を増やすことができる。
Figure JPOXMLDOC01-appb-T000008
 同様に、再生工程において、図6より中流から下流側におけるCO2分圧が100kPaまで上昇する場合の実効ローディング量を算出する。CO2吸収塔の上流側ではCO2捕捉剤125を利用するため0.95mol/L、中流から下流側ではCO2捕捉剤130を利用するため0.63mol/Lである。
 再生工程におけるCO2吸収塔上流側のCO2分圧は13kPa、かつCO2捕捉剤温度は150℃なので、上流側に設置したCO2捕捉剤125のCO2捕捉量は0.12mol/Lとなる。一方、CO2吸収塔下流側のCO2分圧は100kPa、かつCO2捕捉剤温度は150℃なので、中流から下流側に設置したCO2捕捉剤130のCO2捕捉量は0.63mol/Lとなる。従って、上流側、及び中流から下流側における実効ローディング量は、それぞれ0.83mol/L、0.00mol/Lとなる。
 以上の結果をまとめて表9に示す。実施例1では、比較例2の表5と比べると、中流から下流側の実効ローディング量が増えており、比較例3の表7と比べると上流側の実効ローディング量が増えていることが分かる。従って、やはり比較例2及び比較例3のように一種類のCO2捕捉剤を用いる場合よりも、二種類のCO2捕捉剤を設置した方が全体の実効ローディング量を増やすことができる。
Figure JPOXMLDOC01-appb-T000009
 CO2捕捉剤A101としては、CO2と強く結合するアルカリ金属酸化物、アルカリ土類金属酸化物、ランタノイド酸化物、マンガン酸化物、アルミナ、チタニア、ジルコニア、イットリア、及びこれらの複合酸化物などが望ましい。
 一方、CO2捕捉剤B102としては、CO2と弱く結合するゼオライト、高比表面積カーボン、シリカ、MOF(Molecular Organic Framework)、ZIF(Zeolitic Imidasolate Framework)及び層間化合物などが望ましい
 ただし、二種類のCO2捕捉剤として、同じ化学組成のCO2捕捉剤を用いたとしても、調製法の違いや構造の違いなどから脱離ピーク温度が少しでも異なっていれば、脱離ピーク温度が高温側に存在する材料をCO2捕捉剤A101として下流側に、低温側に存在する材料をCO2捕捉剤B102として上流側に設置すれば、どちらか一種類のCO2捕捉剤のみを用いる場合よりもCO2捕捉量を向上させることができる。
 実施例2では、図7に示すCO2吸収塔107の内部に三種類のCO2捕捉剤である、CO2捕捉剤A108、CO2捕捉剤B109、CO2捕捉剤C110を設置した例について説明する。
 図7において、左側にはCO2捕捉工程のCO2吸収塔107、右側にはCO2再生工程のCO2吸収塔107を示している。この二つの工程をガスラインの切換で実施する。
 捕捉工程では、CO2含有ガスライン111から流入するCO2含有ガスがCO2吸収塔107に流入する。CO2含有ガスは、CO2捕捉剤C110及びCO2捕捉剤B109及びCO2捕捉剤A108と接触してCO2を捕捉され、CO2を除去したガスとしてCO2除去ガスライン104から排出される。また再生工程では、CO2吸収塔107に再生ガスライン113から再生ガスが流入し、CO2捕捉剤C110及びCO2捕捉剤B109及びCO2捕捉剤A108と接触してCO2を脱離させ、CO2回収ライン114より脱離したCO2を回収する。
 捕捉工程では、CO2捕捉反応の反応熱によって、CO2吸収塔107内のCO2捕捉剤A108及びCO2捕捉剤B109及びCO2捕捉剤C110の温度が上昇する。発生した熱は、CO2含有ガスの流れによってCO2吸収塔107の下流側へ移動する。上流側より下流側の方が温度は高くなるため、下流側に設置するCO2捕捉剤A108は、上流側に設置するCO2捕捉剤C110よりも、高温でCO2捕捉量が多いことが望ましい。
 CO2捕捉剤A108及びCO2捕捉剤B109及びCO2捕捉剤C110としては、図8A~8Cのような昇温脱離曲線を示す材料が適当である。すなわち、吸収塔下流側に設置するCO2捕捉剤A108としては、上流側に設置するCO2捕捉剤C110よりも、CO2脱離量が最も大きなピークの温度(以下、脱離ピーク温度)が高いCO2捕捉剤を利用すれば、上流よりも高温になる下流側でもCO2捕捉量の減少を抑制できる。
