WO2011067983A1 - 脂肪細胞シート、その三次元構造体、及びそれらの製造方法 - Google Patents

脂肪細胞シート、その三次元構造体、及びそれらの製造方法 Download PDF

Info

Publication number
WO2011067983A1
WO2011067983A1 PCT/JP2010/067785 JP2010067785W WO2011067983A1 WO 2011067983 A1 WO2011067983 A1 WO 2011067983A1 JP 2010067785 W JP2010067785 W JP 2010067785W WO 2011067983 A1 WO2011067983 A1 WO 2011067983A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
sheet
cells
group
heart disease
Prior art date
Application number
PCT/JP2010/067785
Other languages
English (en)
French (fr)
Inventor
悠基子 今西
芳樹 澤
下村 伊一郎
法一 前田
繁 宮川
秀昭 坂井
Original Assignee
株式会社セルシード
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セルシード, 国立大学法人大阪大学 filed Critical 株式会社セルシード
Priority to JP2011544214A priority Critical patent/JP5661048B2/ja
Priority to EP10834436.7A priority patent/EP2510956B1/en
Priority to US13/513,489 priority patent/US20120308533A1/en
Publication of WO2011067983A1 publication Critical patent/WO2011067983A1/ja
Priority to US15/291,408 priority patent/US20170035939A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3695Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the function or physical properties of the final product, where no specific conditions are defined to achieve this
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3886Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
    • A61L27/3891Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types as distinct cell layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2539/00Supports and/or coatings for cell culture characterised by properties
    • C12N2539/10Coating allowing for selective detachment of cells, e.g. thermoreactive coating

