WO2018164141A1 - Lypd1阻害剤及びそれを用いた生体組織の製造方法 - Google Patents

Lypd1阻害剤及びそれを用いた生体組織の製造方法 Download PDF

Info

Publication number
WO2018164141A1
WO2018164141A1 PCT/JP2018/008630 JP2018008630W WO2018164141A1 WO 2018164141 A1 WO2018164141 A1 WO 2018164141A1 JP 2018008630 W JP2018008630 W JP 2018008630W WO 2018164141 A1 WO2018164141 A1 WO 2018164141A1
Authority
WO
WIPO (PCT)
Prior art keywords
lypd1
cell
inhibitor
vascular endothelial
cells
Prior art date
Application number
PCT/JP2018/008630
Other languages
English (en)
French (fr)
Inventor
勝久 松浦
清水 達也
信奈子 青木
覚 阪本
Original Assignee
学校法人東京女子医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京女子医科大学 filed Critical 学校法人東京女子医科大学
Priority to US16/491,498 priority Critical patent/US20200030409A1/en
Priority to JP2019504615A priority patent/JP7045723B2/ja
Priority to EP18763814.3A priority patent/EP3593816A4/en
Publication of WO2018164141A1 publication Critical patent/WO2018164141A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to an inhibitor of LYPD1 for promoting the formation of a vascular endothelial network in living tissue.
  • the present invention also relates to a method for producing a living tissue in which formation of a vascular endothelial network is promoted. Note that this application claims priority based on Japanese Patent Application No. 2017-42200 filed on March 6, 2017 with the Japan Patent Office, the entire specification of which is incorporated herein by reference. .
  • Ischemic heart disease is the second leading cause of death in Japan and is still one of the most important diseases to be solved.
  • angiogenesis therapy for ischemic heart disease therapeutic methods for promoting angiogenesis such as administration of angiogenesis inducing factors such as vascular endothelial growth factor (VEGF) and transplantation of vascular endothelial progenitor cells have been widely developed. It was. On the other hand, these treatment methods have a concern of promoting angiogenesis throughout the body, and are difficult to apply to cancer-bearing patients. Further, when angiogenic growth factors are used, side effects such as angioedema occur, which has a problem for clinical application.
  • VEGF vascular endothelial growth factor
  • a treatment method using a cell sheet has been developed as a treatment method that promotes only angiogenesis of an organ or tissue to be treated without promoting angiogenesis in a systemic organ or tissue.
  • a treatment method for treating heart diseases including ischemic heart disease treatment methods using cell sheets have been developed, and some of them are used clinically (see Patent Documents 1 to 3).
  • Patent Documents 1 to 3 are treatment methods that exert therapeutic effects by the action of cytokines and the like secreted from the cell sheet to the affected area, and are irreversibly damaged by severe diseases. It is considered to be an inadequate treatment for the treatment of organs or tissues. Therefore, in order to treat such an organ or tissue, it is considered necessary to replace (transplant) the living body tissue having a function of substituting the site.
  • the present invention has been made to solve the above-described problems for facilitating the formation of a vascular endothelial network in a living tissue.
  • the present inventors have conducted research and development by adding studies from various angles. As a result, it was surprisingly found that the inhibition of LYPD1 promotes the formation of vascular endothelial network in living tissues. That is, the present invention provides the following inventions.
  • the LYPD1 inhibitor for promoting the formation of a vascular endothelial network in a living tissue.
  • the angiogenesis disorder is cerebrovascular disease, cerebral infarction, transient ischemic attack, moyamoya disease, angina, (peripheral) arterial occlusion, arteriosclerosis, Buerger disease, myocardial infarction, ischemia Cardiomyopathy, congestive heart failure, coronary artery disease, hereditary hemorrhagic telangiectasia, ischemic heart disease, intimal thickening, vascular occlusion, arteriosclerotic peripheral vascular disease, portal hypertension, rheumatic heart disease , Hypertension, thromboembolism, atherosclerosis, restenosis after angioplasty, pulmonary arterial hypertension, vein graft disease, hypertensive heart disease, valvular heart disease
  • the angiogenesis disorder is angina, myocardial infarction, cardiomyopathy, congestive heart failure, coronary artery disease, ischemic heart disease, rheumatic heart disease, restenosis after cardiovascular surgery, hypertensive heart disease, Valvular heart disease, Kawasaki disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, systemic scleroderma, aortitis syndrome, asymptomatic myocardial ischemia, internal carotid artery stenosis, vertebral artery stenosis, dialysis cardiomyopathy, diabetic Cardiomyopathy, pulmonary arterial hypertension, ischemic cardiomyopathy, coronary artery bypass surgery, percutaneous coronary angioplasty, acute myocardial infarction, subacute myocardial infarction, old myocardial infarction, exertion angina, unstable narrowness
  • the LYPD1 inhibitor according to [2] selected from the group consisting of heart disease, acute coronary syndrome, coronary spastic angina
  • the selective inhibitor of LYPD1 is selected from the group consisting of small organic molecules, aptamers, antibodies, antibody fragments, and combinations thereof.
  • the LYPD1 inhibitor according to any one of [1] to [5], wherein the LYPD1 inhibitor is a cell treated with an inhibitor of LYPD1 expression and / or an inhibitor of LYPD1 expression.
  • the inhibitor of LYPD1 expression is antisense RNA or DNA molecule, RNAi-inducible nucleic acid, microRNA (miRNA), ribozyme, genome-edited nucleic acid and their expression vector, organic small molecule, aptamer, antibody, antibody fragment
  • the LYPD1 inhibitor according to [8] or [9] selected from the group consisting of combinations thereof.
  • a pharmaceutical composition for treating and / or preventing an angiogenic disorder comprising the LYPD1 inhibitor according to any one of [1] to [10] as an active ingredient.
  • VEGF Vascular endothelial growth factor
  • HGF hepatocyte growth factor
  • FGF fibroblast growth factor
  • EGF epidermal growth factor
  • PDGF platelet-derived growth factor
  • IGF insulin-like growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • PIGF placental growth factor
  • MMP matrix metalloproteinase
  • a method for producing a living tissue in which formation of a vascular endothelial network is promoted The following steps: (A1) providing a cell group comprising a first cell expressing LYPD1 and a vascular endothelial cell and / or a vascular endothelial precursor cell; (A2) a step of treating the cell group obtained by the step (a1) with an LYPD1 inhibitor; and (a3) a step of culturing the cell group obtained by the step (a2).
  • (B1) a step of treating a cell group containing a first cell expressing LYPD1 with an LYPD1 inhibitor; (B2) contacting the vascular endothelial cells and / or vascular endothelial progenitor cells with the cell group obtained in the step (b1); and (b3) culturing the cell group obtained in the step (b2).
  • the LYPD1 inhibitor is an antisense RNA or DNA molecule, an RNAi-inducible nucleic acid, a microRNA (miRNA), a ribozyme, a genome-edited nucleic acid, an expression vector thereof, a cell into which the expression vector is introduced, Selected from the group consisting of a second cell having a lower or non-expressed LYPD1 expression level than the LYPD1 expression level of one cell, an organic small molecule, an aptamer, an antibody, an antibody fragment, and combinations thereof [13] or The method according to [14]. [16] The method according to [15], wherein the second cell is a cell derived from skin, esophagus, lung, and / or liver.
  • a method for screening an LYPD1 inhibitor comprising the following steps: (I-1) providing a cell group comprising a first cell that expresses LYPD1, and a vascular endothelial cell and / or a vascular endothelial precursor cell; (I-2) a step of treating the cell group obtained in the step (i-1) with a candidate substance; (I-3) culturing the cell group obtained by the step (i-2); and (i-4) evaluating formation of a vascular endothelial network in the cell group obtained by the step (i-3).
  • LYPD1 is highly expressed and angiogenesis can be promoted in a living tissue having an angiogenesis disorder.
  • FIG. 1 shows that cardiac fibroblasts inhibit vascular endothelial network formation.
  • A It is a figure which shows the procedure of a present Example.
  • B Human skin fibroblasts (NHDF) or cardiac fibroblasts (atrial is NHCF-a, ventricle is NHCF-v) and human umbilical vein endothelial cells (HUVEC) are co-cultured and immunized with anti-CD31 antibody The stained figure is shown. Green indicates CD31 positive cells.
  • C It is a graph which shows the full length of the vascular endothelial network shown by (B).
  • D It is a graph which shows the number of branch points of the vascular endothelial network shown by (B).
  • FIG. 2 shows human skin fibroblasts (NHDF) or human cardiac fibroblasts (atrial is NHCF-a, ventricle is NHCF-v) and iPS cell-derived vascular endothelial cells (iPS-CD31 +) or human heart-derived microvessels. It is a figure which shows the vascular endothelial network after coculturing with endothelial cells (HMVEC-C).
  • FIG. 3 shows that mouse cardiac fibroblasts inhibit vascular endothelial network formation.
  • A It is a figure which shows the procedure of a present Example.
  • FIG. 4 shows that rat cardiac fibroblasts inhibit vascular endothelial network formation.
  • A It is a figure which shows the procedure of a present Example.
  • B It is a figure which shows the vascular endothelial network after coculturing a neonatal rat skin fibroblast (RDF) or a cardiac fibroblast (RCF), and a rat neonatal heart origin vascular endothelial cell.
  • RDF neonatal rat skin fibroblast
  • RCF cardiac fibroblast
  • FIG. 5 is a diagram comparing gene expression of dermal fibroblasts and cardiac fibroblasts.
  • A The heat map about a glycoprotein related gene is shown.
  • B shows a heat map for genes associated with angiogenesis.
  • FIG. 6 is a diagram showing a site where LYPD1 is expressed.
  • FIG. 7 is a diagram comparing LYPD1 gene expression in primary cultured cells of humans and rats.
  • NHDF human primary dermal fibroblasts
  • NHCF-a human primary cardiac fibroblasts
  • NHCF-v human primary cardiac fibroblasts
  • FIG. 8 is a diagram showing that vascular network formation is restored by inhibition of LYPD1 (siRNA).
  • A It is a figure which shows the procedure of a present Example.
  • B The figure which introduce
  • C The figure shows immunostaining with anti-CD31 antibody after introduction of control siRNA into human cardiac fibroblasts, co-culture with HUVEC. Green indicates CD31 positive cells.
  • FIG. 9 shows that vascular network formation is restored by inhibition of LYPD1 (anti-LYPD1 antibody).
  • A Human heart fibroblasts and HUVEC are co-cultured in the presence of anti-LYPD1 antibody and immunostained with anti-CD31 antibody. Green indicates CD31 positive cells.
  • B shows a figure in which human cardiac fibroblasts and HUVEC are co-cultured in the presence of control IgG and then immunostained with an anti-CD31 antibody. Green indicates CD31 positive cells.
  • C It is a graph which shows the full length of the vascular endothelial network shown by (A) and (B).
  • FIG. 10 shows that vascular network formation is restored by inhibition of LYPD1 (anti-LYPD1 antibody).
  • A shows a diagram in which rat neonatal cardiac fibroblasts and rat neonatal heart-derived vascular endothelial cells were co-cultured in the presence of anti-LYPD1 antibody and then immunostained with anti-CD31 antibody. Green indicates CD31 positive cells.
  • B The figure which co-cultured rat neonatal heart fibroblasts and rat neonatal heart-derived vascular endothelial cells in the presence of control IgG and then immunostained with anti-CD31 antibody.
  • FIG. 11 shows the results of microarray analysis of gene expression in human dermal blast cells (NHDF), human cardiac fibroblasts (NHCF), iPS-derived stromal cells, and mesenchymal stem cells (MSC). Cluster analysis is shown on the right.
  • FIG. 12 shows that human iPS-derived stromal cells (iPS fibro-like) inhibit vascular endothelial network formation derived from human iPS CD31-positive cells (iPS CD31 +).
  • FIG. 13 shows that recombinant LYPD1 inhibits vascular endothelial network formation.
  • A FLAG-LYPD1 protein purified using anti-DYKDDDK tag antibody magnetic beads was subjected to dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting, and peroxidase-conjugated anti-DYKDDDK tag monoclonal antibody (upper) and rabbit polyclonal anti-LYPD1 Detection was with an antibody (bottom).
  • B A state of vascular endothelial network (tube) formation after treatment with the recombinant LYPD1 protein is shown. CD31 (green) and nuclei (Hoechst 33342 (blue)) were stained. The scale bar represents 400 ⁇ m.
  • FIG. 14 is a diagram showing that vascular endothelial network formation recovery is mediated by suppression of LYPD1.
  • A Human cardiac fibroblasts (2.4 ⁇ 10 5 cells / cm 2 ) transfected with control siRNA or LYPD1 siRNA and HUVEC (2 ⁇ 10 4 cells / cm 2 ) are co-cultured and cultured for 3 days After fixation, the cells were stained with CD31 antibody and Hoechst 33342.
  • rLYPD1 was added at a concentration of 1.5 ug / mL.
  • -For rLYPD1 an equal volume of buffer (composition: 500 ug / ml DYKDDDDK peptide, 10 mM Tris-HCl, pH 7.4, 150 mM NaCl) was added.
  • the image acquired using ImageXpress Ultra confocal high content screening system (molecular device) is shown. Blue: Hoechst 33342 (nucleus), green: CD31.
  • B The length of CD31 positive cells was measured using MetaXpress software (Molecular Device) for the images obtained in (A), and the total length was shown as a graph.
  • FIG. 15 shows the effect of rLYPD1 on HUVEC lumen formation on Matrigel (registered trademark).
  • LYPD1 protein In the present specification, the term “LYPD1” is used as synonymous with the meaning generally used in the art, and refers to a protein also referred to as LY6 / PLAUR domain containing 1, PHTS, LYPDC1 ( Hereinafter referred to as “LYPD1”). LYPD1 is a protein that is widely conserved in mammals, and has been found in, for example, humans, monkeys, dogs, cows, mice, rats, and the like.
  • Natural human LYPD1 mRNA and amino acid sequences for example, in GenBank and GenPept databases, have accession numbers NM_001077427 (SEQ ID NO: 1) and NP_001070895 (SEQ ID NO: 2), NM_144586 (SEQ ID NO: 3), and NP_653187 (SEQ ID NO: 4). ), NM_001321234 (SEQ ID NO: 5) and NP_001308163 (SEQ ID NO: 6), and NM_001321235 (SEQ ID NO: 7) and NP_001308164 (SEQ ID NO: 8).
  • mRNA and amino acid sequences of natural mouse LYPD1 are, for example, the accession numbers NM_145100 (SEQ ID NO: 9) and NP_659568 (SEQ ID NO: 10), NM_001311089 (SEQ ID NO: 11) and NP_001298018 (SEQ ID NO: 11) in the GenBank database and the GenPept database. 12), and NM_001311090 (SEQ ID NO: 13) and NP_001298019 (SEQ ID NO: 14).
  • LYPD1 may include naturally occurring LYPD1 and variants and modifications thereof.
  • the term may also mean a fusion protein in which at least one LYPD1 domain that retains LYPD1 activity is fused to, for example, another polypeptide.
  • LYPD1 may be derived from any organism, but is preferably derived from mammals (eg, humans, non-human primates, rodents (mouse, rats, hamsters, guinea pigs, etc.), rabbits, dogs, cows, horses. , Pigs, cats, goats, sheep, etc.), more preferably humans and non-human primates, particularly preferably human LYPD1.
  • LYPD1 is known as a highly expressed protein in the brain, but its function is hardly known. From the amino acid motif of LYPD1, it is considered to be a glycosylphosphatidylinositol (GPI) anchored protein.
  • GPI glycosylphosphatidylinositol
  • the inventors of the present invention In the process of conducting research for constructing a three-dimensional biological tissue by tissue engineering, the inventors of the present invention, when cardiac fibroblasts derived from any mouse, rat and human mammals and vascular endothelial cells are co-cultured, We found a phenomenon that remarkably suppresses cell network formation. As a result of examining the cause in detail, it was found that the dysfunction of the vascular network was improved by inhibiting LYPD1. The present invention has been completed based on this finding.
  • vascular endothelial network is a capillary-like network constructed by vascular endothelial cells and / or vascular endothelial progenitor cells in a living tissue.
  • CD31 protein is known as a cell surface marker of vascular endothelial cells and / or vascular endothelial progenitor cells.
  • the length of the vascular endothelial network refers to the total length of the vascular endothelial network per unit area
  • the branch point of the vascular endothelial network refers to the total number of sites where the vascular endothelial networks existing per unit area are connected to each other. . That is, in the above screening for the LYPD1 inhibitor, the higher the length and / or branch point of the vascular endothelial network compared to the case where the LYPD1 inhibitor is not used (or a compound as a negative control), It can be evaluated as a LYPD1 inhibitor having a high ability to promote formation.
  • the length and / or branch point of the vascular endothelial network is determined by using an image acquired by a confocal fluorescence microscope or the like using, for example, MetaXpress software (Molecular Devices, LLC), using a CD31 positive region as a vascular endothelial cell, and a vascular endothelial network. And the branch point can be calculated.
  • biological tissue refers to any part of a mammal, and generally refers to a tissue composed of two or more cells.
  • the “biological tissue” may be any part of the subject, may be a biological tissue collected from the subject, and is tissue-engineered in vitro (ex vivo) or in vivo (in vivo). It may be a biological tissue that has been manufactured.
  • the term “subject” means mammals such as cows, horses, rodents (rats, mice, etc.), cats, dogs and primates.
  • the subject according to the invention is a human.
  • the living tissue preferably contains vascular endothelial cells and / or vascular endothelial cells.
  • a known method can be used as a method for producing a living tissue by tissue engineering in vitro (ex vivo) or in vivo.
  • tissue engineering in vitro (ex vivo) or in vivo.
  • a method for constructing a living tissue by stacking cell sheets on a blood vessel bed see International Publication Nos. 2012/036224 and 2012/036225
  • a method for constructing a biological tissue using a three-dimensional printer technology See International Publication No. 2012/058278
  • a method for producing a three-dimensional structure using cells coated with an adhesive film see Japanese Patent Application Laid-Open No. 2012-115254
  • constructing an organ in a living body Method Karlaashi T., Nakauchi H. [From cell therapy to organ regenerative therapy: generation of functional plungent primems.
  • a “cell sheet” used in ex vivo to produce a biological tissue by tissue engineering is a method of culturing a cell group containing a plurality of arbitrary cells on a cell culture substrate. It refers to a single-layer or multi-layer sheet-like cell group obtained by peeling from above.
  • a method for obtaining a cell sheet for example, cells are cultured on a stimulus-responsive culture substrate coated with a polymer whose molecular structure is changed by stimulation of temperature, pH, light, etc., and stimulation of temperature, pH, light, etc.
  • the cells can be detached from the stimulus-responsive culture substrate while maintaining the adhesion state between the cells, or any culture substrate Examples thereof include a method of culturing cells and physically peeling them with tweezers.
  • a stimulus-responsive culture substrate for obtaining a cell sheet a temperature-responsive culture substrate having a surface coated with a polymer whose hydration power changes in a temperature range of 0 to 80 ° C. is known.
  • Cells are cultured on a temperature-responsive culture substrate in a temperature range where the polymer hydration power is weak, and then the culture medium is changed to a temperature at which the polymer hydration power is strong. It can be peeled off and collected.
  • the temperature-responsive culture substrate used for obtaining the cell sheet is preferably a substrate that changes the hydration power of the surface in a temperature range where cells can be cultured.
  • the temperature range is preferably a temperature for culturing cells, for example, 33 ° C. to 40 ° C.
  • the temperature-responsive polymer coated on the culture substrate used for obtaining the cell sheet may be either a homopolymer or a copolymer. Examples of such a polymer include polymers described in JP-A-2-21865.
  • poly (N-isopropylacrylamide) is used as a stimulus-responsive polymer, particularly a temperature-responsive polymer is described as an example (temperature-responsive culture dish).
  • Poly (N-isopropylacrylamide) is known as a polymer having a lower critical solution temperature at 31 ° C. If in a free state, poly (N-isopropylacrylamide) undergoes dehydration in water at a temperature of 31 ° C. or higher, causing polymer chains to aggregate and become cloudy. Conversely, at a temperature below 31 ° C., the polymer chain hydrates and becomes dissolved in water. In the present invention, this polymer is coated and fixed on the surface of a substrate such as a petri dish.
  • the polymer on the surface of the culture substrate is similarly dehydrated. However, since the polymer chain is fixed on the surface of the culture substrate, the surface of the culture substrate is hydrophobic. become. On the other hand, at a temperature lower than 31 ° C., the polymer on the surface of the culture substrate is hydrated, but since the polymer chain is coated on the surface of the culture substrate, the surface of the culture substrate becomes hydrophilic. At this time, the hydrophobic surface is an appropriate surface on which cells can adhere and grow, and the hydrophilic surface is a surface on which cells cannot adhere. Therefore, when the substrate is cooled to less than 31 ° C., the cells are detached from the substrate surface.
  • the cell sheet can be recovered by cooling the substrate to less than 31 ° C.
  • the temperature-responsive culture substrate is not limited as long as it has the same effect, and for example, UpCell (registered trademark) marketed by Cellseed Inc. (Tokyo, Japan) can be used.
  • the living tissue used in the present invention may be a cell sheet (layered cell sheet) in which a plurality of cell sheets are stacked.
  • a method for producing a laminated cell sheet a cell sheet floating in a culture solution is sucked together with a culture solution by a pipette or the like, and is discharged onto a cell sheet of another culture dish and laminated by a liquid flow.
  • stacking using a moving jig is mentioned.
  • a biological tissue containing a laminated cell sheet can be obtained by a known method.