 CO2捕捉剤C110におけるCO2捕捉反応熱とガスの伝熱によって、CO2捕捉剤B109の温度は上昇するが、CO2捕捉剤C110よりもCO2脱離ピーク温度が高温側であるため、CO2捕捉剤C110よりもCO2捕捉量は多くなる。CO2捕捉剤B109におけるCO2捕捉反応熱とガスの伝熱によって、CO2捕捉剤A108の温度は、CO2捕捉剤B109よりも上昇するが、CO2捕捉剤B109よりもCO2脱離ピーク温度が高温側であるため、CO2捕捉剤B109よりもCO2捕捉量は多くなる。
 また、中流側に設置するCO2捕捉剤B109の代わりにCO2捕捉剤A108を設置しても、CO2捕捉剤C110よりは高温におけるCO2捕捉量を大きくすることができるが、CO2脱離温度も上がり、再生に必要なエネルギーも増えるので、CO2捕捉剤B109の利用が望ましい。
 以上のことから、CO2吸収塔107の上流側から下流側へ、脱離ピーク温度が低い順に、CO2捕捉剤を設置することにより、再生工程に必要な熱エネルギーを抑制しながらCO2捕捉量を大きくすることができる。
 図7及び図8A~8Cに示すように、吸収塔の最も上流側から下流側へ、CO2捕捉剤をその脱離ピーク温度が低い順序で設置すれば、CO2捕捉量を向上させることができる。
 実施例3では、再生工程における上流側のCO2捕捉剤からのCO2脱離によって、中流から下流側のCO2分圧が上昇するのを抑制するCO2回収システムの例を示す。
 図9に示す実施例3では、CO2吸収塔115の中に、三種類のCO2捕捉剤であるCO2捕捉剤A116、CO2捕捉剤B117、及びCO2捕捉剤C118を設置した例を示す。これら三種類のCO2捕捉剤の脱離曲線を図10A~10Cに示す。これは図8A~8Cと同様である。図6において、捕捉工程では、CO2含有ガスライン119からCO2含有ガスをCO2吸収塔115に流通させ、CO2除去ガスライン120よりCO2除去ガスを排気する。
 再生工程では、各捕捉剤の間に仕切り板123を設置して、複数の再生ガスライン121より再生ガスを流通させ、CO2回収ライン122よりCO2を回収する。ただし、CO2吸収塔115の内径が、CO2吸収塔115のCO2捕捉剤充填層の長さより短い場合により有効である。仕切り板123には移動手段を設けて任意に移動可能に構成することができる。
 図9において、捕捉工程では、CO2含有ガスライン119からCO2含有ガスをCO2吸収塔115に流通させ、CO2除去ガスライン120よりCO2除去ガスを排気する。再生工程では、複数の再生ガスライン121より再生ガスを流通させ、CO2回収ライン122よりCO2を回収する。これにより、CO2脱離位置からCO2回収ライン122までのCO2の移動距離を短くし、CO2捕捉剤への再捕捉を抑制できる。
 CO2分圧の上昇をさらに抑制する手段として、移動手段により再生工程の間のみ各CO2捕捉剤の間に仕切り板123を設置することにより、脱離したCO2の移動を制限し速やかに回収することも可能である。仕切り板123は図示しない移動手段により仕切位置に出入り可能に構成する。
 また、再生ガスライン121及びCO2回収ライン122の組数は、CO2捕捉剤の種類数と同じである必要はなく、いくつ設置してもよい。
 この方法を利用すれば、再生工程で脱離したCO2が、速やかにCO2回収ライン122で回収されるので、再生工程に要する時間を短くすることが可能となる。
 実施例3において、複数のCO2捕捉剤の設置領域に各種温度センサ、圧力センサ等を設け、センサ出力に従って制御装置を用いて各領域のCO2捕捉剤のCO2捕捉最適条件を制御する様に構成することも可能であり、この場合にはさらに的確なCO2捕捉についての最適制御が可能となる。
 また、本発明はCO2の回収だけでなく、例えばメタン等の炭化水素、水素、酸素、アルコール等の各種ガスの回収においても、ガス捕捉剤を上流から下流側へ回収するガス種の脱離ピーク温度が低い順に並べて設置することにより、1セットの捕捉工程と再生工程で回収できるガスの量を増加することが可能である。
100、107、115:CO2吸収塔,101、108、116:CO2捕捉剤A,102、109、117:CO2捕捉剤B,110、118:CO2捕捉剤C,125、130:CO2捕捉剤,103、111、119:CO2含有ガスライン,104、112、120:CO2除去ガスライン,105、113、121:再生ガスライン,106、114、122:CO2回収ライン,123:仕切り板

