WO2011065162A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2011065162A1
WO2011065162A1 PCT/JP2010/068714 JP2010068714W WO2011065162A1 WO 2011065162 A1 WO2011065162 A1 WO 2011065162A1 JP 2010068714 W JP2010068714 W JP 2010068714W WO 2011065162 A1 WO2011065162 A1 WO 2011065162A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
internal combustion
discharge
combustion chamber
premixed gas
Prior art date
Application number
PCT/JP2010/068714
Other languages
English (en)
French (fr)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2011543177A priority Critical patent/JP5681902B2/ja
Priority to CN201080053954.9A priority patent/CN102762834B/zh
Priority to US13/512,729 priority patent/US9359934B2/en
Priority to EP10833009.3A priority patent/EP2508729A4/en
Publication of WO2011065162A1 publication Critical patent/WO2011065162A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the control device for an internal combustion engine described in Patent Document 1 switches between a self-ignition operation method corresponding to the first operation and a spark ignition operation method corresponding to the second operation.
  • This internal combustion engine control device has an actual fuel consumption rate at the present time when the spark ignition operation method is switched, and a reference fuel consumption rate when it is assumed that the self-ignition operation method is switched in the current operation state. Is calculated.
  • the control device for the internal combustion engine switches from the spark ignition operation method to the self-ignition operation method when the actual fuel consumption rate exceeds the reference fuel consumption rate.
  • the first invention controls an internal combustion engine (20) including a discharge means (11) for generating discharge in the combustion chamber (10) and an electromagnetic wave radiation means (12) for radiating electromagnetic waves to the combustion chamber (10).
  • the control device (30) for the internal combustion engine is intended.
  • the control device (30) for the internal combustion engine includes a first operation for compressing and igniting the premixed gas in the combustion chamber (10) according to the operation state of the internal combustion engine (20), and the combustion chamber (10 ) Is provided with operation control means (31, 32, 33) for switching to the second operation in which discharge is generated by the discharge means (11) to forcibly ignite the premixed gas, and the operation control means (31 , 32, 33) without causing discharge by the discharge means (11) between the first operation and the second operation when switching between the first operation and the second operation. Then, after the electromagnetic wave is radiated from the electromagnetic wave radiating means (12) to raise the temperature of the premixed gas, an intermediate operation for compressing and igniting the premixed gas is inserted
  • switching between the first operation and the second operation is performed in accordance with the operation state of the internal combustion engine (20).
  • the elapsed operation is sandwiched between the first operation and the second operation.
  • the operation method of the internal combustion engine (20) changes in the order of the first operation, the elapsed operation, and the second operation.
  • the elapsed operation is an operation in which the premixed gas is compressed and ignited after the temperature of the premixed gas is raised by emitting electromagnetic waves from the electromagnetic wave radiation means (12). In the elapsed operation, no discharge is generated by the discharge means (11). When electromagnetic waves are radiated from the electromagnetic radiation means (12), the temperature of the premixed gas in the strong electric field region in the combustion chamber (10) rises greatly. In the elapsed operation, the first ignition occurs in a region of the premixed gas where the temperature is greatly increased by electromagnetic waves. At the time of the first ignition, the region where the temperature does not increase so much by the electromagnetic wave does not reach the state just before ignition.
  • the elapsed operation in the elapsed operation, the time from the first ignition to the last ignition becomes longer than that in the first operation. For this reason, the elapsed operation has a longer combustion time than the first operation, and the peak value of the internal pressure of the combustion chamber (10) is low. Further, since the elapsed operation has more ignition points than the second operation, the combustion time is shorter and the peak value of the internal pressure of the combustion chamber (10) is higher than in the second operation.
  • the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” are changed between the first operation and the second operation. A progress operation is performed that takes a value between the first operation and the second operation.
  • the discharge means (31, 32, 33) is in a state where the internal combustion engine (20) is switched to the second operation.
  • the internal combustion engine (20) is controlled so that an electromagnetic wave is radiated from the electromagnetic wave radiation means (12) to the plasma formed by the discharge of 11).
  • electromagnetic waves are radiated to the plasma formed along with the discharge by the discharge means (11) over the period when the internal combustion engine (20) is switched to the second operation.
  • plasma forming region a premixed gas in a region where plasma is formed
  • the combustion reaction of the premixed gas is promoted by OH radicals and ozone.
  • the temperature and pressure of the premixed gas in the plasma formation region increase.
  • the propagation speed of the flame is increased by these factors. For this reason, the second operation has a short combustion time and a high peak value of the internal pressure of the combustion chamber (10) as compared with the case where electromagnetic waves are not emitted to the plasma formed by the discharge by the discharge means (11). .
  • the third invention controls an internal combustion engine (20) including a discharge means (11) for generating discharge in the combustion chamber (10) and an electromagnetic wave radiation means (12) for radiating electromagnetic waves to the combustion chamber (10).
  • the control device (30) for the internal combustion engine is intended.
  • the control device (30) for the internal combustion engine includes a first operation for compressing and igniting the premixed gas in the combustion chamber (10) according to the operation state of the internal combustion engine (20), and the electromagnetic wave radiation means ( 12) Operation control means for switching to the second operation in which discharge is generated by the discharge means (11) in the combustion chamber (10) and the premixed gas is forcibly ignited without radiating electromagnetic waves from 12).
  • the operation control means (31, 32, 33) is arranged between the first operation and the second operation when switching between the first operation and the second operation.
  • a discharge is generated by the discharge means (11) in the combustion chamber (10), and a progress operation is performed in which electromagnetic waves are emitted from the electromagnetic wave emission means (12) with respect to the plasma formed by the discharge.
  • the third invention switching between the first operation and the second operation is performed according to the operation state of the internal combustion engine (20).
  • the first operation is an operation for compressing and igniting the premixed gas in the combustion chamber (10), as in the first invention.
  • the second operation is an operation in which the premixed gas is forcibly ignited by the discharge means (11) in the combustion chamber (10).
  • electromagnetic waves are not radiated from the electromagnetic wave radiation means (12).
  • the second operation has a longer combustion time than the first operation, and the peak value of the internal pressure of the combustion chamber (10) is low.
  • the elapsed operation is an operation in which discharge is generated by the discharge means (11) in the combustion chamber (10) and electromagnetic waves are radiated from the electromagnetic wave emission means (12) to the plasma formed along with the discharge. is there. Unlike the second operation, the elapsed operation uses both the discharge means (11) and the electromagnetic wave radiation means (12). In the elapsed operation, as described above, the combustion reaction of the premixed gas is promoted by the OH radicals and ozone generated in the plasma forming region, and the temperature and pressure of the premixed gas in the plasma forming region are increased. Increases propagation speed.
  • the elapsed operation has a shorter combustion time and a higher peak value of the internal pressure of the combustion chamber (10) than the second operation that does not emit electromagnetic waves to the plasma formed by the discharge by the discharge means (11). .
  • the elapsed operation has a longer combustion time and a lower peak value of the internal pressure of the combustion chamber (10) than the first operation in which ignition is performed almost simultaneously at a plurality of locations of the premixed gas.
  • the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” are changed between the first operation and the second operation. A progress operation is performed that takes a value between the first operation and the second operation.
  • the operation control means determines an operation method based on an operation state of the internal combustion engine (20).
  • a first region in which the internal combustion engine (20) performs the first operation a second region in which the internal combustion engine (20) performs the second operation, and the internal combustion engine (20 ) Is set as a progress region for executing the elapsed operation, and the elapsed region is sandwiched between the first region and the second region.
  • the progress region is sandwiched between the first region and the second region. Therefore, in the process of switching between the first operation and the second operation, the coordinate value on the operation control region indicating the operation state of the internal combustion engine (20) passes through the elapsed region. Therefore, the elapsed operation is sandwiched between the first operation and the second operation.
  • any one of the first to third inventions when the operation control means (31, 32, 33) switches between the first operation and the second operation, a predetermined value is set.
  • the internal combustion engine (20) is caused to execute the elapsed operation for the number of cycles.
  • the elapsed operation is performed for a predetermined number of cycles when switching between the first operation and the second operation. Therefore, the elapsed operation is sandwiched between the first operation and the second operation.
  • the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” are the first operation between the first operation and the second operation. And a running operation that takes a value between the second operation and the second operation. For this reason, the difference between the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” between the first operation and the second operation is alleviated by the elapsed operation. Accordingly, it is possible to reduce the torque fluctuation of the internal combustion engine (20) when switching the operation method.
  • electromagnetic waves are radiated to the plasma formed by the discharge by the discharge means (11) over the period when the internal combustion engine (20) is switched to the second operation.
  • the combustion time in the second operation is shortened, and the peak value of the internal pressure of the combustion chamber (10) in the second operation is increased. Therefore, the difference between the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” between the first operation and the second operation becomes small, so the torque fluctuation of the internal combustion engine (20) when switching the operation method Can be further reduced.
  • FIG. 1 is a cross-sectional view of the internal combustion engine according to the first embodiment.
  • FIG. 2 is a block diagram of the control device for the internal combustion engine according to the first embodiment.
  • FIG. 3 is an operation control map according to the first embodiment.
  • FIG. 4 is an operation control map according to a modification of the second embodiment.
  • FIG. 5 is an operation control map according to another embodiment.
  • FIG. 6 is a cross-sectional view of an internal combustion engine according to another embodiment.
  • Embodiment 1 is essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
  • the first embodiment is a control device (30) (hereinafter referred to as “control device”) for an internal combustion engine according to the present invention.
  • control device for an internal combustion engine according to the present invention.
  • the internal combustion engine (20) will be described first before the control device (30) is described.
  • the internal combustion engine (20) of the first embodiment is a reciprocating type homogeneous premixed compression ignition engine. That is, the internal combustion engine (20) of the first embodiment is an HCCI (Homogeneous / Charge / Compression / Ignition) engine.
  • HCCI Homogeneous / Charge / Compression / Ignition
  • the internal combustion engine (20) includes a cylinder block (21), a cylinder head (22), and a piston (23).
  • a plurality of cylinders (24) having a circular cross section are formed in the cylinder block (21).
  • the number of cylinders (24) may be one.
  • a piston (23) is slidably provided in each cylinder (24).
  • the piston (23) is connected to the crankshaft via a connecting rod (connecting rod) (not shown).
  • the crankshaft is rotatably supported by the cylinder block (21).
  • the connecting rod converts the reciprocating motion of the piston (23) into the rotational motion of the crankshaft.
  • the cylinder head (22) is placed on the cylinder block (21) with the gasket (18) in between.
  • the cylinder head (22) forms a combustion chamber (10) together with the cylinder (24) and the piston (23).