  • LYPD1 inhibitor is a broadly understood term that directly or / indirectly inhibits or significantly suppresses the biological effects of LYPD1 activity. Means a natural or synthetic compound or cell as indicated, such as a cell provided in the form of a cell suspension or cell sheet.
  • the LYPD1 inhibitor includes a selective inhibitor of LYPD1 and an inhibitor of LYPD1 expression described below.
  • the LYPD1 inhibitor is a substance that directly and / or indirectly acts on LYPD1 expressed in a living tissue in which the formation of the vascular endothelial network is inhibited, and promotes the formation of the vascular endothelial network. It is.
  • the LYPD1 inhibitor of the present invention may be a pharmaceutically acceptable salt thereof.
  • pharmaceutically acceptable carrier or excipient means a non-toxic solid, semi-solid or liquid injectable, diluent, encapsulated material or any type of formulation aid.
  • LYPD1 inhibitor is a cell with low expression of LYPD1, for example, a cell with lower expression of LYPD1 than a heart-derived fibroblast (for example, cells derived from the esophagus, testis, skin, kidney, lung, liver, muscle, Preferably, cells derived from esophagus, testis, skin, lung, liver, more preferably fibroblasts derived from esophagus, testis, skin, lung, liver, most preferably fibroblasts derived from skin) may be included.
  • a heart-derived fibroblast for example, cells derived from the esophagus, testis, skin, kidney, lung, liver, muscle.
  • the term “selective inhibitor of LYPD1” refers to an inhibitor that selectively inhibits LYPD1 compared to LYPD proteins other than LYPD1 (eg, LYPD2, LYPD3, LYPD4, LYPD5, LYPD6).
  • “Selective” means that the Ki for the inhibitor LYPD1 is 1/5 times, preferably 1/10 times, more preferably 1/25 times, even more preferably 1/100 times the Ki value for other proteins. It means that there is.
  • the Ki value of an inhibitor of LYPD1 can be measured using various methods well known in the art.
  • the selective inhibitor of LYPD1 may be, for example, a small organic molecule, an aptamer, an antibody, an antibody fragment, and combinations thereof.
  • small organic molecule refers to a molecule having the same size as an organic molecule generally used in pharmaceuticals.
  • the size of the small organic molecule as the LYPD1 inhibitor that can be used in the present invention is preferably in the range of about 5000 Da or less, more preferably about 2000 Da or less, and most preferably about 1000 Da or less.
  • the small organic molecule as the LYPD1 inhibitor refers to a substance that acts directly and / or indirectly on LYPD1 and promotes the formation of a vascular endothelial network in a living tissue, and is selected by a screening method described later. It is possible.
  • aptamer refers to a synthetic DNA or RNA molecule and a peptide molecule capable of specifically binding to a target substance, and can be chemically synthesized in a test tube in a short time.
  • the aptamer used in the present invention is capable of binding to LYPD1 and inhibiting the activity of LYPD1.
  • the aptamer used in the present invention can be obtained, for example, by repeatedly selecting in vitro binding to various molecular targets such as small molecules, proteins, and nucleic acids using the SELEX method (Tuerk C., Gold).
  • the aptamer as an LYPD1 inhibitor may act directly and / or indirectly on LYPD1 and promote the formation of a vascular endothelial network in a living tissue, and is selected by a screening method described later. It is possible.
  • Nucleic acid aptamers that can be used in the present invention are rapidly degraded and removed by nucleases in the bloodstream, so if necessary, molecular modification with a polyethylene glycol (PEG) chain or the like should be used to extend the half-life. Is preferred.
  • PEG polyethylene glycol
  • the LYPD1 inhibitor that can be used in the present invention may be an antibody or antibody fragment that binds to LYPD1 and can partially or completely inhibit LYPD1 activity.
  • the antibody or antibody fragment against LYPD1 that can be used in the present invention is a human-derived antibody, mouse-derived antibody, rat-derived antibody, rabbit-derived antibody or goat-derived antibody as long as it binds to LYPD1 and inhibits LYPD1 activity. Any of these antibodies may be used.
  • an antibody fragment is an F (ab ′) 2, Fab ′, Fab or scFv antibody fragment, which can be obtained by treating with a protease enzyme and optionally reducing it.
  • the antibody or antibody fragment that can be used in the present invention can be produced according to a known antibody or antiserum production method using the LYPD1 protein or a part thereof as an antigen.
  • the LYPD1 protein or a part thereof can be prepared by a known protein expression method and purification method.
  • the antibody or antibody fragment that can be used in the present invention can also be prepared through a phage display method (see, for example, FEBS Letter, 1998, 441, p. 20-24). In this method, a human antibody is expressed on the surface of a phage using a phage in which a human antibody gene is incorporated into circular single-stranded DNA and fused with an outer shell protein constituting the phage.
  • the antibody or antibody fragment as the LYPD1 inhibitor may act directly and / or indirectly on LYPD1 to promote the formation of a vascular endothelial network in a living tissue. It is possible to select by.
  • Inhibitor of LYPD1 expression used in the present invention is a natural or synthetic substance that exhibits a biological effect that directly or / or indirectly inhibits or significantly suppresses the expression of a gene. Means the compound formed. Therefore, an “inhibitor of LYPD1 expression” is a natural or synthesized having a biological effect that directly or / or indirectly inhibits or significantly suppresses the expression of a gene encoding the LYPD1 gene. Means a compound.
  • the LYPD1 inhibitor of the present invention may be a cell that is treated with an inhibitor of LYPD1 expression and LYPD1 expression is inhibited.
  • inhibitors of LYPD1 expression include antisense RNA or DNA molecules, RNAi-inducible nucleic acids (eg, small interfering RNA (siRNA) or small hairpin RNA (shRNA)), microRNA (miRNA), ribozyme, genome Edited nucleic acids and their expression vectors and combinations thereof can be applied.
  • an inhibitor of LYPD1 expression is a small organic molecule, aptamer, antibody, antibody fragment, and combinations thereof that exhibit a biological effect that directly or indirectly inhibits or significantly suppresses LYPD1 gene expression. Can also be applied.
  • the LYPD1 inhibitor may be a cell treated with the above-mentioned inhibitor of LYPD1 expression.
  • antisense RNA or DNA molecule has a base sequence complementary to RNA having a certain function (sense RNA) such as messenger RNA (mRNA), and sense RNA and double-stranded DNA. It is a molecule having the function of inhibiting the synthesis of the protein that the sense RNA should bear by forming.
  • antisense oligonucleotides comprising antisense RNA or DNA molecules inhibit translation into proteins by binding to LYPD1 mRNA. Thereby, the expression level of LYPD1 can be reduced and the activity of LYPD1 can be inhibited.
  • Methods for synthesizing antisense RNA or DNA molecules are well known in the art and can be used in the present invention.
  • RNAi-inducible nucleic acid refers to a polynucleotide that can induce RNA interference (RNAi) when introduced into a cell, and is usually 19 to 30 nucleotides, preferably 19 It may be RNA, DNA or RNA-DNA chimeric molecules comprising ⁇ 25 nucleotides, more preferably 19-23 nucleotides, and may be subjected to any modification.
  • RNAi RNA interference
  • RNAi may be generated with respect to mRNA, or RNA immediately after transcription before processing, that is, RNA having a nucleotide sequence including an exon, an intron, a 3 ′ untranslated region, and a 5 ′ untranslated region.
  • the RNAi method that can be used in the present invention includes (1) directly introducing a short double-stranded RNA (siRNA) into a cell, or (2) incorporating a small hairpin RNA (shRNA) into various expression vectors.
  • siRNA short double-stranded RNA
  • shRNA small hairpin RNA
  • RNAi may be induced by a technique such as introduction into the RNA.
  • the RNAi-inducible nucleic acid may include siRNA, shRNA, or miRNA that can cleave LYPD1 RNA or suppress its function, and these RNAi nucleic acids may be directly introduced using liposomes or the like. It may be introduced using an expression vector that induces RNAi nucleic acid.
  • RNAi-inducible nucleic acid for LYPD1 used in the present invention can be synthesized using a well-known chemical synthesis technique based on the LYPD1 sequence that is the target of the RNAi-inducible nucleic acid.
  • chemically synthesized using an automatic DNA (/ RNA) synthesizer utilizing a DNA synthesis technique such as a solid phase phosphoramidite method, or a contract synthesis company related to siRNA (for example, Life Technologies) It is also possible to synthesize by consigning.
  • the siRNA used in the present invention is derived from its precursor, short-hairpin type double-stranded RNA (shRNA), through processing by an intracellular RNase, Dicer.
  • the RNAi-inducible nucleic acid used is a sequence of 19 to 30 nucleotides, preferably 19 to 25 nucleotides, more preferably 19 to 23 nucleotides derived from SEQ ID NO: 15 or its complementary sequence (SEQ ID NO: 16).
  • RNA containing. Such RNA may have one or several, for example two additional sequences (eg, tt, uu, tg, etc.) added to the 5 ′ or 3 ′ end thereby preventing degradation in the cell, Stability can be increased.
  • RNAi-inducing nucleic acid for LYPD1 used in the present invention may be any nucleic acid that exhibits a biological effect that inhibits or significantly suppresses the expression of LYPD1, and those skilled in the art can refer to the nucleotide sequence of LYPD1. It is possible to synthesize. For example, it can be used as an LYPD1 siRNA containing the following sequences, but is not intended to be limited to the following, and sequences complementary to the following sequences may be used: 5′-GGCUUUGCGCUGCAAAUCC-3 ′ (SEQ ID NO: 15) 5′-GGAUUUGCAGCCGCAAAGCC-3 ′ (SEQ ID NO: 16)
  • MicroRNA MicroRNA
  • miRNA is a single-stranded RNA molecule having a length of 21 to 25 bases, and is involved in regulation of the expression of genes after transcription in eukaryotes. miRNA generally recognizes the 3 ′ UTR of mRNA, suppresses translation of the target mRNA, and suppresses protein production. Therefore, miRNA that can directly and / or indirectly reduce the expression level of LYPD1 is also included in the scope of the present invention.
  • Ribozyme is a general term for enzymatic RNA molecules that can catalyze the specific cleavage of RNA. Although ribozymes have various activities, research focusing on ribozymes as enzymes that cleave RNA has made it possible to design ribozymes that cleave RNA in a site-specific manner. Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and M1 RNA contained in RNase P, but some have an active domain of about 40 nucleotides called hammerhead type or hairpin type. (See, for example, Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzymes, 1990, 35, 2191).
  • the self-cleaving domain of the hammerhead ribozyme cleaves 3 ′ of C15 in the sequence G13U14C15, and base pairing between U14 and A9 is important for its activity.
  • C15, A15 or U15 it has been shown that it can be cleaved (see, for example, Koizumi, M. et al., FEBS Lett, 1988, 228, 228).
  • a ribozyme whose substrate binding site is complementary to the RNA sequence near the target site, it is possible to obtain a restriction enzyme-like RNA-cleaving ribozyme that recognizes the sequence UC, UU or UA in the target RNA.
  • Hairpin ribozymes can also be used in the present invention. This ribozyme is found, for example, in the minus strand of tobacco ring spot virus satellite RNA (Buzayan, JM., Nature, 1986, 323, 349.). It has been shown that target-specific RNA-cleaving ribozymes can also be produced from hairpin ribozymes (eg, Kikuchi, Y. & Sasaki, N., Nucl. Acids. Res., 1991, 19, 6751 .; Hiroshi Kikuchi, See Chemistry and Biology, 1992, 30, 112.).
  • Kikuchi Kikuchi, Y. & Sasaki, N., Nucl. Acids. Res., 1991, 19, 6751 .
  • Hiroshi Kikuchi See Chemistry and Biology, 1992, 30, 112.
  • ribozymes targeting LYPD1 are also included in the scope of the present invention.
  • an inhibitor of LYPD1 expression uses a genome-edited nucleic acid that exhibits a biological effect that directly and / or indirectly inhibits or significantly suppresses LYPD1 gene expression. be able to.
  • the genome editing nucleic acid refers to a nucleic acid used for editing a desired gene in a system using a nuclease used for gene targeting. Nucleases used for gene targeting include not only known nucleases but also new nucleases to be used for gene targeting in the future.
  • known nucleases include CRISPR / Cas9 (Ran, FA, et al., Cell, 2013, 154, 1380-1389), TALEN (Mahfuz, M., et al., PNAS, 2011, 108). , 2623-2628), ZFN (Urnov, F., et al., Nature, 2005, 435, 646-651).
  • the CRISPR / Cas9 system makes it possible to introduce double-strand breaks at arbitrary sites in DNA.
  • at least three elements of a protospacer adjacent motif (PAM sequence), a guide RNA (gRNA), and a Cas protein (Cas, Cas9) are required.
  • GRNA is designed to form a sequence complementary to the target site adjacent to the PAM sequence (5'-NGG), and introduced into the desired cells together with the Cas protein.
  • the introduced gRNA and Cas protein form a complex.
  • the gRNA binds to the target sequence on the genome, and the Cas protein cleaves the duplex of the target genomic DNA through its nuclease activity.
  • homologous recombination repair Homology Directed Repair (HDR)
  • heterologous end-joining repair non-homogenous end joining (NHEJ)
  • HDR Homology Directed Repair
  • NHEJ non-homogenous end joining
  • the genome-edited nucleic acid may be a gRNA that targets the LYPD1 gene, or a vector that expresses the gRNA.
  • the genome-editing nucleic acid may further comprise a nucleic acid that expresses a nuclease used for gene targeting.
  • the nuclease preferably Cas protein
  • used for gRNA and gene targeting may be encoded by the same vector, or a separately encoded vector may be used.
  • the genome-editing nucleic acid may further comprise an HDR repair template nucleic acid.
  • the genome editing nucleic acid may be a plasmid vector or a viral vector.
  • a known method can be used as a method for introducing the nucleic acid into any cell using the genome-edited nucleic acid, and is not particularly limited.
  • an inhibitor of LYPD1 expression directly or / directly inhibits LYPD1 gene expression or significantly are provided as small organic molecules, aptamers, antibodies, antibody fragments, or combinations thereof that exhibit a biological effect that inhibits
  • an inhibitor of NF- ⁇ B can be used.
  • Parthenolide derivatives, particularly dimethylaminopartenolide (DMAPT), which are inhibitors of NF- ⁇ B, are known to suppress the expression of LYPD1 (Burnett RM., Et al. Oncotarget 6: 12682-12696 (2015)). .
  • the LYPD1 inhibitor of the present invention may be, but is not limited to, the following parthenolide derivatives: 11 ⁇ H, 13-dimethylaminopartenolide (DMAPT); 11 ⁇ H, 13-diethylaminopartenolide; 11 ⁇ H, 11 ⁇ H, 13- (pyrrolidin-1-yl) partenolide; 11 ⁇ H, 13- (piperidin-1-yl) partenolide; 11 ⁇ H, 13- (morpholin-1-yl) partenolide; , 13- (4-methylpiperidin-1-yl) partenolide; 11 ⁇ H, 13- (4-methylpiperazin-1-yl) partenolide; 11 ⁇ H, 13- (homopiperidin-1-yl) partenolide; 11 ⁇ H, 13- ( Heptameth N'imin-1-yl) parthenolide, 11 ⁇ H, 13- (azetidin-1-yl) parthenolide; 11 ⁇ H, 13- dial
  • the inhibitor of LYPD1 expression as the LYPD1 inhibitor is the above-mentioned antisense RNA or DNA molecule, RNAi-inducible nucleic acid, microRNA (miRNA), ribozyme or
  • the genome-edited nucleic acid may be provided as an expression vector encoded by any vector.
  • the vector used for expressing the inhibitor of LYPD1 expression is not particularly limited, and a known one can be appropriately selected. For example, a plasmid vector, a cosmid vector, a fosmid vector, a virus vector, an artificial chromosome vector and the like can be mentioned.
  • the method of introducing an inhibitor of LYPD1 expression into a vector can be introduced using a known gene recombination technique, and is not particularly limited.
  • the LYPD1 inhibitor comprises the above-described antisense RNA or DNA molecule, RNAi-inducible nucleic acid, microRNA (miRNA), ribozyme or genome-edited nucleic acid, It may be a cell treated with an expression vector encoded by any vector.
  • the LYPD1 inhibitor may be a cell into which an expression vector of an inhibitor of LYPD1 expression is introduced as a result of treating the cell with an expression vector of an inhibitor of LYPD1 expression.
  • a method for introducing an expression vector of an inhibitor of LYPD1 expression into a cell may be a known method, and is not particularly limited.
  • a method for selecting a cell in which the expression vector is introduced and the LYPD1 expression inhibitor is temporarily or continuously expressed For example, a drug corresponding to a drug resistance gene encoded in the expression vector (For example, neomycin, hygromycin, etc.) may be selected.
  • the LYPD1 inhibitor may be a cell treated with the above-described organic small molecule, aptamer, antibody, or antibody fragment.
  • compositions may be a pharmaceutical composition for treating and / or preventing an angiogenic disorder comprising an LYPD1 inhibitor as an active ingredient.
  • the LYPD1 inhibitor used in the present invention or a pharmaceutical composition containing an LYPD1 inhibitor as an active ingredient is used in a living tissue that expresses LYPD1, for example, a brain, heart, kidney, or muscle living tissue that highly expresses LYPD1. Promote network formation.
  • the LYPD1 inhibitor or the pharmaceutical composition containing the LYPD1 inhibitor as an active ingredient promotes formation of a vascular endothelial network, and enables treatment and / or prevention of angiogenesis disorders.
  • the angiogenesis disorder that can be treated and / or prevented by the LYPD1 inhibitor of the present invention or the pharmaceutical composition containing the LYPD1 inhibitor as an active ingredient is, for example, cerebrovascular disease, cerebral infarction, transient cerebral ischemic attack , Moyamoya disease, angina pectoris, (peripheral) arterial occlusion, arteriosclerosis, Buerger disease, myocardial infarction, ischemia, cardiomyopathy, congestive heart failure, coronary artery disease, hereditary hemorrhagic telangiectasia, ischemic heart Disease, intimal thickening, vascular occlusion, arteriosclerotic peripheral vascular disease, portal hypertension, rheumatic heart disease, hypertension, thromboembolism, atherosclerosis, restenosis after angioplasty, pulmonary arterial hypertension, Vein graft disease, hypertensive heart disease, valvular heart disease, Kawasaki disease, dilated cardiomyopathy, hyper
  • the pharmaceutical composition of the present invention may further contain an angiogenesis inducing factor.
  • angiogenesis inducing factor for example, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), Examples include angiopoietin, transforming growth factor- ⁇ (TGF- ⁇ ), placental growth factor (PIGF), matrix metalloproteinase (MMP), or family proteins thereof.
  • VEGF vascular endothelial growth factor
  • HGF hepatocyte growth factor
  • FGF fibroblast growth factor
  • EGF epidermal growth factor
  • PDGF platelet derived growth factor
  • IGF insulin-like growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • PIGF placental growth factor
  • MMP matrix metalloproteinase
  • One of these angiogenesis-inducing factors may be selected from the
  • the LYPD1 inhibitor of the present invention or the pharmaceutical composition containing the LYPD1 inhibitor as an active ingredient can be applied to a subject in need thereof to treat and / or prevent an angiogenic disorder.
  • the selective inhibitor of LYPD1 can be administered in the form of a pharmaceutical composition as defined below.
  • the LYPD1 inhibitor is administered to the subject in a therapeutically effective amount.
  • “Therapeutically effective amount” means the amount of LYPD1 inhibitor necessary and sufficient to exert the desired effect of treating and / or preventing an angiogenic disorder.
  • the daily use amount of the LYPD1 inhibitor included in the present invention is determined within the scope of medical judgment by a doctor.
  • the therapeutically effective dose is the disorder to be treated and / or prevented and the severity of the disorder, the activity of the compound used, the composition used, the patient's age, weight, the patient's health status, sex and diet, administration time Depending on the route of administration and the excretion rate of the compound used, the duration of treatment, the drugs used simultaneously, and other factors well known in the medical field.
  • one of ordinary skill in the art can initiate administration of the LYPD1 inhibitor in an amount lower than that required to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. It is a range.
  • the dose of LYPD1 inhibitor can vary over a wide range of 0.01 to 1000 mg per adult day.
  • a pharmaceutical composition comprising an LYPD1 inhibitor as an active ingredient contains 0.01, 0.05, 0.1, 0.5,. Contains 0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 250 and 500 mg.
  • the pharmaceutical composition usually contains about 0.01 mg to about 500 mg of the active ingredient, preferably 1 mg to about 100 mg of the active ingredient.
  • An effective amount of the drug is usually supplied at a dosage of from 0.0002 mg / kg body weight to about 20 mg / kg body weight per day, especially from about 0.001 mg / kg body weight to 7 mg / kg body weight per day.
  • Method for Producing Biological Tissue with Promoted Formation of Vascular Endothelial Network By applying the LYPD1 inhibitor of the present invention, formation of vascular endothelial network is promoted within the biological tissue. Thereby, a functional blood vessel network is constructed in the living tissue, and a three-dimensional living tissue having a thickness can be obtained.
  • the present invention provides a method for producing a biological tissue with enhanced formation of a vascular endothelial network.
  • the method comprises the following steps: (A1) providing a cell group comprising a first cell expressing LYPD1 and a vascular endothelial cell and / or a vascular endothelial precursor cell; (A2) a step of treating the cell group obtained by the step (a1) with an LYPD1 inhibitor; and (a3) a step of culturing the cell group obtained by the step (a2).
  • (B1) a step of treating a cell group containing a first cell expressing LYPD1 with an LYPD1 inhibitor; (B2) contacting the vascular endothelial cells and / or vascular endothelial progenitor cells with the cell group obtained in the step (b1); and (b3) culturing the cell group obtained in the step (b2).
  • the first cell that expresses LYPD1 is, for example, a cell that has an activity of inhibiting the formation of a vascular endothelial network by expressing LYPD1, and is derived from, for example, a living tissue that expresses LYPD1, preferably LYPD1 is highly expressed.