Claims (6)

  1.  二酸化炭素捕捉剤を有する二酸化炭素吸収塔に二酸化炭素含有ガスを流通させて二酸化炭素を捕捉させた後、前記二酸化炭素吸収塔に二酸化炭素以外のガスである再生ガスを流通させることにより二酸化炭素捕捉剤から二酸化炭素を脱離させて二酸化炭素を回収する二酸化炭素回収システムにおいて、
     前記二酸化炭素捕捉剤として、二酸化炭素捕捉量の温度依存性または二酸化炭素捕捉量の二酸化炭素分圧依存性の少なくとも一つが異なる複数種類の二酸化炭素捕捉剤を、前記二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側に沿って設置したことを特徴とする二酸化炭素回収システム。
  2.  請求項1に記載の二酸化炭素回収システムにおいて、
     前記二酸化炭素含有ガスと同一の二酸化炭素分圧下で複数種類の前記二酸化炭素捕捉剤の二酸化炭素脱離量が最大となる脱離ピーク温度を測定し、
     複数種類の前記二酸化炭素捕捉剤を前記脱離ピーク温度が低い順に従って、前記二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側へ設置したことを特徴とする二酸化炭素回収システム。
  3.  請求項1又は2に記載の二酸化炭素回収システムにおいて、
     前記二酸化炭素吸収塔内に設置する複数種類の二前記酸化炭素捕捉剤のうち、二酸化炭素含有ガス流通方向の最上流側には、前記二酸化炭素含有ガスと同一の二酸化炭素分圧において、前記再生ガスと同一温度における二酸化炭素捕捉量Aと前記二酸化炭素含有ガスと同一温度における二酸化炭素捕捉量Bの差である実効ローディング量(A-B)が最も大きい二酸化炭素捕捉剤を設置し、
     二酸化炭素含有ガス流通方向の最下流側には、前記二酸化炭素含有ガスと同一の二酸化炭素分圧下でかつ二酸化炭素捕捉剤温度が100℃における二酸化炭素捕捉量Cと、二酸化炭素分圧50kPa下でかつ二酸化炭素捕捉剤温度が再生ガスと同一温度における二酸化炭素捕捉量Dとの差である実効ローディング量(C-D)が最も大きい二酸化炭素捕捉剤を設置し、
     他の二酸化炭素捕捉剤は前記実効ローディング量(C-D)が大きい順に二酸化炭素含有ガス流通方向の下流側から上流側へ設置したことを特徴とする二酸化炭素回収システム。
  4.  請求項1乃至3のいずれかに記載の二酸化炭素回収システムにおいて、
     前記二酸化炭素含有ガス流通方向の上流側に設置する二酸化炭素捕捉剤は、ゼオライト、高比表面積カーボン、シリカ、MOF(Molecular Organic Framework)、ZIF(Zeolitic Imidasolate Framework)及び層間化合物の少なくとも一つから選択し、
     前記二酸化炭素含有ガス流通方向の下流側に設置する二酸化炭素捕捉剤は、アルカリ金属酸化物、アルカリ土類金属酸化物、ランタノイド酸化物、マンガン酸化物、アルミナ、チタニア、ジルコニア、イットリア、及びこれらの複合酸化物の少なくとも一つから選択したことを特徴とする二酸化炭素回収システム。
  5.  二酸化炭素捕捉剤を有する二酸化炭素吸収塔に二酸化炭素含有ガスを流通させることにより二酸化炭素を捕捉させた後、前記二酸化炭素吸収塔に二酸化炭素以外のガスである再生ガスを流通させて二酸化炭素捕捉剤から二酸化炭素を脱離させて二酸化炭素を回収する二酸化炭素回収システムにおいて、
     前記二酸化炭素捕捉剤として、二酸化炭素捕捉量の温度依存性または二酸化炭素捕捉量の二酸化炭素分圧依存性の少なくとも一つが異なる複数種類の二酸化炭素捕捉剤を、前記二酸化炭素吸収塔の二酸化炭素含有ガス流通方向の上流側から下流側に沿って設置するとともに、
     前記二酸化炭素捕捉剤から二酸化炭素を回収する再生工程における再生ガスを流入する再生ガス流入ライン及び脱離した二酸化炭素を回収する二酸化炭素回収ラインを、前記二酸化炭素吸収塔内で、前記捕捉工程における二酸化炭素含有ガスの流通方向と交差する方向に設置したことを特徴とする二酸化炭素回収システム。
  6.  請求項5に記載の二酸化炭素回収システムにおいて、
     再生工程の際に、複数の前記二酸化炭素捕捉剤の間に各再生ガスラインから流入する再生ガスを他の再生ガスラインから流入する再生ガスと分離する仕切り板を移動自在に設置したことを特徴とする二酸化炭素回収システム。
PCT/JP2013/053184 2012-03-26 2013-02-12 二酸化炭素回収システム WO2013145899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13767708.4A EP2832419A4 (en) 2012-03-26 2013-02-12 CARBON DIOXIDE RECOVERY SYSTEM
US14/379,424 US20150298044A1 (en) 2012-03-26 2013-02-12 Carbon Dioxide Capture and Separation System
CA2863174A CA2863174A1 (en) 2012-03-26 2013-02-12 Carbon dioxide capture and separation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-068608 2012-03-26
JP2012068608A JP2013198868A (ja) 2012-03-26 2012-03-26 二酸化炭素回収システム