  • one or a plurality of intake ports (25) and exhaust ports (26) are formed for each cylinder (24).
  • the intake port (25) of each cylinder (24) is provided with an intake valve (27) for opening and closing the intake port (25) and an injector (29) (fuel injection device) for injecting fuel.
  • the exhaust port (26) of each cylinder (24) is provided with an exhaust valve (28) for opening and closing the exhaust port (26).
  • the nozzle (29a) of the injector (29) opens to the intake port (25), and the fuel injected by the injector (29) is supplied to the air flowing through the intake port (25).
  • a premixed gas in which fuel and air are mixed in advance is introduced into the combustion chamber (10).
  • the cylinder head (22) is provided with one spark plug (15) for each cylinder (24).
  • the spark plug (15) is fixed to the cylinder head (22).
  • the spark plug (15) is connected to the ignition coil (36) and the magnetron (37) via a mixer circuit (38) that mixes the high voltage pulse and the microwave.
  • the spark plug (15) is supplied with the high voltage pulse output from the ignition coil (36) and the microwave output from the magnetron (37).
  • a first pulse power supply (34) is connected to the ignition coil (36).
  • a second pulse power supply (35) is connected to the magnetron (37).
  • the magnetron (37) is for a microwave oven (oscillation frequency 2.45 GHz).
  • the spark plug (15) has both a discharge means (11) for generating discharge in the combustion chamber (10) and an electromagnetic wave emission means (12) for radiating microwaves to the combustion chamber (10). Also serves as.
  • the discharge electrode (15a) of the spark plug (15) becomes a microwave antenna and radiates microwaves.
  • the control device (30) is composed of an electronic control unit (Electronic Control Unit). As shown in FIG. 2, the control device (30) includes an operation state detection unit (31), an operation switching unit (32), and a command output unit (33). The control device (30) controls the internal combustion engine (20) by outputting signals (an ignition signal and a radiation signal described later) to the ignition coil (36) and the second pulse power supply (35).
  • an operation state detection unit 31
  • an operation switching unit 32
  • a command output unit 33
  • the control device (30) controls the internal combustion engine (20) by outputting signals (an ignition signal and a radiation signal described later) to the ignition coil (36) and the second pulse power supply (35).
  • the operation state detection unit (31), the operation switching unit (32), and the command output unit (33) are configured to compress and ignite the premixed gas in the combustion chamber (10) according to the operation state of the internal combustion engine (20).
  • the operation control means (31, 32, 33) includes an operation state detection unit (31), an operation switching unit (32), and a command output unit (33). In the first operation, no electric discharge is generated by the spark plug (15), and no microwave is emitted from the spark plug (15).
  • the operation control means (31, 32, 33) causes the spark plug (15) to generate no discharge between the first operation and the second operation when switching between the first operation and the second operation. Then, after the spark plug (15) radiates microwaves to increase the temperature of the premixed gas, a progress operation in which the premixed gas is compressed and ignited is sandwiched.
  • the first operation and the elapsed operation are so-called premixed compression ignition operations.
  • the second operation is a so-called spark ignition operation.
  • the operation control means (31, 32, 33) is configured to prevent the plasma formed with the spark discharge by the spark plug (15) during the period when the internal combustion engine (20) is switched to the second operation.
  • the internal combustion engine (20) is controlled so that microwaves are emitted from the spark plug (15).
  • the operation control means (31, 32, 33) is configured to prevent plasma generated with spark discharge by the spark plug (15) over a period during which the internal combustion engine (20) is switched to the second operation.
  • the internal combustion engine (20) may be controlled so that microwaves are not emitted from the spark plug (15).
  • the operation state detection unit (31) performs a detection operation for detecting the operation state of the internal combustion engine (20) at predetermined time intervals.
  • the operating state detector (31) detects the rotational speed (rotational speed) of the internal combustion engine (20) and the load of the internal combustion engine (20) as data representing the operating state of the internal combustion engine (20).
  • the operating state detector (31) detects the rotational speed of the internal combustion engine (20) based on the output signal of the rotational speed sensor (16).
  • the rotation speed sensor (16) outputs a pulse signal (output signal) every time the crankshaft of the internal combustion engine (20) makes one rotation.
  • the operating state detector (31) detects the load of the internal combustion engine (20) based on the output signal of the accelerator opening sensor (17).
  • the accelerator opening sensor (17) outputs an opening signal (output signal) indicating the operation amount of the accelerator pedal. Note that an air flow meter that measures the flow rate of the intake air may be used instead of the accelerator opening sensor (17) when the internal combustion engine (20) is loaded.
  • the operation state detection unit (31) executes the detection operation
  • the operation state detection unit (31) When the operation state detection unit (31) executes the detection operation, the operation state detection unit (31) generates a detection signal indicating the operation state of the internal combustion engine (20) detected by the detection operation (current operation state of the internal combustion engine (20)). Output to 32).
  • the detection signal includes data representing the current rotational speed of the internal combustion engine (20) and data representing the current load on the internal combustion engine (20).
  • the operation switching unit (32) includes an operation control map that uses both the rotational speed of the internal combustion engine (20) and the load of the internal combustion engine (20) as parameters (see FIG. 3).
  • the operation control map includes a first region for causing the internal combustion engine (20) to perform the first operation as an operation control region for determining an operation method based on the operation state of the internal combustion engine (20), and the internal combustion engine (20).
  • a second region in which the second operation is executed and a progress region in which the internal combustion engine (20) executes the elapsed operation are set.
  • the first area is an area on the low speed and low load side.
  • the second area is an area on the high speed and high load side.
  • the progress region is sandwiched between the first region and the second region.
  • the operation switching unit (32) When the operation switching unit (32) receives the detection signal from the operation state detection unit (31), the operation switching unit (32) determines which of the first operation, the second operation, and the elapsed operation with respect to the current operation state of the internal combustion engine (20). A determination operation is performed to determine whether the driving method should be set.
  • the operation switching unit (32) performs a determination operation every time a detection signal is received. The determination operation is performed using the rotation speed of the internal combustion engine (20) and the load of the internal combustion engine (20) included in the detection signal. In the determination operation, a coordinate value (hereinafter referred to as “current coordinate value”) determined by the rotation speed of the internal combustion engine (20) and the load of the internal combustion engine (20) included in the detection signal is present in any region on the operation control map.
  • an operation method to be set for the current operation state of the internal combustion engine (20) (hereinafter referred to as “set operation method”) is selected.
  • the operation switching unit (32) outputs a switching signal instructing switching of the operation method to the command output unit (33) when the set operation method selected in the determination operation is different from the current operation method.
  • the operation switching unit (32) does not output a switching signal to the command output unit (33) when the set operation method is the same as the current operation method.
  • the operation switching unit (32) outputs a first switching signal to the command output unit (33) when switching to the first operation.
  • the operation switching unit (32) outputs a second switching signal to the command output unit (33) when switching to the second operation.
  • the operation switching unit (32) outputs a third switching signal to the command output unit (33) when switching to the elapsed operation.
  • the command output unit (33) is set to the first operation mode when receiving the first switching signal.
  • the command output unit (33) causes the internal combustion engine (20) to perform the first operation during the period set in the first operation mode. Further, when the command output unit (33) receives the second switching signal, the command output unit (33) is set to the second operation mode.
  • the command output unit (33) causes the internal combustion engine (20) to perform the second operation during the period set in the second operation mode. Further, when the command output unit (33) receives the third switching signal, the command output unit (33) is set to the elapsed operation mode.
  • the command output unit (33) causes the internal combustion engine (20) to perform the elapsed operation during the period set in the elapsed operation mode.
  • the current coordinate value moves from the first region to the elapsed region.
  • the operation switching unit (32) outputs the third switching signal to the command output unit (33)
  • the command output unit (33) is set to the elapsed operation mode, and the internal combustion engine (20) performs the elapsed operation.
  • the rotational speed of the internal combustion engine (20) and the load on the internal combustion engine (20) further increase, the current coordinate value moves from the elapsed region to the second region.
  • the operation switching unit (32) outputs the second switching signal to the command output unit (33)
  • the command output unit (33) is set to the second operation mode, and the internal combustion engine (20) performs the second operation. Do.
  • the operation method of the internal combustion engine (20) changes from the first operation to the second operation through the elapsed operation. Can be switched.
  • the current coordinate value moves from the second region to the elapsed region.
  • the operation switching unit (32) outputs the third switching signal to the command output unit (33)
  • the command output unit (33) is set to the elapsed operation mode, and the internal combustion engine (20) performs the elapsed operation.
  • the current coordinate value moves from the elapsed region to the first region.
  • the operation switching unit (32) outputs the first switching signal to the command output unit (33)
  • the command output unit (33) is set to the first operation mode, and the internal combustion engine (20) performs the first operation. Do.
  • the operation mode of the internal combustion engine (20) is changed from the second operation to the first operation through the elapsed operation. Can be switched.
  • control device (30) The operation of the control device (30) will be described. First, the operation of the control device (30) in the state set in the first operation mode will be described. Below, operation
  • the intake valve (27) is opened and the intake stroke is started.
  • the command output unit (33) outputs an injection signal to the injector (29) immediately after the start of the intake stroke, and causes the injector (29) to inject fuel.
  • a premixed gas in which air and fuel are premixed flows into the combustion chamber (10). Then, immediately after the piston (23) passes through the bottom dead center, the intake valve (27) is closed, and the intake stroke ends.
  • a compression stroke for compressing the premixed gas in the combustion chamber (10) is started.
  • the compression stroke when the piston (23) moves near the top dead center, the combustion of the premixed gas is started by self-ignition.
  • the piston (23) is moved to the bottom dead center side by the expansion force when the premixed gas burns.
  • the exhaust valve (28) is opened and the exhaust stroke is started.
  • the exhaust valve (28) is closed before the piston (23) passes the midpoint of the stroke and reaches top dead center.
  • the exhaust stroke ends.
  • the exhaust valve (28) is closed before the piston (23) reaches top dead center, so that the exhaust gas remains in the combustion chamber (10). That is, in the first operation, an internal EGR system operation is performed.
  • the first operation ignition occurs almost simultaneously in a plurality of locations of the premixed gas. Strictly speaking, there is an extremely short time difference in the ignition timing of each part.
  • the temperature of the premixed gas generally increases during the compression stroke of the premixed gas. Therefore, at the time of the first ignition, the unignited premixed gas is in a state just before ignition.
  • ignition occurs one after another in an extremely short time, and a flame spreads from each ignition point. In this way, in the first operation, ignition occurs almost simultaneously at a plurality of locations of the premixed gas, so that the first operation has a very short combustion time and a very high internal pressure peak value in the combustion chamber (10).
  • the intake valve (27) is opened and the intake stroke is started.
  • the exhaust valve (28) is closed and the exhaust stroke ends.
  • the command output unit (33) outputs an injection signal to the injector (29) immediately after the exhaust stroke is finished, and causes the injector (29) to inject fuel. Thereby, the premixed gas flows into the combustion chamber (10). Then, immediately after the piston (23) passes through the bottom dead center, the intake valve (27) is closed, and the intake stroke ends.
  • the command output unit (33) When the intake stroke is completed, a compression stroke for compressing the premixed gas in the combustion chamber (10) is started. Then, before the premixed gas self-ignites in the compression stroke, the command output unit (33) outputs an ignition signal to the ignition coil (36). As a result, the voltage pulse output from the first pulse power supply (34) is boosted in the ignition coil (36), and the ignition coil (36) outputs a high voltage pulse to the mixer circuit (38). On the other hand, the command output unit (33) outputs a radiation signal to the second pulse power source (35) before the premixed gas self-ignites in the compression stroke. Thereby, a voltage pulse is supplied from the second pulse power source (35) to the magnetron (37), and the magnetron (37) outputs a microwave to the mixer circuit (38).
  • the mixer circuit (38) the high voltage pulse output from the ignition coil (36) and the microwave output from the magnetron (37) are mixed. Then, the mixed high voltage pulse and microwave are supplied to the discharge electrode (15a) of the spark plug (15). As a result, a spark discharge is generated by a high voltage pulse between the discharge electrode (15a) and the ground electrode (15b) of the spark plug (15), and a small-scale plasma is formed. And a microwave is radiated
  • the premixed gas is forcibly ignited by spark discharge.
  • spark discharge As a result, the combustion of the premixed gas is started.
  • the flame expands from the part ignited by the spark discharge.
  • the second operation has fewer ignition points than the first operation. Therefore, the second operation has a longer combustion time than the first operation, and the peak value of the internal pressure of the combustion chamber (10) is low.
  • the second operation a large amount of highly active chemical species such as OH radicals and ozone are generated in a short time from the premixed gas in the plasma formation region.
  • the combustion reaction of the premixed gas is promoted by OH radicals and ozone.
  • the temperature and pressure of the premixed gas in the plasma formation region increase. Accordingly, the propagation speed of the flame is increased.
  • the second operation has a shorter combustion time and a peak value of the internal pressure of the combustion chamber (10) than the case where microwaves are not emitted to the plasma formed by the spark discharge by the spark plug (15). Is expensive.
  • the piston (23) When the combustion of the premixed gas is started, the piston (23) is moved to the bottom dead center side by the expansion force when the premixed gas is burned. Then, before the piston (23) passes the middle point of the stroke and reaches the bottom dead center, the exhaust valve (28) is opened and the exhaust stroke is started. As described above, the exhaust stroke ends immediately after the start of the intake stroke.
  • the radiation signal is output before the spark discharge occurs between the electrodes (15a, 15b) of the spark plug (15), and the microwave is radiated before the spark discharge occurs.
  • the microwave is continuously emitted until after the spark discharge occurs. Microwaves are emitted over a very short time.
  • the radiation time of the microwave per time is defined by the pulse width of the voltage pulse output from the second pulse power source (35) to the magnetron (37).
  • the output start timing of the radiation signal is not limited before spark discharge occurs between the electrodes (15a, 15b) of the spark plug (15). If the microwave emission is started before the small-scale plasma is extinguished, the output start timing of the emission signal may be after the spark discharge occurs.
  • the microwave radiation time (pulse width of the voltage pulse output from the second pulse power source (35) to the magnetron (37)) per time is such that the expanded plasma does not become thermal plasma. In other words, it is set to a predetermined time or less so as to be maintained by non-equilibrium plasma. Note that the microwave radiation time per time may be set to a predetermined time or longer so that the expanded plasma becomes thermal plasma. In addition, in order to suppress the generation of thermal NOx, the microwave emission time per time is set to a predetermined time or less so that the temperature of the premixed gas does not exceed a predetermined temperature (for example, 1800 ° C.). May be.
  • a predetermined temperature for example, 1800 ° C.
  • the energy density of the plasma formed by the discharge by the spark plug (15) is set to be equal to or higher than the minimum ignition energy so that the premixed gas is ignited by the spark discharge by the spark plug (15).
  • the energy density of the plasma formed with the discharge by the spark plug (15) less than the minimum ignition energy.
  • the premixed gas is not ignited by the spark discharge by the spark plug (15), but the premixed gas is forcibly ignited by the expansion of the small-scale plasma by the microwave.
  • the command output unit (33) does not output an ignition signal, but outputs a radiation signal to the second pulse power source (35) at a predetermined timing before the premixed gas self-ignites in the compression stroke.
  • a voltage pulse is supplied from the second pulse power source (35) to the magnetron (37), and the magnetron (37) outputs a microwave.
  • the microwave is radiated from the discharge electrode (15a) of the spark plug (15) to the combustion chamber (10) through the mixer circuit (38).
  • the temperature of the premixed gas in the strong electric field region is greatly increased by the microwave radiation from the spark plug (15).
  • the first ignition occurs in a region of the premixed gas where the temperature is greatly increased by the microwave.
  • the region where the temperature does not increase so much by the microwave does not become the state just before the ignition. Accordingly, in the elapsed operation, the time from the first ignition to the last ignition becomes longer than that in the first operation. For this reason, the elapsed operation has a longer combustion time than the first operation, and the peak value of the internal pressure of the combustion chamber (10) is low.
  • the elapsed operation has more ignition points than the second operation, so the combustion time is shorter and the peak value of the internal pressure of the combustion chamber (10) is higher than in the second operation.
  • the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” are changed between the first operation and the second operation.
  • a progress operation is performed that takes a value between the first operation and the second operation.
  • the difference between the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” between the first operation and the second operation is alleviated by the elapsed operation. Accordingly, it is possible to reduce the torque fluctuation of the internal combustion engine (20) when switching the operation method.
  • microwaves are radiated to the plasma formed along with the spark discharge by the spark plug (15) over the period when the internal combustion engine (20) is switched to the second operation.
  • the combustion time in the second operation is shortened. Therefore, the difference between the “combustion time” and the “peak value of the internal pressure of the combustion chamber (10)” between the first operation and the second operation becomes small, so the torque fluctuation of the internal combustion engine (20) when switching the operation method Can be further reduced.
  • the second embodiment is different from the first embodiment in the second operation and the elapsed operation.
  • the point that the control device (30) sandwiches the elapsed operation between the first operation and the second operation when switching between the first operation and the second operation is the same as in the first embodiment.
  • the first operation is an operation for compressing and igniting the premixed gas in the combustion chamber (10), and is the same as in the first embodiment.
  • the second operation is an operation for forcibly igniting the premixed gas by generating a spark discharge by the spark plug (15) in the combustion chamber (10) without emitting electromagnetic waves from the spark plug (15).
  • the elapsed operation is an operation in which spark discharge is generated by the spark plug (15) in the combustion chamber (10) and electromagnetic waves are radiated from the spark plug (15) to the plasma formed along with the spark discharge.
  • the elapsed operation is the same as the second operation of the first embodiment.
  • the first operation is a so-called premixed compression ignition operation
  • the second operation is a so-called spark ignition operation.
  • the first operation is the same as the first operation of the first embodiment, and the elapsed operation is the same as the second operation of the first embodiment. For this reason, only operation
  • the intake valve (27) is opened and the intake stroke is started.
  • the exhaust valve (28) is closed and the exhaust stroke ends.
  • the command output unit (33) outputs an injection signal to the injector (29) immediately after the exhaust stroke is finished, and causes the injector (29) to inject fuel. Thereby, the premixed gas flows into the combustion chamber (10). Then, immediately after the piston (23) passes through the bottom dead center, the intake valve (27) is closed, and the intake stroke ends.
  • the command output unit (33) When the intake stroke is completed, a compression stroke for compressing the premixed gas in the combustion chamber (10) is started. Then, before the premixed gas self-ignites in the compression stroke, the command output unit (33) outputs an ignition signal to the ignition coil (36). Thereby, the voltage pulse output from the first pulse power supply (34) is boosted in the ignition coil (36). The high voltage pulse output from the ignition coil (36) is supplied to the discharge electrode (15a) of the spark plug (15) via the mixer circuit (38). As a result, a spark discharge is generated by a high voltage pulse between the discharge electrode (15a) and the ground electrode (15b) of the spark plug (15), and the premixed gas is forcibly ignited.
  • the piston (23) When combustion of the premixed gas is started by spark discharge, the piston (23) is moved to the bottom dead center side by the expansion force when the premixed gas is burned. Then, before the piston (23) passes the middle point of the stroke and reaches the bottom dead center, the exhaust valve (28) is opened and the exhaust stroke is started. As described above, the exhaust stroke ends immediately after the start of the intake stroke.
  • the combustion time is extremely short and the peak value of the internal pressure of the combustion chamber (10) is extremely high.
  • the second operation has a longer combustion time than the first operation, and the peak value of the internal pressure of the combustion chamber (10) is low.
  • the combustion reaction of the premixed gas is promoted by the OH radicals and ozone generated in the plasma forming region, and the temperature and pressure of the premixed gas in the plasma forming region are increased. Increase.
  • the elapsed operation has a shorter combustion time and a peak value of the internal pressure of the combustion chamber (10). high. Further, the elapsed operation has a longer combustion time and a lower peak value of the internal pressure of the combustion chamber (10) than the first operation in which ignition is performed almost simultaneously at a plurality of locations of the premixed gas.
  • the “combustion time” and the “internal pressure of the combustion chamber (10) are changed between the first operation and the second operation.
  • the elapsed operation in which the “peak value” is a value between the first operation and the second operation is performed.
  • control device (30) sandwiches the first elapsed operation and the second elapsed operation between the first operation and the second operation when switching between the first operation and the second operation.
  • the first operation and the second operation are the same as those in the second embodiment.
  • the second elapsed region for executing the two elapsed operation is sandwiched.
  • the first elapsed region is located closer to the first region than the second elapsed region.
  • the first elapsed operation is an operation in which the premixed gas is compressed and ignited after raising the temperature of the premixed gas by radiating electromagnetic waves from the spark plug (15) without causing discharge by the spark plug (15). . That is, the first elapsed operation is the elapsed operation of the first embodiment.
  • the second elapsed operation a spark discharge is generated by the spark plug (15) in the combustion chamber (10), and electromagnetic waves are radiated from the spark plug (15) to the plasma formed along with the spark discharge.
  • the second elapsed operation is the elapsed operation of the second embodiment.
  • the second elapsed operation has a longer combustion time and a lower peak value of the internal pressure of the combustion chamber (10).
  • the operation shifts to an operation in which the combustion time is long and the peak value of the internal pressure of the combustion chamber (10) is low toward the high speed and high load side.
  • the above embodiment may be configured as follows.
  • the control device (30) is configured to cause the internal combustion engine (20) to execute the elapsed operation for a predetermined number of cycles when switching between the first operation and the second operation. May be.
  • the first region and the second region are adjacent to each other in the operation control map.
  • the internal combustion engine (20) is switched to the second operation after executing the elapsed operation for a predetermined number of cycles. Further, when the current coordinate value moves from the second region to the first region, the internal combustion engine (20) cannot be immediately switched to the first operation.
  • the internal combustion engine (20) is switched to the first operation after executing the elapsed operation for a predetermined number of cycles.
  • the control device (30) switches between the first operation and the second operation. In this case, first, the internal combustion engine (20) executes the first elapsed operation for a predetermined number of cycles, and then the internal combustion engine (20) performs the second elapsed operation for the predetermined number of cycles.
  • the microwave when switching from the first operation to the second operation, the microwave is applied to the timing at which the premixed gas self-ignites.
  • the output start timing of the microwave is gradually separated and earlier, and when switching from the second operation to the first operation, the microwave output start timing gradually approaches and becomes slower than the timing when the premixed gas self-ignites.
  • the microwave output start timing may be changed.
  • the microwave intensity when switching from the first operation to the second operation, the intensity of the microwave gradually increases, and the second operation When switching from the first operation to the first operation, the microwave intensity may be changed so that the microwave intensity gradually decreases.
  • the intensity of the microwave when switching from the first operation to the second operation, gradually decreases, and the second operation When switching from to the first operation, the intensity of the microwave may be changed so that the intensity of the microwave gradually increases.
  • the application location of the high voltage pulse and the oscillation location of the microwave may be separate in the combustion chamber (10).
  • a microwave antenna (12) is provided separately from the discharge electrode (15a) of the spark plug (15).
  • the mixer circuit (38) is not necessary, the ignition coil (36) and the spark plug (15) are directly connected, and the magnetron (37) and the electromagnetic wave radiation antenna (12) are directly connected.
  • the microwave antenna (12) is integrated with the spark plug (15), but the microwave antenna (12) may be separated from the spark plug (15).
  • the nozzle (29a) of the injector (29) may be opened to the combustion chamber (10).
  • fuel is injected from the nozzle (29a) of the injector (29) into the combustion chamber (10).
  • a premixed gas in which fuel and air are premixed is generated in the combustion chamber (10).
  • the present invention switches between the first operation in which the premixed gas is compressed and ignited in the combustion chamber and the second operation in which the premixed gas is forcibly ignited by the discharge means in the combustion chamber. It is useful for the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

 燃焼室(10)において予混合気を圧縮着火させる第1運転と、燃焼室(10)において予混合気をスパークプラグ(15)により強制的に着火させる第2運転との切り替えを行う内燃機関の制御装置(30)において、運転方式を切り替える際の内燃機関(20)のトルク変動を低減させるために、制御装置(30)は、第1運転と第2運転との切り替えの際に、第1運転と第2運転との間に、スパークプラグ(15)により放電を生じさせることなく、スパークプラグ(15)に電磁波を放射させて予混合気の温度を上昇させた後に予混合気を圧縮着火させる経過運転を挟む。

Description

内燃機関の制御装置
 本発明は、燃焼室において予混合気を圧縮着火させる第1運転と、燃焼室において予混合気を放電手段により強制的に着火させる第2運転との切り替えを行う内燃機関の制御装置に関するものである。
 従来より、燃焼室において予混合気を圧縮着火させる第1運転と、燃焼室において予混合気を放電手段により強制的に着火させる第2運転との切り替えを行う内燃機関の制御装置が知られている。この種の内燃機関の制御装置が、例えば特許文献1に開示されている。
 具体的に、特許文献1に記載された内燃機関の制御装置は、第1運転に相当する自着火運転方式と、第2運転に相当する火花点火運転方式との切り替えを行う。この内燃機関の制御装置は、火花点火運転方式に切り替えられているときに、現時点における実際の燃料消費率と、現時点の運転状態において自着火運転方式に切り替えたと仮定した場合の基準燃料消費率とを算出する。そして、この内燃機関の制御装置は、実際の燃料消費率が基準燃料消費率を上回る場合に、火花点火運転方式から自着火運転方式への切り替えを行う。
特開2006-97603号公報
 ところで、燃焼室において予混合気を圧縮着火させる第1運転と、燃焼室において予混合気を放電手段により強制的に着火させる第2運転とでは、着火方式及び燃焼方式が互いに異なる。このため、従来の内燃機関の制御装置のように予混合圧縮着火運転と強制着火運転との間に別の運転方式を挟まずに運転方式を切り替えると、内燃機関の出力トルクが急激に変動するという問題が生じる。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、燃焼室において予混合気を圧縮着火させる第1運転と、燃焼室において予混合気を放電手段により強制的に着火させる第2運転との切り替えを行う内燃機関の制御装置において、運転方式を切り替える際の内燃機関のトルク変動を低減させることにある。
 第1の発明は、燃焼室(10)において放電を生じさせる放電手段(11)と、燃焼室(10)に電磁波を放射する電磁波放射手段(12)とを備える内燃機関(20)を制御する内燃機関の制御装置(30)を対象とする。そして、この内燃機関の制御装置(30)は、上記内燃機関(20)の運転状態に応じて、上記燃焼室(10)において予混合気を圧縮着火させる第1運転と、上記燃焼室(10)において上記放電手段(11)により放電を生じさせて予混合気を強制的に着火させる第2運転との切り替えを行う運転制御手段(31,32,33)を備え、上記運転制御手段(31,32,33)は、上記第1運転と上記第2運転との切り替えの際に、上記第1運転と上記第2運転との間に、上記放電手段(11)により放電を生じさせることなく、上記電磁波放射手段(12)から電磁波を放射して予混合気の温度を上昇させた後に予混合気を圧縮着火させる経過運転を挟む。
 第1の発明では、内燃機関(20)の運転状態に応じて、第1運転と第2運転の切り替えが行われる。第1運転と第2運転の切り替えの際には、第1運転と第2運転の間に経過運転が挟まれる。例えば、第1運転から第2運転へ切り替えの際には、第1運転、経過運転、第2運転という順番で、内燃機関(20)の運転方式が変化する。
 ここで、第1運転は、燃焼室(10)において予混合気を圧縮着火させる運転である。第1運転では、予混合気の複数箇所でほぼ同時に着火が生じる。厳密には、各箇所の着火タイミングには、極めて短い時間差がある。第1運転では、予混合気の圧縮行程において、予混合気の温度が全体的に上昇する。従って、最初の着火の時点では、未着火の予混合気が着火寸前の状態になっている。最初の着火後は、極めて短い時間の間に次々に着火が生じ、各着火箇所から火炎が広がる。このように、第1運転では予混合気の複数箇所でほぼ同時に着火が生じるので、第1運転は燃焼時間が極めて短く燃焼室(10)の内圧のピーク値が高い。一方、第2運転は、燃焼室(10)において放電手段(11)により放電を生じさせて予混合気を強制的に着火させる運転である。第2運転では、放電手段(11)により強制的に着火された箇所から火炎が広がり、火炎が伝播する。第2運転は、第1運転に比べて着火箇所が少ない。従って、第2運転は、第1運転に比べて燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。
 また、経過運転は、電磁波放射手段(12)から電磁波を放射して予混合気の温度を上昇させた後に予混合気を圧縮着火させる運転である。経過運転では、放電手段(11)により放電を生じさせない。電磁波放射手段(12)から電磁波を放射すると、燃焼室(10)における強電場領域の予混合気の温度が大きく上昇する。経過運転では、予混合気のうち、電磁波により温度が大きく上昇する領域で最初の着火が生じる。最初の着火の時点では、電磁波により温度がそれほど上昇しない領域が、着火寸前の状態にならない。従って、経過運転は、最初の着火から最後の着火までの時間が、第1運転に比べて長くなる。このため、経過運転は、第1運転に比べて燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。また、経過運転は、第2運転よりも着火箇所が多いので、第2運転に比べて燃焼時間が短く燃焼室(10)の内圧のピーク値が高い。第1の発明では、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に、「燃焼時間」及び「燃焼室(10)の内圧のピーク値」が第1運転と第2運転の間の値になる経過運転が行われる。
 第2の発明は、上記第1の発明において、上記運転制御手段(31,32,33)が、上記内燃機関(20)を上記第2運転に切り替えている期間に亘って、上記放電手段(11)による放電に伴って形成されるプラズマに対して上記電磁波放射手段(12)から電磁波が放射されるように上記内燃機関(20)を制御する。
 第2の発明では、内燃機関(20)が第2運転に切り替えられている期間に亘って、放電手段(11)による放電に伴って形成されるプラズマに対して電磁波が放射される。これにより、プラズマが形成されている領域(以下、「プラズマ形成領域」という。)の予混合気からOHラジカルやオゾンが短時間で大量に生成される。その結果、OHラジカルやオゾンにより予混合気の燃焼反応が促進される。また、プラズマ形成領域における予混合気の温度及び圧力が上昇する。第2の発明では、これらの要因により火炎の伝播速度が増す。このため、放電手段(11)による放電に伴って形成されるプラズマに対して電磁波を放射しない場合に比べて、第2運転は、燃焼時間が短く燃焼室(10)の内圧のピーク値が高い。
 第3の発明は、燃焼室(10)において放電を生じさせる放電手段(11)と、燃焼室(10)に電磁波を放射する電磁波放射手段(12)とを備える内燃機関(20)を制御する内燃機関の制御装置(30)を対象とする。そして、この内燃機関の制御装置(30)は、上記内燃機関(20)の運転状態に応じて、上記燃焼室(10)において予混合気を圧縮着火させる第1運転と、上記電磁波放射手段(12)から電磁波を放射することなく、上記燃焼室(10)において上記放電手段(11)により放電を生じさせて予混合気を強制的に着火させる第2運転との切り替えを行う運転制御手段(31,32,33)を備え、上記運転制御手段(31,32,33)は、上記第1運転と上記第2運転との切り替えの際に、上記第1運転と上記第2運転との間に、上記燃焼室(10)において上記放電手段(11)により放電を生じさせると共に、該放電に伴って形成されるプラズマに対して上記電磁波放射手段(12)から電磁波を放射する経過運転を挟む。
 第3の発明では、内燃機関(20)の運転状態に応じて、第1運転と第2運転の切り替えが行われる。第1運転と第2運転の切り替えの際には、第1運転と第2運転の間に経過運転が挟まれる。ここで、第1運転は、第1の発明と同様に、燃焼室(10)において予混合気を圧縮着火させる運転である。上述したように、第1運転は、燃焼時間が極めて短く燃焼室(10)の内圧のピーク値が極めて高い。一方、第2運転は、燃焼室(10)において予混合気を放電手段(11)により強制的に着火させる運転である。第2運転では、電磁波放射手段(12)から電磁波が放射されない。第2運転では、放電手段(11)により強制的に着火された箇所から火炎が広がる。上述したように、第2運転は、第1運転に比べて燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。
 また、経過運転は、燃焼室(10)において放電手段(11)により放電を生じさせると共に、該放電に伴って形成されるプラズマに対して上記電磁波放射手段(12)から電磁波を放射する運転である。経過運転は、第2運転とは異なり、放電手段(11)及び電磁波放射手段(12)の両方が用いられる。経過運転では、上述したように、プラズマ形成領域において生成したOHラジカルやオゾンにより予混合気の燃焼反応が促進されると共に、プラズマ形成領域における予混合気の温度及び圧力が上昇するので、火炎の伝播速度が増す。従って、放電手段(11)による放電に伴って形成されるプラズマに対して電磁波を放射しない第2運転に比べて、経過運転は、燃焼時間が短く燃焼室(10)の内圧のピーク値が高い。また、予混合気の複数箇所でほぼ同時に着火が生じる第1運転に比べて、経過運転は、燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。第3の発明では、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に、「燃焼時間」及び「燃焼室(10)の内圧のピーク値」が第1運転と第2運転の間の値になる経過運転が行われる。
 第4の発明は、上記第1乃至第3の何れか1つの発明において、上記運転制御手段(31,32,33)には、上記内燃機関(20)の運転状態に基づいて運転方式を決めるための運転制御領域として、上記内燃機関(20)に上記第1運転を実行させる第1領域と、上記内燃機関(20)に上記第2運転を実行させる第2領域と、上記内燃機関(20)に上記経過運転を実行させる経過領域とが設定され、該経過領域が上記第1領域と上記第2領域との間に挟まれている。
 第4の発明では、経過領域が、第1領域と第2領域との間に挟まれている。従って、第1運転と第2運転との切り替えの過程で、内燃機関(20)の運転状態を表す運転制御領域上の座標値が経過領域を通過する。従って、第1運転と第2運転の間に経過運転が挟まれる。
 第5の発明は、上記第1乃至第3の何れか1つの発明において、上記運転制御手段(31,32,33)が、上記第1運転と上記第2運転との切り替えの際に、所定のサイクル数だけ上記経過運転を上記内燃機関(20)に実行させる。
 第5の発明では、第1運転と第2運転との切り替えの際に、所定のサイクル数だけ経過運転が行われる。従って、第1運転と第2運転の間に経過運転が挟まれる。
 本発明では、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に、「燃焼時間」及び「燃焼室(10)の内圧のピーク値」が第1運転と第2運転の間の値になる経過運転が行われる。このため、第1運転と第2運転の間の「燃焼時間」及び「燃焼室(10)の内圧のピーク値」の違いが、経過運転により緩和される。従って、運転方式を切り替える際の内燃機関(20)のトルク変動を低減させることができる。
 また、第2の発明では、内燃機関(20)が第2運転に切り替えられている期間に亘って、放電手段(11)による放電に伴って形成されたプラズマに対して電磁波を放射することで、第2運転の燃焼時間が短くなり、第2運転の燃焼室(10)の内圧のピーク値が高くなるようにしている。従って、第1運転と第2運転の間の「燃焼時間」及び「燃焼室(10)の内圧のピーク値」の違いが小さくなるので、運転方式を切り替える際の内燃機関(20)のトルク変動をさらに低減させることができる。
図1は、実施形態1に係る内燃機関の断面図である。 図2は、実施形態1に係る内燃機関の制御装置のブロック図である。 図3は、実施形態1に係る運転制御マップである。 図4は、実施形態2の変形例に係る運転制御マップである。 図5は、その他の実施形態に係る運転制御マップである。 図6は、その他の実施形態に係る内燃機関の断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
《実施形態1》
 本実施形態1は、本発明に係る内燃機関の制御装置(30)(以下、「制御装置」という。)である。以下では、制御装置(30)について説明する前に、まず内燃機関(20)について説明する。
-内燃機関の構成-
 本実施形態1の内燃機関(20)は、レシプロタイプの均一予混合圧縮着火エンジンである。すなわち、本実施形態1の内燃機関(20)は、HCCI(Homogeneous Charge Compression Ignition)エンジンである。
 内燃機関(20)は、図1に示すように、シリンダブロック(21)とシリンダヘッド(22)とピストン(23)とを備えている。シリンダブロック(21)には、横断面が円形のシリンダ(24)が複数形成されている。なお、シリンダ(24)の数は1つであってもよい。
 各シリンダ(24)内には、ピストン(23)が摺動自在に設けられている。ピストン(23)は、コンロッド(コネクティングロッド)を介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック(21)に回転自在に支持されている。各シリンダ(24)内においてシリンダ(24)の軸方向にピストン(23)が往復運動すると、コンロッドがピストン(23)の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド(22)は、ガスケット(18)を挟んで、シリンダブロック(21)上に載置されている。シリンダヘッド(22)は、シリンダ(24)及びピストン(23)と共に、燃焼室(10)を形成している。シリンダヘッド(22)には、各シリンダ(24)に対して、吸気ポート(25)及び排気ポート(26)が1つ又は複数形成されている。各シリンダ(24)の吸気ポート(25)には、該吸気ポート(25)を開閉する吸気バルブ(27)と、燃料を噴射するインジェクター(29)(燃料噴射装置)とが設けられている。一方、各シリンダ(24)の排気ポート(26)には、該排気ポート(26)を開閉する排気バルブ(28)が設けられている。
 本実施形態1では、インジェクター(29)のノズル(29a)が吸気ポート(25)に開口しており、インジェクター(29)が噴射する燃料が吸気ポート(25)を流れる空気に供給される。燃焼室(10)には、燃料と空気とが予め混合された予混合気が導入される。
 シリンダヘッド(22)には、各シリンダ(24)に対して、スパークプラグ(15)が1つ設けられている。スパークプラグ(15)は、シリンダヘッド(22)に固定されている。スパークプラグ(15)は、図2に示すように、高電圧パルスとマイクロ波とを混合するミキサー回路(38)を介して、点火コイル(36)及びマグネトロン(37)に接続されている。スパークプラグ(15)には、点火コイル(36)から出力された高電圧パルスと、マグネトロン(37)から出力されたマイクロ波とが供給される。なお、点火コイル(36)には、第1パルス電源(34)が接続されている。マグネトロン(37)には、第2パルス電源(35)が接続されている。なお、マグネトロン(37)は、電子レンジ用のもの(発振周波数2.45GHz)である。
 本実施形態1では、スパークプラグ(15)が、燃焼室(10)において放電を生じさせる放電手段(11)と、燃焼室(10)にマイクロ波を放射する電磁波放射手段(12)の両方を兼ねている。スパークプラグ(15)の放電電極(15a)は、マイクロ波用のアンテナになり、マイクロ波を放射する。
-制御装置の構成-
 制御装置(30)は、電子制御装置(Electronic Control Unit)により構成されている。制御装置(30)は、図2に示すように、運転状態検出部(31)と運転切替部(32)と指令出力部(33)とを備えている。制御装置(30)は、点火コイル(36)及び第2パルス電源(35)に信号(後述する点火信号および放射信号)を出力することにより、内燃機関(20)を制御する。
 運転状態検出部(31)と運転切替部(32)と指令出力部(33)とは、内燃機関(20)の運転状態に応じて、燃焼室(10)において予混合気を圧縮着火させる第1運転と、燃焼室(10)においてスパークプラグ(15)により火花放電を生じさせて予混合気を強制的に着火させる第2運転との切り替えを行う運転制御手段(31,32,33)を構成している。運転制御手段(31,32,33)は、運転状態検出部(31)と運転切替部(32)と指令出力部(33)により構成されている。第1運転では、スパークプラグ(15)により放電を生じさせることなく、スパークプラグ(15)からマイクロ波を放射することもない。
 運転制御手段(31,32,33)は、第1運転と第2運転との切り替えの際に、第1運転と第2運転との間に、スパークプラグ(15)により放電を生じさせることなく、スパークプラグ(15)からマイクロ波を放射して予混合気の温度を上昇させた後に予混合気を圧縮着火させる経過運転を挟むように構成されている。第1運転及び経過運転は、いわゆる予混合圧縮着火運転である。第2運転は、いわゆる火花点火運転である。