  • the first cell expressing LYPD1 may be a cell derived from a pluripotent stem cell.
  • the pluripotent stem cell is a cell having self-replicating ability and pluripotency, and means a cell having the ability to form all cells constituting the body (pluripotent).
  • Self-replicating ability refers to the ability to make two undifferentiated cells from one cell.
  • the pluripotent stem cells used in the present invention include, for example, embryonic stem cells (embryonic stem cells: ES cells), embryonic carcinoma cells (embryonic carcinoma cells: EC cells), trophoblast stem cells (TS cells), dice blast stem cell (epiblast stem cell: EpiS cell), embryonic germ cell (embryonic germ cell: EG cell), pluripotent germ cell (multipotent stem cell: mGS cell), artificial pluripotent stem cell (incubated stem cell) : IPS cells) and the like.
  • a method for inducing differentiation of these pluripotent stem cells for example, the method of Matsuura et al. (Matsuura K., et al., Creation of human cardiac sheets, using pluripotent stem cells. Biochem. Biophys. Biophys. Aug. 24; 425 (2): 321-327).
  • vascular endothelial cells and / or vascular endothelial progenitor cells that can be used in the present invention can be used as long as they constitute blood vessels.
  • human umbilical vein endothelial cells (HUVEC), human heart-derived It is also possible to use microvascular endothelial cells (HMVEC-C) or pluripotent stem cell-derived vascular endothelial cells, or vascular endothelial cells and / or vascular endothelial progenitor cells of mammals other than human.
  • HMVEC-C microvascular endothelial cells
  • pluripotent stem cell-derived vascular endothelial cells or vascular endothelial cells and / or vascular endothelial progenitor cells of mammals other than human.
  • the subject to be applied is a human, it is preferably a human-derived vascular endothelial cell and / or vascular endothelial progenitor cell.
  • step (a3) By culturing (step (a3)), it is possible to produce a living tissue in which formation of a vascular endothelial network is promoted. That is, this embodiment is a method of treating with a LYPD1 inhibitor in a state where both the first cells expressing LYPD1 and vascular endothelial cells and / or vascular endothelial precursor cells are present.
  • the culture period in the step (a3) is appropriately changed depending on the number of cells, cell density, cell type, and the like.
  • a method of producing a biological tissue with enhanced formation of a vascular endothelial network comprises a cell comprising a first cell that expresses LYPD1 prior to co-culture with vascular endothelial cells and / or vascular endothelial precursor cells.
  • a method of treating the group with an LYPD1 inhibitor may be used (step (b1)).
  • step (b1) The cell group obtained in step (b1) is contacted with vascular endothelial cells and / or vascular endothelial progenitor cells (step (b2)), and for several days (for example, 1, 2, 3, 4, or By culturing for 5 days or more (step (b3)), it is possible to produce a living tissue in which formation of a vascular endothelial network is promoted.
  • the culture period in the step (a3) is appropriately changed depending on the number of cells, cell density, cell type, and the like.
  • treating with an LYPD1 inhibitor means that the LYPD1 inhibitor described above is allowed to act on the LYPD1 or LYPD1 gene (eg, mRNA) expressed in the first cell by a known method, and thereby the activity of LYPD1. It refers to inhibiting.
  • a method of culturing in a medium supplemented with an LYPD1 inhibitor; a liposome or viral vector (eg, retrovirus) containing an LYPD1 inhibitor (eg, an antisense RNA or DNA molecule, an RNAi-inducible nucleic acid, miRNA, a ribozyme, and their expression vectors) Methods of exposing to viral vectors, adeno-associated viral vectors, adenoviral vectors, lentiviral vectors; LYPD1 inhibitors (eg, antisense RNA or DNA molecules, RNAi-inducible nucleic acids, miRNA, ribozymes and their expression vectors) calcium phosphate
  • a method introduced by a method, an electroporation method, a microinjection method or a lipofection method can be applied. What is necessary is just to select an optimal method according to the kind and characteristic of a LYPD1 inhibitor.
  • “treating with an LYPD1 inhibitor” of the present invention refers to the second cell having a lower or non-expressed LYPD1 expression level than the LYPD1 expression level of the first cell. It may be a method in which cells are mixed or contacted and cultured. For example, the first cell and the second cell may be mixed and cultured; the cell group including the first cell and the cell group including the second cell are each formed into a sheet-like cell (cell sheet). Then, a method of laminating and contacting them may be used.
  • the ratio of the first cell: second cell is, for example, 199: 1, 99: 1, 95: 5, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60. 30:70, 20:80, 10:90, 5:95, 1:99, 1: 199, but is not limited thereto. It changes suitably according to the kind of cell to be used, the expression level of LYPD1, etc.
  • the method of the present invention may be a method of perfusion culture in a medium supplemented with an LYPD1 inhibitor.
  • the LYPD1 inhibitor is continuously supplied, and the formation of the vascular endothelial network is promoted.
  • the second cell is, for example, a cell derived from skin, esophagus, lung, and / or liver. These cells have lower expression levels of LYPD1 than cells derived from the heart, muscle, kidney or brain. Preferably, it is a fibroblast derived from skin.
  • the second cell whose LYPD1 expression is lower or not expressed than the LYPD1 expression level of the first cell is not more than 1/2 times the LYPD1 expression level of the first cell, preferably 1/5. It is not more than double, more preferably not more than 1/10, and still more preferably not more than 1/50.
  • the expression level of LYPD1 can be evaluated using known techniques such as quantitative PCR (qPCR), Western blot, flow cytometer (FACS), ELISA, and immunohistochemistry. it can.
  • the LYPD1 inhibitor of the present invention may be used to manufacture a pharmaceutical composition for treating and / or preventing an angiogenic disorder. it can.
  • LYPD1 Inhibitor Screening Method The LYPD1 inhibitor of the present invention can be further identified from candidate substances by applying a known screening method. For example, the following methods are mentioned.
  • the screening method can be selected by evaluating the binding of the candidate compound to LYPD1 or a cell or membrane having LYPD1 or a fusion protein thereof by means of a label directly or indirectly bound to the candidate compound. .
  • the screening method can be selected by measuring competitive binding to LYPD1 or qualitative or quantitative detection of a competitor (eg, inhibitor or substrate) labeled with a candidate compound.
  • a vector / host cell in which an expression vector into which LYPD1 cDNA is inserted is introduced into the host cell can be used.
  • baculovirus / Sf9 insect cells, retrovirus / mammalian cell lines, expression vectors / mammalian cell lines, and the like can be used.
  • cells to be used include HeLa, HepB3, LLC-PK1, MDCKII, CHO, HEK293, and the like, but are not limited thereto.
  • tissue-derived cells with high expression levels of LYPD1 for example, brain-derived, heart-derived, muscle-derived or kidney-derived cells, particularly heart-derived fibroblasts are used. You can also.
  • the LYPD1 inhibitor used in the present invention includes cells obtained as described above or cells that highly express LYPD1 (for example, 2.4 ⁇ 10 5 cells / cm 2 ), vascular endothelial cells that construct a vascular network, and / Or vascular endothelial progenitor cells (for example, 2.0 ⁇ 10 4 cells / cm 2 ) and a candidate substance are pre-incubated, seeded on a culture dish, and cultured at 37 ° C., 5% CO 2 for several days.
  • LYPD1 for example, 2.4 ⁇ 10 5 cells / cm 2
  • vascular endothelial cells that construct a vascular network
  • / Or vascular endothelial progenitor cells for example, 2.0 ⁇ 10 4 cells / cm 2
  • the vascular endothelial network formed by vascular endothelial cells and / or vascular endothelial precursor cells can be selected by observing with a microscope (preferably a fluorescence microscope) and evaluating the length of the vascular endothelial network and the number of branch points. .
  • Candidate substances are obtained by mixing cells obtained as described above or cells that highly express LYPD1 with vascular endothelial cells and / or vascular endothelial precursor cells that construct a vascular network, and then seeded in advance. May be added and cultured.
  • the vascular endothelial network formed by vascular endothelial cells and / or vascular endothelial progenitor cells may be detected and evaluated using a fluorescently labeled anti-CD31 antibody or a vascular endothelial cell-specific antibody. Further, for example, evaluation may be performed by detecting fluorescence using vascular endothelial cells and / or vascular endothelial precursor cells expressing a fluorescent protein such as GFP.
  • the method of screening for an LYPD1 inhibitor may include, for example, the following steps: (I-1) providing a cell group comprising a first cell that expresses LYPD1, and a vascular endothelial cell and / or a vascular endothelial precursor cell; (I-2) a step of treating the cell group obtained in the step (i-1) with a candidate substance; (I-3) culturing the cell group obtained by the step (i-2); and (i-4) evaluating formation of a vascular endothelial network in the cell group obtained by the step (i-3).
  • the first cell that can be used in this embodiment may be, for example, a cell derived from heart, muscle, kidney and / or brain in which LYPD1 is relatively highly expressed.
  • cells into which a vector expressing LYPD1 has been introduced may be used.
  • the method of screening for an LYPD1 inhibitor includes, for example, treating a heart, muscle, kidney and / or brain-derived cell in which LYPD1 is relatively highly expressed with a candidate substance,
  • the step of selecting a candidate substance that reduces expression may be performed, or a method combined with the above method may be used.
  • the expression of LYPD1 can be detected using a known method, such as quantitative PCR (qPCR), Western blot, flow cytometer (FACS), ELISA, immunohistochemistry, It can be detected using well-known techniques.
  • Human skin fibroblasts purchased from Lonza. NHDF-Ad normal human skin fibroblasts (CC-2511)
  • Human cardiac fibroblasts Purchased from Lonza. NHCF-a (normal human cardiac fibroblasts-atrium (CC-2903)), NHCF-v (normal human cardiac fibroblasts-ventricle (CC-2904)) -Human umbilical vein endothelial cells (HUVEC) (purchased from Lonza. Cat. # C2517A))
  • Normal human heart microvascular endothelial cells HMVEC-C
  • Fibroblast-like cells are obtained by sorting a cell group having higher adhesion to a culture dish than a cell group obtained when inducing cardiomyocyte differentiation from human iPS cells. It is done. This was used as human iPS-derived stromal cells (see FIG. 12A). Differentiation of human iPS cells into cardiomyocytes is described in Matsuura K. et al. , Et al. Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun. 2012 Aug 24; 425 (2): 321-7. It carried out by the method of description.
  • iPS-CD31 + Human iPS cell-derived vascular endothelial cells
  • Cardiac fibroblasts inhibit vascular endothelial network formation (Figure 1) Human skin fibroblasts (NHDF) or cardiac fibroblasts (atrial origin: NHCF-a, ventricular origin: NHCF-v) (2.4 ⁇ 10 5 cells / cm 2 ) and human umbilical vein endothelial cells (HUVEC) ) (2.0 ⁇ 10 4 cells / cm 2 ) for 3 days with 5% CO 2 at 37 ° C., followed by anti-CD31 antibody (Human CD31 / PECAM-1 PE-conjugated Antibody, FAB3567P, R & D) Immunostained.
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length and branch point of the vascular endothelial network were calculated as endothelial cells.
  • Vascular endothelial network formation was promoted by co-culture with human skin fibroblasts, but was inhibited by co-culture with human cardiac fibroblasts.
  • Cardiac fibroblasts inhibit vascular endothelial network formation (Figure 2) Human skin fibroblasts or cardiac fibroblasts (2.4 ⁇ 10 5 cells / cm 2 ) and iPS cell-derived vascular endothelial cells (iPS-CD31 +) or normal human cardiac microvascular endothelial cells (HMVEC-C) (2 0 ⁇ 10 4 cells / cm 2 ) for 3 days, 5% CO 2 at 37 ° C. and then immunostained with anti-CD31 antibody (Human CD31 / PECAM-1 PE-conjugated Antibody, FAB3567P, R & D) .
  • iPS-CD31 + iPS cell-derived vascular endothelial cells
  • HMVEC-C normal human cardiac microvascular endothelial cells
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length and branch point of the vascular endothelial network were calculated as endothelial cells.
  • vascular endothelial network of human iPS-derived vascular endothelial cells and human cardiac microvascular endothelial cells was also promoted by co-culture with human skin fibroblasts and inhibited by co-culture with human cardiac fibroblasts.
  • Cardiac fibroblasts inhibit vascular endothelial network formation (FIG. 3)
  • Mouse skin fibroblasts or cardiac fibroblasts (6 ⁇ 10 4 cells / cm 2 ), mouse ES cell-derived cardiomyocytes (2.4 ⁇ 10 5 cells / cm 2 ), and mouse ES cell-derived vascular endothelial cells ( 2.0 ⁇ 10 4 cells / cm 2 ) for 3 days, 5% CO 2 at 37 ° C. and then immunostained with anti-CD31 antibody (PE Rat Anti-Mouse CD31,553373, BD Biosciences).
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length and branch point of the vascular endothelial network were calculated as endothelial cells.
  • vascular endothelial network of mouse ES cell-derived vascular endothelial cells was promoted in the presence of mouse skin fibroblasts, but was inhibited in the presence of mouse cardiac fibroblasts.
  • Cardiac fibroblasts inhibit vascular endothelial network formation (FIG. 4) Primary neonatal rat skin fibroblasts (RDF) or cardiac fibroblasts (RCF) (2.4 ⁇ 10 5 cells / cm 2 ) collected from SD rats (Jcl: SD, Sankyo Lab, Japan), and rats After co-culture with neonatal heart-derived vascular endothelial cells (2.0 ⁇ 10 4 cells / cm 2 ) for 3 days at 5% CO 2 at 37 ° C., anti-CD31 antibody (Mouse anti Rat CD31 Antibody, MCA1334G, Bio- (Rad).
  • RDF Primary neonatal rat skin fibroblasts
  • RCF cardiac fibroblasts
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length and branch point of the vascular endothelial network were calculated as endothelial cells.
  • Vascular endothelial network formation was promoted by co-culture with rat skin fibroblasts, but was inhibited by co-culture with rat heart fibroblasts.
  • LYPD1 is expressed in the rat heart stroma (FIG. 6)
  • the expression of LYPD1 in each rat-derived organ was evaluated by qPCR.
  • Total RNA was extracted from each rat organ, cDNA was synthesized using mRNA contained in the total RNA fraction as a template, and used as a template for qPCR.
  • qPCR was performed by comparative CT method using TaqMan (registered trademark) Gene Expression Assays (Rn01295701_m1, Thermo Fisher Scientific) (FIG. 6 (A)).
  • TaqMan registered trademark
  • Gene Expression Assays Rn01295701_m1, Thermo Fisher Scientific
  • FIG. 6 (B) shows an immunostained image of rat heart tissue.
  • Anti-cTnT cardiac Troponin T antibody (Anti-Troponin T, Cardiac Isoform, Mouse-Mono (13-11), AB-1, MS-295-P, Thermo Fisher Scientific) and anti-LYPD16 antibody (ab15) ab75a DAPI (nucleus) was stained.
  • Example 7 Comparison of LYPD1 gene expression in human and rat primary cultured cells (FIG. 7) The expression of LYPD1 in human and neonatal rat skin fibroblasts and cardiac fibroblasts was evaluated by qPCR. Total RNA was extracted from each cell, cDNA was synthesized using mRNA contained in the total RNA fraction as a template, and used as a template for qPCR. qPCR was performed by the comparative CT method using TaqMan (registered trademark) Gene Expression Assays (Hs00375991_m1 (human), Rn01295701_m1 (rat), Thermo Fisher Scientific).
  • TaqMan registered trademark
  • LYPD1 was hardly detected in human and neonatal rat skin fibroblasts, but was highly expressed in cardiac fibroblasts.
  • siRNA against LYPD1 Silencer® Select siRNA, Cat. (Registered trademark) Select Negative Control No. 2 siRNA, Cat. # 43908446
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length of the vascular endothelial network was calculated as endothelial cells.
  • SiRNA for LYPD1 The sequence of SiRNA for LYPD1 is as follows.
  • LYPD1 Human cardiac fibroblasts (2.4 ⁇ 10 5 cells / cm 2 ) and HUVEC (2.0 ⁇ 10 4 cells / cm 2 ) in the presence of anti-LYPD1 antibody (5 ⁇ g / mL) (ab157516, abcam) or control Anti-CD31 antibody (Human CD31 / PECAM) after co-culture in the presence of antibody (5 ⁇ g / mL) (normal rabbit IgG, Wako, Japan, Cat. # 148-09551) for 4 days at 5% CO 2 and 37 ° C. ⁇ 1 PE-conjugated Antibody, FAB3567P, R & D) (FIGS.
  • CD31-stained images were obtained using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressWare31 The length and branch point of the vascular endothelial network as vascular endothelial cells were calculated (FIGS. 9C and 9D).
  • LYPD1 Rat newborn cardiac fibroblasts (2.4 ⁇ 10 5 cells / cm 2 ) and rat neonatal heart-derived vascular endothelial cells (2.0 ⁇ 10 4 cells / cm 2 ) are present in LYPD1 antibody (ab157516, abcam). After co-culture at 5% CO 2 and 37 ° C. for 4 days under (5 ⁇ g / mL) or in the presence of control antibody (5 ⁇ g / mL) (normal rabbit IgG, Wako, Japan, Cat.
  • Immunostaining was performed with an anti-CD31 antibody (Mouse anti Rat CD31 Antibody, MCA1334G, Bio-Rad) (FIGS. 10A and 10B).
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length and branching point of the vascular endothelial network were calculated as endothelial cells (FIGS. 10C and 10D).
  • iPS-derived stromal cells are classified into the same cluster as cardiac fibroblasts (FIG. 11).
  • Gene expression in human skin fibroblasts (NHDF), human cardiac fibroblasts (NHCF), human iPS-derived stromal cells, and human mesenchymal stem cells (Lonza, Cat. # PT-2501) were analyzed and clustered using a microarray. .
  • iPS-derived stromal cells were classified into the same cluster as cardiac fibroblasts.
  • iPS-derived stromal cells inhibit vascular endothelial network formation of iPS CD31-positive cells
  • Human iPS-derived stromal cells were co-cultured with human iPS CD31 positive cells and then immunostained with an anti-CD31 antibody (Human CD31 / PECAM-1 PE-conjugated Antibody, FAB3567P, R & D).
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA) (FIG. 12B).
  • vascular endothelial network of human iPS CD31 positive cells was promoted by co-culture with human skin fibroblasts, but was inhibited by co-culture with human iPS-derived stromal cells.
  • LYPD1 in human skin fibroblasts (NHDF), human cardiac fibroblasts (NHCFa) and human iPS-derived stromal cells (iPS fibro-like) was evaluated by qPCR.
  • Total RNA was extracted from each cell, cDNA was synthesized using mRNA contained in the total RNA fraction as a template, and used as a template for qPCR.
  • qPCR was performed by the comparative CT method using TaqMan (registered trademark) Gene Expression Assays (Hs00375991_m1, Thermo Fisher Scientific) (FIG. 12 (C)).
  • Human iPS-derived stromal cells showed high expression of LYPD1 like human cardiac fibroblasts.
  • Example 13 Expression and purification of recombinant LYPD1 and confirmation of inhibitory effect on vascular endothelial network (FIG. 13)
  • the protein encoding the human LYPD1 cDNA sequence was selected according to published sequence data.
  • Human LYPD1 having a FLAG sequence inserted after the signal sequence was synthesized by GenScript (Piscataway, NJ, USA) and inserted into a pcDNA3.1 vector (hereinafter referred to as “pFLAG-LYPD1”).
  • COS-7 cells were maintained in DMEM (Dulbecco's Modified Eagle Medium; Invitrogen) supplemented with 10% fetal bovine serum in a 37 ° C., 5% CO 2 atmosphere.
  • DMEM Dulbecco's Modified Eagle Medium
  • pFLAG-LYPD1 was transfected into COS-7 cells using Lipofectamine® 3000 (Invitrogen) according to the manufacturer's instructions. 48 hours after transfection, cells were lysed with RIPA buffer (Wako, Japan).
  • FLAG-LYPD1 protein was immunoprecipitated for 3 hours at 4 ° C. using anti-DYKDDDDK tag magnetic beads (Wako, Japan). Subsequently, the beads were washed 3 times with RIPA buffer and the FLAG-LYPD1 protein was eluted from the beads by adding DYKDDDDK peptide (Wako, Japan). The eluate was separated on a 12.5% SDS-PAGE gel and blotted on Immobilon-P (Merck, Germany).
  • FLAG-LYPD1 protein was detected using peroxidase-conjugated anti-DYKDDDDK tag monoclonal antibody (Wako, Japan) and rabbit polyclonal anti-LYPD1 antibody (abcam).
  • ECL Prime Western Blotting Detection Reagent (GE Healthcare UK Ltd., UK) was used in accordance with the manufacturer's instructions to visualize the band, and digtal imaging system (LAS3000, GEHealLK) detected by GEHealK. Protein yield was measured with a Bradford protein assay kit (Thermo Scientific, Rockford, Illinois, USA) using bovine serum albumin as a standard (FIG. 13A).
  • FLAG-LYPD1 protein (1.25 ⁇ g / mL) or Dulbecco's modified Eagle's medium (5%) supplemented with control IgG (1.25 ⁇ g / mL, normal rabbit IgG, Wako, Japan, Cat. # 148-09551) and 10% fetal calf serum and 1% penicillin / streptomycin. and cultured in CO 2, 37 °C).
  • Immunostaining was performed with an anti-CD31 antibody (Human CD31 / PECAM-1 PE-conjugated Antibody, FAB3567P, R & D).
  • CD31-stained images were acquired using ImageXpress Ultra confocal high content screening system (Molecular Devices, LLC, Sunnyvale, CA, USA), and MetaXpressSwellD (31). The length of the vascular endothelial network was calculated as endothelial cells.
  • Example 14 Vascular endothelial network formation recovery is mediated by suppression of LYPD1 (FIG. 14).
  • HUVEC (2 ⁇ 10 4 cells / cm 2 ) was mixed with human heart fibroblasts (2.4 ⁇ 10 5 cells / cm 2 ) into which LYPD1 siRNA had been introduced, and seeded. did.
  • the recombinant LYPD1 1.5 ug / mL of Example 13 or an equal amount of buffer (composition: 500 ug / ml DYKDDDDK peptide, 10 mM Tris-HCl, pH 7.4, 150 mM NaCl) was added and cultured for 3 days. .
  • HUVEC 2 ⁇ 10 4 cells / cm 2
  • human cardiac fibroblasts 2.4 ⁇ 10 5 cells / cm 2
  • control siRNA had been introduced by the same method as in Example 8. And cultured for 3 days.
  • Example 15 Effect of rLYPD1 on HUVEC lumen formation (FIG. 15)
  • the coating was performed by adding 46.2 uL of Matrigel (registered trademark) (Corning, # 356231) per well (0.32 cm 2 ) of a 96-well plate (Corning).
  • HUVEC (1 ⁇ 10 4 cells / cm 2 ) is suspended in 100 uL of EGM-2 (Lonza) and seeded on Matrigel® in the presence (1, 2, or 5 ⁇ g / mL) or absence of rLYPD1. did. Microscopic observation was performed after 20 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、生体組織において、血管内皮ネットワークの形成を促進するためのLYPD1阻害剤を提供する。また、本発明は、LYPD1阻害剤を有効成分として含む、血管新生障害を治療及び/又は予防するための医薬組成物を提供する。また、本発明は、(a1)LYPD1を発現する第1の細胞と、血管内皮細胞を含む細胞群を提供する工程;(a2)前記工程(a1)により得られた細胞群を、LYPD1阻害剤で処理する工程;(a3)前記工程(a2)により得られた細胞群を培養する工程、を含む方法を提供する。