Publications (1)

Publication Number Publication Date
WO2013145899A1 true WO2013145899A1 (ja) 2013-10-03

Family

ID=49259182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053184 WO2013145899A1 (ja) 2012-03-26 2013-02-12 二酸化炭素回収システム

Country Status (5)

Country Link
US (1) US20150298044A1 (ja)
EP (1) EP2832419A4 (ja)
JP (1) JP2013198868A (ja)
CA (1) CA2863174A1 (ja)
WO (1) WO2013145899A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107695B2 (ja) * 2014-02-10 2017-04-05 日立化成株式会社 二酸化炭素回収装置及び二酸化炭素回収方法
WO2017053062A1 (en) * 2015-09-25 2017-03-30 Exxonmobil Research And Engineering Company Two stage adsorbent and process cycle for fluid separations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627416A (ja) * 1985-07-04 1987-01-14 Ngk Insulators Ltd 吸着塔
JPH0691127A (ja) 1992-09-14 1994-04-05 Matsushita Electric Works Ltd 吸着分離装置
JPH10113529A (ja) * 1996-09-30 1998-05-06 Boc Group Inc:The ガス混合物の第1の成分をガス混合物の第2の成分から分離するための循環法
JP2002293754A (ja) * 2001-03-30 2002-10-09 Syst Enji Service Kk アルコ−ル類含有廃棄ガスからアルコ−ル類を単離して回収する方法及び該方法を実施するための装置
JP2004000975A (ja) * 2002-05-31 2004-01-08 Air Products & Chemicals Inc 原料気体流からの水及び二酸化炭素除去方法
JP2009220101A (ja) 2008-02-18 2009-10-01 Ngk Insulators Ltd ガス吸着材料、二酸化炭素の製造方法及び二酸化炭素の回収方法
WO2009126607A2 (en) * 2008-04-06 2009-10-15 Innosepra Llc Carbon dioxide recovery
JP2010184229A (ja) * 2009-01-19 2010-08-26 Hitachi Ltd 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110569A (en) * 1990-01-19 1992-05-05 The Boc Group, Inc. Low temperature purification of gases
GB9424191D0 (en) * 1994-11-30 1995-01-18 Boc Group Plc Purification apparatus
US5769928A (en) * 1996-12-12 1998-06-23 Praxair Technology, Inc. PSA gas purifier and purification process
FR2775198B1 (fr) * 1998-02-26 2000-04-14 Air Liquide Procede et dispositif de purification de gaz par adsorption a lits horizontaux fixes
FR2799987B1 (fr) * 1999-10-25 2002-04-26 Air Liquide Procede d'epuration d'un gaz par adsorption de deux impuretes et dispositif correspondant
US6723155B2 (en) * 2002-04-29 2004-04-20 Air Products And Chemicals, Inc. Purification of gas streams
DE102006008194A1 (de) * 2006-02-22 2007-08-23 Linde Ag Druckwechseladsorptionsverfahren und -vorrichtung
PT103615B (pt) * 2006-12-14 2010-08-31 Univ Do Porto Coluna de separação e processo de adsorção com modulação de pressão para purificação de gases
US7713333B2 (en) * 2006-12-20 2010-05-11 Praxair Technology, Inc. Adsorbents for pressure swing adsorption systems and methods of use therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627416A (ja) * 1985-07-04 1987-01-14 Ngk Insulators Ltd 吸着塔
JPH0691127A (ja) 1992-09-14 1994-04-05 Matsushita Electric Works Ltd 吸着分離装置
JPH10113529A (ja) * 1996-09-30 1998-05-06 Boc Group Inc:The ガス混合物の第1の成分をガス混合物の第2の成分から分離するための循環法
JP2002293754A (ja) * 2001-03-30 2002-10-09 Syst Enji Service Kk アルコ−ル類含有廃棄ガスからアルコ−ル類を単離して回収する方法及び該方法を実施するための装置
JP2004000975A (ja) * 2002-05-31 2004-01-08 Air Products & Chemicals Inc 原料気体流からの水及び二酸化炭素除去方法
JP2009220101A (ja) 2008-02-18 2009-10-01 Ngk Insulators Ltd ガス吸着材料、二酸化炭素の製造方法及び二酸化炭素の回収方法
WO2009126607A2 (en) * 2008-04-06 2009-10-15 Innosepra Llc Carbon dioxide recovery
JP2010184229A (ja) * 2009-01-19 2010-08-26 Hitachi Ltd 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832419A4