 また、運転制御手段(31,32,33)は、内燃機関(20)を第2運転に切り替えている期間に亘って、スパークプラグ(15)による火花放電に伴って形成されるプラズマに対してスパークプラグ(15)からマイクロ波が放射されるように内燃機関(20)を制御する。なお、運転制御手段(31,32,33)は、内燃機関(20)を第2運転に切り替えている期間に亘って、スパークプラグ(15)による火花放電に伴って形成されるプラズマに対してスパークプラグ(15)からマイクロ波が放射されないように内燃機関(20)を制御してもよい。
 具体的に、運転状態検出部(31)は、所定の時間間隔で、内燃機関(20)の運転状態を検出する検出動作を行う。運転状態検出部(31)は、内燃機関(20)の運転状態を表すデータとして、内燃機関(20)の回転数(回転速度)と内燃機関(20)の負荷とを検出する。運転状態検出部(31)は、回転数センサ(16)の出力信号に基づいて、内燃機関(20)の回転数を検出する。回転数センサ(16)は、内燃機関(20)のクランク軸が1回転する度にパルス信号(出力信号)を出力する。また、運転状態検出部(31)は、アクセル開度センサ(17)の出力信号に基づいて、内燃機関(20)の負荷を検出する。アクセル開度センサ(17)は、アクセルペダルの操作量を表す開度信号(出力信号)を出力する。なお、内燃機関(20)の負荷にあたって、アクセル開度センサ(17)に代わりに、吸気空気の流量を計測するエアフローメータを使用してもよい。
 運転状態検出部(31)は、検出動作を実行すると、該検出動作で検出した内燃機関(20)の運転状態(現時点における内燃機関(20)の運転状態)を表す検出信号を運転切替部(32)に出力する。検出信号には、現時点の内燃機関(20)の回転数を表すデータと、現時点の内燃機関(20)の負荷を表すデータとが含まれている。
 運転切替部(32)は、内燃機関(20)の回転数及び内燃機関(20)の負荷の両方をパラメーターとする運転制御マップを備えている(図3参照)。運転制御マップには、内燃機関(20)の運転状態に基づいて運転方式を決めるための運転制御領域として、内燃機関(20)に第1運転を実行させる第1領域と、内燃機関(20)に第2運転を実行させる第2領域と、内燃機関(20)に経過運転を実行させる経過領域とが設定されている。第1領域は、低速低負荷側の領域である。第2領域は、高速高負荷側の領域である。経過領域は、上記第1領域と上記第2領域との間に挟まれている。
 運転切替部(32)は、運転状態検出部(31)から検出信号を受信すると、現時点の内燃機関(20)の運転状態に対して、第1運転、第2運転及び経過運転の中からどの運転方式に設定すべきであるかを判定する判定動作を行う。運転切替部(32)は、検出信号を受信する度に判定動作を行う。判定動作は、検出信号に含まれる内燃機関(20)の回転数及び内燃機関(20)の負荷を用いて行われる。判定動作では、検出信号に含まれる内燃機関(20)の回転数及び内燃機関(20)の負荷により定まる座標値(以下、「現時点座標値」という。)が運転制御マップ上においてどの領域に存在しているかを判定することにより、現時点の内燃機関(20)の運転状態に対して設定すべき運転方式(以下、「設定運転方式」という。)が選ばれる。運転切替部(32)は、判定動作で選ばれた設定運転方式が現時点の運転方式と異なる場合に、運転方式の切り替えを指示する切替信号を指令出力部(33)に出力する。運転切替部(32)は、設定運転方式が現時点の運転方式と同じである場合に、切替信号を指令出力部(33)に出力しない。
 具体的に、運転切替部(32)は、第1運転に切り替える場合には、第1切替信号を指令出力部(33)に出力する。運転切替部(32)は、第2運転に切り替える場合には、第2切替信号を指令出力部(33)に出力する。運転切替部(32)は、経過運転に切り替える場合には、第3切替信号を指令出力部(33)に出力する。
 指令出力部(33)は、第1切替信号を受信すると、第1運転モードに設定される。指令出力部(33)は、第1運転モードに設定されている期間は、内燃機関(20)に第1運転を行わせる。また、指令出力部(33)は、第2切替信号を受信すると、第2運転モードに設定される。指令出力部(33)は、第2運転モードに設定されている期間は、内燃機関(20)に第2運転を行わせる。また、指令出力部(33)は、第3切替信号を受信すると、経過運転モードに設定される。指令出力部(33)は、経過運転モードに設定されている期間は、内燃機関(20)に経過運転を行わせる。
 例えば、第1運転中に内燃機関(20)の回転数及び内燃機関(20)の負荷が増加すると、現時点座標値が第1領域から経過領域へ移動する。そうすると、運転切替部(32)が指令出力部(33)に第3切替信号を出力するので、指令出力部(33)が経過運転モードに設定され、内燃機関(20)が経過運転を行う。そして、内燃機関(20)の回転数及び内燃機関(20)の負荷がさらに増加すると、現時点座標値が経過領域から第2領域へ移動する。そうすると、運転切替部(32)が指令出力部(33)に第2切替信号を出力するので、指令出力部(33)が第2運転モードに設定され、内燃機関(20)が第2運転を行う。このように、内燃機関(20)の回転数及び内燃機関(20)の負荷が増加してゆくと、内燃機関(20)の運転方式は、経過運転を経て、第1運転から第2運転へ切り替えられる。
 また、第2運転中に内燃機関(20)の回転数及び内燃機関(20)の負荷が低下すると、現時点座標値が第2領域から経過領域へ移動する。そうすると、運転切替部(32)が指令出力部(33)に第3切替信号を出力するので、指令出力部(33)が経過運転モードに設定され、内燃機関(20)が経過運転を行う。そして、内燃機関(20)の回転数及び内燃機関(20)の負荷がさらに低下すると、現時点座標値が経過領域から第1領域へ移動する。そうすると、運転切替部(32)が指令出力部(33)に第1切替信号を出力するので、指令出力部(33)が第1運転モードに設定され、内燃機関(20)が第1運転を行う。このように、内燃機関(20)の回転数及び内燃機関(20)の負荷が低下してゆくと、内燃機関(20)の運転方式は、経過運転を経て、第2運転から第1運転へ切り替えられる。
-制御装置の動作-
 制御装置(30)の動作について説明する。まず、第1運転モードに設定されている状態の制御装置(30)の動作について説明する。以下では、1つ気筒に対する制御装置(30)の動作について説明する。
 第1運転では、排気行程が終了してピストン(23)が上死点を通過した後に、吸気バルブ(27)が開かれて、吸気行程が開始される。指令出力部(33)は、吸気行程の開始直後に、インジェクター(29)に噴射信号を出力し、該インジェクター(29)に燃料を噴射させる。燃焼室(10)には、空気と燃料とが予め混合された予混合気が流入する。そして、ピストン(23)が下死点を通過した直後に、吸気バルブ(27)が閉じられて、吸気行程が終了する。
 吸気行程が終了すると、燃焼室(10)において予混合気を圧縮する圧縮行程が開始される。圧縮行程では、ピストン(23)が上死点近傍に移動すると、自着火により予混合気の燃焼が開始される。ピストン(23)は、予混合気が燃焼するときの膨張力により、下死点側へ動かされる。そして、ピストン(23)がストロークの中間点を通過して下死点に達する前に、排気バルブ(28)が開かれて、排気行程が開始される。排気バルブ(28)は、ピストン(23)がストロークの中間点を通過して上死点に達する前に閉じられる。これにより、排気行程が終了する。本実施形態1では、ピストン(23)が上死点に達する前に排気バルブ(28)が閉じられるので、燃焼室(10)に排気ガスが残留する。つまり、第1運転では、内部EGR方式の運転が行われる。
 第1運転では、予混合気の複数箇所でほぼ同時に着火が生じる。厳密には、各箇所の着火タイミングには、極めて短い時間差がある。第1運転では、予混合気の圧縮行程において、予混合気の温度が全体的に上昇する。従って、最初の着火の時点では、未着火の予混合気が着火寸前の状態になっている。最初の着火後は、極めて短い時間の間に次々に着火が生じ、各着火箇所から火炎が広がる。このように、第1運転では予混合気の複数箇所でほぼ同時に着火が生じるので、第1運転は燃焼時間が極めて短く燃焼室(10)の内圧のピーク値が極めて高い。
 続いて、第2運転モードに設定されている状態の制御装置(30)の動作について説明する。以下では、1つ気筒に対する制御装置(30)の動作について説明する。
 第2運転では、ピストン(23)が上死点を達する直前に、吸気バルブ(27)が開かれて、吸気行程が開始される。第2運転では、ピストン(23)が上死点を通過した直後に、排気バルブ(28)が閉じられて、排気行程が終了する。指令出力部(33)は、排気行程の終了直後に、インジェクター(29)に噴射信号を出力し、該インジェクター(29)に燃料を噴射させる。これにより、予混合気が燃焼室(10)に流入する。そして、ピストン(23)が下死点を通過した直後に、吸気バルブ(27)が閉じられて、吸気行程が終了する。
 吸気行程が終了すると、燃焼室(10)において予混合気を圧縮する圧縮行程が開始される。そして、圧縮行程において予混合気が自着火する前に、指令出力部(33)が、点火コイル(36)に点火信号を出力する。これにより、第1パルス電源(34)から出力された電圧パルスが、点火コイル(36)において昇圧され、点火コイル(36)がミキサー回路(38)へ高電圧パルスを出力する。他方、指令出力部(33)は、圧縮行程において予混合気が自着火する前に、第2パルス電源(35)に放射信号を出力する。これにより、第2パルス電源(35)からマグネトロン(37)へ電圧パルスが供給され、マグネトロン(37)がミキサー回路(38)へマイクロ波を出力する。
 ミキサー回路(38)では、点火コイル(36)から出力された高電圧パルスと、マグネトロン(37)から出力されたマイクロ波とが混合される。そして、混合された高電圧パルスとマイクロ波とが、スパークプラグ(15)の放電電極(15a)に供給される。その結果、スパークプラグ(15)の放電電極(15a)と接地電極(15b)との間で、高電圧パルスにより火花放電が生じ、小規模のプラズマが形成される。そして、小規模のプラズマに、スパークプラグ(15)の放電電極(15a)からマイクロ波が放射される。小規模のプラズマは、マイクロ波のエネルギーを吸収して拡大する。
 他方、予混合気は、火花放電を契機にして強制的に着火する。その結果、予混合気の燃焼が開始される。火炎は、火花放電により着火された箇所から拡大する。第2運転は、第1運転に比べて着火箇所が少ない。従って、第2運転は、第1運転に比べて燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。
 第2運転では、プラズマ形成領域の予混合気からOHラジカルやオゾン等の化学活性の高い化学種が短時間で大量に生成される。その結果、OHラジカルやオゾンにより予混合気の燃焼反応が促進される。また、プラズマ形成領域における予混合気の温度及び圧力が上昇する。従って、火炎の伝播速度が増す。このため、スパークプラグ(15)による火花放電に伴って形成されるプラズマに対してマイクロ波を放射しない場合に比べて、第2運転は、燃焼時間が短く燃焼室(10)の内圧のピーク値が高い。
 予混合気の燃焼が開始されると、ピストン(23)が、予混合気が燃焼するときの膨張力により、下死点側へ動かされる。そして、ピストン(23)がストロークの中間点を通過して下死点に達する前に、排気バルブ(28)が開かれて、排気行程が開始される。排気行程は、上述したように、吸気行程の開始直後に終了する。
 第2運転では、放射信号が、スパークプラグ(15)の電極間(15a,15b)において火花放電が生じる前に出力され、マイクロ波が、火花放電が生じる前から放射される。マイクロ波は、火花放電が生じた後まで継続して放射される。マイクロ波は、極めて短い時間に亘って放射される。1回当たりのマイクロ波の放射時間は、第2パルス電源(35)からマグネトロン(37)へ出力される電圧パルスのパルス幅により規定される。なお、放射信号の出力開始タイミングは、スパークプラグ(15)の電極間(15a,15b)において火花放電が生じる前に限定されない。小規模のプラズマが消滅するまでにマイクロ波の放射が開始されれば、放射信号の出力開始タイミングは火花放電が生じた後でもよい。
 また、第2運転では、1回当たりのマイクロ波の放射時間(第2パルス電源(35)からマグネトロン(37)へ出力される電圧パルスのパルス幅)が、拡大したプラズマが熱プラズマにならないように、つまり非平衡プラズマで維持されるように、所定の時間以下に設定される。なお、拡大したプラズマが熱プラズマになるように、1回当たりのマイクロ波の放射時間を所定の時間以上に設定してもよい。また、サーマルNOxの発生を抑制するために、予混合気の温度が所定の温度(例えば、1800℃)を超えないように、1回当たりのマイクロ波の放射時間を所定の時間以下に設定してもよい。
 また、第2運転では、スパークプラグ(15)による火花放電により予混合気が着火するように、スパークプラグ(15)による放電に伴って形成されるプラズマのエネルギー密度を最小着火エネルギー以上としている。しかし、スパークプラグ(15)による放電に伴って形成されるプラズマのエネルギー密度を最小着火エネルギー未満にすることも可能である。この場合は、スパークプラグ(15)による火花放電により予混合気が着火しないが、マイクロ波による小規模のプラズマの拡大を契機にして、予混合気が強制的に着火される。
 続いて、経過運転モードに設定されている状態の制御装置(30)の動作について説明する。以下では、1つ気筒に対する制御装置(30)の動作について説明する。なお、吸気バルブ(27)の開閉タイミングと排気バルブ(28)の開閉タイミングとは、第1運転と同じであるため、説明は省略する。以下では、第1運転と異なる点について説明する。
 経過運転では、指令出力部(33)が、点火信号を出力することはなく、圧縮行程において予混合気が自着火する前の所定のタイミングで、第2パルス電源(35)に放射信号を出力する。これにより、第2パルス電源(35)からマグネトロン(37)へ電圧パルスが供給され、マグネトロン(37)がマイクロ波を出力する。マイクロ波は、ミキサー回路(38)を経て、スパークプラグ(15)の放電電極(15a)から燃焼室(10)に放射される。
 燃焼室(10)では、スパークプラグ(15)からのマイクロ波の放射により、強電場領域の予混合気の温度が大きく上昇する。経過運転では、予混合気のうち、マイクロ波により温度が大きく上昇する領域で最初の着火が生じる。最初の着火の時点では、マイクロ波により温度がそれほど上昇しない領域が、着火寸前の状態にならない。従って、経過運転は、最初の着火から最後の着火までの時間が、第1運転に比べて長くなる。このため、経過運転は、第1運転に比べて燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。また、経過運転は、第2運転よりも着火箇所が多いので、第2運転に比べて燃焼時間が短く燃焼室(10)の内圧のピーク値が高い。
-実施形態1の効果-
 本実施形態1では、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に、「燃焼時間」及び「燃焼室(10)の内圧のピーク値」が第1運転と第2運転の間の値になる経過運転が行われる。このため、第1運転と第2運転の間の「燃焼時間」及び「燃焼室(10)の内圧のピーク値」の違いが、経過運転により緩和される。従って、運転方式を切り替える際の内燃機関(20)のトルク変動を低減させることができる。
 また、本実施形態1では、内燃機関(20)が第2運転に切り替えられている期間に亘って、スパークプラグ(15)による火花放電に伴って形成されたプラズマに対してマイクロ波を放射することで、第2運転の燃焼時間が短くなるようにしている。従って、第1運転と第2運転の間の「燃焼時間」及び「燃焼室(10)の内圧のピーク値」の違いが小さくなるので、運転方式を切り替える際の内燃機関(20)のトルク変動をさらに低減させることができる。
《実施形態2》
 本実施形態2は、第2運転と経過運転とがそれぞれ実施形態1とは異なる。ただし、制御装置(30)が、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に経過運転を挟む点は実施形態1と同じである。
 第1運転は、燃焼室(10)において予混合気を圧縮着火させる運転であり、実施形態1と同じである。第2運転は、スパークプラグ(15)から電磁波を放射することなく、燃焼室(10)においてスパークプラグ(15)により火花放電を生じさせて予混合気を強制的に着火させる運転である。経過運転は、燃焼室(10)においてスパークプラグ(15)により火花放電を生じさせると共に、該火花放電に伴って形成されるプラズマに対してスパークプラグ(15)から電磁波を放射する運転である。経過運転は、実施形態1の第2運転と同じである。実施形態2では、第1運転がいわゆる予混合圧縮着火運転であり、第2運転がいわゆる火花点火運転である。
 以下では、第1運転が実施形態1の第1運転と同じであり、経過運転が実施形態1の第2運転と同じである。このため、第2運転モードに設定されている状態の制御装置(30)の動作だけを説明する。以下では、1つ気筒に対する制御装置(30)の動作について説明する。
 第2運転では、ピストン(23)が上死点を達する直前に、吸気バルブ(27)が開かれて、吸気行程が開始される。第2運転では、ピストン(23)が上死点を通過した直後に、排気バルブ(28)が閉じられて、排気行程が終了する。指令出力部(33)は、排気行程の終了直後に、インジェクター(29)に噴射信号を出力し、該インジェクター(29)に燃料を噴射させる。これにより、予混合気が燃焼室(10)に流入する。そして、ピストン(23)が下死点を通過した直後に、吸気バルブ(27)が閉じられて、吸気行程が終了する。
 吸気行程が終了すると、燃焼室(10)において予混合気を圧縮する圧縮行程が開始される。そして、圧縮行程において予混合気が自着火する前に、指令出力部(33)が、点火コイル(36)に点火信号を出力する。これにより、第1パルス電源(34)から出力された電圧パルスが、点火コイル(36)において昇圧される。そして、点火コイル(36)から出力された高電圧パルスが、ミキサー回路(38)を経て、スパークプラグ(15)の放電電極(15a)に供給される。その結果、スパークプラグ(15)の放電電極(15a)と接地電極(15b)との間で、高電圧パルスにより火花放電が生じ、予混合気が強制的に着火する。
 火花放電により予混合気の燃焼が開始されると、ピストン(23)が、予混合気が燃焼するときの膨張力により、下死点側へ動かされる。そして、ピストン(23)がストロークの中間点を通過して下死点に達する前に、排気バルブ(28)が開かれて、排気行程が開始される。排気行程は、上述したように、吸気行程の開始直後に終了する。
 ここで、第1運転は、上述したように、燃焼時間が極めて短く燃焼室(10)の内圧のピーク値が極めて高い。また、第2運転では、スパークプラグ(15)により強制的に着火された箇所から火炎が広がる。上述したように、第2運転は、第1運転に比べて燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。また、経過運転では、プラズマ形成領域において生成したOHラジカルやオゾンにより予混合気の燃焼反応が促進されると共に、プラズマ形成領域における予混合気の温度及び圧力が上昇するので、火炎の伝播速度が増す。従って、スパークプラグ(15)による火花放電に伴って形成されるプラズマに対して電磁波を放射しない第2運転に比べて、経過運転は、燃焼時間が短く燃焼室(10)の内圧のピーク値が高い。また、予混合気の複数箇所でほぼ同時に着火が生じる第1運転に比べて、経過運転は、燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。実施形態2では、実施形態1と同様に、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に、「燃焼時間」及び「燃焼室(10)の内圧のピーク値」が第1運転と第2運転の間の値になる経過運転が行われる。
-実施形態2の変形例-
 実施形態2の変形例について説明する。この変形例では、制御装置(30)が、第1運転と第2運転との切り替えの際に、第1運転と第2運転の間に、第1経過運転と第2経過運転とを挟む。なお、第1運転と第2運転は、実施形態2と同じである。
 図4に示すように、運転制御マップでは、第1領域と第2領域との間に、内燃機関(20)に第1経過運転を実行させる第1経過領域と、内燃機関(20)に第2経過運転を実行させる第2経過領域とが挟まれている。第1経過領域は、第2経過領域よりも第1領域側に位置している。
 第1経過運転は、スパークプラグ(15)により放電を生じさせることなく、スパークプラグ(15)から電磁波を放射して予混合気の温度を上昇させた後に予混合気を圧縮着火させる運転である。つまり、第1経過運転は、実施形態1の経過運転である。一方、第2経過運転は、燃焼室(10)においてスパークプラグ(15)により火花放電を生じさせると共に、該火花放電に伴って形成されるプラズマに対してスパークプラグ(15)から電磁波を放射する運転である。第2経過運転は、実施形態2の経過運転である。第2経過運転は、第1経過運転に比べて、燃焼時間が長く燃焼室(10)の内圧のピーク値が低い。この変形例では、高速高負荷側へ向かって、燃焼時間が長く燃焼室(10)の内圧のピーク値が低い運転へシフトしてゆく。
《その他の実施形態》
 上記実施形態は、以下のように構成してもよい。
 上記実施形態1、2において、制御装置(30)が、第1運転と第2運転との切り替えの際に、所定のサイクル数だけ経過運転を内燃機関(20)に実行させるように構成されていてもよい。その場合は、図5に示すように、運転制御マップにおいて第1領域と第2領域とが隣り合わせている。現時点座標値が第1領域から第2領域に移動した場合は、内燃機関(20)がすぐに第2運転に切り替えられない。内燃機関(20)は、所定のサイクル数だけ経過運転を実行した後に、第2運転に切り替えられる。また、現時点座標値が第2領域から第1領域に移動した場合は、内燃機関(20)がすぐに第1運転に切り替えられない。内燃機関(20)は、所定のサイクル数だけ経過運転を実行した後に、第1運転に切り替えられる。また、実施形態2の変形例のように第1運転と第2運転との間に2種類の経過運転を挟む場合は、制御装置(30)が、第1運転と第2運転との切り替えの際に、まず所定のサイクル数だけ第1経過運転を内燃機関(20)に実行させた後に、所定のサイクル数だけ第2経過運転を内燃機関(20)に実行させる。
 また、上記実施形態1の経過運転及び上記実施形態2の変形例の第1経過運転において、第1運転から第2運転へ切り替える際には、予混合気が自着火するタイミングに対してマイクロ波の出力開始タイミングが徐々に離れて早くなり、第2運転から第1運転へ切り替える際には、予混合気が自着火するタイミングに対してマイクロ波の出力開始タイミングが徐々に近づき遅くなるように、マイクロ波の出力開始タイミングを変化させてもよい。
 また、上記実施形態1の経過運転及び上記実施形態2の変形例の第1経過運転において、第1運転から第2運転へ切り替える際には、マイクロ波の強度が徐々に強くなり、第2運転から第1運転へ切り替える際にはマイクロ波の強度が徐々に弱くなるように、マイクロ波の強度を変化させてもよい。
 また、上記実施形態2の経過運転及び上記実施形態2の変形例の第2経過運転において、第1運転から第2運転へ切り替える際には、マイクロ波の強度が徐々に弱くなり、第2運転から第1運転へ切り替える際にはマイクロ波の強度が徐々に強くなるように、マイクロ波の強度を変化させてもよい。
 また、上記実施形態1、2において、燃焼室(10)において高電圧パルスの印加箇所とマイクロ波の発振箇所とが別々であってもよい。その場合、図6に示すように、スパークプラグ(15)の放電電極(15a)とは別にマイクロ波用のアンテナ(12)が設けられる。ミキサー回路(38)は必要なく、点火コイル(36)とスパークプラグ(15)とが直接接続され、マグネトロン(37)と電磁波放射アンテナ(12)とが直接接続される。なお、図6では、マイクロ波用のアンテナ(12)がスパークプラグ(15)と一体化されているが、マイクロ波用のアンテナ(12)をスパークプラグ(15)と別体にしてもよい。
 また、上記実施形態1、2において、インジェクター(29)のノズル(29a)が燃焼室(10)に開口するようにしてもよい。その場合は、例えば吸気行程中に、インジェクター(29)のノズル(29a)から燃料が燃焼室(10)へ噴射される。燃焼室(10)内の温度及び圧力が自着火する条件に達する前に、燃料と空気とが予め混合された予混合気が燃焼室(10)において生成される。
 以上説明したように、本発明は、燃焼室において予混合気を圧縮着火させる第1運転と、燃焼室において予混合気を放電手段により強制的に着火させる第2運転との切り替えを行う内燃機関の制御装置について有用である。
 10  燃焼室
 11  放電手段
 12  電磁波放射手段
 15  スパークプラグ(放電手段、電磁波放射手段)
 20  内燃機関
 30  内燃機関の制御装置
 31  運転状態検出部(運転制御手段)
 32  運転切替部(運転制御手段)
 33  指令出力部(運転制御手段)

Claims (5)

  1.  燃焼室(10)において放電を生じさせる放電手段(11)と、燃焼室(10)に電磁波を放射する電磁波放射手段(12)とを備える内燃機関(20)を制御する内燃機関の制御装置であって、
     上記内燃機関(20)の運転状態に応じて、上記燃焼室(10)において予混合気を圧縮着火させる第1運転と、上記燃焼室(10)において上記放電手段(11)により放電を生じさせて予混合気を強制的に着火させる第2運転との切り替えを行う運転制御手段(31,32,33)を備え、
     上記運転制御手段(31,32,33)は、上記第1運転と上記第2運転との切り替えの際に、上記第1運転と上記第2運転との間に、上記放電手段(11)により放電を生じさせることなく、上記電磁波放射手段(12)から電磁波を放射して予混合気の温度を上昇させた後に予混合気を圧縮着火させる経過運転を挟む
    ことを特徴とする内燃機関の制御装置。
  2.  請求項1において、
     上記運転制御手段(31,32,33)は、上記内燃機関(20)を上記第2運転に切り替えている期間に亘って、上記放電手段(11)による放電に伴って形成されるプラズマに対して上記電磁波放射手段(12)から電磁波が放射されるように上記内燃機関(20)を制御する
    ことを特徴とする内燃機関の制御装置。
  3.  燃焼室(10)において放電を生じさせる放電手段(11)と、燃焼室(10)に電磁波を放射する電磁波放射手段(12)とを備える内燃機関(20)を制御する内燃機関の制御装置であって、
     上記内燃機関(20)の運転状態に応じて、上記燃焼室(10)において予混合気を圧縮着火させる第1運転と、上記電磁波放射手段(12)から電磁波を放射することなく、上記燃焼室(10)において上記放電手段(11)により放電を生じさせて予混合気を強制的に着火させる第2運転との切り替えを行う運転制御手段(31,32,33)を備え、
     上記運転制御手段(31,32,33)は、上記第1運転と上記第2運転との切り替えの際に、上記第1運転と上記第2運転との間に、上記燃焼室(10)において上記放電手段(11)により放電を生じさせると共に、該放電に伴って形成されるプラズマに対して上記電磁波放射手段(12)から電磁波を放射する経過運転を挟む
    ことを特徴とする内燃機関の制御装置。
  4.  請求項1乃至3の何れか1つにおいて、
     上記運転制御手段(31,32,33)には、上記内燃機関(20)の運転状態に基づいて運転方式を決めるための運転制御領域として、上記内燃機関(20)に上記第1運転を実行させる第1領域と、上記内燃機関(20)に上記第2運転を実行させる第2領域と、上記内燃機関(20)に上記経過運転を実行させる経過領域とが設定され、該経過領域が上記第1領域と上記第2領域との間に挟まれている
    ことを特徴とする内燃機関の制御装置。
  5.  請求項1乃至3の何れか1つにおいて、
     上記運転制御手段(31,32,33)は、上記第1運転と上記第2運転との切り替えの際に、所定のサイクル数だけ上記経過運転を上記内燃機関(20)に実行させる
    ことを特徴とする内燃機関の制御装置。
PCT/JP2010/068714 2009-11-30 2010-10-22 内燃機関の制御装置 WO2011065162A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011543177A JP5681902B2 (ja) 2009-11-30 2010-10-22 内燃機関の制御装置
CN201080053954.9A CN102762834B (zh) 2009-11-30 2010-10-22 内燃机控制装置
US13/512,729 US9359934B2 (en) 2009-11-30 2010-10-22 Internal combustion engine control device
EP10833009.3A EP2508729A4 (en) 2009-11-30 2010-10-22 Internal combustion engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-272990 2009-11-30
JP2009272990 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011065162A1 true WO2011065162A1 (ja) 2011-06-03

Family

ID=44066267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068714 WO2011065162A1 (ja) 2009-11-30 2010-10-22 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9359934B2 (ja)
EP (1) EP2508729A4 (ja)
JP (1) JP5681902B2 (ja)
CN (1) CN102762834B (ja)
WO (1) WO2011065162A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063938A (ja) * 2013-09-25 2015-04-09 マツダ株式会社 圧縮着火式エンジンの制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152534B2 (ja) * 2011-01-31 2017-06-28 イマジニアリング株式会社 プラズマ生成装置
JP6086443B2 (ja) * 2011-07-16 2017-03-01 イマジニアリング株式会社 内燃機関
US9867270B2 (en) * 2012-10-29 2018-01-09 Imagineering, Inc. Electromagnetic wave emission device
CN105221319A (zh) * 2015-08-31 2016-01-06 中国科学院电工研究所 一种用于点火和辅助燃烧的滑动放电反应器
US20180340507A1 (en) * 2015-12-03 2018-11-29 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine
DE112016006462T5 (de) * 2016-03-31 2018-10-31 GM Global Technology Operations LLC Brennkraftmaschine und verfahren zum zünden eines kraftstoffes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003800A (ja) * 1999-06-23 2001-01-09 Hitachi Ltd エンジン制御システム及び制御方法
JP2006097603A (ja) 2004-09-30 2006-04-13 Toyota Motor Corp 内燃機関の制御装置
WO2009008522A1 (ja) * 2007-07-12 2009-01-15 Imagineering, Inc. 均一予混合圧縮自着火エンジン及びエンジン

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU508702B2 (en) * 1975-10-23 1980-03-27 Tokai Trw & Co., Ltd Ignition method for internal combustion engine
JP2001020842A (ja) * 1999-07-09 2001-01-23 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
CN1556312A (zh) * 2003-12-31 2004-12-22 天津大学 一种着火时刻可直接控制的内燃机均质压燃燃烧系统
US7398758B2 (en) * 2005-10-25 2008-07-15 Gm Global Technology Operations, Inc. Combustion control method for a direct-injection controlled auto-ignition combustion engine
JP4946173B2 (ja) * 2006-05-17 2012-06-06 日産自動車株式会社 内燃機関
JP2007321684A (ja) * 2006-06-01 2007-12-13 Toyota Motor Corp 内燃機関の制御装置
US8499746B2 (en) * 2007-07-12 2013-08-06 Imagineering, Inc. Internal combustion engine using electromagnetic wave radiation to activate burnt gas
US8156911B2 (en) * 2007-07-12 2012-04-17 Imagineering, Inc. Compression ignition internal combustion engine, glow plug, and injector
US7878177B2 (en) * 2007-10-23 2011-02-01 Ford Global Technologies, Llc Internal combustion engine having common power source for ion current sensing and fuel injectors
FR2932229B1 (fr) * 2008-06-05 2011-06-24 Renault Sas Pilotage de l'alimentation electrique d'une bougie d'allumage d'un moteur a combustion interne
DE102008061769A1 (de) * 2008-12-11 2010-06-17 Bayerische Motoren Werke Aktiengesellschaft Verbrennungskraftmaschine und Verfahren zur Kompressionszündverbrennung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003800A (ja) * 1999-06-23 2001-01-09 Hitachi Ltd エンジン制御システム及び制御方法
JP2006097603A (ja) 2004-09-30 2006-04-13 Toyota Motor Corp 内燃機関の制御装置
WO2009008522A1 (ja) * 2007-07-12 2009-01-15 Imagineering, Inc. 均一予混合圧縮自着火エンジン及びエンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508729A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063938A (ja) * 2013-09-25 2015-04-09 マツダ株式会社 圧縮着火式エンジンの制御装置

Also Published As

Publication number Publication date
JPWO2011065162A1 (ja) 2013-04-11
CN102762834A (zh) 2012-10-31
US9359934B2 (en) 2016-06-07
CN102762834B (zh) 2014-04-16
EP2508729A4 (en) 2017-06-28
JP5681902B2 (ja) 2015-03-11
EP2508729A1 (en) 2012-10-10
US20120239274A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5681902B2 (ja) 内燃機関の制御装置
JP5467285B2 (ja) 均一予混合圧縮自着火エンジン及びエンジン
EP1445461A2 (en) Combustion control device and method for engine
JP6237329B2 (ja) 直噴ガソリンエンジン
US8347850B2 (en) Internal-combustion engine and homogeneous charge compression ignition process
CN103244333B (zh) 通过电晕放电控制内燃机中的点火点的方法
WO2011118767A1 (ja) 着火制御装置
JP2007309160A (ja) 内燃機関およびその燃焼制御方法
JP2009036201A5 (ja)
JP5866684B2 (ja) 内燃機関の制御装置
WO2011043399A1 (ja) 内燃機関
JP6023956B2 (ja) 内燃機関
JP6014864B2 (ja) 火花点火式内燃機関
US9534558B2 (en) Control device for internal combustion engine
JPWO2013021852A1 (ja) 内燃機関
JP5835570B2 (ja) 火花点火式内燃機関
JP6086443B2 (ja) 内燃機関
JP6149759B2 (ja) 直噴ガソリンエンジン
JP2015190408A (ja) 内燃機関
JP2015187390A (ja) 内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053954.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543177

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13512729

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010833009

Country of ref document: EP