Description

LYPD1阻害剤及びそれを用いた生体組織の製造方法
 本発明は、生体組織において血管内皮ネットワークの形成を促進するためのLYPD1の阻害剤に関する。また、本発明は、血管内皮ネットワークの形成が促進された生体組織を製造する方法に関する。なお、本出願は日本国特許庁に2017年3月6日に出願した特願2017-42200を基礎とする優先権を主張出願であり、参照によってその明細書全体が本明細書中に取り込まれる。
 虚血性心疾患は、日本の死因第2位であり、現在も解決すべき重要な疾患の1つである。従来、虚血性心疾患に対する血管新生療法としては、血管内皮成長因子(VEGF)などの血管新生誘導因子の投与や、血管内皮前駆細胞の移植など、血管新生を促進する治療法が広く開発されてきた。一方で、これらの治療法は、全身における血管新生を促進する懸念があり、担癌患者へ適用することが困難であった。また、血管新生増殖因子を用いる場合は、血管浮腫などの副作用が起こってしまい、臨床に応用するためには課題を有していた。
 全身の臓器又は組織において血管新生を促進することなく、治療の対象となる臓器又は組織の血管新生のみを促進する治療法として、細胞シートを用いた治療法が開発されている。例えば、虚血性心疾患を含む心臓疾患を治療する治療法として、細胞シートによる治療法が開発されており、一部は臨床で使用されている(特許文献1~3参照)。
 しかしながら、特許文献1~3に記載の細胞シートは、適用した患部に当該細胞シートから分泌されるサイトカイン等の作用により治療効果を発揮する治療法であり、重度の疾患により不可逆的な損傷を受けた臓器又は組織の治療には不十分な治療法であると考えられている。そのため、このような臓器又は組織を治療するためには、その部位を代替する機能を有する生体組織と置換する(移植する)必要があると考えられている。
 疾患を有する臓器又は組織と置換可能な生体組織を作製する手法として、種々のティッシュエンジニアリング技術が開発されている。特に、厚みをもった生体組織を構築する方法の開発が試みられている。厚みを持った生体組織を構築させるためには、当該生体組織内に血管内皮ネットワークを構築し、機能的な血管網を構築させる必要がある。例えば、インビトロにおいて、機能的な血管網を有し、厚みをもった生体組織を構築する方法として、特許文献4及び5に記載の方法が開示されている。
 生体組織において、機能的な血管網を構築した生体組織を得るためには、上述の方法のみでは十分ではなく、より簡便に機能的な血管網を構築する新たな方法の開発が希求されている。
国際公開第2005/011524号 国際公開第2011/067983号 国際公開第2014/148321号 国際公開第2012/036224号 国際公開第2012/036225号
 本発明は、上述のような、簡便に、生体組織において血管内皮ネットワークの形成を促進させるための問題点を解決することを課題としてなされたものである。
 本発明者らは、上記課題を解決するために、種々の角度から検討を加えて研究開発を行ってきた。その結果、驚くべきことに、LYPD1を阻害することにより、生体組織において血管内皮ネットワークの形成が促進されることを見出した。すなわち、本発明は、以下の発明を提供する。
 [1] 生体組織において、血管内皮ネットワークの形成を促進するためのLYPD1阻害剤。
 [2] 血管新生障害の治療及び/又は予防のための、[1]に記載のLYPD1阻害剤。
 [3] 前記血管新生障害が、脳血管疾患、脳梗塞、一過性脳虚血発作、モヤモヤ病、狭心症、(末梢)動脈閉塞症、動脈硬化症、バージャー病、心筋梗塞、虚血、心筋症、鬱血性心不全、冠動脈疾患、遺伝性出血性毛細血管拡張症、虚血性心疾患、血管内膜肥厚、血管閉塞、動脈硬化性末梢血管疾患、門脈圧亢進症、リウマチ性心疾患、高血圧、血栓塞栓症、アテローム性動脈硬化、血管形成術後の再狭窄、肺動脈高血圧、静脈移植片疾患、高血圧性心疾患、心臓弁膜症、川崎病、拡張型心筋症、肥大型心筋症、サルコイドーシス、全身性強皮症、大動脈炎症候群、無症候性心筋虚血、内頚動脈狭窄症、椎骨動脈狭窄症、透析心筋症、糖尿病性心筋症、肺動脈性肺高血圧、虚血性心筋症、冠動脈バイパス術後、経皮的冠動脈形成術後、急性心筋梗塞、亜急性心筋梗塞、陳旧性心筋梗塞、労作性狭心症、不安定狭心症、急性冠症候群、冠攣縮性狭心症、大動脈弁狭窄症、大動脈弁閉鎖不全、僧房弁閉鎖不全及び僧房弁狭窄症からなる群から選択される、[2]に記載のLYPD1阻害剤。
 [4] 前記血管新生障害が、狭心症、心筋梗塞、心筋症、鬱血性心不全、冠動脈疾患、虚血性心疾患、リウマチ性心疾患、心臓血管形成術後の再狭窄、高血圧性心疾患、心臓弁膜症、川崎病、拡張型心筋症、肥大型心筋症、全身性強皮症、大動脈炎症候群、無症候性心筋虚血、内頚動脈狭窄症、椎骨動脈狭窄症、透析心筋症、糖尿病性心筋症、肺動脈性肺高血圧、虚血性心筋症、冠動脈バイパス術後、経皮的冠動脈形成術後、急性心筋梗塞、亜急性心筋梗塞、陳旧性心筋梗塞、労作性狭心症、不安定狭心症、急性冠症候群、冠攣縮性狭心症、大動脈弁狭窄症、大動脈弁閉鎖不全、僧房弁閉鎖不全及び僧房弁狭窄症からなる群から選択される、[2]に記載のLYPD1阻害剤。
 [5] 前記生体組織が、LYPD1を発現する生体組織である、[1]~[4]のいずれか1項に記載のLYPD1阻害剤。
 [6] 前記LYPD1阻害剤が、LYPD1の選択的阻害剤である、[1]~[5]のいずれか1項に記載のLYPD1阻害剤。
 [7] 前記LYPD1の選択的阻害剤が、有機低分子、アプタマー、抗体、抗体フラグメント及びそれらの組合せからなる群から選択される、[6]に記載のLYPD1阻害剤。
 [8] 前記LYPD1阻害剤が、LYPD1発現の阻害剤及び/又はLYPD1発現の阻害剤で処理された細胞である、[1]~[5]のいずれか1項に記載のLYPD1阻害剤。
 [9] 前記細胞が、細胞懸濁液又は細胞シートの形態で提供される、[8]に記載のLYPD1阻害剤。
 [10] 前記LYPD1発現の阻害剤が、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム、ゲノム編集核酸及びそれらの発現ベクター、有機低分子、アプタマー、抗体、抗体フラグメント、並びにそれらの組合せからなる群から選択される、[8]又は[9]に記載のLYPD1阻害剤。
 [11] [1]~[10]のいずれか1項に記載のLYPD1阻害剤を有効成分として含む、血管新生障害を治療及び/又は予防するための医薬組成物。
 [12] 血管内皮成長因子(VEGF)、肝細胞成長因子(HGF)、線維芽細胞成長因子(FGF)、上皮成長因子(EGF)、血小板由来成長因子(PDGF)、インシュリン様成長因子(IGF)、アンギオポエチン、トランスフォーミング増殖因子-β(TGF-β)、胎盤成長因子(PIGF)、マトリックスメタロプロテアーゼ(MMP)、それらのファミリータンパク質及びそれらの組合せからなる群から選択される1以上の血管新生誘導因子をさらに含む、[11]に記載の医薬組成物。
 [13] 血管内皮ネットワークの形成が促進された生体組織を製造する方法であって、
 以下の工程:
  (a1)LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を提供する工程;
  (a2)前記工程(a1)により得られた細胞群を、LYPD1阻害剤で処理する工程;並びに
  (a3)前記工程(a2)により得られた細胞群を、培養する工程、
 或いは、
  (b1)LYPD1を発現する第1の細胞を含む細胞群を、LYPD1阻害剤で処理する工程;
  (b2)前記工程(b1)により得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させる工程;並びに
  (b3)前記工程(b2)により得られた細胞群を、培養する工程、
 を含む、方法。
 [14] 前記第1の細胞が、心臓、筋肉、腎臓及び/又は脳由来の細胞である、[13]に記載の方法。
 [15] 前記LYPD1阻害剤が、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム、ゲノム編集核酸、それらの発現ベクター、それらの発現ベクターが導入された細胞、前記第1の細胞のLYPD1発現量よりもLYPD1発現量が低い若しくは発現していない第2の細胞、有機低分子、アプタマー、抗体、抗体フラグメント及びそれらの組合せからなる群から選択される、[13]又は[14]に記載の方法。
 [16] 前記第2の細胞が、皮膚、食道、肺、及び/又は肝臓由来の細胞である、[15]に記載の方法。
 [17] 血管新生障害を治療及び/又は予防するための医薬品組成物を製造するための、[1]~[10]のいずれか1項に記載のLYPD1阻害剤の使用。
 [18] LYPD1阻害剤をスクリーニングする方法であって、以下の工程:
  (i-1)LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を提供する工程;
  (i-2)前記工程(i-1)により得られた細胞群を、候補物質で処理する工程;
  (i-3)前記工程(i-2)により得られた細胞群を培養する工程;並びに
  (i-4)前記工程(i-3)により得られた細胞群における血管内皮ネットワークの形成を評価する工程、
 或いは、
  (ii-1)LYPD1を発現する第1の細胞を含む細胞群を、候補物質で処理する工程;
  (ii-2)前記工程(ii-1)により得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させる工程; 
  (ii-3)前記工程(ii-2)により得られた細胞群を培養する工程;並びに
  (ii-4)前記工程(ii-3)により得られた細胞群における血管内皮ネットワークの形成を評価する工程、
を含む、方法。
 [19] 前記第1の細胞が、心臓、筋肉、腎臓及び/又は脳由来の細胞、或いは、LYPD1を発現するベクターが導入された細胞である、[18]に記載の方法。
 本発明によれば、生体組織において、血管内皮ネットワークの形成を促進することが可能となる。特に、本発明によれば、LYPD1が高発現し、血管新生障害を有する生体組織において、血管新生を促進することが可能となる。また、本発明によれば、血管新生障害を有する被験体において、血管内皮ネットワークの構築を促進することが可能となる。さらにまた、本発明によれば、血管内皮ネットワークの形成が促進された生体組織を提供することが可能となる。
図1は、心臓線維芽細胞が血管内皮ネットワーク形成を阻害することを示す図である。(A)本実施例の手順を示す図である。(B)ヒト皮膚線維芽細胞(NHDF)又は心臓線維芽細胞(心房はNHCF-a、心室はNHCF-v)とヒト臍帯静脈血管内皮細胞(HUVEC)とを共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(C)(B)で示された血管内皮ネットワークの全長を示すグラフである。(D)(B)で示された血管内皮ネットワークの分岐点数を示すグラフである。 図2は、ヒト皮膚線維芽細胞(NHDF)又はヒト心臓線維芽細胞(心房はNHCF-a、心室はNHCF-v)と、iPS細胞由来血管内皮細胞(iPS-CD31+)又はヒト心臓由来微小血管内皮細胞(HMVEC-C)とを共培養後の、血管内皮ネットワークを示す図である。 図3は、マウス心臓線維芽細胞が血管内皮ネットワーク形成を阻害することを示す図である。(A)本実施例の手順を示す図である。(B)マウス皮膚線維芽細胞(DF)又はマウス心臓線維芽細胞(CF)と、マウスES細胞由来心筋細胞、マウスES細胞由来血管内皮細胞とを共培養後の心筋細胞(緑)及びCD31陽性細胞(赤)を示す図である。 図4は、ラット心臓線維芽細胞が血管内皮ネットワーク形成を阻害することを示す図である。(A)本実施例の手順を示す図である。(B)新生仔ラット皮膚線維芽細胞(RDF)又は心臓線維芽細胞(RCF)と、ラット新生仔心臓由来血管内皮細胞とを共培養後の血管内皮ネットワークを示す図である。CD31陽性細胞(緑)及び核(Hoechst33342(青))を表す。(C)(B)で示された血管内皮ネットワークの全長を示すグラフである。(D)(B)で示された血管内皮ネットワークの分岐点数を示すグラフである。 図5は、皮膚線維芽細胞と心臓線維芽細胞の遺伝子発現を比較した図である。(A)糖タンパク質関連遺伝子についてのヒートマップを示す。(B)血管新生に関連する遺伝子についてのヒートマップを示す。 図6は、LYPD1が発現する部位を示す図である。(A)ラット由来の各臓器におけるLYPD1の相対的発現量をqPCRにより評価したグラフである。(B)ラット心臓組織の免疫染色画像を示す図である(cTnT:心筋トロポニンT(緑)、LYPD1(赤)、DAPI:核(青)、Merged:マージ)。 図7は、ヒト及びラットの初代培養細胞におけるLYPD1遺伝子発現を比較した図である。(A)ヒト初代皮膚線維芽細胞(NHDF)及びヒト初代心臓線維芽細胞(心房:NHCF-a、心室:NHCF-v)のLYPD1の相対的発現量をqPCRにより評価したグラフである。(B)ラット初代皮膚線維芽細胞及びラット初代心臓線維芽細胞のLYPD1の相対的発現量をqPCRにより評価したグラフである。 図8は、血管ネットワーク形成がLYPD1の阻害(siRNA)により回復することを示す図である。(A)本実施例の手順を示す図である。(B)ヒト心臓線維芽細胞にLYPD1に対するsiRNAを導入した後にHUVECと共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(C)ヒト心臓線維芽細胞にコントロールsiRNAを導入した後にHUVECと共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(D)(B)及び(C)で示された血管内皮ネットワークの全長を示すグラフである。 図9は、血管ネットワーク形成がLYPD1の阻害(抗LYPD1抗体)により回復することを示す図である。(A)ヒト心臓線維芽細胞とHUVECとを抗LYPD1抗体存在下で共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(B)ヒト心臓線維芽細胞とHUVECとをコントロールIgG存在下にて共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(C)(A)及び(B)で示された血管内皮ネットワークの全長を示すグラフである。(D)(A)及び(B)で示された血管内皮ネットワークの分岐点数を示すグラフである。 図10は、血管ネットワーク形成がLYPD1の阻害(抗LYPD1抗体)により回復することを示す図である。(A)ラット新生仔心臓線維芽細胞とラット新生仔心臓由来血管内皮細胞とを抗LYPD1抗体存在下で共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(B)ラット新生仔心臓線維芽細胞とラット新生仔心臓由来血管内皮細胞とをコントロールIgG存在下にて共培養後、抗CD31抗体で免疫染色した図を示す。緑はCD31陽性細胞を示す。(C)(A)及び(B)で示された血管内皮ネットワークの全長を示すグラフである。(D)(A)及び(B)で示された血管内皮ネットワークの分岐点数を示すグラフである。 図11は、ヒト皮膚芽細胞(NHDF)及びヒト心臓線維芽細胞(NHCF)、iPS由来間質細胞、間葉系幹細胞(MSC)における遺伝子発現をマイクロアレイで解析した結果を示した図である。クラスター解析を右に示す。 図12は、ヒトiPS由来間質細胞(iPS fibro-like)がヒトiPS CD31陽性細胞(iPS CD31+)由来の血管内皮ネットワーク形成を阻害することを示す図である。(A)本実施例の手順を示す図である。(B)ヒト皮膚線維芽細胞(NHDF)又はヒトiPS由来間質細胞を、ヒトiPS CD31陽性細胞と共培養後、抗CD31抗体で免疫染色した図を示す。赤は、CD31陽性細胞を示す。(C)ヒト皮膚線維芽細胞(NHDF)、ヒト心臓線維芽細胞(NHCFa)及びヒトiPS由来間質細胞(iPS fibro-like)におけるLYDP1の発現をqPCRで評価したグラフを示す。 図13は、リコンビナントLYPD1が、血管内皮ネットワーク形成を阻害することを示す図である。(A)抗DYKDDDDKタグ抗体磁気ビーズを用いて精製したFLAG-LYPD1タンパク質をドデシル硫酸-ポリアクリルアミドゲル電気泳動及び免疫ブロッティングに供し、ペルオキシダーゼ結合抗-DYKDDDDKタグモノクローナル抗体(上段)及びウサギポリクローナル抗-LYPD1抗体(下段)で検出した。(B)リコンビナントLYPD1タンパク質で処理した後の血管内皮ネットワーク(チューブ)形成の様子を示す。CD31(緑)及び核(Hoechst33342(青))を染色した。スケールバーは400μmを表す。(C)リコンビナントLYPD1タンパク質で処理した後の血管内皮ネットワーク(チューブ)の長さの合計を示す。CD31陽性細胞が形成するチューブの長さを合計して算出した。値は、3回の独立した実験から、平均値±標準偏差を算出した。P<0.05。 図14は、血管内皮ネットワーク形成回復が、LYPD1の抑制を介していることを示す図である。(A)コントロールsiRNA又はLYPD1 siRNAを遺伝子導入したヒト心臓線維芽細胞(2.4×10 cells/cm)とHUVEC(2×10 cells/cm)とを共培養し、3日間培養後に固定後、CD31抗体およびHoechst33342で染色した。rLYPD1は、1.5ug/mL濃度で添加した。-rLYPD1では、等量の緩衝液(組成:500ug/ml DYKDDDDKペプチド、10mM Tris-HCl、pH7.4、150mM NaCl)を添加した。ImageXpress Ultra confocal high content screening system(molecular device)を用いて取得した画像を示す。青:Hoechst33342(核)、緑:CD31。(B)(A)で取得した画像をMetaXpress softwear(Molecular Device)を用いてCD31陽性細胞の長さを測定し、合計の長さをグラフとして示した。 図15は、マトリゲル(登録商標)上におけるHUVECの管腔形成に対するrLYPD1の効果を示す図である。
 1-1.LYPD1タンパク質
 本明細書において、用語「LYPD1」は、当該技術分野において一般的に使用される意味と同義のものとして使用され、LY6/PLAUR domain containing 1、PHTS、LYPDC1とも称されるタンパク質をいう(以下、「LYPD1」という)。LYPD1は、哺乳動物において広く保存されているタンパク質であり、例えば、ヒト、サル、イヌ、ウシ、マウス、ラット等においても見出されている。天然のヒトLYPD1のmRNA及びアミノ酸の配列は、例えば、GenBankデータベース及びGenPeptデータベースにおいて、受入番号NM_001077427(配列番号1)及びNP_001070895(配列番号2)、NM_144586(配列番号3)、及びNP_653187(配列番号4)、NM_001321234(配列番号5)及びNP_001308163(配列番号6)、並びにNM_001321235(配列番号7)及びNP_001308164(配列番号8)として提供される。また、天然のマウスLYPD1のmRNA及びアミノ酸の配列は、例えば、GenBankデータベース及びGenPeptデータベースにおいて、受入番号NM_145100(配列番号9)及びNP_659568(配列番号10)、NM_001311089(配列番号11)及びNP_001298018(配列番号12)、並びに、NM_001311090(配列番号13)及びNP_001298019(配列番号14)として提供されている。
 本明細書において、用語「LYPD1」は、天然に存在するLYPD1並びにその変異体及びその修飾体が含まれてもよい。この用語はまた、少なくとも1種のLYPD1活性を保持したLYPD1のドメインが、例えば、他のポリペプチドと融合した融合タンパク質を意味するものであってもよい。LYPD1はいかなる生物由来であってもよいが、好ましくは、哺乳動物由来(例えば、ヒト、ヒト以外の霊長類、げっ歯類(マウス、ラット、ハムスター、モルモット等)、ウサギ、イヌ、ウシ、ウマ、ブタ、ネコ、ヤギ、ヒツジ等)、より好ましくは、ヒト及びヒト以外の霊長類由来、特に好ましくはヒトのLYPD1である。
 LYPD1は、脳において高発現しているタンパク質として知られているが、その機能についてはほとんど知られていない。LYPD1のアミノ酸モチーフから、グリコシルホスファチジルイノシトール(GPI)アンカー型のタンパク質であると考えられている。
 発明者らは、組織工学的に三次元生体組織を構築する研究を行う過程において、マウス、ラット及びヒトのいずれの哺乳動物由来の心臓線維芽細胞と血管内皮細胞を共培養した場合、血管内皮細胞のネットワーク形成を著しく抑制する現象を見出した。その原因について詳細に調べた結果、LYPD1を阻害することにより、血管網の形成不全が改善されることを見出した。本発明は、当該知見を基にして完成したものである。
 1-2.血管内皮ネットワーク