Also Published As

Publication number Publication date
US20150298044A1 (en) 2015-10-22
JP2013198868A (ja) 2013-10-03
EP2832419A1 (en) 2015-02-04
CA2863174A1 (en) 2013-10-03
EP2832419A4 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6575050B2 (ja) 二酸化炭素の回収方法及び回収装置
JP5912146B2 (ja) 空気の精製
CA2785323C (en) Co2 sorbent
CA2922664C (en) Carbon dioxide recovery apparatus, and carbon dioxide recovery method
JP2010184229A (ja) 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置
JP2006298707A (ja) 二酸化炭素の分離回収方法および二酸化炭素の分離回収装置
JP2012000538A5 (ja)
WO2011068007A1 (ja) 二酸化炭素分離回収装置
CN105032113B (zh) 基于湿法再生技术捕集烟气中二氧化碳的方法
JP2010042381A (ja) キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置
RU2583012C1 (ru) Очистка воздуха
WO2017053062A1 (en) Two stage adsorbent and process cycle for fluid separations
US20220233996A1 (en) Bed regeneration using low value steam
JP6671204B2 (ja) ガス分離装置
WO2013145899A1 (ja) 二酸化炭素回収システム
WO2019073866A1 (ja) Co2分離回収方法及びco2分離回収設備
JP6642590B2 (ja) 二酸化炭素分離回収装置、これを用いた燃焼システム及び火力発電システム並びに二酸化炭素の分離回収方法
JP2014181162A (ja) 二酸化炭素回収装置
KR101951047B1 (ko) 화학적 흡수제를 이용한 이산화탄소의 흡수 및 탈거 장치
Masuda et al. CO2 capture from a simulated dry exhaust gas by internally heated and cooled temperature swing adsorption
JP7498106B2 (ja) Co2の吸着及び捕捉のためのv型吸着剤及びガス濃縮の使用
JP5579630B2 (ja) 二酸化炭素回収システム
JP5829168B2 (ja) 二酸化炭素回収システム及びこれを用いた二酸化炭素回収方法
KR20220085903A (ko) 판형 열교환기를 이용한 건식 이산화탄소 포집장치 및 이를 이용한 건식 이산화탄소 포집공정
RU2574439C2 (ru) Очистка воздуха

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2863174

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013767708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14379424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE