WO2011064853A1 - 内燃機関用ピストン及び内燃機関 - Google Patents

内燃機関用ピストン及び内燃機関 Download PDF

Info

Publication number
WO2011064853A1
WO2011064853A1 PCT/JP2009/069877 JP2009069877W WO2011064853A1 WO 2011064853 A1 WO2011064853 A1 WO 2011064853A1 JP 2009069877 W JP2009069877 W JP 2009069877W WO 2011064853 A1 WO2011064853 A1 WO 2011064853A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
outer peripheral
top portion
cooling channel
internal combustion
Prior art date
Application number
PCT/JP2009/069877
Other languages
English (en)
French (fr)
Inventor
聡 大川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/069877 priority Critical patent/WO2011064853A1/ja
Priority to JP2011543034A priority patent/JP5365700B2/ja
Priority to EP09851645.3A priority patent/EP2505816B1/en
Priority to CN200980162614.7A priority patent/CN102667127B/zh
Publication of WO2011064853A1 publication Critical patent/WO2011064853A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/0023Multi-part pistons the parts being bolted or screwed together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a piston for an internal combustion engine and an internal combustion engine.
  • a technique in which a cavity for burning fuel is provided at the top of a piston, and an annular passage through which lubricating oil flows is provided as a cooling channel around the cavity (for example, see Patent Document 1).
  • the upper and lower parts of the piston are manufactured separately, and then annular grooves are provided in each of the upper and lower parts so that an annular path is formed when the upper and lower parts are joined. .
  • the combustion state can be stabilized by increasing the temperature of the cavity surface promptly after the engine is started. For this reason, it is conceivable to use a material having a relatively high heat insulating property around the cavity. However, when such a material is used, after the temperature of the piston becomes sufficiently high, the temperature does not decrease immediately even if the lubricating oil is supplied to the cooling channel, so that the piston may be overheated. Moreover, since the heat from the cavity is difficult to be transmitted to the lubricating oil, the cooling capacity may be insufficient. That is, it becomes difficult to adjust the temperature of the cavity. Further, the temperature of the lubricating oil can be raised by the heat from the cavity to reduce the friction loss, but if the heat from the cavity is difficult to be transmitted to the lubricating oil, the temperature rise of the lubricating oil becomes slow.
  • JP 2007-270812 A JP 09-021319 A Japanese Patent Application Laid-Open No. 07-077105 JP 2004-285944 A Japanese Patent No. 3290671
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique that achieves both an early temperature rise of a piston and suppression of overheating.
  • the internal combustion engine piston employs the following means. That is, the piston for an internal combustion engine according to the present invention is A top formed with a cavity recessed from the upper surface of the piston toward the lower side of the piston; An outer peripheral portion that surrounds at least a piston outer peripheral side of the top portion and is joined to the top portion and has a ring groove for holding a piston ring on the outer periphery; A cooling channel including a gap between the top portion and the outer peripheral portion, formed on the piston outer peripheral side and the piston lower side from the cavity, and the piston outer peripheral side and the piston lower side communicating with each other; At least two communication holes that communicate between the cooling channel and the outside of the piston, and serve as an inlet or an outlet of the lubricating oil; It is characterized by providing.
  • the upper surface of the piston is the surface facing the combustion chamber.
  • the piston lower side is the crankshaft side.
  • a cavity is formed with a part of the upper surface of the piston having a concave shape. In an internal combustion engine equipped with this piston, fuel is injected into the cavity. The cavity is formed only at the top.
  • the outer peripheral part surrounds at least the piston outer peripheral side of the top part, it can be said that the piston outer peripheral side is also surrounded by the outer peripheral part rather than the cavity.
  • a part of each of the outer peripheral portion and the top portion is in close contact with each other. Except for this joint surface, a gap is provided between the outer peripheral portion and the top portion. This gap becomes a cooling channel.
  • the communication hole is an inlet or an outlet for the lubricating oil. The lubricating oil supplied to the cooling channel from one communication hole is discharged from the other communication hole after flowing through the cooling channel.
  • the cooling channel is provided on the piston outer circumference side and piston lower side than the cavity.
  • the bottom surface of the cooling channel provided on the lower side of the piston than the cavity may be a part of the top part or a part of the outer peripheral part.
  • the cooling channel is formed so that a cavity may be enclosed, the heat which generate
  • the cooling channel formed on the outer periphery of the piston from the cavity and the cooling channel formed on the lower side of the piston communicate with each other, the outer periphery of the piston lowers the piston or the lower piston of the piston Lubricating oil can move to the side. Thereby, the temperature of a cavity can be made uniform.
  • the temperature of the top portion is likely to rise. Therefore, the temperature of the cavity can be increased at an early stage.
  • the lubricating oil is circulated through the cooling channel, the lubricating oil circulates so as to wrap the cavity, so that the cavity can be cooled uniformly. Further, since the heat of the cavity is easily transmitted to the lubricating oil, the friction loss can be reduced by quickly increasing the temperature of the lubricating oil. Therefore, it is possible to achieve both an early temperature rise of the piston and suppression of overheating.
  • the outer peripheral portion also surrounds the piston lower side than the top portion
  • the cooling channel may be a gap between the top portion and the outer peripheral portion, and may be formed on the piston outer peripheral side and the piston lower side with respect to the top portion.
  • the outer peripheral portion surrounds the piston outer peripheral side and the piston lower side at the top, it can be said that the outer peripheral portion surrounds the piston outer peripheral side and the piston lower side of the cavity.
  • a gap is provided between the outer peripheral portion and the top portion except for the joint surface between the outer peripheral portion and the top portion, and this gap becomes a cooling channel.
  • the top portion protrudes toward the cooling channel to reinforce the top portion, and the lubricating oil moves between the cooling channels formed on the piston outer peripheral side and the piston lower side than the cavity.
  • the deformation or breakage of the top due to the force generated by the combustion of fuel can be suppressed by the reinforcing portion. Further, since the top portion can be thinned by reinforcing the top portion, the heat capacity of the top portion can be reduced. If it does so, the temperature of a cavity can be raised rapidly, if lubricating oil is not supplied to a cooling channel at the time of a cold start etc. or supply amount is reduced. Furthermore, if lubricating oil is supplied to the cooling channel, the temperature of the lubricating oil can be quickly raised, and friction loss can be reduced.
  • each cooling channel is in communication.
  • the direction through which lubricating oil flows can be adjusted by adjusting the shape of a reinforcement part.
  • the lubricating oil can be intensively distributed to a portion where the temperature is likely to rise, or the lubricating oil can be distributed uniformly.
  • the top portion is reinforced by the reinforcing portion, the volume of the cooling channel can be increased.
  • a passage for the lubricating oil to move may be provided below the piston with respect to the reinforcing portion.
  • the lubricating oil can move between the respective cooling channels through the lower side of the piston than the reinforcing portion. Further, when the internal combustion engine is stopped, the lubricating oil flows under the reinforcing portion, so that the lubricating oil can be quickly discharged from the cooling channel to the outside of the piston.
  • the top portion may be made of a material having a small specific heat as compared with the outer peripheral portion.
  • the top portion has a central reinforcing portion that protrudes from the outer surface of the cavity and extends to the bottom surface of the cooling channel on the piston center line, On the bottom surface of the cooling channel, the periphery of the central reinforcing portion may be recessed toward the lower side of the piston.
  • the periphery of the central reinforcing portion is in a state of being recessed below the piston along the central reinforcing portion.
  • the lubricating oil is stored in the recessed portion even after the supply of the lubricating oil is stopped and the lubricating oil is discharged from the through hole.
  • the temperature of the cavity can be lowered through the central reinforcing portion.
  • the bottom surface of the cooling channel is constituted by the outer peripheral portion, the alignment is facilitated by the recess when the outer peripheral portion and the top portion are joined.
  • the top portion may include a skirt portion of a piston.
  • the skirt is a part below the piston with respect to the ring groove for holding the piston ring.
  • the top portion extends to the skirt portion.
  • the internal combustion engine according to the present invention employs the following means. That is, the internal combustion engine according to the present invention is A piston for the internal combustion engine; A lubricating oil supply device for supplying lubricating oil to the cooling channel through the communication hole; An adjusting device for adjusting the amount of lubricating oil supplied from the lubricating oil supply device to the cooling channel; A control device that reduces the amount of lubricating oil supplied when the temperature of the internal combustion engine is low than when it is high; It is characterized by providing.
  • the amount of heat supplied from the top and outer periphery can be reduced by relatively reducing the amount of lubricating oil supplied, so that the temperature of the top and outer periphery can be quickly increased. Can do. Further, when the temperature of the internal combustion engine is high, the amount of heat supplied from the top and the outer peripheral portion can be increased by relatively increasing the supply amount of the lubricating oil, so that the top portion and the outer peripheral portion can be prevented from overheating.
  • the control device may selectively control one of supplying the lubricating oil or stopping the supply. Further, the supply amount of the lubricating oil may be changed stepwise or continuously according to the temperature. And the supply amount of lubricating oil can be increased, so that temperature is high.
  • FIG. It is a longitudinal cross-sectional view when this piston is cut
  • FIG. It is a cross-sectional view when a piston is cut along the cutting line Z shown in FIG.
  • FIG. 10 is a transverse sectional view when the piston is cut along a cutting line Z shown in FIG. 9. It is a longitudinal cross-sectional view when this piston is cut
  • FIG. It is a cross-sectional view when a piston is cut along the cutting line Z shown in FIG.
  • FIG. 1 is a longitudinal sectional view when the piston 1 is cut in the longitudinal direction along the central axis of the piston 1.
  • 2 is a cross-sectional view when the piston 1 is cut along the cutting line Z shown in FIG.
  • FIG. 3 is a schematic configuration diagram of an engine 100 incorporating the piston 1 according to the present embodiment.
  • some components are not shown.
  • the engine 100 includes a cylinder block 2.
  • the cylinder block 2 is formed with a cylinder 3 in which the piston 1 is accommodated.
  • a cylinder head 4 is assembled to the upper part of the cylinder block 2.
  • An intake port 5 that communicates with the cylinder 3 is formed in the cylinder head 4.
  • An intake valve 6 is provided at the boundary between the intake port 5 and the cylinder 3.
  • the cylinder head 4 is formed with an exhaust port 7 that communicates with the cylinder 3.
  • An exhaust valve 8 is provided at the boundary between the exhaust port 7 and the cylinder 3.
  • the cylinder head 4 is provided with a fuel injection valve 9 for injecting fuel.
  • the fuel injection valve 9 is provided on the central axis A of the piston 1.
  • a crankshaft 102 is connected to the piston 1 via a connecting rod 101.
  • the cylinder head 4 side is an upward direction and the crankshaft 102 side is a downward direction.
  • the piston 1 includes a top portion 11 and an outer peripheral portion 12.
  • the top portion 11 is disposed on the cylinder head 4 side and the central axis A side.
  • the outer peripheral part 12 is arrange
  • the top part 11 and the outer peripheral part 12 are joined after being manufactured separately.
  • An upper surface 13 of the piston 1 is formed by the upper surface of the top portion 11 and the upper surface of the outer peripheral portion 12.
  • a cavity 14 is provided in the top 11.
  • the cavity 14 is formed by denting the piston 1 downward from the upper surface 13 of the piston 1.
  • the shape of the cavity 14 is defined by the cavity wall surface 15.
  • An outer surface (surface on the outer peripheral portion 12 side) 16 of the top portion 11 is formed along the cavity wall surface 15.
  • the thickness of the top 11 is made as small as possible within a range that can withstand the stress generated in the cavity 14 during operation of the engine 100, for example.
  • the outer peripheral surface 17 which is a part of the outer surface 16 of the top portion 11 and is an outer peripheral surface is formed in a columnar shape with the central axis A of the piston 1 as the center.
  • the outer surface 16 of the top 11 may be the outer surface of the cavity 14.
  • the central axis A of the piston 1 and the central axis of the cavity 14 are the same, but the central axis of the cavity 14 may be deviated from the central axis A of the piston 1.
  • the cavity 14 has a circular cross-sectional shape in the lateral direction, but may have another shape such as an ellipse.
  • the outer peripheral portion 12 is formed with a concave portion 18 that is recessed downward from the upper surface 13 in order to fit the top portion 11.
  • the recess 18 has a circular cross-sectional shape in the lateral direction.
  • the diameter of the opening 19 of the recess 18 is slightly larger than the diameter of the outer peripheral surface 17 of the top 11, and the top 11 can be fitted into the recess 18.
  • the inner peripheral surface 20 of the recess 18 has a larger diameter than the outer peripheral surface 17 of the top 11.
  • the distance to the bottom surface 21 is longer than the distance to the outer surface 16 from an arbitrary position on the upper surface 13.
  • the concave portion 18 of the outer peripheral portion 12 and the outer surface 16 of the top portion 11 are joined at the upper surface 13 of the piston 1 and its vicinity (may be an opening 19), and the piston central axis A and its vicinity.
  • the location joined in the upper surface 13 and its vicinity is called the upper surface junction part 22, and the location joined in the central axis A and its vicinity is called the center junction part 23.
  • FIG. 4A and 5 are views showing a longitudinal sectional view of the center joint portion 23.
  • FIG. 4A and 5A show a state before joining
  • FIGS. 4B and 5B show a state after joining.
  • a columnar center reinforcing portion 24 extends from the top portion 11 on the center axis A of the piston 1 toward the bottom surface 21 of the outer peripheral portion 12.
  • the central reinforcing portion 24 is formed in a tapered shape whose cross-sectional area decreases toward the tip.
  • a through-hole 25 is formed in the outer peripheral portion 12 for the center reinforcing portion 24 to be fitted therein.
  • the inner diameter of the through hole 25 is slightly larger than the outer diameter of the central reinforcing portion 24, and the central reinforcing portion 24 can be fitted into the through hole 25.
  • the through hole 25 and the central reinforcing portion 24 play a role of positioning when the top portion 11 is attached to the outer peripheral portion 12.
  • the center reinforcing portion 24 is welded to the through hole 25 to reinforce the top portion 11.
  • the central reinforcing portion 24 also plays a role of transferring heat of the top portion 11. That is, the cooling efficiency of the cavity wall surface 15 at the center portion, which is particularly high in temperature, is improved.
  • the cross section of the upper edge 26 of the through hole 25 is enlarged toward the upper side. That is, in the outer peripheral part 12, the periphery of the center joint part 23 is recessed below the piston. 5 shows a case where the diameter of the recess of the edge 26 is larger in FIG. 5 than in FIG.
  • the center reinforcing portion 24 is easily fitted into the through hole 25 due to the tip of the center reinforcing portion 24 being tapered and the upper edge 26 of the through hole 25 being recessed below the piston. be able to.
  • the piston 1 configured as described above, there is a gap between the inner peripheral surface 20 and the bottom surface 21 of the concave portion 18 and the outer surface 16 of the top portion 11 except for the upper surface joint portion 22 and the center joint portion 23.
  • the inner peripheral surface 20 and the bottom surface 21 of the recess 18 are also collectively referred to as an inner surface 27 of the outer peripheral portion 12.
  • the gap between the inner surface 27 of the outer peripheral portion 12 and the outer surface 16 of the top portion 11 serves as a cooling channel 28. That is, the piston 1 according to the present embodiment is provided with the cooling channel 28 in the outer peripheral direction and the lower direction than the cavity 14.
  • a through hole 29 is provided in the bottom surface 21 of the recess 18 so as to penetrate the lower side of the outer peripheral portion 12 in parallel with the central axis A of the piston 1.
  • Two through-holes 29 are provided symmetrically with respect to the central axis A, one being an oil inlet and the other being an oil outlet.
  • An annular groove 30 is formed on the bottom surface 21 of the recess 18 around the central axis A of the piston 1, and a through hole 29 is provided on the bottom surface of the annular groove 30.
  • Three ring grooves 32 for holding the piston ring are formed on the outer peripheral surface 31 of the outer peripheral portion 12.
  • a skirt portion 33 extending toward the crankshaft 102 is formed on the lower side.
  • the connecting rod 101 is connected to the outer peripheral portion 12.
  • a plurality of ribs 34 that are arranged radially about the central axis A of the piston 1 are formed on a portion of the outer surface 16 of the top portion 11 that faces the annular groove 30 formed on the bottom surface 21 of the recess 18. Yes.
  • the rib 34 extends downward from the top 11 in a plate shape. Further, the rib 34 is configured not to contact the outer peripheral portion 12. That is, since the annular groove 30 is formed below the rib 34, an oil passage is provided below the rib 34. Further, since the ribs 34 are arranged radially, an oil passage is formed between the adjacent ribs 34. That is, the oil can be moved between the cooling channels 28 provided in the outer circumferential direction and the lower direction than the top portion 11.
  • the top 11 is made of, for example, an iron or stainless steel material. That is, since a large stress is generated on the cavity wall surface 15 by the combustion of fuel, a material having a high Young's modulus or a material having a high fatigue limit is used for the top portion 11 where the cavity wall surface 15 is formed. By using such a material, it is possible to reduce the thickness of the top portion 11, and hence the mass of the top portion 11 can be reduced, so that the heat capacity of the top portion 11 can be reduced.
  • the outer peripheral portion 12 for example, an aluminum-based material is used.
  • an aluminum-based material is used for the outer peripheral portion 12.
  • the abrasion by sliding with a cylinder wall surface can be suppressed.
  • it can suppress that a piston ring adheres.
  • the specific heat of the top part 11 becomes smaller than the specific heat of the outer peripheral part 12.
  • the effect of the cooling channel 28 can be acquired.
  • the upper surface joint portion 22 and the center joint portion 23 are joined by, for example, electron beam welding.
  • the engine 100 is provided with an oil pump 103 for circulating oil inside the engine 100.
  • An oil passage 104 is connected to the oil pump 103, and the oil passage 104 communicates with each sliding portion and the oil jet 106.
  • the oil pump 103 pumps oil from the oil pan 105 and supplies the oil to the sliding portions and the oil jet 106.
  • the oil jet 106 injects oil toward one of the through holes 29 leading to the cooling channel 28.
  • a shutoff valve 107 that shuts off the oil passage 104 is provided in the middle of the oil passage 104.
  • the shut-off valve 107 When the shut-off valve 107 is opened, oil is injected from the oil jet 106 and supplied to the cooling channel 28.
  • the shut-off valve 107 When the shut-off valve 107 is closed, the injection of oil from the oil jet 106 is stopped to enter the cooling channel 28. Oil supply is stopped.
  • the injection of oil from the oil jet 106 stops the oil flows out from the cooling channel 28 to the outside of the piston 1 through the two through holes 29.
  • the gas existing below the piston 1 flows into the cooling channel 28. Therefore, when engine 100 is stopped, cooling channel 28 is filled with gas.
  • shutoff valve 107 is controlled by the ECU 110.
  • the ECU 110 also controls the fuel injection valve 9.
  • the oil pump 103 corresponds to the lubricating oil supply device in the present invention.
  • the shutoff valve 107 corresponds to the adjusting device in the present invention.
  • the ECU 110 corresponds to the control device in the present invention.
  • a part of the oil supplied into the cooling channel 28 flows along the annular groove 30.
  • a part of the oil overflows from the annular groove 30.
  • the oil overflowing from the annular groove 30 passes through the inner peripheral surface 20 side (the outer peripheral side of the top portion 11) of the concave portion 18 and the bottom surface 21 side (the top portion 11 of the top portion 11).
  • the oil passes through the lower side.
  • the oil overflowing from the annular groove 30 flows between the ribs 34.
  • the oil spreads uniformly over the outer peripheral side and the lower side of the top part 11, the oil flows so as to wrap around the top part 11. Thereby, the whole top part 11 can be cooled rapidly.
  • a material having a small specific heat is used for the top portion 11 and the top portion 11 is thinned so that the heat capacity of the top portion 11 is reduced. Therefore, when the temperature of the top portion 11 is low, such as when the engine 100 is cold started, the temperature of the top portion 11 quickly rises due to heat generated by combustion unless the shutoff valve 107 is fully closed and oil flows through the cooling channel 28. . If it does so, since a combustion state can be improved at an early stage, the discharge amount of HC and CO can be reduced.
  • the top portion 11 is reinforced by the ribs 34, the volume of the cooling channel 28 can be expanded, so that the oil warm-up performance is improved and the temperature control of the top portion 11 is facilitated.
  • FIG. 6 is a time chart showing the transition of the temperature of the cavity wall surface 15.
  • the solid line indicates the case of the piston 1 according to the present embodiment, and the alternate long and short dash line indicates the case of a conventional aluminum alloy piston.
  • the engine 100 is started at the time indicated by A.
  • the shutoff valve 107 is closed and the supply of oil is stopped.
  • the temperature of the cavity wall surface 15 gradually increases.
  • the temperature increase rate at this time is higher in the piston 1 according to the present embodiment. That is, the temperature increase rate of the cavity wall surface 15 is increased by reducing the heat capacity of the top portion 11.
  • the temperature indicated by C is reached at the time indicated by B.
  • the temperature indicated by C is a temperature at which the increase in smoke or the decrease in filling efficiency exceeds the allowable range.
  • the shutoff valve 107 is opened and oil is injected from the oil jet 106.
  • the temperature rises to the temperature indicated by C at the time indicated by D. That is, the time taken for the temperature from the start of the engine 100 to the temperature indicated by C is faster in the piston 1 according to this embodiment than in the conventional piston.
  • the piston 1 according to the present embodiment has higher warm-up performance.
  • FIG. 7 shows a rib shape that facilitates the flow of oil to the outer peripheral side of the top 11.
  • FIG. 7 is another cross-sectional view when the piston 1 according to the present embodiment is cut. Except for the shape of the rib 35, it is the same as the piston 1 shown in FIG. A plurality of ribs 34 shown in FIG. 2 are arranged radially about the central axis A of the piston 1, whereas the ribs 35 shown in FIG. 7 are arranged on the circumference of a circle centering on the central axis A of the piston 1. A plurality are arranged along.
  • the rib 35 shown in FIG. 7 is also formed at a portion facing the annular groove 30. That is, since the annular groove 30 is formed below the rib 35, an oil passage is provided on the lower side of the rib 35. Further, a gap is provided between the ribs 35, and this gap becomes an oil passage. That is, the oil can be moved between the cooling channels 28 provided in the outer circumferential direction and the lower direction than the top portion 11.
  • the shape of the rib may be set depending on the type of the engine 100 and the use conditions.
  • the ribs 34 and 35 correspond to the reinforcing portion in the present invention.
  • FIG. 8 is a flowchart showing a control flow of the shutoff valve 107 according to the present embodiment. This routine is repeatedly executed by the ECU 110 every predetermined time. Note that the shutoff valve 107 is closed when the engine 100 is started.
  • step S101 it is determined whether or not the elapsed time from the start of the engine 100 is a predetermined time or more.
  • This predetermined time is a value set to measure the timing for opening the shutoff valve 107.
  • the predetermined time is set according to at least one of the HC discharge amount and the friction loss. For example, the time from when the engine 100 is started until the temperature of the cavity wall surface 15 rises and the HC emission amount falls within the allowable range can be set as a predetermined time. For the predetermined time, an optimum value is obtained by, for example, experiments.
  • the timing of opening the shut-off valve 107 at the time of cold starting of the engine 100 is delayed, the temperature rise of the cavity wall surface 15 can be promoted, but the oil temperature in the cooling channel 28 until the shut-off valve 107 is opened. Cannot be raised.
  • the timing of opening the shut-off valve 107 is advanced, the temperature of the cavity wall surface 15 becomes slow, although the temperature of the oil can be increased. That is, the timing for opening the shut-off valve 107 may be determined depending on whether priority is given to reducing the amount of HC discharged or reducing friction loss. Further, the predetermined time may be determined according to the performance required for engine 100.
  • step 101 If an affirmative determination is made in step 101, the process proceeds to step S102, and if a negative determination is made, this routine is terminated while the shutoff valve 107 is closed.
  • step S102 the shutoff valve 107 is opened.
  • the oil is supplied into the cooling channel 28.
  • the oil is supplied based on the elapsed time after the engine 100 is started.
  • the oil may be supplied based on the temperature of the cooling water or the oil of the engine 1. good. That is, when the temperature of the cooling water or oil is about 25 ° C. to 40 ° C., for example, the temperature of the cavity wall surface 15 may be increased by stopping the supply of oil or reducing the supply amount. Further, the oil supply amount may be increased in accordance with the elapsed time from the start of engine 100 or the temperature of cooling water or the like.
  • the heat capacity of the top portion 11 is small, the temperature of the cavity wall surface 15 can be raised early even during cold start. Thereby, discharge
  • FIG. 9 and 10 show a direct injection type diesel engine piston 200 according to the second embodiment.
  • FIG. 9 is a longitudinal sectional view when the piston 1 is cut in the longitudinal direction along the central axis A of the piston 200.
  • FIG. 10 is a cross-sectional view when the piston 200 is cut along the cutting line Z shown in FIG.
  • the display of some components is omitted.
  • the apparatus other than the piston 200 is the same as that of the first embodiment, the description thereof is omitted.
  • the piston 200 includes a central part 201 and an outer peripheral part 202.
  • the central part 201 is disposed on the central axis A side.
  • the outer peripheral portion 202 is disposed on the outer peripheral side of the central portion 201 and in a range including the ring groove 32.
  • the central part 201 and the outer peripheral part 202 are joined after being manufactured separately.
  • the upper surface 13 of the piston 200 is formed by the upper surface of the center portion 201 and the upper surface of the outer peripheral portion 202.
  • a cavity 14 is provided in the central part 201.
  • the cavity 14 is formed by being recessed from the upper surface 13 of the piston 200 in the downward direction of the piston 200.
  • the shape of the cavity 14 is defined by the cavity wall surface 15.
  • a cooling channel 203 is formed below the cavity 14.
  • the upper surface 204 of the cooling channel 203 is formed along the cavity wall surface 15.
  • the thickness between the cavity wall surface 15 and the upper surface 204 of the cooling channel 203 is made as small as possible within a range that can withstand the stress generated in the cavity 14 during operation of the engine 100, for example.
  • An outer peripheral surface 205 which is a surface on the outer peripheral side of the central portion 201 is formed in a columnar shape centering on the central axis A of the piston 200.
  • the central axis A of the piston 200 and the central axis of the cavity 14 are the same, but the central axis of the cavity 14 may be shifted from the central axis A of the piston 200.
  • the cavity 14 has a circular cross-sectional shape in the lateral direction, but may have another shape such as an ellipse.
  • a through hole 29 penetrating below the central portion 201 in parallel with the central axis A of the piston 200.
  • Two through-holes 29 are provided symmetrically with respect to the central axis A, one being an oil inlet and the other being an oil outlet.
  • An annular groove 30 is formed on the bottom surface 206 of the cooling channel 203 around the central axis A of the piston 200, and a through hole 29 is provided on the bottom surface of the annular groove 30.
  • a plurality of columns 207 having a rectangular cross section for connecting the upper surface 204 and the bottom surface 206 of the cooling channel 203 are provided on the outer peripheral side of the annular groove 30.
  • the columns 207 are arranged radially about the central axis A of the piston 200.
  • a central reinforcing portion 208 having a circular cross section for connecting the upper surface 204 and the bottom surface 206 of the cooling channel 203 is provided on the central axis A of the piston 200.
  • the pillar 207 corresponds to the reinforcing portion in the present invention.
  • the central portion 201 below the cooling channel 203 extends to the skirt portion 212.
  • the skirt portion 212 is included in the center portion 201.
  • the outer peripheral portion 202 is formed in a cylindrical shape centered on the central axis A, and the inner surface 213 has a slightly larger diameter than the outer peripheral surface 205 of the central portion 201, and the outer peripheral portion 202 is fitted to the central portion 201. Can be included. In addition, three ring grooves 32 for holding the piston ring are formed on the outer peripheral surface 31 of the outer peripheral portion 202.
  • the connecting rod 101 is connected to the central portion 201.
  • the outer peripheral portion 202 is provided on the outer peripheral side with respect to the cavity 14 and the cooling channel 203.
  • the upper portion 209 and the lower portion 210 of the inner surface 213 of the outer peripheral portion 202 are joined to the central portion 201.
  • a gap is provided between the outer peripheral portion 202 and the central portion 201 between the upper portion 209 and the lower portion 210 of the outer peripheral portion 202.
  • This gap functions as a cooling channel 211. That is, the piston 200 according to the present embodiment is provided with cooling channels 203 and 211 in the outer peripheral direction and the lower direction than the cavity 14.
  • the cooling channel 203 provided below the cavity 14 and the cooling channel 211 provided in the outer peripheral direction from the cavity 14 are communicated between the column 207 and the column 207.
  • an iron-based or stainless steel-based material is used for the central part 201. That is, since a large stress is generated on the cavity wall surface 15 due to the combustion of fuel, a material having a high Young's modulus or a material having a high fatigue limit is used for the central portion 201 where the cavity wall surface 15 is formed. By using such a material, the thickness between the cavity wall surface 15 and the upper surface 204 of the cooling channel 203 can be reduced, so that the heat capacity around the cavity 14 can be reduced.
  • the outer peripheral portion 202 for example, an aluminum-based material is used.
  • the central portion 201 is manufactured in advance by casting, and the outer peripheral portion 202 is manufactured by casting.
  • the upper part 209 and the lower part 210 of the outer peripheral part 202 are joined to the center part 201 by electron beam welding, for example.
  • wear due to sliding with the wall surface of the cylinder 3 can be suppressed.
  • it can suppress that a piston ring adheres.
  • the specific heat of the center part 201 becomes smaller than the outer peripheral part 202.
  • the material of the center part 201 and the outer peripheral part 202 is the same, the effect of the cooling channels 203 and 211 can be acquired.
  • the heat of the cavity 14 can be quickly transmitted to the skirt portion 212, so that the viscosity of the oil can be quickly decreased.
  • channel material whose heat conductivity is higher than iron is used for the ring groove 32 periphery, adhering of a piston ring can be suppressed.
  • the temperature of the cavity wall surface 15 can be raised at an early stage even during cold start. Thereby, discharge
  • FIG. 11 and 12 show a piston 300 for a direct injection diesel engine according to the third embodiment.
  • FIG. 11 is a longitudinal sectional view when the piston 300 is cut in the longitudinal direction along the central axis A of the piston 300.
  • FIG. 12 is a cross-sectional view when the piston 300 is cut along the cutting line Z shown in FIG.
  • the display of some components is omitted.
  • the devices other than the piston 300 are the same as those in the first embodiment, description thereof is omitted.
  • the piston 300 will be described with respect to differences from the second embodiment.
  • the piston 300 includes a central part 301 and an outer peripheral part 302.
  • the central portion 301 is disposed on the central axis A side.
  • the outer peripheral portion 302 is disposed on the outer peripheral side of the central portion 301 and on the periphery of the ring groove 32 and on the skirt portion 303 below the ring groove 32.
  • the central portion 301 and the outer peripheral portion 302 are joined after being manufactured separately.
  • a rib 304 extending from the central portion 301 is provided on the central axis A side of the skirt portion 303.
  • a plurality of ribs 304 are arranged radially about the central axis A.
  • the skirt portion 303 and the rib 304 are joined by, for example, electron beam welding.
  • the heat of the cavity 14 is quickly transmitted to the skirt portion 303 through the rib 304, so that the viscosity of the oil can be quickly decreased.
  • the temperature becomes too high and boundary lubrication may occur and friction loss may increase.
  • this can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

 ピストンの早期温度上昇と過熱の抑制とを両立させる。ピストン上面からピストン下側に向かって凹んだキャビティが形成される頂部と、頂部の少なくともピストン外周側を囲んで該頂部と接合され、外周にピストンリングを保持するためのリング溝を有する外周部と、頂部と外周部との間の隙間を含み、キャビティよりもピストン外周側及びピストン下側に形成され、このピストン外周側とピストン下側とが連通されているクーリングチャンネルと、クーリングチャンネルとピストン外部とを連通し、潤滑油の入口または出口となる少なくとも2つの連通孔と、を備える。

Description

内燃機関用ピストン及び内燃機関
 本発明は、内燃機関用ピストン及び内燃機関に関する。
 ピストンの頂部に燃料を燃焼させるためのキャビティを設け、このキャビティの周辺に潤滑油が流通する環状路をクーリングチャンネルとして設ける技術が知られている(例えば、特許文献1参照。)。この技術では、ピストンの上部と下部とを別々に製造した後、この上部と下部とを接合したときに環状路が形成されるように、この上部及び下部の夫々に環状の溝を設けている。
 ここで、キャビティ表面の温度を機関始動後速やかに上昇させることにより、燃焼状態を安定させることができる。このため、キャビティ周辺には比較的断熱性の高い材料を用いることが考えられる。しかし、このような材料を用いると、ピストンの温度が十分に高くなった後では、クーリングチャンネルに潤滑油を供給してもすぐには温度が低下しないために、ピストンが過熱する虞がある。また、キャビティからの熱が潤滑油に伝わり難いために冷却能力が不足することもある。すなわち、キャビティの温度の調節が困難となる。さらに、キャビティからの熱により潤滑油の温度を上昇させて摩擦損失を低下させることができるが、キャビティからの熱が潤滑油に伝わり難いと潤滑油の温度上昇が緩慢となる。
特開2007-270812号公報 特開平09-021319号公報 特開平07-077105号公報 特開2004-285944号公報 特許第3290671号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、ピストンの早期温度上昇と過熱の抑制とを両立させる技術の提供を目的とする。
 上記課題を達成するために本発明による内燃機関用ピストンは、以下の手段を採用した。すなわち、本発明による内燃機関用ピストンは、
 ピストン上面からピストン下側に向かって凹んだキャビティが形成される頂部と、
 前記頂部の少なくともピストン外周側を囲んで該頂部と接合され、外周にピストンリングを保持するためのリング溝を有する外周部と、
 前記頂部と前記外周部との間の隙間を含み、前記キャビティよりもピストン外周側及びピストン下側に形成され、このピストン外周側とピストン下側とが連通されているクーリングチャンネルと、
 前記クーリングチャンネルとピストン外部とを連通し、潤滑油の入口または出口となる少なくとも2つの連通孔と、
 を備えることを特徴とする。
 ここで、ピストン上面とは、燃焼室と対向する面である。また、ピストン下側とは、クランクシャフト側である。ピストン上面の一部を凹形状として、キャビティが形成されている。このピストンを備える内燃機関では、キャビティ内に燃料が噴射される。キャビティは、頂部のみで形成されている。
 外周部は、頂部の少なくともピストン外周側を囲んでいるため、キャビティよりもピストン外周側も外周部で囲われているといえる。外周部と頂部とは、夫々の一部が密着して接合される。この接合面以外において、外周部と頂部との間に隙間が設けてある。そして、この隙間が、クーリングチャンネルとなる。クーリングチャンネル内を潤滑油が流通したときに、該潤滑油が燃焼室側へ流入しないように、頂部と外周部とが接合される。また、連通孔は、潤滑油の入口または出口となる。一の連通孔からクーリングチャンネルに供給された潤滑油は、クーリングチャンネルを流通した後に他の連通孔から排出される。
 クーリングチャンネルは、キャビティよりもピストン外周側及びピストン下側に設けられる。キャビティよりもピストン下側に設けられるクーリングチャンネルの底面は、頂部の一部であっても良く、外周部の一部であっても良い。そして、キャビティを囲むようにクーリングチャンネルが形成されているため、キャビティで発生する熱が潤滑油に伝わり易い。また、キャビティよりもピストン外周側に形成されるクーリングチャンネルと、ピストン下側に形成されるクーリングチャンネルと、が連通されているため、ピストン外周側からピストン下側、または、ピストン下側からピストン外周側へ潤滑油が移動可能である。これにより、キャビティの温度を均一にすることができる。
 ここで、クーリングチャンネルに潤滑油を供給しないか供給量を少なくすれば、頂部の温度が上昇し易くなる。そのため、キャビティの早期温度上昇が可能となる。一方、クーリングチャンネルに潤滑油を流通させれば、キャビティを包み込むように潤滑油が流通するため、キャビティを均等に冷却することができる。また、キャビティの熱が潤滑油に伝わり易いので、潤滑油の温度を速やかに上昇させることにより、摩擦損失を低減させることができる。よって、ピストンの早期温度上昇と過熱の抑制とを両立させることができる。
 本発明においては、前記外周部は、前記頂部よりもピストン下側も囲み、
 前記クーリングチャンネルは、前記頂部と前記外周部との間の隙間であって、前記頂部よりもピストン外周側及びピストン下側に形成されても良い。
 すなわち、外周部は、頂部のピストン外周側及びピストン下側を囲んでいるため、キャビティのピストン外周側及びピストン下側を囲んでいるといえる。そして、外周部と頂部との接合面以外では、外周部と頂部との間に隙間が設けてあり、この隙間が、クーリングチャンネルとなる。
 本発明においては、前記頂部は、前記クーリングチャンネル側へ突出して該頂部を補強し、前記キャビティよりもピストン外周側とピストン下側とに形成される夫々のクーリングチャンネル間を潤滑油が移動するための通路を残して配置される補強部を有していても良い。
 すなわち、燃料の燃焼により発生する力による頂部の変形または破損を補強部により抑制することができる。また、頂部を補強することで、該頂部の薄肉化が可能となるので、該頂部の熱容量を小さくすることができる。そうすると、冷間始動時等でクーリングチャンネルに潤滑油を供給しないか又は供給量を少なくすれば、キャビティの温度を速やかに上昇させることができる。さらに、クーリングチャンネルへ潤滑油を供給すれば、該潤滑油の温度を速やかに上昇させることができるため、摩擦損失を低減させることができる。
 また、補強部は、潤滑油が移動するための通路を残して配置されるため、夫々のクーリングチャンネルは連通されている。そして、補強部の形状を調節することにより、潤滑油が流れる方向を調節することができる。これにより、例えば温度の上昇し易い箇所に重点的に潤滑油を流通させたり、または潤滑油を均一に流通させたりすることができる。また、補強部により頂部が補強されれば、クーリングチャンネルの容積を拡大することもできる。
 本発明においては、前記潤滑油が移動するための通路を、前記補強部よりもピストン下側に設けても良い。
 すなわち、補強部よりもピストン下側を通って潤滑油が夫々のクーリングチャンネル間を移動できる。また、内燃機関の停止時には、補強部の下側を潤滑油が流通することにより、クーリングチャンネルからピストン外部へ潤滑油を速やかに排出することもできる。
 本発明においては、前記頂部は、前記外周部と比較して、比熱の小さな材料を用いても良い。
 これにより、頂部の熱容量を小さくすることができる。そうすると、冷間始動時にキャビティの温度を速やかに上昇させることができる。また、クーリングチャンネルに潤滑油を供給したときには、キャビティの温度を速やかに低下させることができるため、キャビティの過熱を抑制できる。さらに、クーリングチャンネルを流通する潤滑油の温度を速やかに上昇させることができるため、摩擦損失を低減させることができる。
 本発明においては、前記頂部は、前記キャビティの外面から突出してピストン中心線上に前記クーリングチャンネルの底面まで延びる中心補強部を有し、
 前記クーリングチャンネルの底面では、前記中心補強部の周辺がピストン下側に向かって凹んでいても良い。
 すなわち、クーリングチャンネルの底面では、中心補強部の周辺が、該中心補強部に沿ってピストン下側に凹んだ状態となる。この凹んだ箇所には、潤滑油の供給を停止して貫通孔から潤滑油が排出された後であっても、潤滑油が貯留される。この潤滑油により中心補強部を介してキャビティの温度を低下させることができる。これにより、温度の上がり易いキャビティ中心部の壁面にヒートスポットが発生することを抑制できるので、信頼性及び耐久性をさらに向上させることができる。また、クーリングチャンネルの底面が外周部により構成されている場合には、外周部と頂部とを接合するときに、凹みにより位置合わせが容易となる。
 本発明においては、前記頂部は、ピストンのスカート部を含んで構成されていても良い。
 スカート部は、ピストンリングを保持するためのリング溝よりもピストン下側の部位である。そして、頂部がスカート部まで延びている。これにより、キャビティの熱を速やかにスカート部へ伝えることができるため、該スカート部の温度を速やかに上昇させることができる。これにより、例えばオイルの温度を上昇させることができるため、摩擦抵抗を低減することができる。なお、スカート部は、外周部及び頂部により構成しても良く、頂部のみにより構成しても良い。
 また、上記課題を達成するために本発明による内燃機関は、以下の手段を採用した。すなわち、本発明による内燃機関は、
 前記内燃機関用ピストンと、
 前記連通孔を介して前記クーリングチャンネルに潤滑油を供給する潤滑油供給装置と、
 前記潤滑油供給装置から前記クーリングチャンネルへ供給する潤滑油の量を調節する調節装置と、
 内燃機関の温度が低いときには高いときよりも潤滑油の供給量を少なくする制御装置と、
 を備えることを特徴とする。
 すなわち、内燃機関の温度が低いときには潤滑油の供給量を比較的少なくすることで、頂部や外周部から奪う熱を少なくすることができるため、該頂部や外周部の温度を速やかに上昇させることができる。また、内燃機関の温度が高いときには潤滑油の供給量を比較的多くすることで、頂部や外周部から奪う熱を多くすることができるため、該頂部や外周部が過熱することを抑制できる。
 制御装置は、潤滑油を供給するか、供給を停止させるかの一方を選択的に制御しても良い。また、温度に応じて段階的または連続的に潤滑油の供給量を変更しても良い。そして、温度が高いほど、潤滑油の供給量を多くすることができる。
 本発明によれば、ピストンの早期温度上昇と過熱の抑制とを両立させることができる。
実施例1に係るピストンの中心軸に沿って該ピストンを縦方向に切断したときの縦断面図である。 図1に示した切断線Zによりピストンを切断したときの横断面図である。 実施例に係るピストンを組み込んだエンジンの概略構成図である。 中心接合部の縦断面図を示した図である。 中心接合部の縦断面図を示した図である。 キャビティ壁面の温度の推移を示したタイムチャートである。 実施例1に係るピストンを切断したときの他の横断面図である。 実施例に係る遮断弁の制御フローを示したフローチャートである。 実施例2に係るピストンの中心軸Aに沿って該ピストンを縦方向に切断したときの縦断面図である。 図9に示した切断線Zによりピストンを切断したときの横断面図である。 実施例3に係るピストンの中心軸Aに沿って該ピストンを縦方向に切断したときの縦断面図である。 図11に示した切断線Zによりピストンを切断したときの横断面図である。
 以下、本発明に係る内燃機関用ピストン及び内燃機関の具体的な実施態様について図面に基づいて説明する。
 図1及び図2はこの実施例1に係る直接噴射式ディーゼルエンジン用ピストンを示す。図1は、ピストン1の中心軸に沿って該ピストン1を縦方向に切断したときの縦断面図である。また、図2は、図1に示した切断線Zによりピストン1を切断したときの横断面図である。また、図3は、本実施例に係るピストン1を組み込んだエンジン100の概略構成図である。なお、ピストン1及びエンジン100を簡潔に表示するため、一部の構成要素の表示を省略している。
 エンジン100は、シリンダブロック2を備えている。シリンダブロック2には、ピストン1が収まるシリンダ3が形成されている。シリンダブロック2の上部にはシリンダヘッド4が組み付けられている。シリンダヘッド4には、シリンダ3に通じる吸気ポート5が形成されている。吸気ポート5とシリンダ3との境界には吸気弁6が設けられている。また、シリンダヘッド4には、シリンダ3に通じる排気ポート7が形成されている。排気ポート7とシリンダ3との境界には排気弁8が設けられている。また、シリンダヘッド4には、燃料を噴射する燃料噴射弁9が取り付けられている。この燃料噴射弁9は、ピストン1の中心軸A上に設けられている。
 ピストン1には、コネクティングロッド101を介してクランクシャフト102が接続されている。なお、ピストン1に対して、シリンダヘッド4側を上方向とし、クランクシャフト102側を下方向とする。
 ピストン1は、頂部11と外周部12とを備えて構成されている。頂部11は、シリンダヘッド4側で且つ中心軸A側に配置される。また、外周部12は、頂部11の外周側及び下側(クランクシャフト102側)を囲むように配置される。頂部11と外周部12とは、別々に製造された後に接合される。頂部11の上面と、外周部12の上面とでピストン1の上面13が形成されている。