 本明細書において、用語「血管内皮ネットワーク」とは、血管内皮細胞及び/又は血管内皮前駆細胞が生体組織において構築する毛細血管様のネットワークである。血管内皮細胞及び/又は血管内皮前駆細胞の細胞表面マーカーとしてはCD31タンパク質が知られており、任意の方法によってCD31タンパク質を検出することで、生体組織における血管内皮細胞及び/又は血管内皮前駆細胞の存在を検出することができる。血管内皮ネットワークは、管腔構造を構築し、流体、特に血液が通る血管網となる。生体組織が生存するためには、栄養や酸素が含まれる血液をその隅々まで行き渡らせる必要があり、そのためには密度の高い血管網を構築する必要がある。生体組織では、血管内皮ネットワークの網目構造の密度が高い程、血液等を当該組織内に運搬する能力が高く好ましい。本発明のLYPD1阻害剤が、血管内皮ネットワークの形成が促進されているか否かについては、上述のように構築された血管内皮ネットワークの長さ及び/又は分岐点を評価することに判断することができる。血管内皮ネットワークの長さとは、単位面積あたりの血管内皮ネットワークを総合した長さをいい、血管内皮ネットワークの分岐点とは、単位面積あたりに存在する血管内皮ネットワーク同士が繋がった部位の総数をいう。すなわち、上記のLYPD1阻害剤のスクリーニングにおいて、LYPD1阻害剤を用いない場合(又はネガティブコントロールとしての化合物)と比較して、血管内皮ネットワークの長さ及び/又は分岐点が高い程、血管内皮ネットワークの形成を促進する能力が高いLYPD1阻害剤と評価することができる。血管内皮ネットワークの長さ及び/又は分岐点は、共焦点蛍光顕微鏡等により取得した画像を、例えば、MetaXpress software(Molecular Devices,LLC)を用いて、CD31陽性領域を血管内皮細胞として、血管内皮ネットワークの長さと分枝点を算出することができる。
 1-3.生体組織
 本明細書において、用語「生体組織」とは、哺乳動物を構成する任意の部分をいい、一般に2以上の細胞が集合して構成されている組織をいう。本発明において、「生体組織」は、被験体の任意の部分であってもよく、被験体から採取された生体組織であってもよく、生体外(エクスビボ)若しくは生体内(インビボ)において組織工学的に作製された生体組織であってもよい。本明細書において、用語「被験体」は、哺乳動物、例えば、ウシ、ウマ、齧歯類(ラット、マウスなど)、ネコ、イヌ及び霊長類などを意味する。好ましくは、本発明による被験体は、ヒトである。本発明において、生体組織は、好ましくは血管内皮細胞及び/又は血管内皮細胞が含まれる。
 生体外(エクスビボ)又は生体内インビボにおいて、組織工学的に生体組織を作製する方法としては、公知の方法を用いることができる。例えば、血管床上において細胞シートを積層して生体組織を構築する方法(国際公開第2012/036224号及び国際公開第2012/036225号を参照)、三次元プリンター技術を用いて生体組織を構築する方法(国際公開第2012/058278号を参照)、接着膜で被覆された細胞を用いて三次元構造体を作製する方法(特開第2012-115254号公報を参照)、生体内において臓器を構築する方法(Kobayashi T.,Nakauchi H.[From cell therapy to organ regeneration therapy: generation of functional organs from pluripotent stem cells].Nihon Rinsho.2011 Dec;69(12):2148-55;国際公開第2010/021390号;国際公開第2010/097459号を参照)の他、公知の製造方法により得られる生体組織も、本発明に適用することが可能であり、本発明の範囲に含まれる。
 生体外(エクスビボ)において、組織工学的に生体組織を作製する際に用いられる「細胞シート」とは、複数の任意の細胞を含む細胞群を細胞培養基材上で培養し、細胞培養基材上から剥離することで得られる1層又は複数層のシート状の細胞群をいう。細胞シートを得る方法としては、例えば、温度、pH、光等の刺激によって分子構造が変化する高分子を被覆した刺激応答性培養基材上で細胞を培養し、温度、pH、光等の刺激の条件を変えて刺激応答性培養基材表面を変化させることで、細胞同士の接着状態は維持しつつ、刺激応答性培養基材から細胞をシート状に剥離する方法や、任意の培養基材上で細胞培養し、物理的にピンセット等により剥離して得る方法等が挙げられる。細胞シートを得るための刺激応答性培養基材としては、0~80℃の温度範囲で水和力が変化するポリマーを表面に被覆した温度応答性培養基材が知られている。温度応答性培養基材上で、ポリマーの水和力が弱い温度域で細胞を培養し、その後、培養液をポリマーの水和力が強い状態となる温度に変化させることで細胞をシート状に剥離して回収することができる。
 細胞シートを得るために用いられる温度応答性培養基材は、細胞が培養可能な温度域でその表面の水和力を変化させる基材であることが好ましい。その温度域は、一般に細胞を培養する温度、例えば33℃~40℃であることが好ましい。細胞シートを得るために用いられる培養基材に被覆される温度応答性高分子は、ホモポリマー、コポリマーのいずれであってもよい。このような高分子としては、例えば、特開平2-211865号公報に記載されているポリマーが挙げられる。
 刺激応答性高分子、特に温度応答性高分子としてポリ(N-イソプロピルアクリルアミド)を用いた場合を例(温度応答性培養皿)に説明する。ポリ(N-イソプロピルアクリルアミド)は31℃に下限臨界溶解温度を有するポリマーとして知られ、遊離状態であれば、水中で31℃以上の温度で脱水和を起こしポリマー鎖が凝集して白濁する。逆に31℃未満の温度ではポリマー鎖は水和し、水に溶解した状態となる。本発明では、このポリマーがシャーレなどの基材表面に被覆されて固定されたものである。したがって、31℃以上の温度であれば、培養基材表面のポリマーも同じように脱水和するが、ポリマー鎖が培養基材表面に固定されているため、培養基材表面が疎水性を示すようになる。逆に、31℃未満の温度では、培養基材表面のポリマーは水和するが、ポリマー鎖が培養基材表面に被覆されているため、培養基材表面が親水性を示すようになる。このときの疎水的な表面は細胞が付着し、増殖できる適度な表面であり、また、親水的な表面は細胞が付着できない表面となる。そのため、該基材を31℃未満に冷却すると、細胞が基材表面から剥離する。細胞が培養面一面にコンフルエントになるまで培養されていれば、該基材を31℃未満に冷却することによって細胞シートを回収できる。温度応答性培養基材は、同一の効果を有するものであれば限定されるものではないが、例えば、セルシード社(東京、日本)が市販するUpCell(登録商標)などを使用することができる。
 本発明で用いられる生体組織は、複数枚の細胞シートを積層した細胞シート(積層化細胞シート)であってもよい。積層化細胞シートを作製する方法としては、ピペット等によって培養液中に浮かんでいる細胞シートを培養液ごと吸い取り、別の培養皿の細胞シート上に放出して液流によって積層する方法や、細胞移動治具を用いて積層する方法等が挙げられる。その他、公知の方法によって積層化細胞シートを含む生体組織が得られる。
 2.LYPD1阻害剤
 本明細書において、用語「LYPD1阻害剤」は、広義に理解される用語であり、直接的及び/又は間接的にLYPD1の活性を阻害する、又は有意に抑制する生物学的効果を示す、天然の、又は合成された化合物或いは細胞(例えば、細胞懸濁液又は細胞シートの形態で提供される細胞)を意味する。例えば、LYPD1阻害剤は、以下に説明するLYPD1の選択的阻害剤及びLYPD1発現の阻害剤を含む。特に、本発明において、LYPD1阻害剤は、血管内皮ネットワークの形成が阻害されていた生体組織で発現しているLYPD1に直接的及び/又は間接的に作用し、血管内皮ネットワークの形成を促進する物質である。一実施態様において、本発明のLYPD1阻害剤は、その医薬的に許容される塩であってもよい。本明細書において「医薬的な」又は「医薬的に許容される」とは、哺乳動物、特にヒトに適切に投与されたとき、副作用、アレルギー作用又はその他の有害作用を生じない分子及び組成物を意味する。医薬的に許容される担体又は賦形剤とは、非毒性の固形、半固形又は液体の注入剤、希釈剤、カプセル化物質又は任意の種類の製剤補助物を意味する。また、LYPD1阻害剤は、LYPD1が低発現の細胞、例えば、心臓由来の線維芽細胞よりもLYPD1が低発現の細胞(例えば、食道、精巣、皮膚、腎臓、肺、肝臓、筋肉由来の細胞、好ましくは、食道、精巣、皮膚、肺、肝臓由来の細胞、さらに好ましくは、食道、精巣、皮膚、肺、肝臓由来の線維芽細胞、最も好ましくは皮膚由来の線維芽細胞)を含んでもよい。
 本明細書において、「LYPD1の選択的阻害剤」という用語は、LYPD1以外のLYPDタンパク質(例えば、LYPD2、LYPD3、LYPD4、LYPD5、LYPD6)と比較して、LYPD1を選択的に阻害する阻害剤を意味する。「選択的」とは、阻害剤のLYPD1に対するKiがその他のタンパク質に対するKi値の1/5倍、好ましくは1/10倍、より好ましくは1/25倍、さらに好ましくは1/100倍以下であることを意味する。LYPD1の阻害剤のKi値は、当技術分野で周知の種々の方法を使用して測定することができる。LYPD1の選択的阻害剤とは、例えば、有機低分子、アプタマー、抗体、抗体フラグメント及びそれらの組合せであってもよい。
 2-1.有機低分子
 本明細書において、用語「有機低分子」は、医薬品で一般的に使用される有機分子と同程度の大きさの分子のことである。本発明において用いることができるLYPD1阻害剤としての有機低分子の大きさは、好ましくは、約5000Da以下、より好ましくは約2000Da以下、最も好ましくは約1000Da以下の範囲である。本発明において、LYPD1阻害剤としての有機低分子とは、LYPD1に直接的及び/又は間接的に作用し、生体組織における血管内皮ネットワークの形成を促進するものをいい、後述のスクリーニング方法によって選択することが可能である。
 2-2.アプタマー
 本明細書において、用語「アプタマー」は、特異的に標的物質に結合する能力を持つ合成DNA又はRNA分子及びペプチド性分子をいい、試験管内において化学的に短時間で合成することができる。本発明に用いられるアプタマーは、LYPD1に結合し、LYPD1の活性を阻害し得るものである。本発明に用いられるアプタマーは、例えば、SELEX法を用い、小分子、タンパク質、核酸など各種の分子標的への結合を、インビトロで反復して選択することにより得ることができる(Tuerk C.,Gold L.,Science,1990,249(4968),505-510;Ellington AD,Szostak JW.,Nature,1990,346(6287):818-822;米国特許第6,867,289号明細書;米国特許第5,567,588号明細書;米国特許第6,699,843号明細書を参照)。本発明において、LYPD1阻害剤としてのアプタマーは、LYPD1に直接的及び/又は間接的に作用し、生体組織における血管内皮ネットワークの形成を促進するものであってもよく、後述のスクリーニング方法によって選択することが可能である。
 本発明に用いることができる核酸アプタマーは、血流中ではヌクレアーゼにより速やかに分解及び除去されるため、必要に応じてポリエチレングリコール(PEG)鎖などによる分子修飾を行って半減期を延ばしておくことが好ましい。
 2-3.抗体、抗体フラグメント
 本発明に用いることができるLYPD1阻害剤は、LYPD1に結合し、LYPD1活性を部分的に、又は完全に阻害できる抗体若しくは抗体フラグメントであってもよい。本発明において用いることができるLYPD1に対する抗体又は抗体フラグメントは、LYPD1に結合し、LYPD1活性を阻害するものであれば、ヒト由来抗体、マウス由来抗体、ラット由来抗体、ウサギ由来抗体又はヤギ由来抗体のいずれの抗体でもよく、さらにそれらのポリクローナル若しくはモノクローナル抗体、完全型若しくは短縮型(例えば、F(ab’)2、Fab’、FabまたはFvフラグメント)抗体、キメラ化抗体、ヒト化抗体又は完全ヒト型抗体のいずれのものでもよい。本明細書において、抗体フラグメントとは、F(ab’)2、Fab’、Fab又はscFv抗体フラグメントであり、プロテアーゼ酵素により処理し、場合により還元して得ることができる。
 本発明に用いることができる抗体又は抗体フラグメントは、LYPD1タンパク質又はその一部を抗原として、公知の抗体又は抗血清の製造法に従って製造することができる。LYPD1タンパク質又はその一部は、公知のタンパク質発現法及び精製法によって調製することができる。また、本発明に用いることができる抗体又は抗体フラグメントは、ファージ・ディスプレー法(例えば、FEBS Letter,1998年,第441巻,p.20-24を参照)を介して作製することもできる。この方法は、環状一本鎖DNAにヒト抗体遺伝子を組み込んだファージを利用して、ファージを構成する外殻タンパク質と融合した形で、ヒト型抗体をファージの表面に発現される。
 本発明において、LYPD1阻害剤としての抗体又は抗体フラグメントは、LYPD1に直接的及び/又は間接的に作用し、生体組織における血管内皮ネットワークの形成を促進するものであってもよく、後述のスクリーニング方法によって選択することが可能である。
 3.LYPD1発現の阻害剤
 本発明において用いられる「発現の阻害剤」とは、直接的及び/又は間接的に遺伝子の発現を阻害する、又は有意に抑制する生物学的効果を示す天然の、又は合成された化合物を意味する。従って、「LYPD1発現の阻害剤」とは、直接的及び/又は間接的にLYPD1遺伝子をコードする遺伝子の発現を阻害する、又は有意に抑制する生物学的効果を有する天然の、又は合成された化合物を意味する。また、本発明のLYPD1阻害剤は、LYPD1発現の阻害剤により処理され、LYPD1発現が阻害された細胞であってもよい。
 LYPD1発現の阻害剤としては、例えば、アンチセンスRNA又はDNA分子、RNAi誘導性核酸(例えば、低分子干渉RNA(siRNA)又は低分子ヘアピンRNA(shRNA))、マイクロRNA(miRNA)、リボザイム、ゲノム編集核酸及びそれらの発現ベクター、並びにそれらの組合せを適用することができる。また、LYPD1発現の阻害剤は、直接的及び/又は間接的にLYPD1遺伝子の発現を阻害する、又は有意に抑制する生物学的効果を示す有機低分子、アプタマー、抗体、抗体フラグメント並びにそれらの組合せを適用することもできる。さらに、LYPD1阻害剤は、上記のLYPD1発現の阻害剤により処理された細胞であってもよい。
 3-1.アンチセンスRNA又はDNA分子
 本発明にアンチセンスRNA又はDNA分子とは、メッセンジャーRNA(mRNA)など、ある機能を持つRNA(センスRNA)と相補的な塩基配列を持ち、センスRNAと2本鎖を形成することで、そのセンスRNAが担うべきタンパク質の合成を阻害する機能を有する分子である。本発明において、アンチセンスRNA又はDNA分子を含むアンチセンスオリゴヌクレオチドは、LYPD1のmRNAに結合することによってタンパク質に翻訳されることを阻害する。それにより、LYPD1の発現量を低減させ、LYPD1の活性を阻害することができる。アンチセンスRNA又はDNA分子を合成する方法は、当該技術分野で周知であり、本発明に用いることができる。
 3-2.RNAi誘導性核酸
 本発明で用いることができるRNAi誘導性核酸は、細胞内に導入されることにより、RNA干渉(RNAi)を誘導し得るポリヌクレオチドをいい、通常、19~30ヌクレオチド、好ましくは19~25ヌクレオチド、より好ましくは19~23ヌクレオチドを含むRNA、DNA、又はRNAとDNAのキメラ分子であってよく、任意の修飾が施されていてもよい。RNAiは、mRNAに対して生じてもよいし、プロセッシング前の転写直後のRNA、すなわちエキソン、イントロン、3’非翻訳領域、及び5’非翻訳領域を含むヌクレオチド配列のRNAであってもよい。本発明で使用可能なRNAi法は、(1)短い二重鎖RNA(siRNA)を細胞内に直接導入するか、(2)低分子ヘアピンRNA(shRNA)を各種発現ベクターに組み込み、そのベクターを細胞内に導入するか、或いは(3)対立方向に並ぶ2個のプロモーターを持つベクターに、siRNAに対応する短い二重鎖DNAをプロモーター間に挿入してsiRNAを発現させるベクターを作製し、細胞内に導入する、などの手法によりRNAiを誘導させてもよい。RNAi誘導性核酸は、LYPD1のRNAの切断又はその機能抑制を可能にするsiRNA、shRNA又はmiRNAを含んでもよく、これらのRNAi核酸は、リポソームなどを用いて直接導入されてもよいし、これらのRNAi核酸を誘導する発現ベクターを用いて導入されてもよい。
 本発明で用いられるLYPD1に対するRNAi誘導性核酸は、RNAi誘導性核酸の標的となるLYPD1配列に基づいて、周知の化学合成技術を用いて合成することができる。例えば、固相ホスホアミダイト法などのDNA合成技術を利用したDNA(/RNA)自動合成装置を使用して化学的に合成するか、或いは、siRNA関連の受託合成会社(例えばLife Technologies社など)に委託して合成することも可能である。本発明の実施形態によれば、本発明に用いられるsiRNAは、その前駆体であるshort-hairpin型二本鎖RNA(shRNA)から、細胞内RNaseであるダイサー(Dicer)によるプロセシングを介して誘導されてもよい。本発明において、使用されるRNAi誘導性核酸は、配列番号15又はその相補配列(配列番号16)に由来の連続する19~30ヌクレオチド、好ましくは19~25ヌクレオチド、より好ましくは19~23ヌクレオチドを含むRNAである。このようなRNAは、5’又は3’末端に1又は数個、例えば2個の付加配列(例えば、tt、uu、tgなど)が追加されてもよく、それにより細胞内で分解を妨げ、安定性を高めることができる。本発明で用いられるLYPD1に対するRNAi誘導性核酸は、LYPD1の発現を阻害する、又は有意に抑制する生物学的効果を示す核酸であればよく、当業者であれば、LYPD1の塩基配列を参考に合成することが可能である。例えば、以下の配列を含むLYPD1のsiRNAとして使用することができるが、以下のものに限定されることを意図するものではなく、下記の配列に相補する配列を用いてもよい:
 5’-GGCUUUGCGCUGCAAAUCC-3’(配列番号15)
 5’-GGAUUUGCAGCGCAAAGCC-3’(配列番号16)
 3-3.マイクロRNA(miRNA)
 マイクロRNA(miRNA)は21~25塩基長の1本鎖RNA分子であり、真核生物において遺伝子の転写後発現調節に関与する。miRNAは、一般にmRNAの3’UTRを認識して、標的mRNAの翻訳を抑制し、タンパク質産生を抑制する。従って、LYPD1の発現量を直接的及び/又は間接的に低減させることができるmiRNAも、本発明の範囲に含まれる。
 3-4.リボザイム
 リボザイムは、RNAの特異的切断を触媒することができる酵素的RNA分子の総称である。リボザイムには種々の活性を有するものが存在するが、中でもRNAを切断する酵素としてのリボザイムに焦点を当てた研究により、RNAを部位特異的に切断するリボザイムの設計が可能となった。リボザイムには、グループIイントロン型やRNase Pに含まれるM1 RNAのように400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(例えば、小泉誠及び大塚栄子、タンパク質核酸酵素、1990、35、2191を参照)。
 例えば、ハンマーヘッド型リボザイムの自己切断ドメインは、G13U14C15という配列のC15の3’側を切断するが、その活性にはU14とA9との塩基対形成が重要とされ、C15の代わりにA15又はU15でも切断され得ることが示されている(例えば、Koizumi,M.et al.,FEBS Lett,1988,228,228.を参照)。基質結合部位が標的部位近傍のRNA配列と相補的なリボザイムを設計すれば、標的RNA中のUC、UU又はUAという配列を認識する制限酵素的なRNA切断リボザイムを得ることが可能であり、当業者であれば、以下の文献を参考に製造可能である:Koizumi,M.et al.,FEBS Lett,1988,239,285.;小泉誠及び大塚栄子,タンパク質核酸酵素,1990,35,2191.;Koizumi,M.et al.,Nucl.Acids Res.,1989,17,7059.。
 また、ヘアピン型リボザイムも本発明に用いることができる。このリボザイムは、例えば、タバコリングスポットウイルスのサテライトRNAのマイナス鎖に見出される(Buzayan,JM.,Nature,1986,323,349.)。ヘアピン型リボザイムからも、標的特異的なRNA切断リボザイムを作出できることが示されている(例えば、Kikuchi,Y.&Sasaki,N.,Nucl.Acids.Res.,1991,19,6751.;菊池洋,化学と生物,1992,30,112.を参照)。リボザイムを用いてLYPD1をコードする遺伝子の転写産物を特異的に切断することで、LYPD1遺伝子の発現を阻害することができる。従って、LYPD1を対象とするリボザイムも、本発明の範囲に含まれる。
 3-5.ゲノム編集核酸
 本発明の一実施形態において、LYPD1発現の阻害剤は、直接的及び/又は間接的にLYPD1遺伝子の発現を阻害する、又は有意に抑制する生物学的効果を示すゲノム編集核酸を用いることができる。本明細書において、ゲノム編集核酸とは、遺伝子ターゲッティングに用いられるヌクレアーゼを利用したシステムにおいて、所望の遺伝子を編集するために用いられる核酸をいう。遺伝子ターゲッティングに用いられるヌクレアーゼは、公知のヌクレアーゼの他、今後遺伝子ターゲッティングのために使用される新たなヌクレアーゼも包含される。例えば、公知のヌクレアーゼとしては、CRISPR/Cas9(Ran,F.A.,et al.,Cell,2013,154,1380-1389)、TALEN(Mahfouz,M.,et al.,PNAS,2011,108,2623-2628)、ZFN(Urnov,F.,et al.,Nature,2005,435,646-651)等が挙げられる。
 本発明の一実施態様に用いることができる、CRISPR/Cas9を用いたCRISPR/Cas9システムについて説明する。
 CRISPR/Cas9システムは、DNAの任意の部位に二本鎖切断を導入することを可能とする。CRISPR/Cas9システムを用いるためには、少なくとも、プロトスペーサー隣接モチーフ(PAM配列)、ガイドRNA(gRNA)、Casタンパク質(Cas,Cas9)の3つの要素を必要とする。
 PAM配列(5’-NGG)に隣接する標的部位に相補的な配列を形成するようにgRNAを設計し、所望の細胞にCasタンパク質と共に導入する。導入されたgRNAとCasタンパク質は複合体を形成する。gRNAがゲノム上の標的配列に結合し、Casタンパク質がそのヌクレアーゼ活性によって標的のゲノムDNAの二重鎖を切断する。
 その後、ヌクレアーゼによる二本鎖切断を受けた細胞では、相同組換え型修復(Homology Directed Repair(HDR))、又は非相同性末端結合修復(non-homologous end joining(NHEJ))が生じる。当該細胞内に適切なDNA断片(例えば、HDR修復用鋳型)が存在する場合には、相同組換えが生じ、任意のゲノムにおいて欠失、挿入、破壊などの改変を行うことができる。HDR修復用鋳型が存在しない場合は、NHEJの過程で数塩基の欠失又は追加が生じる場合がある。これにより、タンパク質をコードする領域においてフレームシフトが生じ、タンパク質の読み取り枠が崩壊したり、未成熟な終止コドンが導入され、結果として、所望のタンパク質をノックアウトすることが可能となる。
 本発明の一実施態様において、ゲノム編集核酸は、LYPD1遺伝子をターゲティングするgRNAであってもよく、該gRNAを発現するベクターであってもよい。他の実施態様において、ゲノム編集核酸は、さらに、遺伝子ターゲッティングに用いられるヌクレアーゼを発現する核酸を含んでもよい。gRNAと遺伝子ターゲッティングに用いられるヌクレアーゼ(好ましくは、Casタンパク質)は、同一のベクターにコードされたものであってもよく、別々にコードされたベクターを用いてもよい。他の実施態様において、ゲノム編集核酸は、さらに、HDR修復用鋳型核酸を含んでも良い。ゲノム編集核酸は、プラスミドベクターであってもよく、ウイルスベクターであってもよい。ゲノム編集核酸によって、任意の細胞に導入する方法については、公知の方法を用いることができ、特に限定されない。
 3-6.LYPD1発現の阻害剤としての有機低分子、アプタマー、抗体、抗体フラグメント
 本発明の一実施形態において、LYPD1発現の阻害剤は、直接的及び/又は間接的にLYPD1遺伝子の発現を阻害する、又は有意に抑制する生物学的効果を示す有機低分子、アプタマー、抗体、抗体フラグメント又はそれらの組合せとして提供される。そのような物質の例としては、例えば、NF-κBの阻害剤を用いることができる。NF-κBの阻害剤であるパルテノライド誘導体、特にジメチルアミノパルテノライド(DMAPT)は、LYPD1の発現を抑制することが知られている(Burnett RM.,et al.Oncotarget 6:12682-12696(2015))。すなわち、一実施態様において、本発明のLYPD1阻害剤は、以下のパルテノライド誘導体であってもよく、これに限定されない:11βH,13-ジメチルアミノパルテノライド(DMAPT);11βH,13-ジエチルアミノパルテノライド;11βH,13-(tert-ブチルアミノ)パルテノライド;11βH,13-(ピロリジン-1-イル)パルテノライド;11βH,13-(ピペリジン-1-イル)パルテノライド;11βH,13-(モルホリン-1-イル)パルテノライド;11βH,13-(4-メチルピペリジン-1-イル)パルテノライド;11βH,13-(4-メチルピペラジン-1-イル)パルテノライド;11βH,13-(ホモピペリジン-1-イル)パルテノライド;11βH,13-(ヘプタメチレンイミン-1-イル)パルテノライド、11βH,13-(アゼチジン-1-イル)パルテノライド;11βH,13-ジアリルアミノパルテノライド;及びこれらの医薬的に許容される塩。本発明の一実施形態において用いることができるこれらのパルテノライド誘導体は、国際公開第2005/007103号を参照して得ることができ、本発明の範囲に含まれる。
 3-7.LYPD1発現の阻害剤の発現ベクター
 本発明の一実施態様において、LYPD1阻害剤としてのLYPD1発現の阻害剤は、上述のアンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム又はゲノム編集核酸が任意のベクターにコードされた発現ベクターとして提供されてもよい。本発明において、LYPD1発現の阻害剤を発現させるために使用されるベクターは特に限定されず、公知のものを適宜選択可能である。例えば、プラスミドベクター、コスミドベクター、フォスミドベクター、ウイルスベクター、人工染色体ベクターなどが挙げられる。LYPD1発現の阻害剤をベクターに導入する方法は、公知の遺伝子組換え技術を用いて導入することが可能であり、特に限定されない。
 3-8.LYPD1発現の阻害剤で処理された細胞
 本発明の一実施態様において、LYPD1阻害剤は、上述のアンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム又はゲノム編集核酸が、任意のベクターにコードされた発現ベクターによって処理された細胞であってもよい。また、本発明の一実施態様において、LYPD1阻害剤は、LYPD1発現の阻害剤の発現ベクターで細胞を処理した結果、LYPD1発現の阻害剤の発現ベクターが導入された細胞であってもよい。LYPD1発現の阻害剤の発現ベクターを細胞へ導入する方法についても公知の方法に従えばよく、特には限定されない。また、当該発現ベクターが導入されて、LYPD1発現の阻害剤を一時的又は持続的に発現する細胞を選択する方法も限定されず、例えば、発現ベクターにコードされている薬剤耐性遺伝子に対応する薬剤(例えば、ネオマイシン、ハイグロマイシン等)を使用して選択すればよい。
 また、本発明の一実施態様において、LYPD1阻害剤は、上述の有機低分子、アプタマー、抗体、抗体フラグメントによって処理された細胞であってもよい。
 4.医薬組成物
 本発明は、LYPD1阻害剤を有効成分として含む、血管新生障害を治療及び/又は予防するための医薬組成物であってもよい。
 本発明において用いられるLYPD1阻害剤又はLYPD1阻害剤を有効成分として含む医薬組成物は、LYPD1を発現する生体組織、例えば、LYPD1を高発現する脳、心臓、腎臓又は筋肉の生体組織において、血管内皮ネットワークの形成を促進する。それにより、LYPD1阻害剤又はLYPD1阻害剤を有効成分として含む医薬組成物は、血管内皮ネットワークの形成を促進し、血管新生障害を治療及び/又は予防することを可能とする。本発明のLYPD1阻害剤又はLYPD1阻害剤を有効成分として含む医薬組成物により、治療及び/又は予防することができる血管新生障害は、例えば、脳血管疾患、脳梗塞、一過性脳虚血発作、モヤモヤ病、狭心症、(末梢)動脈閉塞症、動脈硬化症、バージャー病、心筋梗塞、虚血、心筋症、鬱血性心不全、冠動脈疾患、遺伝性出血性毛細血管拡張症、虚血性心疾患、血管内膜肥厚、血管閉塞、動脈硬化性末梢血管疾患、門脈圧亢進症、リウマチ性心疾患、高血圧、血栓塞栓症、アテローム性動脈硬化、血管形成術後の再狭窄、肺動脈高血圧、静脈移植片疾患、高血圧性心疾患、心臓弁膜症、川崎病、拡張型心筋症、肥大型心筋症、サルコイドーシス、全身性強皮症、大動脈炎症候群、無症候性心筋虚血、内頚動脈狭窄症、椎骨動脈狭窄症、透析心筋症、糖尿病性心筋症、肺動脈性肺高血圧、虚血性心筋症、冠動脈バイパス術後、経皮的冠動脈形成術後、急性心筋梗塞、亜急性心筋梗塞、陳旧性心筋梗塞、労作性狭心症、不安定狭心症、急性冠症候群、冠攣縮性狭心症、大動脈弁狭窄症、大動脈弁閉鎖不全、僧房弁閉鎖不全及び僧房弁狭窄症、などが挙げられる。
 一実施態様において、本発明の医薬組成物には、さらに、血管新生誘導因子を含んでいても良い。例えば、血管内皮成長因子(VEGF)、肝細胞成長因子(HGF)、線維芽細胞成長因子(FGF)、上皮成長因子(EGF)、血小板由来成長因子(PDGF)、インシュリン様成長因子(IGF)、アンギオポエチン、トランスフォーミング増殖因子-β(TGF-β)、胎盤成長因子(PIGF)、マトリックスメタロプロテアーゼ(MMP)、又はそれらのファミリータンパク質等が挙げられる。これらの血管新生誘導因子は、上述の中から1つを選択しても良く、2以上の組み合わせであっても良い。
 本発明のLYPD1阻害剤又はLYPD1阻害剤を有効成分として含む医薬組成物は、それを必要とする被験体に適用し、血管新生障害の治療及び/又は予防が可能となる。
 LYPD1の選択的阻害剤は、以下に定義したように、医薬組成物の形態で投与することができる。
 好ましくは、LYPD1阻害剤は被験体に治療有効量で投与される。「治療有効量」とは、血管新生障害を治療及び/又は予防する所望の効果を発揮するのに必要かつ十分なLYPD1阻害剤の量を意味する。
 本発明に含まれるLYPD1阻害剤の一日の使用量は、医者による医学的判断の範囲で、決定される。治療有効用量は、治療及び/又は予防の対象となる障害及びその障害の重症度、使用する化合物の活性、使用する組成物、患者の年齢、体重、患者の健康状態、性別及び食事、投与時間、投与経路並びに使用する化合物の排泄率、治療期間、同時に使用される薬剤、及びその他医療分野で周知のファクターによって変化する。例えば、所望する治療効果を実現するために必要な量よりも低い量でLYPD1阻害剤の投与を開始し、所望する効果が実現するまで投薬量を徐々に増加させることは当業者が実現可能な範囲である。LYPD1阻害剤の用量は、成人1日当たり0.01~1000mgの広い範囲で変化させることができる。好ましくは、LYPD1阻害剤を有効成分として含む医薬組成物は、治療する患者の症状に合わせて投薬するために、活性成分を0.01、0.05、0.1、0.5、1.0、2.5、5.0、10.0、15.0、25.0、50.0、100、250及び500mgを含有する。医薬組成物は、通常、活性成分を約0.01mg~約500mg、好ましくは活性成分を1mg~約100mg含有する。薬物の有効量は通常、1日当たり0.0002mg/kg体重~約20mg/kg体重、特に1日当たり約0.001mg/kg体重~7mg/kg体重までの投薬量で供給される。
 5.血管内皮ネットワークの形成が促進された生体組織を製造する方法
 本発明のLYPD1阻害剤を適用することにより、生体組織内に血管内皮ネットワークの形成が促進される。これにより、生体組織内に、機能的な血管網が構築され、厚みをもった三次元生体組織を得ることが可能となる。
 一実施態様において、本発明は、血管内皮ネットワークの形成が促進された生体組織を製造する方法を提供する。該方法は、以下の工程:
 (a1)LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を提供する工程;
 (a2)前記工程(a1)により得られた細胞群を、LYPD1阻害剤で処理する工程;並びに
 (a3)前記工程(a2)により得られた細胞群を、培養する工程、
或いは、
 (b1)LYPD1を発現する第1の細胞を含む細胞群を、LYPD1阻害剤で処理する工程;
 (b2)前記工程(b1)により得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させる工程;並びに
 (b3)前記工程(b2)により得られた細胞群を、培養する工程、
を含む、方法である。
 LYPD1を発現する第1の細胞とは、例えば、LYPD1が発現することにより、血管内皮ネットワークの形成を阻害する活性を有する細胞であり、例えば、LYPD1を発現する生体組織由来、好ましくはLYPD1を高発現する脳、心臓、腎臓又は筋肉の生体組織由来の細胞、特に好ましくは、脳、心臓、腎臓又は筋肉の生体組織に存在する間質細胞又は線維芽細胞である。LYPD1を発現する第1の細胞は、多能性幹細胞から誘導された細胞であってもよい。本発明において、多能性幹細胞とは、自己複製能と多分化能を有する細胞であり、体を構成するあらゆる細胞を形成する能力(pluriopotent)を備える細胞をいう。自己複製能とは、1つの細胞から自分と同じ未分化な細胞を2つ作る能力のことをいう。本発明で用いられる多能性幹細胞は、例えば、胚性幹細胞(embryonic stem cell:ES細胞)、胚性癌腫細胞(embryonic carcinoma cell:EC細胞)、栄養芽幹細胞(trophoblast stem cell:TS細胞)、エビブラスト幹細胞(epiblast stem cell:EpiS細胞)、胚性生殖細胞(embryonic germ cell:EG細胞)、多能性生殖細胞(multipotent germline stem cell:mGS細胞)、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)などが含まれる。これらの多能性幹細胞を分化誘導する方法としては、例えば、Matsuuraらの方法(Matsuura K.,et al.,Creation of human cardiac cell sheets using pluripotent stem cells.Biochem.Biophys.Res.Commun.,2012 Aug.24;425(2):321-327)に従って実施できる。
 本発明に用いることができる血管内皮細胞及び/又は血管内皮前駆細胞は、血管を構成する細胞であれば使用することが可能であり、例えば、ヒト臍帯静脈血管内皮細胞(HUVEC)、ヒト心臓由来微小血管内皮細胞(HMVEC-C)又は多能性幹細胞由来血管内皮細胞、或いは、ヒト以外の哺乳動物の血管内皮細胞及び/又は血管内皮前駆細胞も用いることが可能である。適用する被験体がヒトである場合、ヒト由来の血管内皮細胞及び/又は血管内皮前駆細胞であることが好ましい。
 一実施態様において、該工程(a1)の「LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群」とは:
 i)少なくとも該第1の細胞と、少なくとも血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群;
 ii)少なくとも該第1の細胞と、少なくとも血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を含む、被験体由来の生体組織;又は
 iii)組織工学的に作製された、少なくとも該第1の細胞と、少なくとも血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を含む、生体組織
であってもよい。
 該工程(a1)により得られた上記の細胞群に対し、LYPD1阻害剤で処理し(工程(a2))、数日間(例えば、1日、2日、3日、4日、又は5日以上)培養することにより(工程(a3))、血管内皮ネットワークの形成が促進された生体組織を製造することが可能となる。すなわち、本実施態様では、LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とが共に存在する状態において、LYPD1阻害剤で処理する方法である。工程(a3)において培養する期間は、細胞数、細胞密度、細胞の種類などによって適宜変更される。
 一実施態様において、血管内皮ネットワークの形成が促進された生体組織を製造する方法は、血管内皮細胞及び/又は血管内皮前駆細胞と共培養する前に、LYPD1を発現する第1の細胞を含む細胞群をLYPD1阻害剤で処理する方法であってもよい(工程(b1))。工程(b1)に得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させ(工程(b2))、数日間(例えば、1日、2日、3日、4日、又は5日以上)培養することにより(工程(b3))、血管内皮ネットワークの形成が促進された生体組織を製造することが可能となる。工程(a3)において培養する期間は、細胞数、細胞密度、細胞の種類などによって適宜変更される。
 本発明において、「LYPD1阻害剤で処理する」とは、前述のLYPD1阻害剤を、公知の方法によって、第1の細胞に発現するLYPD1又はLYPD1遺伝子(例えば、mRNA)に作用させ、LYPD1の活性を阻害することを指す。例えば、LYPD1阻害剤を添加した培地で培養する方法;LYPD1阻害剤(例えば、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、miRNA、リボザイム及びそれらの発現ベクター)を含むリポソームやウイルスベクター(例えばレトロウイルスベクター、アデノ随伴ウイルスベクター、アデノウイルスベクター、レンチウイルスベクター)に曝露させる方法;LYPD1阻害剤(例えば、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、miRNA、リボザイム及びそれらの発現ベクター)をリン酸カルシウム法、エレクトロポレーション法、マイクロインジェクション法又はリポフェクション法により導入する方法、などを適用できる。LYPD1阻害剤の種類や特性に応じて、最適な方法を選択すればよい。
 一実施態様において、本発明の「LYPD1阻害剤で処理する」とは、該第1の細胞のLYPD1発現量よりもLYPD1発現量が低い若しくは発現していない第2の細胞を、該第1の細胞と混合させて、又は、接触させて培養する方法であってもよい。例えば、第1の細胞と第2の細胞とを混合して培養してもよく;第1の細胞を含む細胞群と、第2の細胞を含む細胞群をそれぞれシート状の細胞(細胞シート)にして、それらを積層して接触させる方法であってもよい。第1の細胞:第2の細胞の比率は、例えば、199:1、99:1、95:5、90:10、80:20、70:30、60:40、50:50、40:60、30:70、20:80、10:90、5:95、1:99、1:199であってもよく、これに限定されない。使用する細胞の種類、LYPD1の発現量などに応じて適宜変更される。
 さらに、一実施形態において、本発明の方法は、LYPD1阻害剤を添加した培地で灌流培養する方法であってもよい。これにより、継続的にLYPD1阻害剤が供給され、血管内皮ネットワークの形成が促進される。
 一実施態様において、該第2の細胞は、例えば、皮膚、食道、肺、及び/又は肝臓由来の細胞である。これらの細胞は、心臓、筋肉、腎臓又は脳由来の細胞と比較して、LYPD1の発現量が低い。好ましくは、皮膚由来の線維芽細胞である。
 一実施態様において、第1の細胞のLYPD1発現量よりもLYPD1発現が低い又は発現していない第2の細胞は、第1の細胞のLYPD1発現量の1/2倍以下、好ましくは1/5倍以下、より好ましくは1/10倍以下、さらに好ましくは1/50倍以下である。本発明において、LYPD1発現量は、例えば、定量的PCR法(qPCR)、ウエスタンブロット法、フローサイトメータ法(FACS)、ELISA法、免疫組織化学法など、周知の技術を用いて評価することができる。
 6.医薬品組成物を製造するためのLYPD1阻害剤の使用
 一実施態様において、本発明のLYPD1阻害剤は、血管新生障害を治療及び/又は予防するための医薬品組成物を製造するために使用することができる。
 7.LYPD1阻害剤のスクリーニング法
 本発明のLYPD1阻害剤はさらに、公知のスクリーニング方法を応用することによって候補物質の中から同定することができる。例えば、以下のような方法が挙げられる。
 スクリーニング方法は、候補化合物に直接的に、又は間接的に結合させた標識によって、候補化合物のLYPD1又はLYPD1を有する細胞若しくは膜、又はそれらの融合タンパク質に対する結合を評価することにより選択することができる。或いは、スクリーニング方法には、候補化合物と標識した競合物質(例えば、阻害剤又は基質)について、LYPD1に対する競合結合の測定又は定性的若しくは定量的な検出によって選択することができる。
 例えば、LYPD1のcDNAが挿入された発現ベクターを、宿主細胞に導入した、ベクター/宿主細胞を用いることができる。例えば、バキュロウイルス/Sf9昆虫細胞や、レトロウイルス/哺乳動物細胞系、発現ベクター/哺乳動物細胞系などを使用することができる。使用する細胞としては、例えば、HeLa、HepB3、LLC-PK1、MDCKII、CHO、HEK293などを用いることができるが、これに限定されない。また、本発明のLYPD1阻害剤のスクリーニング方法においては、LYPD1の発現量が高い組織由来の細胞、例えば、脳由来、心臓由来、筋肉由来又は腎臓由来の細胞、特に心臓由来の線維芽細胞を用いることもできる。
 本発明において用いられるLYPD1阻害剤は、前述のように得られた細胞又はLYPD1を高発現する細胞(例えば、2.4×105cells/cm2)と、血管網を構築する血管内皮細胞及び/又は血管内皮前駆細胞(例えば、2.0×104cells/cm2)と、候補物質とを予めインキュベートし、培養皿に播種して37℃、5%CO2にて数日間培養し、血管内皮細胞及び/又は血管内皮前駆細胞が形成する血管内皮ネットワークを顕微鏡(好ましくは蛍光顕微鏡)にて観察し、血管内皮ネットワークの長さ及び分岐点の数を評価することにより選択することができる。候補物質は、前述のように得られた細胞又はLYPD1を高発現する細胞と、血管網を構築する血管内皮細胞及び/又は血管内皮前駆細胞とを混合して予め播種された細胞群に、後から添加して培養してもよい。