Definitions

  • the present invention relates to an adipocyte sheet applicable to the heart and a three-dimensional structure thereof, and in particular, useful in the fields of medicine, biology, drug discovery, pharmacy and the like applicable to the heart, including adult adipocytes.
  • the present invention relates to a cell sheet, a manufacturing method and a method for using the same.
  • Non-Patent Document 1 Myocardial infarction is an irreversible injury.
  • Ischemic heart disease is responsible for 50% of all cardiovascular deaths and is a leading cause of congestive heart failure.
  • the one-year mortality rate is 20% as a result of chronic heart disease (Non-patent Document 2).
  • Many of the treatments currently available to clinicians can significantly improve the prognosis of patients with acute myocardial infarction.
  • Angioplasty and thrombolytic agents can eliminate the cause of this acute myocardial infarction, but the time from the onset of onset to reperfusion determines the degree of irreversible myocardial damage (Non-Patent Document 3). None of the drugs or treatments used clinically have shown efficacy in replacing myocardial scars with functional contractile tissue. There is a need for new therapies to regenerate normal cardiomyocytes.
  • Non-Patent Document 4 left ventricular
  • Non-Patent Document 5 bioengineered heart graft transplantation using biodegradable scaffolds has been proposed as another novel strategy, which is minimal in improving cardiac function because it hardly adheres to the myocardium.
  • Non-Patent Documents 6 and 7 It may be important that bioengineered heart tissue can show histological electrical integration with the recipient heart for regeneration of the impaired myocardium.
  • Non-Patent Documents 8 and 9 Arterial graft rejection pathologically results in either graft expansion (leading to rupture) or occlusion. In the former case, it is caused by degradation of the extracellular matrix, while the latter is caused by proliferation of intravascular cells (Non-patent Document 10).
  • Adiponectin has recently been attracting attention for its potential to protect post-injury myocardium through anti-apoptosis, anti-inflammation, angiogenesis, anti-fibrosis, and anti-myocardial hypertrophy, and to prevent deterioration of cardiac function (non- Patent Documents 11 and 12,).
  • adiponectin must be continuously administered over a long period of time. Repeated injection into myocardial tissue is invasive and difficult in practice.
  • systemic administration requires an enormous amount of protein, and when protein is administered into blood, it is susceptible to degradation, and the amount that reaches the target tissue is small, which is not realistic ( Non-patent document 13).
  • a method of increasing the blood adiponectin concentration by limiting the amount of drug such as thiazolidine or calories is not always easy for heart failure patients.
  • One of the countermeasures in this case is a drug delivery system (DDS) as a conventional technique.
  • DDS drug delivery system
  • a protein that maintains its activity is gradually added at an appropriate concentration over a long period of time due to initial burst and protein stability. It is difficult to release.
  • Patent Document 1 discloses that upper limit critical lysis of cells is carried out on a cell culture support whose surface is coated with a polymer having an upper or lower critical lysis temperature of 0 to 80 ° C. in water.
  • a novel cell culturing method is described in which culture is performed at a temperature lower than or below the lower critical lysis temperature and then exfoliated without an enzyme treatment by setting the temperature to the upper critical lysis temperature or higher or the lower critical lysis temperature or lower.
  • Patent Document 2 discloses that the temperature-responsive cell culture substrate is used to culture cardiomyocytes at or below the upper critical lysis temperature or above the lower critical lysis temperature and then at or above the upper critical lysis temperature or below the lower critical lysis temperature. To detach cultured cardiomyocytes with low damage.
  • Patent Document 3 it has been found that by further developing the technology and using myoblasts other than heart tissue as a cell sheet, cardiac function, which was difficult with the prior art, can be improved over a long period of time. Furthermore, in Patent Document 4, it has also been found that cardiac function can be improved by using mesenchymal stem cells as a cell sheet. If the functions of these cell sheets are improved, further therapeutic effects can be expected, and further development has been desired.
  • An object of the present invention is to provide an artificial tissue or sheet that can be used in actual surgery and can be produced by culture, which can withstand transplantation surgery.
  • Another object of the present invention is to provide a new therapeutic method that replaces cell therapy.
  • an object is to produce an artificial tissue that can withstand transplantation surgery using fat cells as a material.
  • the obtained adipocytes are seeded on a temperature-responsive culture device and collected in a sheet form without enzyme treatment, so that the adipocyte survival rate is maintained and transplanted to the affected area with low invasiveness and high efficiency. It came to be able to. As a result, fat cells were engrafted in the affected area, and local and continuous supply of adiponectin over a long period of time became possible.
  • the present inventors have conducted research and development by adding studies from various angles.
  • a cell sheet containing adipocytes and its three-dimensional structure we found an artificial tissue having the property that the organization of the transplanted part unexpectedly progressed and easily peeled from the culture dish. .
  • the present invention is based on such knowledge.
  • the present invention provides a cell sheet containing at least fat cells and a three-dimensional structure thereof for application to heart disease.
  • the present invention also provides a method for producing this cell sheet and its three-dimensional structure on the surface of a substrate coated with a temperature-responsive polymer.
  • the present invention is considered to be a very important invention that can be realized for the first time by using a cell structure based on a novel concept unprecedented in the world, which is a cell sheet containing at least adipocytes for application to heart diseases.
  • Item 1 A transplant material for treating heart disease, comprising a cell sheet containing fat cells.
  • Item 2. Item 2.
  • Item 3. Item 3.
  • Item 4. Item 4.
  • Transplant material Item 5.
  • Item 5. The transplant material for heart disease treatment according to any one of Items 1 to 4, wherein the cells are those obtained by inducing differentiation of adipose tissue-derived fibroblasts.
  • Item 6. Item 6.
  • Item 7. Item 7.
  • Item 8. The transplant material for heart disease treatment according to any one of Items 1 to 7, wherein at least one layer of the cell sheets contains 50% or more of fat cells.
  • Item 9. The transplant material for heart disease treatment according to any one of Items 1 to 7, wherein at least one layer of the cell sheets contains 60% or more of fat cells.
  • Item 10. The transplant material for heart disease treatment according to any one of Items 1 to 7, wherein at least one layer of the cell sheets contains 70% or more of fat cells.
  • Item 11. Item 8. The transplant material for treating heart disease according to any one of Items 1 to 7, wherein at least one layer of the cell sheet contains 80% or more of fat cells.
  • Item 12. Item 8.
  • Item 15. Item 15. The transplant material for treating heart disease according to Item 14, wherein the myoblast is a skeletal myoblast.
  • Item 16. Item 16.
  • Item 17. The transplant material for treating heart disease according to any one of Items 1 to 16, which does not contain a scaffold.
  • the heart disease is at least one disease selected from the group consisting of heart failure, ischemic heart disease, myocardial infarction, cardiomyopathy, myocarditis, hypertrophic cardiomyopathy, dilated phase hypertrophic cardiomyopathy and dilated cardiomyopathy or Item 20.
  • the transplant material for treating heart disease according to any one of Items 1 to 19, which is a disorder.
  • Item 22 A method for producing a transplant material for treating heart disease comprising a cell sheet containing fat cells, wherein no scaffold is used, and a) the upper or lower critical solution temperature in water is 0 to 80 ° C.
  • the cardiac function is remarkably compared with the case of using a cell sheet consisting only of myoblasts or mesenchymal stem cells as a conventional technique. It will be improved. In addition, the strength of the cell sheet itself is improved and the transplantation operation can be improved.
  • FIG. 1 shows the result of having conducted the histological examination of the fat cell sheet
  • FIG. 1 In Vitro A. Adipocytes after culture and differentiation induction. It was confirmed that the cells were differentiated into fat cells by oil red O staining. The spherical shape in the figure is an oil droplet. B. Adipocytes were collected in a sheet form using a temperature-responsive culture dish. C. Dyeed with AS Oil Red O. A number of positive cells were observed. The spherical shape in the figure is an oil droplet. D. AS adiponectin immunostaining. Adiponectin expression was observed. The light-colored part in the figure is adiponectin. (2) In VivoE. 28.
  • FIG. A Left ventricular end systolic cross section (LVESA). The AS transplantation showed a tendency to suppress left ventricular enlargement.
  • B Left ventricular end-diastolic cross-sectional area (LVEDA). The AS transplantation showed a tendency to suppress left ventricular enlargement.
  • C Left ventricular cross-sectional area change rate (FAC). Significant suppression of deterioration of left ventricular contractility was recognized by AS transplantation.
  • D Left ventricular maximum positive dP / dt (dP / dtmax).
  • FIG. A Hematoxylin and eosin stained macro image of group C.
  • B Macro image of group A hematoxylin and eosin staining. A reduction in the infarct range was observed compared to Group C.
  • C Infarction rate in group C and group A (distance ratio of infarct to the entire left ventricle). Significant reduction of the infarct area was observed by AS transplantation.
  • D Infarction of group C-TUNEL stained image in the normal region.
  • E TUNEL-stained image in the infarct-normal boundary region of group A.
  • FIG. 3 is a view showing the results of examination on the anti-inflammatory effect by transplantation of the adipocyte sheet of Example 1.
  • a decrease in CD11b-positive cells was observed compared to Group C.
  • the light-colored part in the figure is CD11b positive cells.
  • the number of CD11b positive cells in group C and group A was quantified. A significant decrease in the number of infiltrating macrophages was observed by AS transplantation.
  • Adipocytes after culture and differentiation induction It was confirmed that the cells differentiated into adipocytes.
  • B. Adipocytes were collected in a sheet form using a temperature-responsive culture dish. The diameter of the fat cell sheet was about 7 mm.
  • WT wild-type mouse-derived
  • Adipocyte sheet the light-colored portion in the figure is adiponectin
  • adiponectin was not observed in the wild type (WT) adipose precursor cell sheet (SVF cell sheet), adiponectin knockout mouse (KO) -derived adipocyte sheet and adipocyte precursor cell sheet.
  • WT wild type
  • E Adiponectin content in cell sheet culture supernatant. Adiponectin was detected in the culture supernatant of a wild-type mouse-derived adipocyte sheet (WT-AS). Adiponectin was not detected in the culture supernatant of the culture medium (medium), wild type mouse-derived adipose precursor cell sheet (WT-SVF cell sheet), and adiponectin knockout mouse-derived adipocyte sheet (KO-AS).
  • FIG. A Left ventricular end systolic diameter (LVDd).
  • W wild type mouse-derived adipocyte sheet transplant group
  • K adiponectin knockout mouse-derived adipocyte sheet transplant group
  • C the non-treated group
  • LPDs Left ventricular end-diastolic diameter
  • FIG. A shows the result of having examined about the influence which acts on the myocardial tissue in the 4th week after the fat cell sheet transplantation treatment with respect to the acute stage of myocardial infarction of Example 2.
  • FIG. A shows the result of having examined about the influence which acts on the myocardial tissue in the 4th week after the fat cell sheet transplantation treatment with respect to the acute stage of myocardial infarction of Example 2.
  • TTC 2,3,5-Triphenyltetrazolium chloride
  • FIG. A This is a result of transplanting a wild-type mouse-derived adipocyte sheet into the left ventricle of an adiponectin knockout mouse and immunostaining the tissue 1 hour later with adiponectin. The light-colored part in the figure is adiponectin.
  • the cell sheet was composed of adipocytes in which lipid droplets were accumulated in the cytoplasm in the same manner as in vitro, and the thickness was almost uniform and about 100 ⁇ m.
  • E. B serial sections were stained with hematoxylene / eosin. The cell sheet was thicker than about 1 hour after transplantation, and was about 600 ⁇ m. In addition to fat cells that accumulated oil droplets in the cytoplasm, connective tissue and granulation were mixed in the cell sheet.
  • F. C serial sections were stained with hematoxylene / eosin.
  • the cell sheet derived from the adiponectin knockout mouse is in the same form as the adipocyte sheet derived from the wild type mouse 4 weeks after transplantation.
  • the cell sheet has a thickness of about 600 ⁇ m. Were mixed. G. The influence with respect to the blood adiponectin density
  • Adipocyte sheets derived from wild-type mice and adiponectin knockout mice were transplanted into the entire left ventricular wall of adiponectin knockout mice, and after 4 weeks, the adiponectin content in plasma was measured.
  • K adiponectin knockout mouse-derived adipocyte sheet transplant group
  • W wild-type mouse-derived adipocyte sheet transplant group
  • Adiponectin is a cytokine secreted by adipose tissue and contributes to the control of lifestyle-related diseases, and has effects such as anti-apoptosis, anti-fibrosis, promotion of angiogenesis, suppression of myocardial hypertrophy, and promotion of cell proliferation.
  • Adiponectin is beneficial in cardiovascular diseases such as heart failure and arteriosclerosis. Also in adipocyte transplantation for left ventricular myocardial infarction, adiponectin is secreted locally at the site of injury, thereby reducing the degree of injury early and reducing the inflammatory reaction.
  • adipocytes engrafted in the affected area continue to secrete adiponectin, thereby suppressing functional remodeling by suppressing remodeling such as thinning of the left ventricular anterior wall and fibrosis of the infarcted area.
  • DDS was constructed using fat cells, which are materials derived from living bodies. According to the present invention, there is no concern about biocompatibility, and since the transplant material itself engrafts at the site of injury, it is expected that highly active adiponectin will be locally supplied over a long period of time.
  • tissue stem cells such as skeletal muscle myoblasts and bone marrow-derived mesenchymal stem cells, but adipocytes are easier to collect and less invasive than these. Therefore, it is possible to adjust to a wider range of patients.
  • the present invention is a cell sheet and a three-dimensional structure thereof including at least adipocytes isolated from a cell culture support for application to heart disease, and a cell sheet and a three-dimensional structure thereof including the adipocytes It was completed when the body was found to be extremely useful for treating heart failure after myocardial infarction.
  • the fat cells in the present invention refer to those differentiated as fat cells, and the type thereof is not limited at all, but the cells may be, for example, mature fat cells.
  • the origin of the adipocytes in the present invention is not limited in any way, but examples include adipose tissue, subcutaneous adipose tissue, epicardial adipose tissue, and the like.
  • the method for obtaining adipocytes from these tissues is not particularly limited, but a method for collecting adipocytes themselves from simple adipose tissues that are easy to collect, or adipocytes, adipose stem cells, fibroblasts obtained from adipose tissue Examples include a method of collecting cells and inducing differentiation according to a conventional method.
  • the method for separating adipocytes from the adipose tissue is not particularly limited, and examples thereof include a ceiling culture method and a method using fresh adipose tissue as it is.
  • the adipocytes in the present invention include, in addition to mesenchymal stem cells grown in an undifferentiated state, fibroblasts, stromal cells, adipocytes, vascular endothelial cells, and vascular endothelial precursors that have differentiated mesenchymal stem cells.
  • Other cells such as cells, smooth muscle cells, SP cells and cardiomyocytes, and stromal cells, fibroblasts, adipocytes, vascular endothelial cells, vascular endothelial progenitor cells, smooth cells mixed when collecting mesenchymal stem cells Cells such as muscle cells, SP cells and cardiomyocytes may be included.
  • the cell sheet of the present invention is preferable if it contains 50%, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more of fat cells.
  • the transplant material for heart disease treatment containing the cell sheet of the present invention is such that at least one layer of the cell sheet contains 50%, 60%, 70%, 80%, 90%, or 95% of fat cells. If there is, it is preferable.
  • the transplant material for heart disease treatment containing the cell sheet of the present invention comprises 50%, 60% or more, 70% or more, 80% or more, 90% or more of fat cells among cells contained in all cell sheets, or It is preferable that the content is 95% or more.
  • the transplant material for heart disease treatment containing the cell sheet of the present invention comprises all the cell sheets containing 50%, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more of fat cells. Is preferable.
  • myoblasts in addition to the adipocytes, myoblasts, mesenchymal stem cells, or both may be used in combination.
  • the type of myoblast and the origin of the tissue to be collected are not particularly limited.
  • skeletal myoblasts of skeletal muscle tissue are abundant in the living body and can be collected by a relatively easy operation. This is preferable.
  • the skeletal myoblasts have been shown to be transplantable to the heart in the prior art and can be used for actual medical treatment.
  • fibroblasts when the myoblasts are collected, in addition to mesenchymal stem cells that have been grown in an undifferentiated state, fibroblasts, stromal cells, adipocytes, vascular endothelial cells, vascular endothelial progenitor cells , And other cells such as smooth muscle cells, stromal cells, fibroblasts, adipocytes, vascular endothelial cells, vascular endothelial progenitor cells, smooth muscle cells, SP cells, and the like mixed when collecting mesenchymal stem cells Cells such as cardiomyocytes may be included.
  • the origin of the mesenchymal stem cells is not limited, but simple bone marrow or adipose tissue that can be easily collected is preferable.
  • the cell source is preferably a somatic stem cell having a self-growing property and capable of differentiating into cardiomyocytes and vascular endothelial cells, but is not particularly limited.
  • mesenchymal stem cells since mesenchymal stem cells have been shown to be transplantable into the heart in the prior art, they can be used for actual medical treatment. Furthermore, from the viewpoint of histocompatibility during transplantation and the risk of infection, the patient's autologous somatic stem cells are particularly desirable, but this is not particularly limited.
  • Mesenchymal stem cells are fibroblasts, stromal cells, adipocytes, vascular endothelial cells, vascular endothelial progenitor cells in which mesenchymal stem cells have differentiated in addition to mesenchymal stem cells that have proliferated in an undifferentiated state .
  • Other cells such as smooth muscle cells, SP cells and cardiomyocytes, stromal cells, fibroblasts, adipocytes, vascular endothelial cells, vascular endothelial progenitor cells, smooth muscle mixed when collecting mesenchymal stem cells Cells such as cells, SP cells and cardiomyocytes may be included.
  • the method of using these cells in combination is not particularly limited, but the method of co-culturing on the same culture surface, the method of culturing different types of cells through the culture surface of a porous membrane such as a cell insert Further, as will be described later, a method of laminating different types of cell sheets, a method combining these methods, and the like can be mentioned.
  • the present invention is also based on the finding that adiponectin produced by adipocytes exhibits an anti-apoptotic effect and a growth promoting effect on nearby cells.
  • the neighboring cells are considered to act not only on the cells of the injured tissue but also on other cells mixed in the fat cell sheet.
  • the present invention requires at least adipocytes, but other cells may be mixed in, for example, myoblasts and mesenchymal stem cells, and are not limited at all.
  • the medium used at that time may be a general medium in which adipocytes can be cultured, and is not particularly limited. Specifically, ⁇ -MEM, DMEM supplemented with 10-15% autologous serum or fetal bovine serum (FBS), 200 ⁇ M ascorbic acid, 0.5-2.0 ⁇ M insulin, and antibiotics in the medium, F-12 medium or a mixture thereof can be used. Growth factors such as fibroblast growth factor (bFGF) and adrenomedeurin may be added as necessary. Culturing can be performed under any conditions suitable for culturing mammalian cells. Generally, the culture is performed at 37 ° C. and 5% CO 2 for several days, and the medium is changed as necessary.
  • FBS fetal bovine serum
  • bFGF fibroblast growth factor
  • adrenomedeurin may be added as necessary. Culturing can be performed under any conditions suitable for culturing mammalian cells. Generally, the culture is performed at 37 ° C. and
  • the present invention intends to collect cells including the adipocytes thus cultured in a sheet form and use them for regeneration of myocardial tissue.
  • the method for collecting the cultured cells into a sheet is not particularly limited. For example, a method of culturing on a temperature-responsive cell culture device as described later, a method using a dilute aqueous protease solution, a special protease Examples include a method using an aqueous solution, a method using only an EDTA aqueous solution, and a method using a scraper or the like to physically peel.
  • the cell sheets thus obtained may be stacked and laminated to form a three-dimensional structure.
  • each cell sheet may be a mixture of myoblasts and mesenchymal stem cells, and each cell sheet is composed of myoblasts and mesenchymal stem cells and co-cultured with each other. It may be, and the state is not limited at all.
  • the degree of contraction of the cell sheet when the cell sheet is laminated is not particularly limited, and other lamination conditions are not limited at all.
  • the number of laminated layers is not particularly limited, but the number of laminations is preferably 10 times or less, preferably 8 times or less, more preferably 4 times or less.
  • scaffolds such as a gel made of one or more kinds such as collagen, fibrin, gelatin, and matrigel may be used, and the present invention is not limited in any way. However, these have various effects in vivo after transplantation and are preferably not used.
  • the thickness of the fat cell sheet peeled from the surface of the culture equipment and the three-dimensional structure thereof is 50 ⁇ m or more.
  • the thickness of the fat cell sheet and its three-dimensional structure is preferably 50 ⁇ m or more, preferably 70 ⁇ m or more, more preferably 80 ⁇ m or more, and most preferably 100 ⁇ m or more.
  • the thickness of the fat cell sheet and its three-dimensional structure is 50 ⁇ m or less, the handling of the cell sheet is deteriorated, which is not preferable as the present invention.
  • the adiponectin secretion ability from the fat cell sheet of the present invention and its three-dimensional structure needs to be 3 ⁇ 10 ⁇ 14 g / cell or more per day.
  • the adiponectin secretion ability in the present invention is preferably 9 ⁇ 10 ⁇ 14 g / cell or more per day, preferably 1.2 ⁇ 10 ⁇ 13 g / cell or more, more preferably 1.6 ⁇ 10 ⁇ 13 g / cell. cell or higher, and most preferably 2 ⁇ 10 ⁇ 13 g / cell or higher.
  • the transplanted cell sheet is not preferable because the function of regenerating myocardial tissue is not sufficient.
  • Examples of the cells used in the present invention include cells directly collected from living tissues, cells directly collected and differentiated in a culture system, or cell lines, but the type is not limited at all.
  • the origin of these cells is not particularly limited, and examples thereof include humans, rats, mice, guinea pigs, marmosets, rabbits, dogs, cats, sheep, pigs, chimpanzees, and immunodeficient animals thereof.
  • the cell sheet of the present invention and the three-dimensional structure thereof are used for human therapy, it is desirable to use cells derived from humans, pigs, and chimpanzees.
  • the medium for cell culture in the present invention is not particularly limited as long as it is a commonly used medium for cells to be cultured.
  • the number of cells to be seeded at the time of culturing varies depending on the animal species of the cells to be used, but is generally 3000-20000 cells / cm 2 , preferably 5000-15000 cells / cm 2 , more preferably 6000- 10,000 pieces / cm 2 is preferable.
  • the seeding concentration is 3000 cells / cm 2 or more, the frequency of adipocyte differentiation is low, and the degree of adiponectin secretion in the obtained cell sheet deteriorates, which is not preferable in the practice of the present invention.
  • the culture period from seeding to differentiation induction varies depending on the animal species of the cells used, it is generally 5 to 10 days, preferably 7 to 8 days.
  • the medium used at that time is not particularly limited and may be a general medium in which mature adipocytes can be cultured. Specifically, 10-15% autologous serum or fetal bovine serum (FBS), 0.5-2.0 ⁇ M insulin, 0.1-1.0 ⁇ M dexamethasone, 0.2-2 mM isobutylmerxanthin Supplemented ⁇ -MEM, DMEM, F-12 medium, or a mixture thereof can be used.
  • the differentiation induction time is generally 36 to 60 hours, preferably 45 to 51 hours. If it is shorter than this, the frequency of adipocyte differentiation is low, and if it is longer, dead cells appear, which is not preferable in the practice of the present invention.
  • the culture period from differentiation induction to transplantation is generally 5 to 14 days, preferably 7 to 10 days. If the length is shorter than this, the degree of maturation of adipocytes is low and the amount of adiponectin secretion is small, which is not preferable in the practice of the present invention.
  • the cell sheet thus obtained and its three-dimensional structure show a good anti-inflammatory effect, fibrosis-suppressing effect, angiogenesis effect, and atoposis suppression, and are convenient for regeneration of myocardial tissue.
  • the cell sheet obtained by the present invention and its three-dimensional structure also express hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF), which are useful for regeneration of myocardial tissue.
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • the above-described cell sheet and its three-dimensional structure can be easily obtained by culturing on a cell culture support having a surface coated with a polymer whose hydration power changes in a temperature range of 0 to 80 ° C. That is, the cells are cultured in a temperature range where the hydrating power of the polymer is weak on a cell culture support having a surface coated with a polymer whose hydrating power changes in the temperature range of 0 to 80 ° C.
  • the temperature is preferably 37 ° C., which is a temperature for culturing cells.
  • the temperature-responsive polymer used in the present invention may be either a homopolymer or a copolymer.
  • Examples of such a polymer include polymers described in JP-A-2-21865. Specifically, for example, it can be obtained by homopolymerization or copolymerization of the following monomers.
  • Examples of the monomer that can be used include a (meth) acrylamide compound, an N- (or N, N-di) alkyl-substituted (meth) acrylamide derivative, or a vinyl ether derivative. Two or more of these can be used.
  • copolymerization with monomers other than the above monomers, grafting or copolymerization of polymers, or a mixture of polymers and copolymers may be used.
  • poly-Nn-propylacrylamide (a homopolymer) Lower critical solution temperature 21 ° C), poly-Nn-propylmethacrylamide (27 ° C), poly-N-isopropylacrylamide (32 ° C), poly-N-isopropylmethacrylamide (43 ° C), poly- N-cyclopropylacrylamide (at 45 ° C), poly-N-ethoxyethylacrylamide (at about 35 ° C), poly-N-ethoxyethylmethacrylamide (at about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (at the same) About 28 ° C.), poly-N-tetrahydrofurfuryl methacrylamide (about 35 ° C.), poly-N, N-ethylmethyl acetate Ruamid
  • Monomers for copolymerization used in the present invention include polyacrylamide, poly-N, N-diethylacrylamide, poly-N, N-dimethylacrylamide, polyethylene oxide, polyacrylic acid and salts thereof, polyhydroxyethyl methacrylate, Examples thereof include water-containing polymers such as polyhydroxyethyl acrylate, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose, carboxymethyl cellulose, and the like, but are not particularly limited.
  • the method for coating the surface of each of the above-described polymers used in the present invention is not particularly limited.
  • the substrate and the monomer or polymer may be irradiated with an electron beam (EB), ⁇ -rays, ultraviolet rays, It can be carried out by any of plasma treatment, corona treatment, organic polymerization reaction, or physical adsorption such as coating and kneading.
  • the coating amount of the temperature-responsive polymer on the culture substrate surface is preferably in the range of 1.1 to 2.3 ⁇ g / cm 2 , preferably 1.4 to 1.9 ⁇ g / cm 2 , and more preferably 1. 5 to 1.8 ⁇ g / cm 2 .
  • the coating amount is less than 1.1 ⁇ g / cm 2 , the cells on the polymer are difficult to peel off even when a stimulus is applied, and the working efficiency is remarkably deteriorated. Conversely, if it is 2.3 ⁇ g / cm 2 or more, it is difficult for cells to adhere to the region, and it becomes difficult to sufficiently attach the cells. In such a case, if the cell-adhesive protein is further coated on the temperature-responsive polymer coating layer, the temperature-responsive polymer coating amount on the substrate surface may be 2.3 ⁇ g / cm 2 or more.
  • the coverage of the temperature responsive polymer good 9.0 ⁇ g / cm 2 or less, preferably well 8.0 ⁇ g / cm 2 or less, expediently 7.0 ⁇ g / cm 2 or less.
  • the coating amount of the temperature-responsive polymer is 9.0 ⁇ g / cm 2 or more, even if the cell-responsive protein is further coated on the temperature-responsive polymer coating layer, it is not preferable because cells hardly adhere.
  • the kind of such cell adhesion protein is not limited at all, for example, collagen, laminin, laminin 5, fibronectin, Matrigel, etc. alone or a mixture of two or more thereof can be mentioned.
  • the cell adhesion protein coating method may be in accordance with a conventional method.
  • an aqueous solution of the cell adhesion protein is applied to the substrate surface, and then the aqueous solution is removed and rinsed.
  • the present invention is a technique for using a cell sheet itself as much as possible using a temperature-responsive culture dish. Therefore, it is not preferable that the coating amount of the cell adhesive protein on the temperature-responsive polymer layer becomes extremely large. Measurement of the coating amount of the temperature-responsive polymer and the coating amount of the cell adhesion protein may be carried out in accordance with a conventional method.
  • the method of directly measuring the cell attachment part using FT-IR-ATR the same as the pre-labeled polymer
  • a method of inferring from the amount of labeled polymer immobilized by a method and immobilized on the cell attachment portion may be used, and any method may be used.
  • the temperature of the cultured substrate to which the cultured cells are attached is equal to or higher than the upper critical solution temperature of the coating polymer on the culture substrate, or It can be made to peel by making it below the lower critical solution temperature. In that case, it can be performed in a culture solution or in another isotonic solution, and can be selected according to the purpose.
  • the culture conditions other than the temperature may be in accordance with conventional methods and are not particularly limited.
  • the medium to be used may be a medium to which serum such as known fetal calf serum (FCS) is added, or a serum-free medium to which such serum is not added.
  • FCS fetal calf serum
  • ascorbic acid or a derivative thereof may be added to the medium for the purpose of allowing the cells to sufficiently produce an extracellular matrix during cell culture.
  • poly (N-isopropylacrylamide) is known as a polymer having a lower critical solution temperature at 31 ° C. In the free state, dehydration occurs in water at a temperature of 31 ° C. or more, and polymer chains aggregate and become cloudy. Conversely, at a temperature of 31 ° C. or lower, the polymer chain is hydrated and dissolved in water. In the present invention, this polymer is coated and fixed on the surface of a substrate such as a petri dish. Therefore, if the temperature is 31 ° C. or higher, the polymer on the substrate surface is similarly dehydrated.
  • the substrate surface is hydrophobic. Become. Conversely, at a temperature of 31 ° C. or lower, the polymer on the substrate surface is hydrated, but the polymer chain is coated and fixed on the substrate surface, so that the substrate surface becomes hydrophilic. At this time, the hydrophobic surface is an appropriate surface on which cells can attach and proliferate, and the hydrophilic surface becomes a surface on which cells cannot attach, and the cells or cell sheet in culture are peeled off only by cooling. Will be allowed to.
  • substances that can generally be given a form such as compounds usually used for cell culture, modified glass, polystyrene, polymethyl methacrylate, polyethylene terephthalate, polycarbonate, etc., for example, All polymer compounds and ceramics other than the above can be used.
  • the shape of the culture substrate in the present invention is not particularly limited, but for example, a dish, a multiplate, a flask, a cell insert, a bead, a fiber-like shape, a flat membrane, a porous membrane, etc. There is no particular limitation.
  • the cell sheet and its three-dimensional structure in the present invention are not damaged by proteolytic enzymes represented by dispase, trypsin and the like during culture. Therefore, the cell sheet and its three-dimensional structure peeled from the base material have an adhesive protein, and when the cell sheet and its three-dimensional structure are peeled into a sheet shape, a cell-cell desmosome structure is formed. It will be held to some extent. As a result, it is possible to adhere well to the affected tissue at the time of transplantation, and it is possible to carry out efficient transplantation.
  • dispases which are proteolytic enzymes, are known to be capable of being detached with 10-40% of the cell-cell desmosome structure retained, but the cell-substrate base membrane-like protein, etc.
  • the resulting cell sheet is weak in strength.
  • the cell sheet and the three-dimensional structure thereof according to the present invention are in a state where 60% or more of the desmosome structure and the basement membrane-like protein remain, and can obtain various effects as described above. Is.
  • the method for producing the three-dimensional structure in the present invention is not particularly limited.
  • the cultured cells are peeled off in a sheet form, and the cultured cell sheets are laminated with each other using a cultured cell moving jig as necessary. It is obtained by making it.
  • the temperature of the medium is not more than that temperature when the polymer coated on the surface of the culture substrate has an upper critical solution temperature, and particularly if it is more than that temperature if the polymer has a lower critical solution temperature.
  • the culture conditions other than the temperature may be in accordance with conventional methods and are not particularly limited.
  • the cell type of the cell sheet to be laminated is not particularly limited, but a lamination method in which the fat cell sheets are overlapped with each other, and a lamination method in which the fat cell sheet and the myoblast sheet are overlapped with each other. Further, a lamination method in which cell sheets in which adipocytes and myoblasts are co-cultured are laminated, or a lamination method in which these lamination methods are combined is exemplified.
  • the medium to be used may be a medium to which serum such as known fetal calf serum (FCS) is added, or may be a serum-free medium to which such serum is not added.
  • FCS fetal calf serum
  • the cultured cell transfer jig used is not particularly limited as long as it can capture the detached cell sheet, and examples thereof include porous films, films such as paper and rubber, plates, sponges, and the like.
  • a jig with a handle attached with a film such as a porous film, paper, rubber or the like, plates, sponges, etc. may be used.
  • a carrier may be used to bring the cell sheet peeled off from the temperature-responsive cell culture substrate and the three-dimensional structure thereof into close contact.
  • a polymer film, a structure molded from the polymer film, a metallic jig, or the like can be used.
  • specific examples of the material include polyvinylidene difluoride (PVDF), polypropylene, polyethylene, cellulose and derivatives thereof, papers, chitin, chitosan, collagen, urethane, gelatin. Etc.
  • PVDF polyvinylidene difluoride
  • the shape of the carrier is not particularly limited.
  • the cell sheet obtained by the present invention and its three-dimensional structure can be transplanted to a predetermined site in the living body.
  • the transplantation site may be anywhere in the myocardial tissue and is not particularly limited.
  • the omentum is particularly preferable in that the blood vessel is abundant and the transplantation action is easy.
  • the cell sheet transplanted to the body network and its three-dimensional structure may be transplanted to the myocardial tissue with the blood vessels connected.
  • the transplant site may or may not have been subjected to blood vessel guidance in advance, and is not particularly limited.
  • the method of performing blood vessel induction is not particularly limited.
  • FGF which is a blood vessel growth factor
  • a microsphere for example, FGF, which is a blood vessel growth factor, is embedded in a microsphere, and the composition, size, and injection range of the microsphere are changed, and the living body is in vivo.
  • a method of acting for 8 to 10 days cut a polyethylene terephthalate mesh into an arbitrary size, make a bag, put FGF dissolved in a high-concentration agarose solution inside the bag, and after 8 to 10 days And a method for producing a blood vessel-induced space by removing the bag.
  • the transplanted cell sheet and the three-dimensional structure can express a function in a human body for a long time. It becomes. And the expression level of a function is controllable by the magnitude
  • a cell sheet and its three-dimensional structure are, for example, from the group consisting of heart failure, ischemic heart disease, myocardial infarction, cardiomyopathy, myocarditis, hypertrophic cardiomyopathy, dilated phase hypertrophic cardiomyopathy and dilated cardiomyopathy Although it is used for the purpose of treating each disease associated with the selected disease or disorder, it is not particularly limited.
  • the cell sheet and its three-dimensional structure shown in the present invention are transplanted to an animal, it becomes an animal for evaluation of pharmaceutical products. And the expression level of a function is controllable by the magnitude
  • animals used herein include rats, mice, guinea pigs, marmosets, rabbits, dogs, pigs, chimpanzees, and immunodeficient animals thereof, but are not particularly limited.
  • Such a transplanted animal is used for the purpose of, for example, a cardiac function evaluation system in which a test substance is administered to this animal and the influence of the test substance on the cardiac function is determined, but is particularly limited. is not.
  • Subcutaneous adipose tissue was collected from both inguinal regions of 3-week-old male LEW / Sea rats.
  • Adipose tissue was minced with a scissors, suspended in a 0.1% type II collagenase solution, and shaken in a 37 ° C. bath for 1 hour. The mixture was filtered through a 250 ⁇ m mesh filter and centrifuged at 1800 rpm for 5 minutes. The precipitate was suspended in a culture medium (D-MEM containing 10% fetal bovine serum, 200 ⁇ M ascorbic acid, and antibiotics), filtered through a 25 ⁇ m mesh filter, and centrifuged at 1800 rpm for 5 minutes.
  • D-MEM containing 10% fetal bovine serum, 200 ⁇ M ascorbic acid, and antibiotics
  • the sediment was suspended in a culture medium, transferred to a culture dish, and cultured in a humid environment of 5% carbon dioxide at 37 degrees. Attached to the culture dish 24 hours after the start of the culture was used as a fat-derived fibroblast (SVF cell).
  • SVF cell fat-derived fibroblast
  • adipocyte differentiation and adjustment of adipocyte sheet Three days after the start of the culture, the cells were made into a cell suspension by trypsin treatment and seeded at a density of 7000 cells / cm 2 in a temperature-responsive culture dish having a diameter of 35 mm. Ten days after the start of the culture, a differentiation-inducing medium (10% fetal bovine serum, 200 ⁇ M ascorbic acid, 0.87 ⁇ M insulin, 0.25 ⁇ M dexamethasone, 500 ⁇ M isobutylmethyl) was added to the adipose-derived fibroblasts confluent on the temperature-responsive culture dish.
  • a differentiation-inducing medium (10% fetal bovine serum, 200 ⁇ M ascorbic acid, 0.87 ⁇ M insulin, 0.25 ⁇ M dexamethasone, 500 ⁇ M isobutylmethyl
  • Xanthine, 5 ⁇ M pioglitazone, and antibiotic-containing D-MEM were added for 48 hours to induce differentiation into adipocytes.
  • the cells were cultured in maintenance medium (10% fetal bovine serum, 200 ⁇ M ascorbic acid, 0.87 ⁇ M insulin, antibiotic-containing D-MEM). Oil droplets accumulated in the cytoplasm and differentiated into adipocytes confirmed. 19 to 25 days after the start of the culture, the temperature-responsive culture dish was cultured at 20 degrees. Within 40 minutes, the fat cells peeled off spontaneously and floated in the culture medium as a fat cell sheet.
  • Adiponectin secretion in adipocyte sheet A culture medium in which the adipocyte sheet was cultured for 24 hours was collected, and adiponectin in the culture solution was measured by an enzyme immunoassay (ELISA method).
  • the adipocyte sheet was gently washed with PBS, placed on a bend tweezers, slid to the infarcted area of the left ventricular anterior wall, and allowed to stand. The chest was closed 20 minutes after transplantation. The same treatment was performed on the untreated group without transplantation.
  • a left ventricular short-axis image of the papillary muscle level was obtained using a cardiac ultrasound system equipped with a 14 MHz transducer under monitoring of end systolic blood pressure and heart rate.
  • the left ventricular end-diastolic cross-sectional area (LVEDA) and end-systolic cross-sectional area (LVESA) were measured. The measurement was repeated 3 times or more, and the average value was obtained.
  • the left ventricular cross-sectional area change rate (FAC) was calculated from the following equation.
  • FAC (%) (LVEDA ⁇ LVESA) / LVEDA ⁇ 100
  • CDNA was synthesized from RNA by reverse transcription. Quantify the amount of tumor necrosis factor (TNF- ⁇ ) and monocyte chemotactic activity factor (MCP-1) transcripts by quantitative PCR, and divide by the transcriptional amount of lysaldehyde-3-phosphate dehydrogenase (GAPDH), an endogenous control The obtained value was expressed as a ratio with the normal value of each specimen.
  • TNF- ⁇ tumor necrosis factor
  • MCP-1 monocyte chemotactic activity factor
  • GPDH lysaldehyde-3-phosphate dehydrogenase
  • FIG. 1.A Adipocytes cultured in a temperature-responsive culture dish having a diameter of 35 mm were collected into a sheet of about 10 mm by incubating at 20 ° C. (FIG. 1.B). The number of cells constituting one sheet was about 2 ⁇ 10 6 .
  • the adipocyte sheet had a thickness of about 100 ⁇ m, contained many oil red O positive adipocytes, and adiponectin expression was observed in the cytoplasm (FIGS. 1.C and D).
  • Adiponectin secretion of 0.98 ⁇ 0.20 ⁇ g / ml was observed in the culture medium obtained by culturing the adipocyte sheet for 24 hours.
  • adiponectin was at a concentration below the detection limit in the culture broth of the cell culture medium itself or in the culture medium of adipose-derived fibroblast sheet that had not undergone differentiation induction treatment.
  • FIG. 2 shows the evaluation of cardiac function 28 days after sheet transplantation for acute myocardial infarction. Shown in AG. From cardiac ultrasonography, the values of LVEDA and LVESA in group A were smaller than those in group C, which suggests that left ventricular expansion was suppressed (FIGS. 2.A and B). FAC is significantly larger than that of Group C, and it is considered that deterioration of cardiac function is suppressed by sheet transplantation (FIG. 2.C).
  • the decrease in (dP / dtmin) and left ventricular isovolumetric relaxation time ( ⁇ ) suggested that adipocyte sheet transplantation had a therapeutic effect in the acute phase of myocardial infarction.
  • Subcutaneous adipose tissue was collected from both inguinal regions of 20-week-old male C57BL / 6J (wild-type mice) and adiponectin knockout gene-modified mice.
  • Adipose tissue was minced with a scissors, suspended in a 0.1% type II collagenase solution, and shaken in a 37 ° C. bath for 1 hour. The mixture was filtered through a 100 ⁇ m mesh filter and centrifuged at 1800 rpm for 5 minutes.
  • the sediment was suspended in culture medium (D-MEM containing 10% fetal bovine serum, 200 ⁇ M ascorbic acid, and antibiotics), filtered through a 70 ⁇ m mesh filter, and centrifuged at 1800 rpm for 5 minutes.
  • the sediment was suspended in a culture medium, transferred to a culture dish, and cultured in a humid environment of 5% carbon dioxide at 37 degrees. Attached to the culture dish 24 hours after the start of the culture was used as a fat-derived fibroblast (SVF cell).
  • culture medium D-MEM containing 10% fetal bovine serum, 200 ⁇ M ascorbic acid, and antibiotics
  • adipocyte differentiation and adjustment of adipocyte sheet Three days after the start of the culture, the cells were made into a cell suspension by trypsin treatment and seeded in a 24-well (15.5 mm diameter) temperature-responsive culture dish at a density of 7000 cells / cm 2 . Ten days after the start of the culture, a differentiation-inducing medium (10% fetal bovine serum, 200 ⁇ M ascorbic acid, 0.87 ⁇ M insulin, 0.25 ⁇ M dexamethasone, 500 ⁇ M isobutylmethyl) was added to the adipose-derived fibroblasts confluent on the temperature-responsive culture dish.
  • a differentiation-inducing medium (10% fetal bovine serum, 200 ⁇ M ascorbic acid, 0.87 ⁇ M insulin, 0.25 ⁇ M dexamethasone, 500 ⁇ M isobutylmethyl
  • Xanthine, 5 ⁇ M pioglitazone, and antibiotic-containing D-MEM were added for 48 hours to induce differentiation into adipocytes.
  • the cells were cultured in maintenance medium (10% fetal bovine serum, 200 ⁇ M ascorbic acid, 0.87 ⁇ M insulin, antibiotic-containing D-MEM). Oil droplets accumulated in the cytoplasm and differentiated into adipocytes confirmed. 19 to 25 days after the start of the culture, the temperature-responsive culture dish was cultured at 20 degrees. Within 40 minutes, the fat cells peeled off spontaneously and floated in the culture medium as a fat cell sheet.
  • Adiponectin secretion in adipocyte sheet A culture medium in which the adipocyte sheet was cultured for 24 hours was collected, and adiponectin in the culture solution was measured by an enzyme immunoassay (ELISA method).
  • mice Female C57BL / 6J (wild type mice) and adiponectin knockout gene modified mice were used.
  • a myocardial infarction model was prepared by left anterior descending coronary artery ligation. After general anesthesia under inhalation anesthesia of isoflurane (1.0% isoflurane, ventilation volume 1 ml, 100 cycles / min), left thoracotomy was performed to expose the heart. A site about 1 mm from the left coronary artery origin was ligated with 8-0 proline thread.
  • the adipocyte sheet was gently washed with PBS, placed on a pre-curved tweezers, slid to the infarcted region of the left ventricular anterior wall, and allowed to stand. The chest was closed 20 minutes after transplantation. The same treatment was performed on the untreated group without transplantation.
  • mice 15 minutes after coronary artery ligation
  • the rats were divided into two groups and treated as follows. Specifically, a group in which two wild type mouse-derived adipocyte sheets were transplanted to the left ventricular anterior wall (group W), a group in which two adiponectin knockout mouse-derived adipocyte sheets were transplanted to the left ventricular anterior wall (group K), and transplantation This is an untreated group (Group C) in which no treatment is performed. Two days after surgery, histological evaluation and molecular evaluation were performed. Cardiac ultrasonography and histological evaluation were performed 4 weeks after surgery.
  • a left ventricular short-axis image of the papillary muscle level was obtained using a cardiac ultrasound system equipped with a 14 MHz transducer.
  • Left ventricular end diastolic diameter (LVDd) and end systolic diameter (LVDs) were measured. The measurement was repeated 3 times or more, and the average value was obtained.
  • the myocardial cell diameter was measured by image analysis of the myocardial cell diameter of the PAS-stained image.
  • the infarct range was determined by image analysis of TTC stained images.
  • CD11b counted the number of positive cells per visual field. About the above quantitative evaluation, the average value of 5 visual fields per sample was computed, and the average value was calculated
  • TNF- ⁇ tumor necrosis factor
  • FIG. 6.A Adipocytes cultured in a temperature-responsive culture dish having a diameter of 15.5 mm were recovered in a sheet shape of about 7 mm by incubating at 20 ° C. (FIG. 6.B).
  • the fat cell sheet was mainly composed of fat cells in which oil droplets were accumulated in the cytoplasm, and had a thickness of about 100 ⁇ m (FIG. 6C).
  • the adipocyte sheet derived from wild-type mice showed adiponectin expression in the cytoplasm.
  • adiponectin was not observed in the wild-type mouse-derived adipose-derived fibroblast sheet, adiponectin knock-out mouse-derived adipocyte sheet, and adipose-derived fibroblast sheet that had not undergone differentiation induction treatment (FIG. 6.D).
  • Adiponectin secretion was observed in the culture medium in which the adipocyte sheet was cultured for 24 hours.
  • the concentration of adiponectin was below the detection limit in the culture broth of the cell culture solution itself, the wild-type mouse-derived adipose-derived fibroblast sheet or the adiponectin knock-out mouse-derived adipocyte sheet.
  • FIG. 7 shows the evaluation of cardiac function on the 28th day after sheet transplantation for acute myocardial infarction. Shown in A and B. From cardiac ultrasonography, the value of LVDs in the W group was significantly smaller than that in the C group, and it is considered that left ventricular expansion was suppressed. Although the LVDd and LVDs were in a decreasing trend in the K group compared with the C group, it was not a significant difference. Moreover, EF was significantly higher in the W group than the C group, and the K group was not significantly different from the C group. (FIG.
  • the adiponectin derived from a fat cell sheet is considered to be important in the mechanism in which the exacerbation of cardiac function is suppressed by transplantation of the fat cell sheet.
  • adipocyte sheet transplantation was performed using adiponectin knockout mice as recipients.
  • the wild-type mouse-derived adipocyte sheet engrafted in myocardial tissue and secreted adiponectin for one month after transplantation.
  • the expression of adiponectin was observed in the ECM of cardiomyocytes in contact with the adipocyte sheet, suggesting that the adiponectin derived from the adipocyte sheet permeates the nearby cardiomyocytes (FIG. 10.B).
  • FIG. 10.C Since an adiponectin positive immunostained image in such a nearby cardiomyocyte was not recognized in the adiponectin knockout mouse-derived adipocyte sheet, FIG. The possibility that the stained image of B is non-specific is excluded (FIG. 10.C). Furthermore, adiponectin derived from adipocyte sheet was detected from plasma one month after transplantation of adipocyte sheet. From the plasma of mice transplanted with adiponectin knockout mouse-derived adipocyte sheet, adiponectin was below the detection limit (FIG. 10.G).
  • the significantly reduced cardiac function can be improved.
  • a further therapeutic effect can be expected by using such a cell sheet and its three-dimensional structure.
  • transplantation of adipocyte sheet makes it possible to increase the blood adiponectin concentration, and a therapeutic effect on various diseases including lifestyle-related diseases can be expected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明は、心筋組織の機能を効率良く再生することができ、実際の移植手術にも使用可能な、培養によって生産され得る人工組織を提供することを課題とする。 本発明は、脂肪細胞を含有する細胞シートを含む、心筋疾患治療用移植材料に関する。

Description

脂肪細胞シート、その三次元構造体、及びそれらの製造方法
 本発明は、心臓に適用可能な脂肪細胞シート及びその三次元構造体に関し、詳細には、成体の脂肪細胞を含む、心臓に適用可能な、医学、生物、創薬、薬学等の分野において有用な細胞シート、製造方法及びその利用方法に関するものである。
 心筋梗塞は、不可逆的損傷である(非特許文献1)。虚血性心疾患は、すべての心血管系の死の50%の原因であり、鬱血性心不全の主要な原因である。鬱血性心不全と診断された患者に関して、慢性心疾患の結果、1年死亡率は、20%である(非特許文献2)。現在臨床医が利用可能な治療の多くは、急性心筋梗塞に罹患した患者の予後を有意に改善し得る。血管形成術および血栓崩壊剤は、この急性心筋梗塞の原因を除去し得るが、閉塞発症から再灌流までの時間が、不可逆的心筋損傷の程度を決定する(非特許文献3)。臨床的に使用されるどの薬剤も処置も、機能性収縮組織で心筋瘢痕を置換することにおいて、効力を示していない。正常な心筋細胞を再生するための新規な治療についての需要が存在する。
 心筋形成術が、鬱血性心不全に罹患した患者における左心室(LV)機能を改善するための外科的方法として提唱されているが、心機能に対する効果は、不明のままである(非特許文献4および5)。近年、生分解性足場を使用する生体操作した心臓移植片移植が、別の新規なストラテジーとして提唱されたが、これは、心筋層にほとんど付着しないのが原因で、心機能の改善において最小限の利点しか示していない(非特許文献6および7)。生体操作した心臓組織が、障害心筋層の再生についてレシピエント心臓と組織学的電気的統合を示し得ることが、要点であり得る。
 古くから、臓器(例えば、心臓、血管など)の移植において、同種異系移植片(または同種移植片、allograft)と異種移植片(xenograft)等の外来性組織を使用した場合、免疫拒絶反応が起こることが報告されている。(非特許文献8および9)。動脈移植片の拒絶反応は、病理学的には移植片の拡張(破裂に至る)または閉塞のいずれかを招く。前者の場合、細胞外マトリクスの分解により生じ、一方、後者は血管内細胞の増殖により起こる(非特許文献10)。
 最近、生体物質を利用した治療法として細胞移植が注目されている。しかし、梗塞心臓におけるヒト筋芽細胞移植は、1.移植細胞の傷害損失、2.レシピエント心の注入時の組織傷害、3.レシピエント心への組織供給効率、4.不整脈の発生、5.梗塞部位全体への治療の困難などの欠点を有する。従って、細胞の移植方法については更なる改善が必要不可欠である。
 アディポネクチンは抗アポトーシス、抗炎症、血管新生、抗線維化、抗心筋肥大作用によって傷害後の心筋を保護し、心機能の増悪を抑制する可能性があるということで最近、注目されている(非特許文献11および12、)。しかしながら、その効果を確認するには長期にわたりアディポネクチンを投与し続けなければならない。心筋組織へ繰り返し注入することは侵襲が大きく現実的には困難である。また、全身投与の場合、莫大なタンパク量が必要であること、血中にタンパクを投与した場合は分解を受けやすく、目的の組織に到達する量は僅かであることから、現実的ではない(非特許文献13)。また、thiazolidine等の薬剤やカロリー制限により血中アディポネクチン濃度を上昇させる方法は心不全患者に対して必ずしも容易ではない。こうした場合の対応策の一つとして、従来技術としてドラッグデリバリーシステム(DDS)が挙げられるが、既存のDDSでは、初期バーストやタンパク質の安定性により、活性を維持したタンパク質を適当濃度で長期にわたり徐放することが困難である。また、薬剤の担体によっては炎症を惹起する可能性があった。
 このような背景のもと、特許文献1には、水に対する上限若しくは下限臨界溶解温度が0~80℃であるポリマーで基材表面を被覆した細胞培養支持体上にて、細胞を上限臨界溶解温度以下または下限臨界溶解温度以上で培養し、その後上限臨界溶解温度以上または下限臨界溶解温度以下にすることにより酵素処理なくして培養細胞を剥離させる新規な細胞培養法が記載されている。また、特許文献2には、この温度応答性細胞培養基材を利用して心筋細胞を上限臨界溶解温度以下或いは下限臨界溶解温度以上で培養し、その後上限臨界溶解温度以上或いは下限臨界溶解温度以下にすることにより培養心筋細胞を低損傷で剥離させることが記載されている。温度応答性細胞培養基材を利用することにより、従来の培養技術に対しさまざまな新規な展開をはかれるようになってきた。特許文献3では、その技術をさらに発展させ、心臓組織以外の筋芽細胞を細胞シートとすることで、従来技術では困難であった心機能を長期にわたり改善させられることが分かってきた。さらに、特許文献4では、間葉系幹細胞を細胞シートとすることで、心機能を改善させられることも分かってきた。これらの細胞シートの機能が向上されれば、さらなる治療効果が期待でき、さらなる開発が望まれていた。
特開平02-211865号公報 再表2002-08387号公報 再表2005-011524号公報 再表2006-080434号公報
Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D., Circulation.1993;88: 107-115 American Heart Association., Dallas, Tex: American Heart Association; 2001 RyanTJ, Antman EM, Brooks NH, Califf RM, Hillis LD, HiratzkaLF, Rapaport E, RiegelB, Russell RO, Smith EE III, Weaver WD, Gibbons RJ, Alpert JS, Eagle KA,Gardner TJ, Garson A Jr, Gregoratos G, Ryan TJ, Smith SC Jr., J Am Coll Cardiol.1999; 34: 890-911 Corin WJ, George DT, Sink JD et al., J Thorac Cardiovasc Surg 1992;104:1662-71;Kratz JM, Johnson WS, Mukherjee R et al., J Thorac Cardiovasc Surg 1994;107:868-78;Carpentier A, Chachques JC., Lancet.1985;8840:1267 Hagege AA, Desnos M, Chachques JCら、Preliminary report: follow-up after dynamic cardiomyoplasty. Lancet.1990;335:1122-4 Leor J, Etzion SA, Dar A et al., Circulation 2000;102[suppl III]III-56-III-61 Li RK, Jia ZQ, Weisel RD et al., Circulation 1999;100[suppl II]:II-63-II-69 Carrel A.,1907, J Exp Med 9:226-8;Carrel A., 1912., J Exp Med 9:389-92;Calne RY., 1970,Transplant Proc 2:550 Auchincloss 1988, Transplantation 46: 1 Uretsky BF, Mulari S, Reddy S, et al., 1987, Circulation 76:827-34 Shibata, R., N.  Ouchi, and T. Murohara, Adiponectin and cardiovascular disease. Circ J, 2009. 73(4): p. 608-14. Eren P., Camus S., Matrone G., et al., Adiponectinemia controls pro-angiogenic cell therapy. 2009, Stem Cells 27(11): p. 2712-21 Hwang H., Kloner RA. Improving regenerationg potential of the heart after myocardial infarction: Factor-based approach. 2010, Life Sciences 86: p. 461-472
 本発明は、移植手術に耐え得る、実際の手術に使用可能な、培養によって生産され得る人工組織またはシートを提供することを課題とする。本発明はまた、細胞治療に代わる新たな治療法を提供することを課題とする。特に、脂肪細胞を材料として移植手術に耐え得る人工組織を作製することを目的とする。従来、脂肪細胞のような終末分化した培養細胞を利用しようとしても、それを回収する際に、一般的に用いられている酵素処理による方法では細胞生存率を維持することが困難であった。本発明では、得られた脂肪細胞を温度応答性培養器材上に播種し酵素処理なくシート状に回収することで、脂肪細胞の生存率を維持したまま、低侵襲かつ高効率に患部へ移植させられるようになった。これにより、患部に脂肪細胞が生着し、長期にわたるアディポネクチンの局所的かつ持続的供給が可能となった。
 本発明者らは、上記課題を解決するために、種々の角度から検討を加えて研究開発を行ってきた。その結果、脂肪細胞を含む細胞シート及びその三次元構造体を利用することで、予想外に移植部の組織化が進展し、かつ、培養皿から剥離し易いという性質をもつ人工組織を見出した。本発明はかかる知見に基づくものである。
 すなわち、本発明は、心臓疾患に適用するため少なくとも脂肪細胞を含む細胞シート及びその三次元構造体を提供するものである。また、本発明は、この細胞シート及びその三次元構造体を温度応答性ポリマーが被覆された基材表面で作製する方法を提供するものである。本発明は、心臓疾患に適用するため少なくとも脂肪細胞を含む細胞シートという世界に類のない新規な発想による細胞構造物を使ってはじめて実現する極めて重要な発明と考えている。
 すなわち、本発明は、以下の通りである。
項1.脂肪細胞を含有する細胞シートを含む、心臓疾患治療用移植材料。
項2.前記細胞シートの厚さが50μm以上である、項1記載の心臓疾患治療用移植材料。
項3.前記脂肪細胞シートのアディポネクチン分泌能が1日当たり3×10-14g/cell以上である、項1または2のいずれか1項記載の心臓疾患治療用移植材料。
項4.前記細胞シートが線維化抑制機能、血管新生機能、アトポーシス抑制機能、および抗炎症機能からなる群より選択される少なくとも1種の機能を有する、項1~3のいずれか1項記載の心臓疾患治療用移植材料。
項5.前記細胞が脂肪組織由来線維芽細胞を分化誘導したものである、項1~4のいずれか1項記載の心臓疾患治療用移植材料。
項6.細胞シートを三次元構造体の状態で含む、項1~5のいずれか1項に記載の心臓疾患治療用移植材料。
項7.複数層の細胞シートを積層した状態で含む、項1~6のいずれか1項に記載の心臓疾患治療用移植材料。
項8.前記細胞シートのうち少なくとも一層が脂肪細胞を50%以上含むものである、項1~7のいずれか1項に記載の心臓疾患治療用移植材料。
項9.前記細胞シートのうち少なくとも一層が脂肪細胞を60%以上含むものである、項1~7のいずれか1項に記載の心臓疾患治療用移植材料。
項10.前記細胞シートのうち少なくとも一層が脂肪細胞を70%以上含むものである、項1~7のいずれか1項に記載の心臓疾患治療用移植材料。
項11.前記細胞シートのうち少なくとも一層が脂肪細胞を80%以上含むものである、項1~7のいずれか1項に記載の心臓疾患治療用移植材料。
項12.前記細胞シートのうち少なくとも一層が脂肪細胞を90%以上含むものである、項1~7のいずれか1項に記載の心臓疾患治療用移植材料。
項13.前記細胞シートのうち少なくとも一層が脂肪細胞を95%以上含むものである、項1~7のいずれか1項に記載の心臓疾患治療用移植材料。
項14.前記細胞シートのうち少なくとも一層が筋芽細胞および間葉系幹細胞からなる群より選択される少なくとも1種の細胞をさらに含むものである、項1~13のいずれか1項に記載の心臓疾患治療用移植材料。
項15.前記筋芽細胞が骨格筋芽細胞である、項14記載の心臓疾患治療用移植材料。
項16.前記間葉系幹細胞が脂肪組織由来のものである、項14または15のいずれか1項に記載の心臓疾患治療用移植材料。
項17.スキャフォルドを含まない、項1~16のいずれか1項に記載の心臓疾患治療用移植材料。
項18.脂肪細胞が由来する個体に対して適用される、項1~17のいずれか1項に記載の心臓疾患治療用移植材料。
項19.さらにサイトカインまたは増殖因子を含む、項1~18のいずれか1項に記載の心臓疾患治療用移植材料。
項20.前記心臓疾患が、心不全、虚血性心疾患、心筋梗塞、心筋症、心筋炎、肥大型心筋症、拡張相肥大型心筋症および拡張型心筋症からなる群より選択される少なくとも1種の疾患または障害である、項1~19のいずれか1項に記載の心臓疾患治療用移植材料。
項21.前記細胞シートが、細胞培養支持体から単離されたものである、項1~20のいずれか1項に記載の心臓疾患治療用移植材料。
項22.脂肪細胞を含有する細胞シートを含む心臓疾患治療用移植材料を製造する方法であって、スキャフォルドを用いず、かつ
a)水に対する上限臨界溶解温度または下限臨界溶解温度が0~80℃である温度応答性高分子が被覆された細胞培養支持体上で、脂肪細胞を含有する細胞群を培養液中で培養する工程;
b)培養液の温度を、該上限臨界溶解温度以上または下限臨界溶解温度以下とする工程;および
c)細胞群を、細胞培養支持体から細胞シートとして剥離する工程
を含む方法。
項23.工程c)の前に、
d)培養液にアスコルビン酸またはその誘導体を加える工程
をさらに含む、項22記載の方法。
項24.タンパク質分解酵素で処理する工程を含まない、項22または23のいずれか1項に記載の方法。
項25.前記温度応答性高分子が、ポリ(N-イソプロピルアクリルアミド)である、項22~24のいずれか1項に記載の方法。
 本発明に示される脂肪細胞を含む細胞シート及びその三次元構造体を用いれば、従来技術である筋芽細胞、或いは間葉系幹細胞だけからなる細胞シートを使用したときに比べ顕著に心機能を改善させられるようになる。また、細胞シートそのものの強度も向上し移植操作も改善させられるようになる。
実施例1の脂肪細胞シートの組織学的検討を行った結果を示す図である。(1)In VitroA.培養および分化誘導後の脂肪細胞。オイルレッドO染色にて脂肪細胞へ分化していることを確認した。図中の球形状のものが油滴である。B.温度応答性培養皿を用いて脂肪細胞をシート状に回収した。C.ASのオイルレッドOで染色。多数の陽性細胞を認めた。図中の球形状のものが油滴である。D.ASのアディポネクチン免疫染色。アディポネクチンの発現を認めた。図中の色の薄い部分がアディポネクチンである。(2)In VivoE.心筋梗塞急性期モデルラットに対するAS移植後28日の摘出心組織。脂肪細胞シート様組織の付着を認めた。F.心筋梗塞急性期モデルラットに対するAS移植後28日のオイルレッドO染色。心外膜側にオイルレッドO陽性細胞層の生着を認めた。図中の色の薄い部分が油滴である。G.Fと同一切片のアディポネクチン免疫染色像。心外膜側および心筋梗塞部においてアディポネクチンの発現を認めた。図中の色の薄い部分がアディポネクチンである。H.Fと同一切片のヘマトキシリン・エオジン染色像。 実施例1の心筋梗塞急性期に対する脂肪細胞シート移植処置後4週における心機能に及ぼす影響に関する検討を行った結果を示す図である。A.左室収縮末期断面積(LVESA)。AS移植により左室拡大の抑制傾向を認めた。B.左室拡張末期断面積(LVEDA)。AS移植により左室拡大の抑制傾向を認めた。C.左室断面積変化率(FAC)。AS移植により有意な左室収縮能の増悪抑制を認めた。D.左室最大陽性dP/dt(dP/dtmax)。AS移植により有意な収縮力増悪抑制を認めた。E.左室収縮期末エラスタンス(Ees)。AS移植により有意な収縮力増悪抑制を認めた。F.左室最大陰性dP/dt(dP/dtmin)。AS移植により有意な拡張力増悪抑制を認めた。G.左室等容弛緩時間(τ)。AS移植により拡張力増悪抑制傾向を認めた。 実施例1の心筋梗塞急性期に対する脂肪細胞シート移植処置後4週における心筋組織に及ぼす影響に関する検討を行った結果を示す図である。A.C群のマクロ像。B.A群のマクロ像。C群と比して左室前壁菲薄化の抑制を認めた。C.C群およびA群の左室前壁厚を定量した。AS移植により有意な左室菲薄化抑制を認めた。D.C群における梗塞―正常部境界領域の強拡大像。E.A群における梗塞―正常部境界領域の強拡大像。C群と比して線維化の緩和を認めた。F.C群およびA群の梗塞―正常部境界領域における線維化率を測定した。AS移植により有意な線維化抑制を認めた。 実施例1の脂肪細胞シート移植処置後2日における心筋保護効果に関する検討を行った結果を示す図である。A.C群のヘマトキシリン・エオジン染色マクロ像。B.A群のヘマトキシリン・エオジン染色マクロ像。C群と比して梗塞範囲の縮小を認めた。C.C群およびA群における梗塞率(左室全周に対する梗塞部の距離割合)。AS移植により有意な梗塞範囲の縮小を認めた。D.C群の梗塞―正常部境界領域におけるTUNEL染色像。E.A群の梗塞―正常部境界領域におけるTUNEL染色像。C群と比してTUNEL陽性細胞の減少を認めた。図中の色の薄い部分がTUNEL陽性細胞である。F.C群およびA群におけるTUNEL陽性細胞数を定量した。脂肪細胞シート移植により有意なアポトーシス細胞数の減少を認めた。 実施例1の脂肪細胞シート移植による抗炎症効果に関する検討を行った結果を示す図である。A.C群の梗塞―正常部境界領域におけるCD11b免疫染色像。B.A群の梗塞―正常部境界領域におけるCD11b免疫染色像。C群と比してCD11b陽性細胞の減少を認めた。図中の色の薄い部分がCD11b陽性細胞である。C.C群およびA群におけるCD11b陽性細胞数を定量した。AS移植により有意な浸潤マクロファージ数の減少を認めた。D.梗塞領域および梗塞―正常部境界領域におけるTNF-αの転写量を定量化した。AS移植によりTumor necrosis factor alpha(TNF-α)の転写の抑制を認めた。E.梗塞領域および梗塞―正常部境界領域におけるMonocyte Chemotactic Protein-1(MCP-1)の転写量を定量化した。AS移植によりMCP-1の転写の抑制を認めた。 実施例2の脂肪細胞シートの組織学的検討を行った結果を示す図である。A.培養および分化誘導後の脂肪細胞。脂肪細胞へ分化していることを確認した。B.温度応答性培養皿を用いて脂肪細胞をシート状に回収した。脂肪細胞シートの直径は約7mm程度であった。C.脂肪細胞シートのヘマトキシリン・エオジン染色像。厚さは約100μm程度であった。D.脂肪細胞シートのアディポネクチン免疫染色。野生型マウス由来(WT)脂肪細胞シート(Adipocyte sheet)におけるアディポネクチンの発現を認めた(図中の色の薄い部分がアディポネクチンである。)。野生型(WT)脂肪前駆細胞シート(SVF cell sheet)、アディポネクチンノックアウトマウス(KO)由来脂肪細胞シートおよび脂肪前駆細胞シートにおいて、アディポネクチンの発現を認めなかった。E.細胞シート培養上清におけるアディポネクチン含量。野生型マウス由来脂肪細胞シート(WT-AS)の培養上清において、アディポネクチンを検出した。培養培地(medium)、野生型マウス由来脂肪前駆細胞シート(WT-SVF cell sheet)、アディポネクチンノックアウトマウス由来脂肪細胞シート(KO-AS)の培養上清において、アディポネクチンは検出されなかった。 実施例2の心筋梗塞急性期に対する脂肪細胞シート移植処置後4週におけるにおける心機能に及ぼす影響に関する検討を行った結果を示す図である。A.左室収縮末期断径(LVDd)。野生型マウス由来脂肪細胞シート移植群(W)において、アディポネクチンノックアウトマウス由来脂肪細胞シート移植群(K)および無治療群(C)と比して左室拡大の抑制傾向を認めた。左室拡張末期径(LVDs)。W群において、C群と比して有意な左室拡大の抑制を認めた。また、K群と比して有意ではないものの、左室拡大抑制傾向を認めた。左室駆出率(EF)。W群において、C群と比して有意な左室駆出率の上昇を認めた。また、K群と比して有意ではないものの、左室駆出率上昇傾向を認めた。B.生命予後。W群において、K群およびC群と比して有意な平均余命の延長を認めた。 実施例2の心筋梗塞急性期に対する脂肪細胞シート移植処置後4週における心筋組織に及ぼす影響に関する検討を行った結果を示す図である。A.Periodic acid-Schiff(PAS)染色の代表的な組織像。心筋梗塞遠隔部を顕鏡したところ、C群において、心筋細胞肥大を認めた。K群において、C群と同様の左室肥大を認めた。W群において、他の2群と比して、心筋細胞肥大が軽減されていた。図中の色の濃い部分が心筋細胞膜である。B.各実験群の心筋梗塞遠隔部における心筋細胞径を定量した。W群において、他の2群と比して有意な心筋細胞肥大抑制を認めた。C.マッソン・トリクロム染色の代表的な組織像。心筋梗塞と正常部境界領域を顕鏡したところ、C群において、適度な線維化を認めた。K群において、C群と同様の線維化を認めた。W群において、他の2群と比して、線維化が軽減されていた。D.各実験群の心筋梗塞と正常部の境界領域の線維化レベルを定量した。W群において、他の2群と比して有意な線維化抑制を認めた。 実施例2の脂肪細胞シート移植処置後2日における心筋保護効果に関する検討を行った結果を示す図である。A.左室短軸切片の2,3,5-Triphenyltetrazolium chloride(TTC)染色の代表的な組織像。W群において、他の2群と比して梗塞領域が少なかった。B.各実験群の左室全体の面積に対する梗塞領域の割合を定量した。W群は他の2群と比して有意な梗塞範囲の縮小を認めた。C.梗塞領域おけるTumor necrosis factor alpha(TNF-α)の転写量を定量化した。W群において、C群と比して有意なTNF-αの転写の抑制を認めた。K群はC群と有意な差を認めなかった。D.各実験群の心筋梗塞と正常部の境界領域におけるCD11b陽性細胞数を定量した。W群およびK群において、C群と比して、CD11b陽性細胞の浸潤が軽減されていた。 実施例2の脂肪細胞シートからのアディポネクチンの持続的産生能を示す図である。A.野生型マウス由来脂肪細胞シートをアディポネクチンノックアウトマウスの左室に移植し、1時間後の組織をアディポネクチンで免疫染色した結果である。図中の色の薄い部分がアディポネクチンである。B.予め赤色の蛍光色素で標識した野生型マウス由来脂肪細胞シートを、アディポネクチンノックアウトマウスの左室に移植し、4週間後の組織をアディポネクチンで免疫染色した結果である。細胞シートは心臓表面に生着していた。脂肪細胞シートおよび脂肪細胞シートと接した心筋の周囲において、アディポネクチンの発現を認めた。図中左上の色の薄い領域が脂肪細胞シートであり、その下の色の薄い領域がアディポネクチンである。C.予め赤色の蛍光色素で標識したアディポネクチンノックアウトマウス由来脂肪細胞シートをアディポネクチンノックアウトマウスの左室に移植し、4週間後の組織をアディポネクチンで免疫染色した結果である。細胞シートは心臓表面に生着していた。脂肪細胞シートおよび脂肪細胞シートと接した心筋の周囲において、アディポネクチンの発現を認めなかった。図中左上の色の薄い領域が脂肪細胞シートであり、その下の色の薄い領域がアディポネクチンである。D.Aの連続切片をヘマトキシレン・エオジン染色したのもである。細胞シートはvitroにおける形態と同様に細胞質に脂肪滴を蓄積した脂肪細胞から構成され、厚さはほぼ均一で100μm程度であった。E.Bの連続切片をヘマトキシレン・エオジン染色したものである。細胞シートは移植後1時間の場合と比して肥厚し、約600μm程度であった。細胞シートには細胞質に油滴を蓄積した脂肪細胞の他、結合組織や肉芽が混在していた。F.Cの連続切片をヘマトキシレン・エオジン染色したものである。アディポネクチンノックアウトマウス由来細胞シートは移植後4週の野生型マウス由来脂肪細胞シートと同様の形態で、厚さ600μm程度、細胞シートには細胞質に油滴を蓄積した脂肪細胞の他、結合組織や肉芽が混在していた。G.脂肪細胞シート移植による血中アディポネクチン濃度に対する影響を示す。野生型マウス由来およびアディポネクチンノックアウトマウス由来脂肪細胞シートをアディポネクチンノックアウトマウスの左室全壁に移植し、4週間後、血漿のアディポネクチン含量を測定した。アディポネクチンノックアウトマウス由来脂肪細胞シート移植群(K)において、アディポネクチンは検出限界以下であったのに対し、野生型マウス由来脂肪細胞シート移植群(W)は0.37±0.098ng/mlのアディポネクチンが検出された。
 アディポネクチンは脂肪組織により分泌されるサイトカインで、生活習慣病の制御に寄与している他、抗アポトーシス、抗線維化、血管新生促進、心筋肥大抑制、細胞増殖促進といった効果を有する。アディポネクチンは心不全や動脈硬化といった循環器疾患においても有益に作用する。左室心筋梗塞に対する脂肪細胞移植においても、傷害部位局所においてアディポネクチンが分泌されることにより、早期に、傷害程度が軽減し、炎症反応が緩和される。また、移植後中・長期において、患部に生着した脂肪細胞はアディポネクチンを分泌し続けることで、左室前壁の菲薄化および梗塞部周縁の線維化といったリモデリングを抑制することで機能的回復を助長する。本発明では生体由来の材料である脂肪細胞を用いてDDSを構築した。本発明によれば生体適合性に関する懸念がなく、また、移植材料自体が傷害部位で生着するため、活性の高いアディポネクチンが長期にわたり局所で供給されることが予想される。また、既存の心不全治療の為の細胞シートは骨格筋筋芽細胞、骨髄由来間葉系幹細胞といった組織幹細胞を用いて作製されているが、脂肪細胞はこれらと比して採取が容易かつ低侵襲で大量調整が可能であることから、より広い患者に適応可能であると考えている。
 本発明は、心臓疾患に適用するために細胞培養支持体から単離された、少なくとも脂肪細胞を含む、細胞シート及びその三次元構造体であり、この脂肪細胞を含む細胞シート及びその三次元構造体が心筋梗塞後の心不全治療に極めて有用であることが判明したことにより完成したものである。本発明における脂肪細胞とは脂肪細胞として分化したものを指し、その種類は全く限定されないが、その細胞が例えば成熟脂肪細胞であっても良い。また、本発明における脂肪細胞の由来は何ら限定されるものではないが、脂肪組織、皮下脂肪組織、心外膜由来脂肪組織などが挙げられる。それらの組織から脂肪細胞を得る方法としては特に限定されるものではないが採取が容易な簡便な脂肪組織から脂肪細胞そのものを採取する方法、或いは脂肪組織から得られる脂肪細胞、脂肪幹細胞、線維芽細胞等を採取し常法に従って分化誘導させる方法等が挙げられる。その脂肪組織からの脂肪細胞の分離方法は、特に限定されるものではないが、例えば、天井培養法、新鮮な脂肪組織をそのまま使用する方法などが挙げられる。本発明における脂肪細胞には、未分化の状態を保ったまま増殖した間葉系幹細胞に加え、間葉系幹細胞が分化した線維芽細胞、間質細胞、脂肪細胞、血管内皮細胞、血管内皮前駆細胞、平滑筋細胞、SP細胞および心筋細胞などの他の細胞や、間葉系幹細胞を採取する際に混入した間質細胞、線維芽細胞、脂肪細胞、血管内皮細胞、血管内皮前駆細胞、平滑筋細胞、SP細胞及び心筋細胞等の細胞が含まれていても良い。本発明の細胞シートは、脂肪細胞を50%、60%以上、70%以上、80%以上、90%以上、または95%以上含むものであれば好ましい。本発明の細胞シートを含む心臓疾患治療用移植材料は、細胞シートの少なくとも一層が脂肪細胞を50%、60%以上、70%以上、80%以上、90%以上、または95%以上含むものであれば好ましい。また、本発明の細胞シートを含む心臓疾患治療用移植材料は、全ての細胞シートに含まれる細胞のうち脂肪細胞が50%、60%以上、70%以上、80%以上、90%以上、または95%以上含まれていれば好ましい。さらに、本発明の細胞シートを含む心臓疾患治療用移植材料は、細胞シートの全てが脂肪細胞を50%、60%以上、70%以上、80%以上、90%以上、または95%以上含むものであれば好ましい。
 本発明では、上記脂肪細胞に加え、筋芽細胞、間葉系幹細胞、もしくはその両方を併用しても良い。特に、筋芽細胞とはその種類、採取する組織の由来は特に限定されるものではないが、例えば骨格筋組織の骨格筋芽細胞が生体内に豊富に存在に比較的容易な操作で採取できる点で好ましい。また、その骨格筋芽細胞は、従来技術において心臓に対する移植可能性が示されたことから、実際の医療に使用できるものである。本発明においては、その筋芽細胞を採取する際、未分化の状態を保ったまま増殖した間葉系幹細胞に加え、線維芽細胞、間質細胞、脂肪細胞、血管内皮細胞、血管内皮前駆細胞、及び平滑筋細胞等の他の細胞や、間葉系幹細胞を採取する際に混入した間質細胞、線維芽細胞、脂肪細胞、血管内皮細胞、血管内皮前駆細胞、平滑筋細胞、SP細胞及び心筋細胞などの細胞が含まれていても良い。本発明においては間葉性幹細胞においては、その由来は何ら限定されるものではないが、採取が容易な簡便な骨髄または脂肪組織が好ましい。細胞源としては、自己成長する性質を有し、かつ心筋細胞および血管内皮細胞に分化しうる体性幹細胞が望ましいが特に限定されるものではない。また、間葉系幹細胞は、従来技術において心臓に対する移植可能性が示されたことから、実際の医療に使用できるものである。さらに、移植の際の組織適合性および感染のリスクの観点から、患者の自己体性幹細胞が特に望ましいがこれについても特に限定されるものではない。間葉系幹細胞とは、未分化の状態を保ったまま増殖した間葉系幹細胞に加え、間葉系幹細胞が分化した線維芽細胞、間質細胞、脂肪細胞、血管内皮細胞、血管内皮前駆細胞、平滑筋細胞、SP細胞および心筋細胞などの他の細胞や、間葉系幹細胞を採取する際に混入した間質細胞、線維芽細胞、脂肪細胞、血管内皮細胞、血管内皮前駆細胞、平滑筋細胞、SP細胞及び心筋細胞等の細胞が含まれていても良い。また、これらの細胞の併用する方法については特に限定されるものではないが、同一培養面上で共培養する方法、セルインサートのような多孔膜の培養面を介して異種の細胞を培養する方法、さらには後述するように異種の細胞シートを積層化する方法、或いはこれら方法の組み合わせた方法等が挙げられる。
 本発明は、脂肪細胞が産生するアディポネクチンが近傍の細胞に対して抗アポトーシス効果、増殖促進効果を示すという知見にも基づいている。近傍の細胞とは、傷害された組織の細胞だけではなく、脂肪細胞シートに混在している他の細胞に対しても作用を及ぼすと考えられる。本発明は、少なくとも脂肪細胞が必要であるが、その他の細胞として、例えば筋芽細胞と間葉系幹細胞の中に混在していても良く、何ら限定されるものではない。
 本発明では、脂肪細胞を培養する必要がある。その際に使用する培地は脂肪細胞が培養できる一般的な培地でよく特に限定されるものではない。具体的には、培地中に10~15%の自己血清または牛胎児血清(FBS)、200μMのアスコルビン酸、0.5~2.0μMのインスリン、及び抗生物質を補充したα-MEM、DMEM、F-12培地、或いはこれらの混合物を用いることができる。必要に応じて線維芽細胞増殖因子(bFGF)やアドレノメデユリンなどの成長因子を加えることがある。培養は、哺乳動物の細胞の培養に適する任意の条件で実施することができるが、一般的には37℃、5% COで数日間培養し、必要に応じて培地を交換する。
 本発明とは、かくして培養された脂肪細胞を含めた細胞をシート状に回収し、心筋組織の再生に利用しようとするものである。その培養した細胞をシート状に回収する方法は特に限定されないが、例えば後述するような温度応答性細胞培養器材上で培養する方法、希薄なタンパク質分解酵素水溶液を使用する方法、特殊なタンパク質分解酵素水溶液を使用する方法、EDTA水溶液だけを使って剥離する方法、さらにはスクレーパー等を使い物理的に剥離する方法等が挙げられる。本発明においては、かくして得られた細胞シートを重ね合わせ、積層化させることで三次元構造体としても良い。その際、各細胞シートに筋芽細胞と間葉系幹細胞が混在されたものでも良く、各細胞シートが筋芽細胞と間葉系幹細胞のそれぞれの細胞からなり重ね合わせることで共培養する形となっていても良く、その状態は何ら限定されるものではない。また、本発明においては、細胞シートが積層化される際の細胞シートの収縮程度は特に限定さるものではなく、その他の積層化条件も何ら制約されるものではない。その積層化枚数は特に限定されるものではないが、積層回数は10回以下が良く、好ましくは8回以下、さらに好ましくは4回以下が良い。細胞シートを積層化するとシート単面積当たりの細胞密度が向上し、細胞シートとしての機能も向上し好ましい。さらに、その三次元構造体を作製する際、コラーゲン、フィブリン、ゼラチン等の1種以上からなるゲルやマトリゲル等のその他のスキャフォルドを用いても良く、本発明においては何ら制約されるものではないが、これらのものは移植後、生体内でさまざまな影響を与え、好ましくは使用しない方が良い。
 本発明で培養器材表面から剥離された脂肪細胞シート及びその三次元構造体の厚さは50μm以上となる。このとき脂肪細胞シート及びその三次元構造体の厚さは50μm以上が良く、好ましくは70μm以上が良く、さらに好ましくは80μm以上が良く、最も好ましいものは100μm以上が良い。脂肪細胞シート及びその三次元構造体の厚さが50μm以下であると細胞シートの取り扱いが悪くなり、本発明として好ましくない。
 本発明である脂肪細胞シート及びその三次元構造体からのアディポネクチン分泌能は1日当たり3×10-14g/cell以上である必要がある。本発明におけるアディポネクチン分泌能は、1日当たり9×10-14g/cell以上が良く、好ましくは1.2×10-13g/cell以上が良く、さらに好ましくは1.6×10-13g/cell以上が良く、最も好ましくは2×10-13g/cell以上が良い。アディポネクチン分泌能が1日当たり3×10-14g/cell以下であると移植された細胞シートの心筋組織再生機能が十分でなく好ましくない。
 本発明で用いられる細胞は、生体組織から直接採取した細胞、直接採取し培養系等で分化させた細胞、或いは細胞株が挙げられるがその種類は、何ら制約されるものではない。これらの細胞の由来は特に制約されるものではないが、例えば、ヒト、或いはラット、マウス、モルモット、マーモセット、ウサギ、イヌ、ネコ、ヒツジ、ブタ、チンパンジーあるいはそれらの免疫不全動物等が挙げられるが、本発明の細胞シート及びその三次元構造体をヒトの治療に用いる場合はヒト、ブタ、チンパンジー由来の細胞を用いる方が望ましい。本発明における細胞培養のための培地は培養される細胞に対し通常用いられるものを用いれば特に制約されるものではない。
 本発明において、培養時に播種する細胞数は使用細胞の動物種によって異なるが、一般的に3000~20000個/cmが良く、好ましくは5000~15000個/cmが良く、さらに好ましくは6000~10000個/cmが良い。播種濃度が3000個/cm以上の場合、脂肪細胞分化頻度が低く、得られる細胞シートのアディポネクチン分泌程度が悪化し、本発明を実施する点において好ましくない。播種後分化誘導までの培養期間は使用細胞の動物種によって異なるが、一般的に5~10日が良く、好ましくは7~8日が良い。これより短いと脂肪細胞分化頻度が低く、得られる細胞シートのアディポネクチン分泌程度が悪化し、本発明を実施する点において好ましくない。本発明では、成熟脂肪細胞を培養する必要がある。その際に使用する培地は成熟脂肪細胞が培養できる一般的な培地でよく特に限定されるものではない。具体的には、10~15%の自己血清または牛胎児血清(FBS)、0.5~2.0μMのインスリン、0.1~1.0μMのデキサメタゾン、0.2~2mMのイソブチルメルキサンチンを補充したα-MEM、DMEM、F-12培地、或いはこれらの混合物を用いることができる。好ましくは、5μMのピオグリタゾン、200μMのアスコルビン酸、および抗生物質、必要に応じて線維芽細胞増殖因子(bFGF)やアドレノメデユリンなどの成長因子を加えることがある。分化誘導時間は一般的に36~60時間が良く、好ましくは45~51時間が良い。これより短いと脂肪細胞分化頻度が低く、長いと死細胞が出現するため、本発明を実施する点において好ましくない。分化誘導後移植までの培養期間は一般に5~14日間が良く、好ましくは7~10日間が良い。これより短いと脂肪細胞の成熟程度が低く、アディポネクチン分泌量が少ないため、本発明を実施する点においては好ましくない。
 かくして得られた細胞シート及びその三次元構造体は、良好な抗炎症効果、線維化抑制効果、血管新生効果、アトポーシス抑制を示すものであり、心筋組織の再生に好都合である。また、本発明で得られる細胞シート及びその三次元構造体からは、肝細胞増殖因子(HGF)、血管内皮細胞増殖因子(VEGF)も発現し、心筋組織の再生に有用である。しかもこれらの効果、並びにHGF、VEGFの産生量は筋芽細胞、間葉系幹細胞が単独で存在する場合より顕著に増加していることが判明した。
 本発明において、上述した細胞シート及びその三次元構造体は、0~80℃の温度範囲で水和力が変化するポリマーを表面に被覆した細胞培養支持体上で培養すると容易に得られる。すなわち、上記細胞を0~80℃の温度範囲で水和力が変化するポリマーを表面に被覆した細胞培養支持体上で、ポリマーの水和力の弱い温度域で培養される。その温度とは通常、細胞を培養する温度である37℃が好ましい。本発明に用いる温度応答性高分子はホモポリマー、コポリマーのいずれであってもよい。このような高分子としては、例えば、特開平2-211865号公報に記載されているポリマーが挙げられる。具体的には、例えば、以下のモノマーの単独重合または共重合によって得られる。使用し得るモノマーとしては、例えば、(メタ)アクリルアミド化合物、N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体、またはビニルエーテル誘導体が挙げられ、コポリマーの場合は、これらの中で任意の2種以上を使用することができる。更には、上記モノマー以外のモノマー類との共重合、ポリマー同士のグラフトまたは共重合、あるいはポリマー、コポリマーの混合物を用いてもよい。また、ポリマー本来の性質を損なわない範囲で架橋することも可能である。その際、培養、剥離されるものが細胞であることから、分離が5℃~50℃の範囲で行われるため、温度応答性ポリマーとしては、ポリ-N-n-プロピルアクリルアミド(単独重合体の下限臨界溶解温度21℃)、ポリ-N-n-プロピルメタクリルアミド(同27℃)、ポリ-N-イソプロピルアクリルアミド(同32℃)、ポリ-N-イソプロピルメタクリルアミド(同43℃)、ポリ-N-シクロプロピルアクリルアミド(同45℃)、ポリ-N-エトキシエチルアクリルアミド(同約35℃)、ポリ-N-エトキシエチルメタクリルアミド(同約45℃)、ポリ-N-テトラヒドロフルフリルアクリルアミド(同約28℃)、ポリ-N-テトラヒドロフルフリルメタクリルアミド(同約35℃)、ポリ-N,N-エチルメチルアクリルアミド(同56℃)、ポリ-N,N-ジエチルアクリルアミド(同32℃)などが挙げられる。本発明に用いられる共重合のためのモノマーとしては、ポリアクリルアミド、ポリ-N、N-ジエチルアクリルアミド、ポリ-N、N-ジメチルアクリルアミド、ポリエチレンオキシド、ポリアクリル酸及びその塩、ポリヒドロキシエチルメタクリレート、ポリヒドロキシエチルアクリレート、ポリビニルアルコール、ポリビニルピロリドン、セルロース、カルボキシメチルセルロースなどの含水ポリマーなどが挙げられるが、特に制約されるものではない。
 本発明で用いられる、上述の各ポリマーの基材表面への被覆方法は、特に制限されないが、例えば、基材と上記モノマーまたはポリマーを、電子線照射(EB)、γ線照射、紫外線照射、プラズマ処理、コロナ処理、有機重合反応のいずれかにより、または塗布、混練等の物理的吸着等により行うことができる。培養基材表面への温度応答性ポリマーの被覆量は、1.1~2.3μg/cmの範囲が良く、好ましくは1.4~1.9μg/cmであり、さらに好ましくは1.5~1.8μg/cmである。1.1μg/cmより少ない被覆量のとき、刺激を与えても当該ポリマー上の細胞は剥離し難く、作業効率が著しく悪くなり好ましくない。逆に2.3μg/cm以上であると、その領域に細胞が付着し難く、細胞を十分に付着させることが困難となる。このような場合、温度応答性ポリマー被覆層の上にさらに細胞接着性タンパク質を被覆すれば、基材表面の温度応答性ポリマー被覆量は2.3μg/cm以上であっても良く、その際の温度応答性ポリマーの被覆量は9.0μg/cm以下が良く、好ましくは8.0μg/cm以下が良く、7.0μg/cm以下が好都合である。温度応答性ポリマーの被覆量が9.0μg/cm以上であると温度応答性ポリマー被覆層の上にさらに細胞接着性タンパク質を被覆しても細胞が付着し難くなり好ましくない。そのような細胞接着性タンパク質の種類は何ら限定されるものではないが、例えば、コラーゲン、ラミニン、ラミニン5、フィブロネクチン、マトリゲル等の単独、もしくは2種以上の混合物が挙げられる。また、これらの細胞接着性タンパク質の被覆方法は常法に従えば良く、通常、細胞接着性タンパク質の水溶液を基材表面に塗布し、その後その水溶液を除去しリンスする方法がとられている。本発明は、温度応答性培養皿を利用したなるべく細胞シートそのものを利用しようとする技術である。従って、温度応答性ポリマー層上の細胞接着性タンパク質の被覆量が極度に多くなっては好ましくない。温度応答性ポリマーの被覆量、並びに細胞接着性タンパク質の被覆量の測定は常法に従えば良く、例えばFT-IR-ATRを用いて細胞付着部を直接測る方法、あらかじめラベル化したポリマーを同様な方法で固定化し細胞付着部に固定化されたラベル化ポリマー量より推測する方法などが挙げられるがいずれの方法を用いても良い。
 本発明の方法において、培養した細胞シートを温度応答性基材から剥離回収するには、培養された細胞の付着した培養基材の温度を培養基材上の被覆ポリマーの上限臨界溶解温度以上若しくは下限臨界溶解温度以下にすることによって剥離させることができる。その際、培養液中において行うことも、その他の等張液中において行うことも可能であり、目的に合わせて選択することができる。細胞をより早く、より高効率に剥離、回収する目的で、基材を軽くたたいたり、ゆらしたりする方法、更にはピペットを用いて培地を撹拌する方法等を単独で、あるいは併用して用いてもよい。温度以外の培養条件は、常法に従えばよく、特に制限されるものではない。例えば、使用する培地については、公知のウシ胎児血清(FCS)等の血清が添加されている培地でもよく、また、このような血清が添加されていない無血清培地でもよい。さらに、細胞培養時に細胞が細胞外マトリックスを十分に産生させる目的でアスコルビン酸またはその誘導体を培地中に加えても良い。
 以上のことを温度応答性ポリマーとしてポリ(N-イソプロピルアクリルアミド)を例にとり説明する。ポリ(N-イソプロピルアクリルアミド)は31℃に下限臨界溶解温度を有するポリマーとして知られ、遊離状態であれば、水中で31℃以上の温度で脱水和を起こしポリマー鎖が凝集し、白濁する。逆に31℃以下の温度ではポリマー鎖は水和し、水に溶解した状態となる。本発明では、このポリマーがシャーレなどの基材表面に被覆、固定されたものである。したがって、31℃以上の温度であれば、基材表面のポリマーも同じように脱水和するが、ポリマー鎖が基材表面に被覆、固定されているため、基材表面が疎水性を示すようになる。逆に、31℃以下の温度では、基材表面のポリマーは水和するが、ポリマー鎖が基材表面に被覆、固定されているため、基材表面が親水性を示すようになる。このときの疎水的な表面は細胞が付着、増殖できる適度な表面であり、また、親水的な表面は細胞が付着できないほどの表面となり、培養中の細胞、もしくは細胞シートも冷却するだけで剥離させられることになる。
 被覆を施される基材としては、通常細胞培養に用いられるガラス、改質ガラス、ポリスチレン、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリカーボネート等の化合物を初めとして、一般に形態付与が可能である物質、例えば、上記以外のポリマー化合物、セラミックス類など全て用いることができる。
 本発明における培養基材の形状は特に制約されるものではないが、例えばディッシュ、マルチプレート、フラスコ、セルインサート、ビーズ、ファイバーのような形態のもの、平膜状のもの、さらには多孔膜等が挙げられ、特に限定されるものではない。
 本発明における細胞シート及びその三次元構造体は、培養時にディスパーゼ、トリプシン等で代表される蛋白質分解酵素による損傷を受けていないものである。そのため、基材から剥離された細胞シート及びその三次元構造体は接着性蛋白質を有し、細胞シート及びその三次元構造体をシート状に剥離させた際には細胞-細胞間のデスモソーム構造がある程度保持されたものとなる。このことにより、移植時において患部組織と良好に接着することができ、効率良い移植を実施することができるようになる。一般に蛋白質分解酵素であるディスパーゼに関しては、細胞-細胞間のデスモソーム構造については10~40%保持した状態で剥離させることができることで知られているが、細胞-基材間の基底膜様蛋白質等を殆ど破壊してしまうため、得られる細胞シートは強度の弱いものとなる。これに対して、本発明の細胞シート及びその三次元構造体は、デスモソーム構造、基底膜様蛋白質共に60%以上残存された状態のものであり、上述したような種々の効果を得ることができるものである。
 本発明における三次元構造体を作製する方法についても特に限定されるものではないが、例えば、培養細胞をシート状で剥離させ、必要に応じ培養細胞移動治具を用いて培養細胞シート同士を積層化させることで得られる。その際、培地の温度は、培養基材表面に被覆された前記ポリマーが上限臨界溶解温度を有する場合はその温度以下、また前記ポリマーが下限臨界溶解温度を有する場合はその温度以上であれば特に制限されない。しかし、培養細胞が増殖しないような低温域、あるいは培養細胞が死滅するような高温域における培養が不適切であることは言うまでもない。温度以外の培養条件は、常法に従えばよく、特に制限されるものではない。また、積層化する細胞シートの細胞種についても特に限定されるものではないが、脂肪細胞シート同士を重ね合わせていく積層化方法、脂肪細胞シートと筋芽細胞シートを重ね合わせていく積層化方法、脂肪細胞と筋芽細胞とを共培養させた細胞シートを重ね合わせていく積層化方法、もしくはこれらの積層化方法の組み合わせた積層化方法等が挙げられる。ここで、積層化する細胞が異種の場合、その積層化される順番については特に限定されるものでない。使用する培地については、公知のウシ胎児血清(FCS)等の血清が添加されている培地でもよく、また、このような血清が添加されていない無血清培地でもよい。また、使用される培養細胞移動治具は剥離した細胞シートを捕捉できるものであれば特に限定されるわけではなく、例えば多孔膜や紙、ゴム等の膜類や板類、スポンジ類等が挙げられ、積層化作業を行い易くするために柄の付いた治具に多孔膜や紙、ゴム等の膜類や板類、スポンジ類等を取り付けたものを利用しても良い。
 本発明においては、温度応答性細胞培養基材から剥離させた細胞シート及びその三次元構造体を密着させるためにキャリアを用いても良い。本発明の細胞シート及びその三次元構造体の形態を保持するものとしては、例えば高分子膜または高分子膜から成型された構造物、金属性治具などを使用することができる。例えば、キャリアの材質として高分子を使用する場合、その具体的な材質としてはポリビニリデンジフルオライド(PVDF)、ポリプロピレン、ポリエチレン、セルロース及びその誘導体、紙類、キチン、キトサン、コラーゲン、ウレタン、ゼラチン等を挙げることができる。キャリアの形状は、特に限定されるものではない。
 本発明で得られた細胞シート及びその三次元構造体を生体内の所定部位に移植することができる。その移植部位は心筋組織のいずれの場所でも良く特に限定されないが、その他の方法として、特に大網は血管が豊富に存在し、かつ移植行為が容易な点で好ましい。そして、体網に移植した細胞シート及びその三次元構造体を、血管をつなげたまま心筋組織へ移植することでも良い。その移植部位はあらかじめ血管誘導を施されていても、施されていなくても良く、特に限定されるものではない。ここで、血管誘導を施す方法も特に限定されるものではないが、例えば、血管増殖因子であるFGFをミクロスフィアに包埋し、このミクロスフィアの組成、大きさ、注入範囲を変えながら生体に8~10日間作用させる方法、ポリエチレンテレフタレートメッシュを任意の大きさに切り、袋状のものを作製し、そのバッグの内側に、高濃度アガロース溶液に溶解させたFGFを入れ、8~10日間後、そのバッグを除去することにより、血管誘導された空間を作製する方法などが挙げられる。
 ヒトに対し、本発明で示すところの本発明の細胞シート及びその三次元構造体を利用すれば、移植された細胞シート及びその三次元構造体はヒトの生体内で機能を長期間発現することとなる。そして、剥離された細胞シート及びその三次元構造体の大きさや形状、もしくは両者で機能の発現量を制御できる。このような細胞シート及びその三次元構造体は、例えば心不全、虚血性心疾患、心筋梗塞、心筋症、心筋炎、肥大型心筋症、拡張相肥大型心筋症および拡張型心筋症からなる群より選択される疾患または障害を伴う各疾患の治療を目的に使用されるが、特に限定されるものではない。
 動物に対し、本発明で示すところの細胞シート及びその三次元構造体が移植されれば、医薬品評価用動物となる。そして、剥離された細胞シート及びその三次元構造体の大きさや形状で機能の発現量を制御できる。ここで使用される動物はラット、マウス、モルモット、マーモセット、ウサギ、イヌ、ブタ、チンパンジーあるいはそれらの免疫不全動物等が挙げられるが特に限定されるものではない。このような移植動物は、例えば、被検物質をこの動物に投与し、当該被検物質の心機能への影響を判定する心機能評価システム等を目的に使用されるが、特に限定されるものではない。
 以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。
 本実施例において、動物の取り扱いは、大阪大学において規定される基準を遵守し、動物愛護精神に則って実験を行った。
(脂肪由来線維芽細胞の調整)
 3週令雄性LEW/Seaラットの両鼡径部から皮下脂肪組織を採取した。脂肪組織を鋏で細かく刻み、0.1%のタイプIIコラゲナーゼ溶液中に懸濁し、37度温浴槽で1時間震盪した。250μmのメッシュフィルターで濾過し、毎分1800回転5分間遠心分離した。沈渣を培養培地(10%ウシ胎児血清、200μMアスコルビン酸、および抗生物質含有D-MEM)に懸濁し、25μmのメッシュフィルターで濾過し、毎分1800回転5分間遠心分離した。沈渣を培養培地で懸濁し、これを培養皿に移して5%二酸化炭素、37度の湿潤環境で培養した。培養開始後24時間で培養皿に接着したものを脂肪由来線維芽細胞(Stromal-Vascular Fraction cell: SVF cell)とした。
(脂肪細胞分化誘導および脂肪細胞シートの調整)
 培養開始後3日で細胞をトリプシン処理により細胞浮遊液とし、直径35mmの温度応答性培養皿に密度7000個/cmになるように播種した。培養開始10日後、温度応答性培養皿上でコンフルエントとなった脂肪由来線維芽細胞に、分化誘導培地(10%ウシ胎児血清、200μMアスコルビン酸、0.87μMインスリン、0.25μMデキサメタゾン、500μMイソブチルメチルキサンチン、5μMピオグリタゾン、抗生物質含有D-MEM)を48時間添加し、脂肪細胞へ分化誘導を行った。分化誘導終了後はメンテナンス培地(10%ウシ胎児血清、200μMアスコルビン酸、0.87μMインスリン、抗生物質含有D-MEM)で培養し、細胞質内に油滴が蓄積され、脂肪細胞に分化したことを確認した。培養開始19~25日後、温度応答性培養皿を20度で培養した。40分以内に脂肪細胞は自然にはがれ、脂肪細胞シートとして培養液中に浮遊した。
(脂肪細胞シートにおけるアディポネクチンの分泌)
 脂肪細胞シートを24時間培養した培養培地を採取し、酵素免疫抗体法(ELISA法)により培養液中のアディポネクチンを測定した。
(脂肪細胞シートの組織学的検討)
 脂肪細胞シートの凍結切片を作製し、4%パラホルムアルデヒドで固定後、オイルレッドO染色およびアディポネクチン免疫染色を施行した。
(心不全モデルおよび脂肪細胞シート移植)
 8週令雌性LEW/Seaラットを用いた。心筋梗塞モデルは左冠動脈前下降枝結紮術により作製した。イソフルランの吸入麻酔人工呼吸下(1.5%イソフルラン、換気量4ml、100サイクル/分)に全身麻酔をした後、左開胸を行い、心臓を露出した。左冠動脈起始部から2-3mmの部位を8-0プロリン糸で結紮した。
 冠動脈結紮術15分後、脂肪細胞シートをPBSで穏やかに洗浄し、先曲ピンセット上に載せて左室前壁の梗塞部位に滑らせ、静置した。移植20分後に閉胸した。無治療群に対しては、移植操作なしで同様の処置を行った。
(動物実験プロトコル)
 冠動脈結紮術15分後、ラットを2群に分けて以下の処置を行った。すなわち、脂肪細胞シート2枚を左室前壁に移植した群(A群;n=15)、および移植を行わない未治療の群(C群;n=15)である。手術後3日に組織学的評価、分子学的評価を行った。手術後4週間後に心臓超音波検査、心臓カテーテル検査、および組織学的評価を行った。
(心臓超音波検査)
 イソフルランの吸入麻酔により抑制状態を得たのち、収縮末期血圧および心拍数のモニタリング下で、14MHzトランスデューサーを備えた心臓超音波システムを用いて、乳頭筋レベルの左室短軸像を得た。左室の拡張末期断面積(LVEDA)および収縮末期断面積(LVESA)を測定した。測定は3回以上繰り返し、平均値を求めた。左室断面積変化率(FAC)は以下の式から算出した。
FAC(%)=(LVEDA―LVESA)/LVEDA×100
(心臓カテーテル検査)
 イソフルランの吸入麻酔人工呼吸下(1.5%イソフルラン、換気量4ml、100サイクル/分)に全身麻酔をした後、正中開胸を行い、心臓を露出した。下大静脈に1-0絹糸をかけた。左室心尖部からコンダクタンスカテーテル、左室前壁から圧カテーテルをそれぞれ左室内腔に挿入した。PV-loopを描出した後、下大静脈を絞って負荷をかけた。データはIntegral3ソフトウェア(ユニークメディカル)を用いて解析した。
(組織学的評価)
 手術後3日および28日において、カリウム投与により心臓を拡張期で停止させた後摘出した。左室を短軸方向にスライスしてコンパウンドに包埋後、液体窒素中で凍結し、組織切片を作製した。ヘマトキシリン・エオジン染色、マッソン・トリクロム染色、オイルレッドO染色、アディポネクチン免疫染色、CD11b免疫染色、TUNEL染色を施行した。線維化率をマッソン・トリクロム染色像の画像解析により求めた。梗塞サイズはヘマトキシリン・エオジン染色のマクロ像の画像解析により求めた。CD11bおよびTUNEL染色は、1視野あたりの陽性細胞数を計測し、検体あたり5視野の平均値を算出した。
(分子生物学的検討)
 手術後3日において、摘出した心臓サンプルを梗塞部(scar)、梗塞と正常の境界部(border)、非梗塞部(normal)に分けて、それぞれRNA抽出をした。RNAから逆転写反応によりcDNAを合成した。定量PCR法により腫瘍壊死因子(TNF-α)および単球走化活性因子(MCP-1)転写量を定量し、内在性コントロールであるリセルアルデヒド3リン酸脱水素酵素(GAPDH)転写量で除算した値を、各検体のnormalの値との比であらわした。
(統計学的分析)
 データは平均値±標準誤差であらわした。群間の比較はt検定にて行い、P値が0.05未満を有意差ありとした。生存率解析は、カプラン・マイヤー法により生存率を算出し、各実験群について、ログランク検定で有意差を求めた。
(脂肪細胞シート作製)
 ラット脂肪由来線維芽細胞に対して脂肪細胞へ分化誘導をしたところ、分化誘導後7日でオイルレッドO陽性の脂肪細胞が多数出現した(図1.A)。直径35mmの温度応答性培養皿で培養した脂肪細胞は、20℃でインキュベートすることにより10mm程度のシート状に回収された(図1.B)。1枚のシートを構成する細胞数は2×10個程度であった。脂肪細胞シートは100μm程度の厚さで、オイルレッドO陽性脂肪細胞を多数含み、細胞質にアディポネクチンの発現を認めた(図1.C,D)。脂肪細胞シートを24時間培養した培養液に、0.98±0.20μg/mlのアディポネクチン分泌を認めた。一方、細胞培養液自体や分化誘導処理をしていない脂肪由来線維芽細胞シートの培養液においてアディポネクチンは検出限界以下の濃度であった。
(心筋梗塞部における脂肪細胞シートの生着)
 心筋梗塞急性期に左室前壁に移植された脂肪細胞シートは、移植後28日の左室前壁瘢痕領域に良好に生着していた(図1.E)。脂肪細胞シートは移植部位でもオイルレッドO陽性、アディポネクチン陽性であった(図1.F-H)。
(脂肪細胞シートが心機能に及ぼす影響)
 心筋梗塞急性期に対するシート移植後28日の心機能評価を図2.A-Gに示す。心臓超音波検査より、A群におけるLVEDAおよびLVESAの値がC群と比して小さかったことから、左室拡大が抑制されていると考えられる(図2.A,B)。またFACはC群と比して有意に大きく、シート移植により心機能の増悪が抑制されていると考えられる(図2.C)。心臓カテーテル検査においても、収縮能の指標である左室最大陽性dP/dt(dP/dtmax)および左室収縮期末エラスタンス(Ees)の上昇、拡張能 の指標である左室最大陰性dP/dt(dP/dtmin)および左室等容弛緩時間(τ)の低下を認めたことから、脂肪細胞シート移植が心筋梗塞急性期において治療効果を有することが示唆された。
(脂肪細胞シートが心筋組織に及ぼす影響)
 心筋梗塞急性期に対するシート移植28日後、組織学的解析を施行した。無治療であるC群は強度の左室前壁菲薄化を認めたが、A群はC群と比して左室前壁が厚く、左室前壁組織が維持されていることが示唆された(図3.A-C)。さらにマッソン・トリクロム染色により、梗塞部周縁の線維化を評価したところ、A群はC群と比して有意に線維化が抑制されていた(図3.D-F)。
(脂肪細胞シートの心筋保護効果)
 心筋梗塞急性期に対する脂肪細胞シート移植3日後、組織学的解析を施行した。梗塞サイズを定量したところ、A群における梗塞サイズはC群と比して有意に小さかった(図4.A-C)。さらに心筋梗塞部周縁におけるアポトーシス細胞をTUNNEL染色により検出したところ、A群におけるTUNEL陽性細胞数はC群と比して有意に少なかった(図4.D-F)。以上より、脂肪細胞シート移植によりアポトーシスの抑制を介して梗塞サイズが限局されている可能性が示唆された。
(脂肪細胞シートの抗炎症効果)
 脂肪細胞シート移植後3日の心筋組織における抗炎症効果に関する検討を図5に示す。心筋梗塞周縁における炎症細胞の浸潤を炎症細胞マーカーであるCD11bの免疫染色により評価した。A群における梗塞部周縁のCD11b陽性細胞はC群と比して有意に少なかった(図5.A-C)。さらに、梗塞部および梗塞部周縁の炎症性サイトカイン転写程度を評価したところ、A群はC群と比して梗塞部、梗塞部周縁ともに、TNF-αおよびMCP-1の転写量が有意に低かった(図5.D,E)。以上より、脂肪細胞シート移植により、心筋梗塞後の炎症細胞の浸潤を含む炎症反応が緩和されている可能性が示唆された。
(脂肪由来線維芽細胞の調整)
 20週令雄性C57BL/6J(野生型マウス)およびアディポネクチンノックアウト遺伝子改変マウスの両鼡径部から皮下脂肪組織を採取した。脂肪組織を鋏で細かく刻み、0.1%のタイプIIコラゲナーゼ溶液中に懸濁し、37度温浴槽で1時間震盪した。100μmのメッシュフィルターで濾過し、毎分1800回転5分間遠心分離した。沈渣を培養培地(10%ウシ胎児血清、200μMアスコルビン酸、および抗生物質含有D-MEM)に懸濁し、70μmのメッシュフィルターで濾過し、毎分1800回転5分間遠心分離した。沈渣を培養培地で懸濁し、これを培養皿に移して5%二酸化炭素、37度の湿潤環境で培養した。培養開始後24時間で培養皿に接着したものを脂肪由来線維芽細胞(Stromal-Vascular Fraction cell: SVF cell)とした。
(脂肪細胞分化誘導および脂肪細胞シートの調整)
 培養開始後3日で細胞をトリプシン処理により細胞浮遊液とし、24穴(直径15.5mm)の温度応答性培養皿に密度7000個/cmになるように播種した。培養開始10日後、温度応答性培養皿上でコンフルエントとなった脂肪由来線維芽細胞に、分化誘導培地(10%ウシ胎児血清、200μMアスコルビン酸、0.87μMインスリン、0.25μMデキサメタゾン、500μMイソブチルメチルキサンチン、5μMピオグリタゾン、抗生物質含有D-MEM)を48時間添加し、脂肪細胞へ分化誘導を行った。分化誘導終了後はメンテナンス培地(10%ウシ胎児血清、200μMアスコルビン酸、0.87μMインスリン、抗生物質含有D-MEM)で培養し、細胞質内に油滴が蓄積され、脂肪細胞に分化したことを確認した。培養開始19~25日後、温度応答性培養皿を20度で培養した。40分以内に脂肪細胞は自然にはがれ、脂肪細胞シートとして培養液中に浮遊した。
(脂肪細胞シートにおけるアディポネクチンの分泌)
 脂肪細胞シートを24時間培養した培養培地を採取し、酵素免疫抗体法(ELISA法)により培養液中のアディポネクチンを測定した。
(脂肪細胞シートの組織学的検討)
 脂肪細胞シートの凍結切片を作製し、4%パラホルムアルデヒドで固定後、ヘマトキシリン・エオジン染色およびアディポネクチン免疫染色を施行した。
(心不全モデルおよび脂肪細胞シート移植)
 雌性C57BL/6J(野生型マウス)およびアディポネクチンノックアウト遺伝子改変マウスを用いた。心筋梗塞モデルは左冠動脈前下降枝結紮術により作製した。イソフルランの吸入麻酔人工呼吸下(1.0%イソフルラン、換気量1ml、100サイクル/分)に全身麻酔をした後、左開胸を行い、心臓を露出した。左冠動脈起始部から約1mmの部位を8-0プロリン糸で結紮した。
冠動脈結紮術15分後、脂肪細胞シートをPBSで穏やかに洗浄し、先曲ピンセット上に載せて左室前壁の梗塞部位に滑らせ、静置した。移植20分後に閉胸した。無治療群に対しては、移植操作なしで同様の処置を行った。
(動物実験プロトコル)
 冠動脈結紮術15分後、ラットを2群に分けて以下の処置を行った。すなわち、野生型マウス由来脂肪細胞シート2枚を左室前壁に移植した群(W群)、アディポネクチンノックアウトマウス由来脂肪細胞シート2枚を左室前壁に移植した群(K群)、および移植を行わない未治療の群(C群)である。手術後2日に組織学的評価、分子学的評価を行った。手術後4週間後に心臓超音波検査および組織学的評価を行った。
(心臓超音波検査)
 イソフルランの吸入麻酔により抑制状態を得たのち、14MHzトランスデューサーを備えた心臓超音波システムを用いて、乳頭筋レベルの左室短軸像を得た。左室の拡張末期径(LVDd)および収縮末期径(LVDs)を測定した。測定は3回以上繰り返し、平均値を求めた。左室駆出率(EF)は以下の式から算出した。
EF(%)=(LVDd―LVDs)/LVDd×100
(組織学的評価)
 手術後2日および28日において、カリウム投与により心臓を拡張期で停止させた後摘出し、左室を短軸方向にスライスした。移植後2日の検体について、常法によりTTC染色を施行した。また、コンパウンドに包埋後、液体窒素中で凍結し、組織切片を作製した。ヘマトキシリン・エオジン染色、マッソン・トリクロム染色、PAS染色、オイルレッドO染色、アディポネクチン免疫染色、CD11b免疫染色を施行した。線維化率はマッソン・トリクロム染色像の画像解析により求めた。心筋細胞径はPAS染色像の心筋細胞径を画像解析により計測した。梗塞範囲はTTC染色像の画像解析により求めた。CD11bは1視野あたりの陽性細胞数を計測した。以上の定量評価について、検体あたり5視野の平均値を算出し、各群で平均値を求めた。
(分子生物学的検討)
 手術後2日において、摘出した心臓サンプルの梗塞部よりRNA抽出をした。RNAから逆転写反応によりcDNAを合成した。定量PCR法により腫瘍壊死因子(TNF-α)転写量を定量し、内在性コントロールであるリセルアルデヒド3リン酸脱水素酵素(GAPDH)転写量で除算した。
(脂肪細胞シート作製)
 ラット脂肪由来線維芽細胞に対して脂肪細胞へ分化誘導をしたところ、分化誘導後7日で細胞質に油滴を蓄積した脂肪細胞が多数出現した(図6.A)。直径15.5mmの温度応答性培養皿で培養した脂肪細胞は、20℃でインキュベートすることにより7mm程度のシート状に回収された(図6.B)。脂肪細胞シートは、主に細胞質に油滴を蓄積した脂肪細胞から成り、約100μm程度の厚さであった(図6.C)。野生型マウス由来の脂肪細胞シートは細胞質にアディポネクチンの発現を認めた。分化誘導処理をしていない野生型マウス由来脂肪由来線維芽細胞シート、アディポネクチンノックアウトマウス由来脂肪細胞シートおよび脂肪由来線維芽細胞シートにおいて、アディポネクチンの発現を認めなかった(図6.D)。脂肪細胞シートを24時間培養した培養液においてアディポネクチン分泌を認めた。一方、細胞培養液自体や野生型マウス由来脂肪由来線維芽細胞シートやアディポネクチンノックアウトマウス由来脂肪細胞シートの培養液においてアディポネクチンは検出限界以下の濃度であった。
(脂肪細胞シート由来アディポネクチンが心機能に及ぼす影響)
 心筋梗塞急性期に対するシート移植後28日の心機能評価を図7.A、Bに示す。心臓超音波検査より、W群におけるLVDsの値が、C群と比して有意に小さかったことから、左室拡大が抑制されていると考えられる。K群はC群と比して、LVDd、LVDsともに縮小傾向にあるものの、有意な差ではなかった。また、EFは、W群においてC群と比して有意に高く、K群はC群と比して有意な差はなかった。(図7.A)このことから脂肪細胞シート移植により心機能の増悪が抑制されており、その機序において、脂肪細胞シート由来のアディポネクチンが重要であると考えられる。また、各群の生存率について評価したところ、W群はC群と比して有意に生存率が高かった(p=0.0428)。W群はK群と比して有意ではないものの生存率改善傾向を認めた(p=0.0614)。以上より、心筋梗塞において、脂肪細胞シート移植による外来アディポネクチンを介して予後が改善することが示唆された。
(脂肪細胞シート由来アディポネクチンが心筋組織に及ぼす影響)
 心筋梗塞急性期に対するシート移植28日後、組織学的解析を施行した。W群はK群およびC群と比して心筋細胞径が小さく、心筋梗塞後の心筋肥大が抑制されていることが示唆された(図8.A、B)。マッソン・トリクロム染色により、梗塞部周縁の線維化を評価したところ、W群はK群およびC群と比して有意に線維化が抑制されていた(図8.C、D)。
(脂肪細胞シート由来アディポネクチンによる心筋保護効果)
 心筋梗塞急性期に対する脂肪細胞シート移植2日後、組織学的解析を施行した。TTC染色により梗塞サイズを定量したところ、W群における梗塞サイズはK群およびC群と比して有意に小さかった(図9.A、B)。梗塞部における炎症性サイトカインTNF-α転写程度を評価したところ、W群はK群およびC群と比して転写量が有意に低かった(図9.C)。また、心筋梗塞周縁における炎症細胞の浸潤を炎症細胞マーカーであるCD11bの免疫染色により評価した。W群およびK群における梗塞部周縁のCD11b陽性細胞はC群と比して有意に少なかった(図9.D)。以上より、脂肪細胞シート移植により、アディポネクチンを介して心筋梗塞後の細胞死が抑制され、炎症細胞の浸潤を含む炎症反応が緩和されている可能性が示唆された。
(脂肪細胞シートによるアディポネクチンの持続的産生)
 脂肪細胞シート由来アディポネクチンの持続産生および移植部位の心筋組織対する浸潤を評価するため、アディポネクチンノックアウトマウスをレシピエントとして脂肪細胞シート移植を施行した。野生型マウス由来脂肪細胞シートは移植後1か月間、心筋組織に生着し、アディポネクチンを分泌していた。脂肪細胞シートと接した心筋細胞のECMにおいてアディポネクチンの発現を認めたことから、脂肪細胞シート由来アディポネクチンは近傍の心筋細胞に浸透していることが示唆された(図10.B)。このような近傍の心筋細胞におけるアディポネクチン陽性免疫染色像は、アディポネクチンノックアウトマウス由来脂肪細胞シートでは認めなかったことから、図10.Bの染色像が非特異的なものである可能性は除外される(図10.C)。さらに、脂肪細胞シート移植後1か月の血漿から、脂肪細胞シート由来アディポネクチンが検出された。アディポネクチンノックアウトマウス由来脂肪細胞シート移植マウスの血漿からはアディポネクチンは検出限界以下であった(図10.G)。
 本発明に示される脂肪細胞シートを用いれば、顕著に低下した心機能を改善させられるようになる。そのような細胞シート及びその三次元構造体を利用することでさらなる治療効果を期待することができる。さらに、脂肪細胞シート移植により、血中アディポネクチン濃度を上昇させることが可能となり、生活習慣病をはじめとする様々な疾患に対する治療効果を期待することができる。