 血管内皮細胞及び/又は血管内皮前駆細胞が形成する血管内皮ネットワークは、蛍光標識された抗CD31抗体又は血管内皮細胞特異的抗体を用いて検出して評価してもよい。また、例えば、GFPなどの蛍光タンパク質を発現する血管内皮細胞及び/又は血管内皮前駆細胞を用い、蛍光を検出することにより評価してもよい。
 一実施態様において、LYPD1阻害剤をスクリーニングする方法は、例えば、以下の工程を含んでもよい:
  (i-1)LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を提供する工程;
  (i-2)前記工程(i-1)により得られた細胞群を、候補物質で処理する工程;
  (i-3)前記工程(i-2)により得られた細胞群を培養する工程;並びに
  (i-4)前記工程(i-3)により得られた細胞群における血管内皮ネットワークの形成を評価する工程、
 或いは、
  (ii-1)LYPD1を発現する第1の細胞を含む細胞群を、候補物質で処理する工程;
  (ii-2)前記工程(ii-1)により得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させる工程;
  (ii-3)前記工程(ii-2)により得られた細胞群を培養する工程;並びに
  (ii-4)前記工程(ii-3)により得られた細胞群における血管内皮ネットワークの形成を評価する工程。
 本実施態様に用いることができる第1の細胞は、例えば、LYPD1が比較的高発現している、心臓、筋肉、腎臓及び/又は脳由来の細胞を用いてもよい。また、LYPD1を発現するベクターが導入された細胞を用いてもよい。
 また、一実施態様において、LYPD1阻害剤をスクリーニングする方法は、例えば、LYPD1が比較的高発現している、心臓、筋肉、腎臓及び/又は脳由来の細胞を、候補物質で処理し、LYPD1の発現を低下させる候補物質を選択する工程、を実施するものであってもよく、上記方法と組み合わせた方法であってもよい。LYPD1の発現は、公知の方法を用いて検出することが可能であり、例えば、定量的PCR法(qPCR)、ウエスタンブロット法、フローサイトメータ法(FACS)、ELISA法、免疫組織化学法など、周知の技術を用いて検出することができる。
 以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。
 <使用した細胞及び調整方法>
 以下の実施例中で使用した細胞は以下の通りである。
 ・ヒト皮膚線維芽細胞(Lonzaより購入。NHDF-Ad 正常ヒト皮膚線維芽細胞(CC-2511))
 ・ヒト心臓線維芽細胞(Lonzaより購入。NHCF-a(正常ヒト心臓線維芽細胞-心房(CC-2903))、NHCF-v(正常ヒト心臓線維芽細胞-心室(CC-2904))
 ・ヒト臍帯静脈血管内皮細胞(HUVEC)(Lonzaより購入。Cat.#C2517A))
 ・正常ヒト心臓微小血管内皮細胞(HMVEC-C)(Lonzaより購入。Cat.#CC-7030)
 ・ヒトiPS由来間質細胞:ヒトiPS細胞から心筋細胞を分化誘導する際に得られる細胞群より培養皿への接着性が心筋細胞よりも高い細胞群を分取すると線維芽様の細胞が得られる。これをヒトiPS由来間質細胞とした(図12(A)参照)。ヒトiPS細胞から心筋細胞への分化は、Matsuura K.,et al.Creation of human cardiac cell sheets using pluripotent stem cells.Biochem Biophys Res Commun.2012 Aug 24;425(2):321-7.に記載の方法により行った。
 ・ヒトiPS細胞由来血管内皮細胞(iPS-CD31+)は、以下を参照して、調製することにより得た(White MP.,et al.,Stem Cells.2013 Jan;31(1):92-103)。
 ・Cos-7細胞(国立研究開発法人 医薬基盤・健康・栄養研究所 JCRB細胞バンクより入手)
 <実施例1>
 心臓線維芽細胞は血管内皮ネットワーク形成を阻害する(図1)
 ヒト皮膚線維芽細胞(NHDF)又は心臓線維芽細胞(心房由来:NHCF-a、心室由来:NHCF-v)(2.4×10cells/cm)と、ヒト臍帯静脈血管内皮細胞(HUVEC)(2.0×10cells/cm)とを3日間、5%CO、37℃で共培養後、抗CD31抗体(Human CD31/PECAM-1 PE-conjugated Antibody,FAB3567P,R&D)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さと分枝点を算出した。
 血管内皮ネットワーク形成はヒト皮膚線維芽細胞との共培養で促進されるが、ヒト心臓線維芽細胞との共培養では阻害された。
 <実施例2>
 心臓線維芽細胞は血管内皮ネットワーク形成を阻害する(図2)
 ヒト皮膚線維芽細胞又は心臓線維芽細胞(2.4×10cells/cm)と、iPS細胞由来血管内皮細胞(iPS-CD31+)又は正常ヒト心臓微小血管内皮細胞(HMVEC-C)(2.0×10cells/cm)とを3日間、5%CO、37℃で共培養後、抗CD31抗体(Human CD31/PECAM-1 PE-conjugated Antibody,FAB3567P,R&D)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さと分枝点を算出した。
 ヒトiPS由来血管内皮細胞やヒト心臓微小血管内皮細胞の血管内皮ネットワーク形成でもヒト皮膚線維芽細胞との共培養による促進、ヒト心臓線維芽細胞との共培養による阻害がみられた。
 <実施例3>
 心臓線維芽細胞は血管内皮ネットワーク形成を阻害する(図3)
 マウス皮膚線維芽細胞又は心臓線維芽細胞(6×10cells/cm)と、マウスES細胞由来心筋細胞(2.4×10cells/cm)と、マウスES細胞由来血管内皮細胞(2.0×10cells/cm)とを3日間、5%CO、37℃で共培養後、抗CD31抗体(PE Rat Anti-Mouse CD31,553373,BD Biosciences)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さと分枝点を算出した。
 マウスES細胞由来血管内皮細胞の血管内皮ネットワーク形成はマウス皮膚線維芽細胞の存在下で促進されるが、マウス心臓線維芽細胞の存在下では阻害された。
 <実施例4>
 心臓線維芽細胞は血管内皮ネットワーク形成を阻害する(図4)
 SDラット(Jcl:SD、三共ラボ、日本)より採取したプライマリーの新生仔ラット皮膚線維芽細胞(RDF)又は心臓線維芽細胞(RCF)(2.4×105cells/cm2)と、ラット新生仔心臓由来血管内皮細胞(2.0×104cells/cm2)とを3日間、5%CO2、37℃で共培養後、抗CD31抗体(Mouse anti Rat CD31 Antibody,MCA1334G,Bio-Rad)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さと分枝点を算出した。
 血管内皮ネットワーク形成はラット皮膚線維芽細胞との共培養で促進されるが、ラット心臓線維芽細胞との共培養では阻害された。
 <実施例5>
 皮膚線維芽細胞と心臓線維芽細胞の遺伝子発現比較(図5)
 ヒト皮膚線維芽細胞及び心臓線維芽細胞(心房由来及び心室由来)よりトータルRNAを抽出し遺伝子発現をマイクロアレイで解析した(DNAチップ研究所(日本)へ委託)。糖タンパク質関連遺伝子及び血管新生関連遺伝子についてヒートマップを示した(図5)。
 ヒト皮膚線維芽細胞及び心臓線維芽細胞における遺伝子発現パターンは大きく異なっていた。アレイの結果を元に候補分子のスクリーニングを行い、心臓線維芽細胞に高発現する血管新生抑制因子LYPD1(Gen Bank受入番号:NM_144586.6、配列番号1)を同定した。
 <実施例6>
 LYPD1はラット心臓間質に発現する(図6)
 ラット由来の各臓器におけるLYPD1の発現をqPCRで評価した。ラット各臓器よりトータルRNAを抽出し、トータルRNA画分に含まれるmRNAを鋳型としてcDNAを合成し、qPCRの鋳型とした。qPCRはTaqMan(登録商標)Gene Expression Assays(Rn01295701_m1,Thermo Fisher Scientific)を用いて比較CT法により行った(図6(A))。ラット由来の各臓器におけるLYPD1の発現を評価したところ心臓で高発現していた。
 図6(B)はラット心臓組織の免疫染色画像を示す。抗cTnT(cardiac Troponin T抗体(Anti-Troponin T,Cardiac Isoform,Mouse-Mono(13-11),AB-1,MS-295-P,Thermo Fisher Scientific))、抗LYPD1抗体(ab157516,abcam)及びDAPI(核)を染色した。
 ラット心臓組織における発現を免疫染色により評価したところ、cardiac Troponin T陽性の心筋細胞とは共染されず、心臓間質に発現していた。
 <実施例7>
 ヒト及びラット初代培養細胞におけるLYPD1の遺伝子発現比較(図7)
 ヒト及び新生仔ラット由来の皮膚線維芽細胞及び心臓線維芽細胞におけるLYPD1の発現をqPCRで評価した。各細胞よりトータルRNAを抽出し、トータルRNA画分に含まれるmRNAを鋳型としてcDNAを合成しqPCRの鋳型とした。qPCRはTaqMan(登録商標)Gene Expression Assays(Hs00375991_m1(human),Rn01295701_m1(rat),Thermo Fisher Scientific)を用いて比較CT法により行った。
 ヒト及び新生仔ラット由来の皮膚線維芽細胞ではLYPD1はほとんど検出されなかったが、心臓線維芽細胞では高発現していた。
 <実施例8>
 血管ネットワーク形成はLYPD1の阻害により回復する(図8)
 Lipofectamine(商標)RNAiMAX Transfection Reagent(Thermo Fisher Scientific)を用いてヒト心臓線維芽細胞にLYPD1に対するsiRNA(Silencer(登録商標)Select siRNA,Cat.#4392420,Thermo Fisher Scientific)(1nM)又はコントロールSiRNA(Silencer(登録商標)Select Negative Control No.2 siRNA,Cat.#4390846)(1nM)を導入し2日間培養した後、siRNAを導入したヒト心臓線維芽細胞(2.4×10cells/cm)とHUVEC(2.0×104cells/cm2)とを3日間、5%CO2、37℃で共培養し、抗CD31抗体(Human CD31/PECAM-1 PE-conjugated Antibody,FAB3567P,R&D)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さを算出した。
 LYPD1に対するSiRNAの配列は以下の通りである。
Figure JPOXMLDOC01-appb-T000001
 siRNAによりLYPD1の発現を抑制したヒト心臓線維芽細胞ではLYPD1による血管新生抑制効果が阻害され、共培養したHUVECの血管ネットワーク形成がみられた(図8(B)~(D)参照)。
 <実施例9>
 血管ネットワーク形成はLYPD1の阻害により回復する(図9)
 ヒト心臓線維芽細胞(2.4×105cells/cm2)とHUVEC(2.0×104cells/cm2)とを抗LYPD1抗体(5μg/mL)(ab157516,abcam)存在下又はコントロール抗体の存在下(5μg/mL)(正常ウサギIgG、Wako、日本、Cat.#148-09551)にて4日間、5%CO2、37℃で共培養後、抗CD31抗体(Human CD31/PECAM-1 PE-conjugated Antibody,FAB3567P,R&D)で免疫染色した(図9(A)及び(B))。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて、抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さと分枝点を算出した(図9(C)及び(D))。
 LYPD1に対する抗体の存在下では、ヒト心臓線維芽細胞に発現するLYPD1による血管新生抑制効果が阻害され、共培養したHUVECの血管ネットワーク形成がみられた。
 <実施例10>
 血管ネットワーク形成はLYPD1の阻害により回復する(図10)
 ラット新生仔心臓線維芽細胞(2.4×10cells/cm)とラット新生仔心臓由来血管内皮細胞(2.0×10cells/cm)とをLYPD1抗体(ab157516,abcam)存在下(5μg/mL)又はコントロール抗体の存在下(5μg/mL)(正常ウサギIgG、Wako、日本、Cat.#148-09551)にて4日間、5%CO、37℃で共培養後、抗CD31抗体(Mouse anti Rat CD31 Antibody,MCA1334G,Bio-Rad)で免疫染色した(図10(A)及び(B))。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さと分枝点を算出した(図10(C)及び(D))。
 LYPD1に対する抗体の存在下ではラット心臓線維芽細胞に発現するLYPD1による血管新生抑制効果が阻害され、共培養したラット心臓由来血管内皮細胞の血管ネットワーク形成がみられた。
 <実施例11>
 iPS由来間質細胞は心臓線維芽細胞と同一のクラスターに分類される(図11)
 ヒト皮膚線維芽細胞(NHDF)及びヒト心臓線維芽細胞(NHCF)、ヒトiPS由来間質細胞、ヒト間葉系幹細胞(Lonza、Cat.#PT-2501)における遺伝子発現をマイクロアレイで解析しクラスタリングした。iPS由来間質細胞は心臓線維芽細胞と同一のクラスターに分類された。
 <実施例12>
 iPS由来間質細胞はiPS CD31陽性細胞の血管内皮ネットワーク形成を阻害する(図12)
 ヒトiPS由来間質細胞をヒトiPS CD31陽性細胞と共培養後、抗CD31抗体(Human CD31/PECAM-1 PE-conjugated Antibody,FAB3567P,R&D)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得した(図12(B))。
 ヒトiPS CD31陽性細胞の血管内皮ネットワーク形成はヒト皮膚線維芽細胞との共培養で促進されるが、ヒトiPS由来間質細胞との共培養では阻害された。
 ヒト皮膚線維芽細胞(NHDF)、ヒト心臓線維芽細胞(NHCFa)及びヒトiPS由来間質細胞(iPS fibro-like)のLYPD1の発現をqPCRで評価した。各細胞よりトータルRNAを抽出し、トータルRNA画分に含まれるmRNAを鋳型としてcDNAを合成しqPCRの鋳型とした。qPCRはTaqMan(登録商標)Gene Expression Assays(Hs00375991_m1,Thermo Fisher Scientific)を用いて比較CT法により行った(図12(C))。
 ヒトiPS由来間質細胞はヒト心臓線維芽細胞と同様、LYPD1の発現が高かった。
 <実施例13>
 組換えLYPD1発現及び精製、並びに血管内皮ネットワークの阻害効果の確認(図13)
 ヒトLYPD1 cDNA配列をコードするタンパク質を、公表された配列データに従って選択した。シグナル配列の後に挿入されたFLAG配列を有するヒトLYPD1を、GenScript(Piscataway、NJ、USA)によって合成し、pcDNA3.1ベクター(以下、「pFLAG-LYPD1」という。)に挿入した。
 COS-7細胞を、10%ウシ胎仔血清を補充したDMEM(ダルベッコ変法イーグル培地;Invitrogen)中、37℃、5%CO雰囲気中で維持培養した。pFLAG-LYPD1を、Lipofectamine(登録商標)3000(Invitrogen)を用いて、製造者の指示に従ってCOS-7細胞にトランスフェクトした。トランスフェクションの48時間後、細胞をRIPA緩衝液(Wako、日本)で溶解した。
 FLAG-LYPD1タンパク質を、抗DYKDDDDKタグ抗体磁気ビーズ(Wako、日本)を用いて4℃で3時間免疫沈降させた。続いてビーズをRIPA緩衝液で3回洗浄し、FLAG-LYPD1タンパク質を、DYKDDDDKペプチド(Wako、日本)を添加することによってビーズから溶出させた。溶出液を12.5%SDS-PAGEゲルで分離し、Immobilon-P(Merck、ドイツ)にブロットした。
 FLAG-LYPD1タンパク質を、ペルオキシダーゼ結合-抗DYKDDDDKタグモノクローナル抗体(Wako、日本)及びウサギポリクローナル抗LYPD1抗体(abcam)を用いて検出した。
 ECL Prime Western Blotting Detection Reagent(GE Healthcare UK Ltd.、英国)を製造者の指示に従って使用し、バンドを可視化し、dig tal imaging system(LAS3000、GE Healthcare UK Ltd)によって検出した。標準としてウシ血清アルブミンを用いて、クーマシー(Bradford)プロテインアッセイキット(Thermo Scientific、Rockford、イリノイ州、米国)によりタンパク質収量を測定した(図13A)。
 ヒト皮膚線維芽細胞(2.4×10cells/cm)とHUVEC(2.0×104cells/cm2)を混合した細胞群に、FLAG-LYPD1タンパク質(1.25μg/mL)又はコントロールIgG(1.25μg/mL、正常ウサギIgG、Wako、日本、Cat.#148-09551)を添加し、10%ウシ胎仔血清および1%ペニシリン/ストレプトマイシンを添加したダルベッコ変法イーグル培地(5%CO、37℃)で培養した。抗CD31抗体(Human CD31/PECAM-1 PE-conjugated Antibody,FAB3567P,R&D)で免疫染色した。ImageXpress Ultra confocal high content screening system(Molecular Devices,LLC,Sunnyvale,CA,USA)を用いてCD31染色画像を取得し、MetaXpress software(Molecular Devices,LLC)を用いて抗CD31抗体で染色された領域を血管内皮細胞として血管内皮ネットワークの長さを算出した。
 その結果、リコンビナントLYPD1タンパク質を添加することによって、血管内皮ネットワーク形成が阻害されることが明らかとなった(図13B及びC)。
 <実施例14>
 血管内皮ネットワーク形成回復は、LYPD1の抑制を介する(図14)。
 実施例8と同様の方法により、LYPD1 siRNAを遺伝子導入したヒト心臓線維芽細胞(2.4×10 cells/cm)に、HUVEC(2×10 cells/cm)を混合し、播種した。さらに、実施例13のリコンビナントLYPD1(1.5ug/mL)又は等量の緩衝液(組成:500ug/ml DYKDDDDKペプチド、10mM Tris-HCl、pH7.4、150mM NaCl)を添加し、3日間培養した。コントロールとして、実施例8と同様の方法により、コントロールsiRNAを遺伝子導入したヒト心臓線維芽細胞(2.4×10 cells/cm)に、HUVEC(2×10 cells/cm)を混合し、3日間培養した。
 培養後に固定し、CD31抗体およびHoechst33342で染色した。ImageXpress Ultra confocal high content screening system(molecular device)を用いて画像を取得し、MetaXpress softwear(Molecular Device)を用いてCD31陽性細胞の長さを測定した。
 その結果、ヒト心臓線維芽細胞にLYPD1 siRNAを遺伝子導入することで認められた血管内皮細胞ネットワーク形成回復が、リコンビナントLYPD1の添加によって、再抑制された。この結果は、LYPD1 siRNA遺伝子導入で認められた作用が、LYPD1の抑制を介していることを説明するものである。
 <実施例15>
 HUVECの管腔形成に対するrLYPD1の効果(図15)
 96ウェルプレート(Corning)の1ウェル(0.32cm)あたり、Matrigel(登録商標)(Corning、#356231)46.2uLを添加してコーティングした。HUVEC(1×10 cells/cm)をEGM-2(Lonza)100uLに懸濁し、rLYPD1の存在下(1、2又は5μg/mL)又は非存在下で、Matrigel(登録商標)上に播種した。20時間後に顕微鏡観察を行った。
1μg/mLのrLYPD1添加は、血管内皮細胞の管腔形成に影響しないが、2μg/mLの濃度では血管内皮細胞の遊走抑制が認められ、5μg/mLでは、血管内皮細胞の管腔形成が完全に抑制された。このことは、LYPD1タンパク自体に血管内皮細胞の管腔形成、遊走抑制作用を有することを説明するものである。

Claims (16)

  1.  生体組織において、血管内皮ネットワークの形成を促進するためのLYPD1阻害剤。
  2.  血管新生障害の治療及び/又は予防のための、請求項1に記載のLYPD1阻害剤。
  3.  前記血管新生障害が、脳血管疾患、脳梗塞、一過性脳虚血発作、モヤモヤ病、狭心症、(末梢)動脈閉塞症、動脈硬化症、バージャー病、心筋梗塞、虚血、心筋症、鬱血性心不全、冠動脈疾患、遺伝性出血性毛細血管拡張症、虚血性心疾患、血管内膜肥厚、血管閉塞、動脈硬化性末梢血管疾患、門脈圧亢進症、リウマチ性心疾患、高血圧、血栓塞栓症、アテローム性動脈硬化、血管形成術後の再狭窄、肺動脈高血圧、静脈移植片疾患、高血圧性心疾患、心臓弁膜症、川崎病、拡張型心筋症、肥大型心筋症、サルコイドーシス、全身性強皮症、大動脈炎症候群、無症候性心筋虚血、内頚動脈狭窄症、椎骨動脈狭窄症、透析心筋症、糖尿病性心筋症、肺動脈性肺高血圧、虚血性心筋症、冠動脈バイパス術後、経皮的冠動脈形成術後、急性心筋梗塞、亜急性心筋梗塞、陳旧性心筋梗塞、労作性狭心症、不安定狭心症、急性冠症候群、冠攣縮性狭心症、大動脈弁狭窄症、大動脈弁閉鎖不全、僧房弁閉鎖不全及び僧房弁狭窄症からなる群から選択される、請求項2に記載のLYPD1阻害剤。
  4.  前記生体組織が、LYPD1を発現する生体組織である、請求項1~3のいずれか1項に記載のLYPD1阻害剤。
  5.  前記LYPD1阻害剤が、LYPD1の選択的阻害剤である、請求項1~4のいずれか1項に記載のLYPD1阻害剤。
  6.  前記LYPD1の選択的阻害剤が、有機低分子、アプタマー、抗体、抗体フラグメント及びそれらの組合せからなる群から選択される、請求項5に記載のLYPD1阻害剤。
  7.  前記LYPD1阻害剤が、LYPD1発現の阻害剤及び/又はLYPD1発現の阻害剤で処理された細胞である、請求項1~4のいずれか1項に記載のLYPD1阻害剤。
  8.  前記細胞が、細胞懸濁液又は細胞シートの形態で提供される、請求項7に記載のLYPD1阻害剤。
  9.  前記LYPD1発現の阻害剤が、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム、ゲノム編集核酸及びそれらの発現ベクター、有機低分子、アプタマー、抗体、抗体フラグメント、並びにそれらの組合せからなる群から選択される、請求項7又は8に記載のLYPD1阻害剤。
  10.  請求項1~9のいずれか1項に記載のLYPD1阻害剤を有効成分として含む、血管新生障害を治療及び/又は予防するための医薬組成物。
  11.  血管内皮成長因子(VEGF)、肝細胞成長因子(HGF)、線維芽細胞成長因子(FGF)、上皮成長因子(EGF)、血小板由来成長因子(PDGF)、インシュリン様成長因子(IGF)、アンギオポエチン、トランスフォーミング増殖因子-β(TGF-β)、胎盤成長因子(PIGF)、マトリックスメタロプロテアーゼ(MMP)、それらのファミリータンパク質及びそれらの組合せからなる群から選択される1以上の血管新生誘導因子をさらに含む、請求項10に記載の医薬組成物。
  12.  血管内皮ネットワークの形成が促進された生体組織を製造する方法であって、
     以下の工程:
     (a1)LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を提供する工程;
     (a2)前記工程(a1)により得られた細胞群を、LYPD1阻害剤で処理する工程;並びに
     (a3)前記工程(a2)により得られた細胞群を、培養する工程、
     或いは、
     (b1)LYPD1を発現する第1の細胞を含む細胞群を、LYPD1阻害剤で処理する工程;
     (b2)前記工程(b1)により得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させる工程;並びに
     (b3)前記工程(b2)により得られた細胞群を、培養する工程、
     を含む、方法。
  13.  前記第1の細胞が、心臓、筋肉、腎臓及び/又は脳由来の細胞である、請求項12に記載の方法。
  14.  前記LYPD1阻害剤が、アンチセンスRNA又はDNA分子、RNAi誘導性核酸、マイクロRNA(miRNA)、リボザイム、ゲノム編集核酸、それらの発現ベクター、それらの発現ベクターが導入された細胞、前記第1の細胞のLYPD1発現量よりもLYPD1発現量が低い若しくは発現していない第2の細胞、有機低分子、アプタマー、抗体、抗体フラグメント及びそれらの組合せからなる群から選択される、請求項12又は13に記載の方法。
  15.  前記第2の細胞が、皮膚、食道、肺、及び/又は肝臓由来の細胞である、請求項14に記載の方法。
  16.  LYPD1阻害剤をスクリーニングする方法であって、以下の工程:
      (i-1)LYPD1を発現する第1の細胞と、血管内皮細胞及び/又は血管内皮前駆細胞とを含む細胞群を提供する工程;
      (i-2)前記工程(i-1)により得られた細胞群を、候補物質で処理する工程;
      (i-3)前記工程(i-2)により得られた細胞群を培養する工程;並びに
      (i-4)前記工程(i-3)により得られた細胞群における血管内皮ネットワークの形成を評価する工程、
     或いは、
      (ii-1)LYPD1を発現する第1の細胞を含む細胞群を、候補物質で処理する工程;
      (ii-2)前記工程(ii-1)により得られた細胞群に、血管内皮細胞及び/又は血管内皮前駆細胞を接触させる工程;
      (ii-3)前記工程(ii-2)により得られた細胞群を培養する工程;並びに
      (ii-4)前記工程(ii-3)により得られた細胞群における血管内皮ネットワークの形成を評価する工程、
    を含む、方法。
PCT/JP2018/008630 2017-03-06 2018-03-06 Lypd1阻害剤及びそれを用いた生体組織の製造方法 WO2018164141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/491,498 US20200030409A1 (en) 2017-03-06 2018-03-06 Lypd1 inhibitor and method for producing biological tissue using same
JP2019504615A JP7045723B2 (ja) 2017-03-06 2018-03-06 Lypd1阻害剤及びそれを用いた生体組織の製造方法
EP18763814.3A EP3593816A4 (en) 2017-03-06 2018-03-06 LYPD1 INHIBITORS AND METHOD FOR MANUFACTURING BIOLOGICAL TISSUE WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042200 2017-03-06
JP2017042200 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018164141A1 true WO2018164141A1 (ja) 2018-09-13

Family

ID=63448534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008630 WO2018164141A1 (ja) 2017-03-06 2018-03-06 Lypd1阻害剤及びそれを用いた生体組織の製造方法

Country Status (4)

Country Link
US (1) US20200030409A1 (ja)
EP (1) EP3593816A4 (ja)
JP (1) JP7045723B2 (ja)
WO (1) WO2018164141A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146729A1 (ja) * 2018-01-25 2019-08-01 学校法人東京女子医科大学 血管新生抑制剤及び血管新生抑制剤のスクリーニング方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211865A (ja) 1989-02-10 1990-08-23 Kao Corp 細胞培養支持体材料
US5567588A (en) 1990-06-11 1996-10-22 University Research Corporation Systematic evolution of ligands by exponential enrichment: Solution SELEX
US6699843B2 (en) 1995-06-07 2004-03-02 Gilead Sciences, Inc. Method for treatment of tumors using nucleic acid ligands to PDGF
WO2005007103A2 (en) 2003-07-11 2005-01-27 University Of Kentucky Research Foundation Use of parthenolide derivatives as antileukemic and cytotoxic agents
WO2005011524A1 (en) 2003-08-01 2005-02-10 Cardio Incorporated Three-dimentional tissue structure
US6867289B1 (en) 1998-10-26 2005-03-15 Board Of Regents, The University Of Texas Systems Thio-modified aptamer synthetic methods and compositions
WO2010021390A1 (ja) 2008-08-22 2010-02-25 国立大学法人 東京大学 iPS細胞とBLASTOCYST COMPLEMENTATIONを利用した臓器再生法
WO2010097459A1 (fr) 2009-02-27 2010-09-02 Commissariat A L`Energie Atomique Peau protectrice pour robots
WO2011067983A1 (ja) 2009-12-03 2011-06-09 株式会社セルシード 脂肪細胞シート、その三次元構造体、及びそれらの製造方法
WO2012036224A1 (ja) 2010-09-14 2012-03-22 学校法人 東京女子医科大学 細胞シート積層化物の製造方法、それより得られる血管網を有する細胞シート積層化物及びその利用方法
WO2012036225A1 (ja) 2010-09-14 2012-03-22 学校法人 東京女子医科大学 細胞シート積層化物の製造方法、それより得られる血管網を有する細胞シート積層化物及びその利用方法
JP2012115254A (ja) 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
WO2014148321A1 (ja) 2013-03-19 2014-09-25 学校法人東京女子医科大学 筋芽細胞を含む細胞シート積層体およびその製造方法
KR20160021058A (ko) * 2014-08-14 2016-02-24 한국생명공학연구원 암 진단 또는 치료 표적으로서 lypd1의 용도
JP2017042200A (ja) 2015-08-24 2017-03-02 株式会社日立国際八木ソリューションズ 生体測定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101686852B1 (ko) 2014-08-13 2016-12-19 부산대학교 산학협력단 터티오펜 화합물 유도체 모노머 및 산화그래핀으로 제조되는 일회용 중금속 검출용 센서 및 이를 이용한 중금속 동시 검출방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211865A (ja) 1989-02-10 1990-08-23 Kao Corp 細胞培養支持体材料
US5567588A (en) 1990-06-11 1996-10-22 University Research Corporation Systematic evolution of ligands by exponential enrichment: Solution SELEX
US6699843B2 (en) 1995-06-07 2004-03-02 Gilead Sciences, Inc. Method for treatment of tumors using nucleic acid ligands to PDGF
US6867289B1 (en) 1998-10-26 2005-03-15 Board Of Regents, The University Of Texas Systems Thio-modified aptamer synthetic methods and compositions
WO2005007103A2 (en) 2003-07-11 2005-01-27 University Of Kentucky Research Foundation Use of parthenolide derivatives as antileukemic and cytotoxic agents
JP2007531695A (ja) * 2003-07-11 2007-11-08 ユニヴァーシティ オブ ケンタッキー リサーチ ファウンデーション パルテノライド誘導体を抗白血病薬及び細胞毒性薬として使用する方法
WO2005011524A1 (en) 2003-08-01 2005-02-10 Cardio Incorporated Three-dimentional tissue structure
WO2010021390A1 (ja) 2008-08-22 2010-02-25 国立大学法人 東京大学 iPS細胞とBLASTOCYST COMPLEMENTATIONを利用した臓器再生法
WO2010097459A1 (fr) 2009-02-27 2010-09-02 Commissariat A L`Energie Atomique Peau protectrice pour robots
WO2011067983A1 (ja) 2009-12-03 2011-06-09 株式会社セルシード 脂肪細胞シート、その三次元構造体、及びそれらの製造方法
WO2012036224A1 (ja) 2010-09-14 2012-03-22 学校法人 東京女子医科大学 細胞シート積層化物の製造方法、それより得られる血管網を有する細胞シート積層化物及びその利用方法
WO2012036225A1 (ja) 2010-09-14 2012-03-22 学校法人 東京女子医科大学 細胞シート積層化物の製造方法、それより得られる血管網を有する細胞シート積層化物及びその利用方法
JP2012115254A (ja) 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
WO2014148321A1 (ja) 2013-03-19 2014-09-25 学校法人東京女子医科大学 筋芽細胞を含む細胞シート積層体およびその製造方法
KR20160021058A (ko) * 2014-08-14 2016-02-24 한국생명공학연구원 암 진단 또는 치료 표적으로서 lypd1의 용도
JP2017042200A (ja) 2015-08-24 2017-03-02 株式会社日立国際八木ソリューションズ 生体測定装置

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. NM 144586.6
"GenPept", Database accession no. NP 001298019
BURNETT, R.M. ET AL., ONCOTARGET, vol. 6, 2015, pages 12682 - 12696
BUZAYAN, J.M., NATURE, vol. 323, 1986, pages 349
ELLINGTON, A.D.SZOSTAK, J.W., NATURE, vol. 346, no. 6287, 1990, pages 818 - 822
FEBS LETTERS, vol. 441, 1998, pages 20 - 24
GRITSINA, G. ET AL.: "Targeted blockade of JAK/STAT3 signaling inhibits ovarian carcinoma growth", MOL CANCER THER, vol. 14, no. 4, 2015, pages 1035 - 1047, XP055526993, doi:10.1158/1535-7163.MCT-14-0800 *
KAYISLI, U. A. ET AL.: "Long-acting progestin-only contraceptives impair endometrial vasculature by inhibiting uterine vascular smooth muscle cell survival", PNAS, vol. 112, no. 16, 2015, pages 5153 - 5158, XP055320512, doi:10.1073/pnas.1424814112 *
KIKUCHI, Y., CHEMISTRY AND BIOLOGY, vol. 30, 1992, pages 112
KIKUCHI, Y.SASAKI, N., NUCL. ACIDS RES., vol. 19, 1991, pages 6751
KOBAYASHI, T.NAKAUCHI, H.: "From cell therapy to organ regeneration therapy: generation of functional organs from pluripotent stem cells", NIHON RINSHO, vol. 69, no. 12, December 2011 (2011-12-01), pages 2148 - 2155
KOIZUMI, M. ET AL., FEBS LETT., vol. 239, 1988, pages 285
KOIZUMI, M. ET AL., NUCL. ACIDS RES., vol. 17, 1989, pages 7059
KOIZUMI, M.OHTSUKA, E., PROTEIN AND NUCLEIC ACID ENZYMES, vol. 35, 1990, pages 2191
MAHFOUZ, M. ET AL., PNAS, vol. 108, 2011, pages 2623 - 2628
MASUDA, S. ET AL.: "Inhibition of LYPD1 is critical for endothelial network formation in bioengineerd tissue with human cardiac fibroblasts", BIOMATERIALS, vol. 166, June 2018 (2018-06-01), pages 109 - 121, XP055629769, DOI: 10.1016/j.biomaterials.2018.03.002 *
MATSUURA, K. ET AL.: "Creation of human cardiac cell sheets using pluripotent stem cells", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 425, no. 2, 24 August 2012 (2012-08-24), pages 321 - 327, XP055482020, doi:10.1016/j.bbrc.2012.07.089
RAN, F.A. ET AL., CELL, vol. 154, 2013, pages 1380 - 1389
See also references of EP3593816A4
SON, G. W. ET AL.: "Alteration of gene expression profile by melatonin in endothelial cells", BIOCHIP J, vol. 8, no. 2, 2014, pages 91 - 101, XP055606032 *
TUERK, C.GOLD, L., SCIENCE, vol. 249, no. 4968, 1990, pages 505 - 510
URNOV, F. ET AL., NATURE, vol. 435, 2005, pages 646 - 651
WHITE M.P. ET AL., STEM CELLS, vol. 31, no. 1, January 2013 (2013-01-01), pages 92 - 103
YU , D. H. ET AL.: "PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway", EXP CELL RES, vol. 312, no. 6, 2006, pages 865 - 876, XP024944954, doi:10.1016/j.yexcr.2005.12.006 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146729A1 (ja) * 2018-01-25 2019-08-01 学校法人東京女子医科大学 血管新生抑制剤及び血管新生抑制剤のスクリーニング方法
JPWO2019146729A1 (ja) * 2018-01-25 2021-02-04 学校法人東京女子医科大学 血管新生抑制剤及び血管新生抑制剤のスクリーニング方法
JP7317370B2 (ja) 2018-01-25 2023-07-31 学校法人東京女子医科大学 血管新生抑制剤及び血管新生抑制剤のスクリーニング方法

Also Published As

Publication number Publication date
JP7045723B2 (ja) 2022-04-01
EP3593816A1 (en) 2020-01-15
JPWO2018164141A1 (ja) 2019-12-26
US20200030409A1 (en) 2020-01-30
EP3593816A4 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
Wang et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction
Ma et al. MicroRNA‐132, delivered by mesenchymal stem cell‐derived exosomes, promote angiogenesis in myocardial infarction
US7887793B2 (en) Treatment of Duchenne muscular dystrophy with myoblasts expressing dystrophin and treated to block myostatin signaling
US10894989B2 (en) Treatment of angiogenesis disorders
Doroudgar et al. S100A4 protects the myocardium against ischemic stress
Aonuma et al. Apoptosis-resistant cardiac progenitor cells modified with apurinic/apyrimidinic endonuclease/redox factor 1 gene overexpression regulate cardiac repair after myocardial infarction
Belmokhtar et al. Regeneration of three layers vascular wall by using BMP2-treated MSC involving HIF-1α and Id1 expressions through JAK/STAT pathways
Li et al. MicroRNA‐129‐1‐3p regulates cyclic stretch–induced endothelial progenitor cell differentiation by targeting Runx2
JP7045723B2 (ja) Lypd1阻害剤及びそれを用いた生体組織の製造方法
Cao et al. MicroRNA‐365 promotes the contractile phenotype of venous smooth muscle cells and inhibits neointimal formation in rat vein grafts
US9963744B2 (en) Composition for promoting chondrocyte differentiation or treating cartilage diseases, containing KLF10 expression inhibitor, and method for promoting cartilage differentiation by using same
KR102276237B1 (ko) 조직 재생 촉진제
van Wijngaarden et al. Identification of differentially expressed genes in a renal cell carcinoma tumor model after endostatin-treatment
US9567583B2 (en) Method for treating glioma using Tarbp2 expression inhibitor
JP5697229B2 (ja) 血管新生阻害剤
WO2021015218A1 (ja) 転写関連因子を標的とする線維化疾患の予防または治療
WO2020171206A1 (ja) 線維化疾患の予防または治療
JP2011088876A (ja) 腫瘍新生血管血管内皮細胞の新しいバイオマーカーとそれを標的とした癌治療薬
Yang et al. Experimental Study of the Effects of Marrow Mesenchymal Stem Cells Transfected with Hypoxia‐Inducible Factor‐1α Gene
Azam Characterizing a Regulatory Axis of MicroRNA-200b, the RNA-Binding Protein Quaking, and Cyclin D1 in Modulating Tumor Angiogenesis and Metastasis
US20100284907A1 (en) Treatment of tumors by ablating bone marrow-derived endothelial progenitor cells
KR100690933B1 (ko) tTG 및 PTD의 도입에 의해 부착성이 증진된 동물세포 및 이를 함유하는 손상된 조직 또는 장기 치료용 세포치료제
KR20210121767A (ko) 스플라이스좀 관련 단백질인 ik의 용도
Cai The specific regulation of type I collagen synthesis in fibrosis
Engman FAK and FRNK expression and signaling in vascular remodeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018763814

Country of ref document: EP

Effective date: 20191007