Claims (17)

  1. 細胞培養支持体から単離された脂肪細胞含有細胞シートを含む、心臓疾患治療用移植材料。
  2. 前記細胞シートの厚さが50μm以上である、請求項1に記載の心臓疾患治療用移植材料。
  3. 前記細胞シートのアディポネクチン分泌能が1日当たり3×10-14g/cell以上である、請求項1または2のいずれか1項に記載の心臓疾患治療用移植材料。
  4. 前記細胞シートが線維化抑制機能、血管新生機能、アトポーシス抑制機能、および抗炎症機能からなる群より選択される少なくとも1種の機能を有する、請求項1~3のいずれか1項に記載の心臓疾患治療用移植材料。
  5. 前記脂肪細胞が脂肪組織由来線維芽細胞を分化誘導したものである、請求項1~4のいずれか1項に記載の心臓疾患治療用移植材料。
  6. 複数層の細胞シートを積層した状態で含む、請求項1~5のいずれか1項に記載の心臓疾患治療用移植材料。
  7. 前記細胞シートのうち少なくとも一層が筋芽細胞および間葉系幹細胞からなる群より選択される少なくとも1種の細胞をさらに含むものである、請求項1~6のいずれか1項に記載の心臓疾患治療用移植材料。
  8. 前記筋芽細胞が骨格筋芽細胞である、請求項7に記載の心臓疾患治療用移植材料。
  9. 前記間葉系幹細胞が脂肪組織由来のものである、請求項7または8のいずれか1項に記載の心臓疾患治療用移植材料。
  10. スキャフォルドを含まない、請求項1~9のいずれか1項に記載の心臓疾患治療用移植材料。
  11. 脂肪細胞が由来する個体に対して適用される、請求項1~10のいずれか1項に記載の心臓疾患治療用移植材料。
  12. さらにサイトカインまたは増殖因子を含む、請求項1~11のいずれか1項に記載の心臓疾患治療用移植材料。
  13. 前記心臓疾患が、心不全、虚血性心疾患、心筋梗塞、心筋症、心筋炎、肥大型心筋症、拡張相肥大型心筋症および拡張型心筋症からなる群より選択される少なくとも1種の疾患または障害である、請求項1~12のいずれか1項に記載の心臓疾患治療用移植材料。
  14. 脂肪細胞を含有する細胞シートを含む心臓疾患治療用移植材料を製造する方法であって、スキャフォルドを用いず、かつ
    a)水に対する上限臨界溶解温度または下限臨界溶解温度が0~80℃である温度応答性高分子が被覆された細胞培養支持体上で、脂肪細胞を含有する細胞群を培養液中で培養する工程;
    b)培養液の温度を、該上限臨界溶解温度以上または下限臨界溶解温度以下とする工程;および
    c)細胞群を、細胞培養支持体から細胞シートとして剥離する工程
    を含む方法。
  15. 工程c)の前に、
    d)培養液にアスコルビン酸またはその誘導体を加える工程
    をさらに含む、請求項14に記載の方法。
  16. タンパク質分解酵素で処理する工程を含まない、請求項14または15のいずれか1項に記載の方法。
  17. 前記温度応答性高分子が、ポリ(N-イソプロピルアクリルアミド)である、請求項14~16のいずれか1項に記載の方法。
PCT/JP2010/067785 2009-12-03 2010-10-08 脂肪細胞シート、その三次元構造体、及びそれらの製造方法 WO2011067983A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011544214A JP5661048B2 (ja) 2009-12-03 2010-10-08 脂肪細胞シート、その三次元構造体、及びそれらの製造方法
EP10834436.7A EP2510956B1 (en) 2009-12-03 2010-10-08 Adipocyte sheet, three-dimensional structure thereof, and method for producing the same
US13/513,489 US20120308533A1 (en) 2009-12-03 2010-10-08 Adipocyte sheet, three-dimensional structure thereof, and method for producing the same
US15/291,408 US20170035939A1 (en) 2009-12-03 2016-10-12 Adipocyte sheet, three-dimensional structure thereof, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-275905 2009-12-03
JP2009275905 2009-12-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/513,489 A-371-Of-International US20120308533A1 (en) 2009-12-03 2010-10-08 Adipocyte sheet, three-dimensional structure thereof, and method for producing the same
US15/291,408 Division US20170035939A1 (en) 2009-12-03 2016-10-12 Adipocyte sheet, three-dimensional structure thereof, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2011067983A1 true WO2011067983A1 (ja) 2011-06-09

Family

ID=44114842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067785 WO2011067983A1 (ja) 2009-12-03 2010-10-08 脂肪細胞シート、その三次元構造体、及びそれらの製造方法

Country Status (4)

Country Link
US (2) US20120308533A1 (ja)
EP (1) EP2510956B1 (ja)
JP (1) JP5661048B2 (ja)
WO (1) WO2011067983A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108760A1 (ja) * 2012-01-18 2013-07-25 医療法人社団 土合会 疼痛や関節リウマチの治療に有用な組成物、当該組成物を用いた疼痛や関節リウマチの治療方法、サイトカインの濃度を低減させるための組成物、当該組成物を用いたサイトカインの濃度を低減させる方法
JP2017529362A (ja) * 2014-09-22 2017-10-05 アンテロジェン シーオー., エルティーディー.Anterogen Co., Ltd. 間葉系幹細胞−ヒドロゲルを含有する組成物及びこれの製造方法
WO2018164141A1 (ja) 2017-03-06 2018-09-13 学校法人東京女子医科大学 Lypd1阻害剤及びそれを用いた生体組織の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009201915C1 (en) * 2008-08-22 2015-02-26 Regeneus Ltd Therapeutic methods
EP4046642A4 (en) 2019-10-17 2022-12-21 TERUMO Kabushiki Kaisha CELL CULTURE FOR THE TREATMENT OF INFLAMMATORY DISEASES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211865A (ja) 1989-02-10 1990-08-23 Kao Corp 細胞培養支持体材料
WO2002008387A1 (fr) 2000-07-21 2002-01-31 Cellseed Inc. Feuille cellulaire du type muscle cardiaque, construction tridimensionnelle, tissu du type muscle cardiaque et procede de production associe
WO2005011524A1 (en) 2003-08-01 2005-02-10 Cardio Incorporated Three-dimentional tissue structure
WO2006080434A1 (ja) 2005-01-27 2006-08-03 Japan Health Sciences Foundation 間葉系幹細胞を含む細胞シート

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328762B1 (en) * 1999-04-27 2001-12-11 Sulzer Biologics, Inc. Prosthetic grafts
US20050261362A1 (en) * 2004-03-22 2005-11-24 The Regents Of The University Of California Method of increasing endogenous adiponectin and leptin production
US20090169642A1 (en) * 2005-10-14 2009-07-02 Julie Fradette Reconstructed living adipose tissue
US8557583B2 (en) * 2007-03-15 2013-10-15 Dai Nippon Printing Co., Ltd. Cell culture support and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211865A (ja) 1989-02-10 1990-08-23 Kao Corp 細胞培養支持体材料
WO2002008387A1 (fr) 2000-07-21 2002-01-31 Cellseed Inc. Feuille cellulaire du type muscle cardiaque, construction tridimensionnelle, tissu du type muscle cardiaque et procede de production associe
WO2005011524A1 (en) 2003-08-01 2005-02-10 Cardio Incorporated Three-dimentional tissue structure
JP2007528755A (ja) * 2003-08-01 2007-10-18 株式会社カルディオ 三次元組織構造体
WO2006080434A1 (ja) 2005-01-27 2006-08-03 Japan Health Sciences Foundation 間葉系幹細胞を含む細胞シート

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"American Heart Association.", 2001, AMERICAN HEART ASSOCIATION
AUCHINCLOSS, TRANSPLANTATION, vol. 46, 1988, pages 1
CALNE RY., TRANSPLANT PROC, vol. 2, 1970, pages 550
CARPENTIER A; CHACHQUES JC., LANCET, vol. 8840, 1985, pages 1267
CARREL A., J EXP MED, vol. 9, 1907, pages 226 - 8
CARREL A., J EXP MED, vol. 9, 1912, pages 389 - 92
CORIN WJ; GEORGE DT; SINK JD ET AL., J THORAC CARDIOVASC SURG, vol. 104, 1992, pages 1662 - 71
EREN P.; CAMUS S.; MATRONE G. ET AL.: "Adiponectinemia controls pro-angiogenic cell therapy", STEM CELLS, vol. 27, no. 11, 2009, pages 2712 - 21, XP008153356, DOI: doi:10.1002/stem.219
EREN, P. ET AL.: "Adiponectinemia controls pro- angiogenic cell therapy", STEM CELLS, vol. 27, no. 11, 25 September 2009 (2009-09-25), pages 2712 - 2721, XP008153356 *
HAGEGE AA; DESNOS M; CHACHQUES JC ET AL.: "Preliminary report: follow-up after dynamic cardiomyoplasty", LANCET, vol. 335, 1990, pages 1122 - 4
HO KK; ANDERSON KM; KANNEL WB; GROSSMAN W; LEVY D., CIRCULATION, vol. 88, 1993, pages 107 - 115
HWANG H.; KLONER RA: "Improving regenerating potential of the heart after myocardial infarction: Factor-based approach", LIFE SCIENCES, vol. 86, 2010, pages 461 - 472, XP026969927
KRATZ JM; JOHNSON WS; MUKHERJEE R ET AL., J THORAC CARDIOVASC SURG, vol. 107, 1994, pages 868 - 78
LEOR J; ETZION SA; DAR A ET AL., CIRCULATION, vol. 102, no. III, 2000, pages 111 - 56,111-61
LI RK; JIA ZQ; WEISEL RD ET AL., CIRCULATION, vol. 100, no. II, 1999, pages II-63 - II-69
RYAN TJ; ANTMAN EM; BROOKS NH; CALIFF RM; HILLIS LD; HIRATZKA LF; RAPAPORT E; RIEGEL B; RUSSELL RO; SMITH EE III, J AM COLL CARDIOL., vol. 34, 1999, pages 890 - 911
See also references of EP2510956A4
SHIBATA, R. ET AL.: "Adiponectin and cardiovascular disease", CIRC J, vol. 73, no. 4, 3 March 2009 (2009-03-03), pages 608 - 614, XP008153396 *
SHIBATA, R.; N. OUCHI; T. MUROHARA: "Adiponectin and cardiovascular disease", CIRC J, vol. 73, no. 4, 2009, pages 608 - 14, XP008153396, DOI: doi:10.1253/circj.CJ-09-0057
SUMI, M. ET AL.: "Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis", LIFE SCI, vol. 80, no. 6, 2007, pages 559 - 665, XP008153354 *
URETSKY BF; MULARI S; REDDY S ET AL., CIRCULATION, vol. 76, 1987, pages 827 - 34
YASUHIRO SHUDO ET AL.: "Kingasaibo to Shibo Yurai Kan'yokei Kansaibo o Heiyo shita Saibo Sheet ni yoru Rat Manseiki Shinkin Kosoku Model ni Taisuru Shinkin Saisei Koka no Kento", GEN THORAC CARDIOVASC SURG, vol. 57, 10 September 2009 (2009-09-10), pages 488, XP008153442 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108760A1 (ja) * 2012-01-18 2013-07-25 医療法人社団 土合会 疼痛や関節リウマチの治療に有用な組成物、当該組成物を用いた疼痛や関節リウマチの治療方法、サイトカインの濃度を低減させるための組成物、当該組成物を用いたサイトカインの濃度を低減させる方法
JP2017529362A (ja) * 2014-09-22 2017-10-05 アンテロジェン シーオー., エルティーディー.Anterogen Co., Ltd. 間葉系幹細胞−ヒドロゲルを含有する組成物及びこれの製造方法
WO2018164141A1 (ja) 2017-03-06 2018-09-13 学校法人東京女子医科大学 Lypd1阻害剤及びそれを用いた生体組織の製造方法

Also Published As

Publication number Publication date
JPWO2011067983A1 (ja) 2013-04-18
EP2510956B1 (en) 2017-08-30
EP2510956A4 (en) 2014-06-04
US20120308533A1 (en) 2012-12-06
US20170035939A1 (en) 2017-02-09
EP2510956A1 (en) 2012-10-17
JP5661048B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
JP6076402B2 (ja) 心臓幹細胞
US20170035939A1 (en) Adipocyte sheet, three-dimensional structure thereof, and method for producing the same
JP2015165921A (ja) 心筋再生用細胞シート、製造方法及びその利用方法
JP5407343B2 (ja) 生体組織の作製方法
WO2015105249A1 (ko) 피부 재생 또는 상처 치유를 위한 중간엽 줄기세포-하이드로겔-생분해성또는중간엽 줄기세포-하이드로겔-비분해성 지지체 조성물
WO2011016423A1 (ja) 膵島細胞シート、製造方法及びその利用方法
JP2013138691A (ja) 寸法が保持された細胞シート、その製造方法、及びそのための細胞培養担体
JP2016039806A (ja) サイトカイン産生細胞シートとその利用方法
Kirby et al. Cell sheets in cell therapies
US11666604B2 (en) Multilayered cell sheet of cardiac stem cells and method of preparing the same
JP7282232B2 (ja) 接着状態の細胞培養物の改変方法
JP6923204B2 (ja) 積層化細胞シート組成物を製造する方法、それにより製造される積層化細胞シート組成物及びその製造装置
Munderere et al. The progress of stem cell therapy in myocardial-infarcted heart regeneration: cell sheet technology
WO2021149830A1 (ja) 臓器の表面への貼付のための生着シート状物
JP5713086B2 (ja) 生体組織の作製方法
JP2019000038A (ja) 積層化細胞シートの作製方法及び積層化細胞シート
Hu et al. Epidermal cells delivered for cutaneous wound healing
JP7471069B2 (ja) 移植片の活性を高める方法
JP7323919B2 (ja) 虚血性心疾患治療用細胞シート
WO2021065976A1 (ja) 移植片の活性を高める方法
Haraguchi et al. Cell-Based Therapy for Cardiovascular Injury
Fujita et al. Current Perspectives on Methods for Administering Human Pluripotent Stem Cell-Derived Cells for Myocardial Repair
Lesman et al. Stem Cell-based Replacement Tissue for Heart Repair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544214

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010834436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010834436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13513489

Country of ref document: US