 頂部11には、キャビティ14が設けられている。キャビティ14は、ピストン1の上面13から該ピストン1の下方向に凹むことにより形成される。キャビティ14の形状は、キャビティ壁面15により規定される。頂部11の外面(外周部12側の面)16は、キャビティ壁面15に沿って形成される。頂部11の肉厚は、例えば、エンジン100の運転中にキャビティ14に発生する応力に耐え得る範囲で可及的に小さくする。なお、頂部11の外面16の一部であって外周側の面である外周面17は、ピストン1の中心軸Aを中心とした円柱形状に形成されている。なお、頂部11の外面16は、キャビティ14の外面としても良い。
 なお、本実施例では、ピストン1の中心軸Aとキャビティ14の中心軸とが同じであるが、キャビティ14の中心軸がピストン1の中心軸Aからずれていても良い。また、本実施例では、キャビティ14は横方向の断面形状が円形であるが、楕円形等の他の形状としても良い。
 外周部12には、頂部11を嵌め込むために上面13から下方向に凹んだ凹部18が形成されている。凹部18は、横方向の断面形状が円形である。この凹部18の開口部19の直径は、頂部11の外周面17の直径よりも若干大きく、頂部11を凹部18に嵌め込むことができる。また、開口部19よりも下側では、頂部11の外周面17よりも、凹部18の内周面20のほうが、直径が大きい。さらに、上面13の任意の位置からの外面16までの距離よりも、底面21までの距離のほうが長い。
 外周部12の凹部18と、頂部11の外面16とは、ピストン1の上面13及びその近傍(開口部19としても良い)、並びにピストン中心軸A及びその近傍にて接合されている。なお、上面13及びその近傍で接合されている箇所を上面接合部22と称し、中心軸A及びその近傍で接合されている箇所を中心接合部23と称する。
 図4及び図5は、中心接合部23の縦断面図を示した図である。図4(A)及び図5(A)は、接合前の状態を示し、図4(B)及び図5(B)は、接合後の状態を示している。中心接合部23においては、頂部11から円柱形状の中心補強部24がピストン1の中心軸A上に外周部12の底面21へ向かって延びている。この中心補強部24は、先端に向かうに従って断面積が縮小するテーパ状に形成される。
 外周部12には、中心補強部24がはめ込まれるための貫通孔25が形成されている。貫通孔25の内径は、中心補強部24の外径よりも若干大きく、貫通孔25に中心補強部24を嵌め込むことができる。貫通孔25及び中心補強部24は、頂部11を外周部12に取り付けるときの位置決めの役割を果たす。また、この中心補強部24が貫通孔25に溶接されることにより、頂部11を補強する役割を果たす。さらに中心補強部24は、頂部11の熱を伝える役割も果たす。すなわち、特に高温となる中心部のキャビティ壁面15の冷却効率が向上するようになっている。
 図4及び図5においては、貫通孔25の上側の縁26の断面が、上側に向かうほど拡大している。すなわち、外周部12では、中心接合部23の周辺がピストン下側に凹んでいる。なお、図4よりも図5のほうが、縁26の凹みの直径が大きい場合を示している。中心補強部24の先端がテーパ状に形成されていることと、貫通孔25の上側の縁26がピストン下側に凹んでいることと、により貫通孔25へ中心補強部24を容易に嵌め込むことができる。
 このように構成されたピストン1では、上面接合部22及び中心接合部23以外では、凹部18の内周面20及び底面21と頂部11の外面16とに隙間がある。なお、凹部18の内周面20及び底面21を合わせて、外周部12の内面27ともいう。この、外周部12の内面27と頂部11の外面16との隙間が、クーリングチャンネル28となる。すなわち、本実施例に係るピストン1には、キャビティ14よりも外周方向及び下方向にクーリングチャンネル28が備わる。
 そして、凹部18の底面21には、ピストン1の中心軸Aと平行に該外周部12の下側に貫通する貫通孔29が設けられている。この貫通孔29は、中心軸Aに対して線対称に2つ設けられ、一方がオイルの入口となり、他方がオイルの出口となる。また、凹部18の底面21には、ピストン1の中心軸Aを中心として環状溝30が形成されており、該環状溝30の底面に貫通孔29が設けられている。
 外周部12の外周面31には、ピストンリングを保持するためのリング溝32が3つ形成されている。その下側には、クランクシャフト102側に延びるスカート部33が形成されている。なお、コネクティングロッド101は外周部12に接続されている。
 また、頂部11の外面16において、凹部18の底面21に形成されている環状溝30と対向する部位には、ピストン1の中心軸Aを中心として放射状に配置されるリブ34が複数形成されている。リブ34は、頂部11から下方向へ板状に延びている。また、リブ34は、外周部12に接触しないようになっている。すなわち、リブ34の下方向に環状溝30が形成されているので、リブ34の下側にオイルの通路が備わることになる。また、リブ34は放射状に配置されているために、隣接するリブ34との間がオイルの通路となる。すなわち、頂部11よりも外周方向及び下方向に備わる夫々のクーリングチャンネル28間でオイルの移動が可能である。
 頂部11には、例えば鉄系またはステンレス鋼系の材料を用いる。すなわち、キャビティ壁面15には、燃料の燃焼により大きな応力が発生するため、該キャビティ壁面15が形成される頂部11にはヤング率の高い材料又は疲れ限度の高い材料を用いる。このような材料を用いることにより、頂部11の薄肉化を図ることができるため、該頂部11の質量を低減することができるので、該頂部11の熱容量を小さくすることができる。
 一方、外周部12には、例えばアルミニウム系の材料を用いる。これにより、シリンダ壁面との摺動による摩耗を抑制できる。また、ピストンリングが固着することを抑制できる。そして、これらの材料を用いることにより、外周部12の比熱よりも頂部11の比熱のほうが小さくなる。なお、頂部11と外周部12との材料が同じであっても、クーリングチャンネル28の効果を得ることはできる。また、上面接合部22及び中心接合部23は、例えば電子ビーム溶接により接合される。
 そして、図3に示すように、エンジン100には、該エンジン100の内部にオイルを循環させるためのオイルポンプ103が備わる。このオイルポンプ103にはオイル通路104が接続されており、該オイル通路104は各摺動部及びオイルジェット106へ通じている。オイルポンプ103は、オイルパン105からオイルを汲み上げて、該オイルを各摺動部及びオイルジェット106へ供給する。
 オイルジェット106は、クーリングチャンネル28に通じる貫通孔29の一方に向けてオイルを噴射する。オイル通路104の途中には、該オイル通路104を遮断する遮断弁107が設けられている。遮断弁107を開くとオイルジェット106からオイルが噴射されてクーリングチャンネル28内へ該オイルが供給され、遮断弁107を閉じるとオイルジェット106からのオイルの噴射が停止されてクーリングチャンネル28内へのオイルの供給が停止される。オイルジェット106からのオイルの噴射が停止すると、2つの貫通孔29を介してクーリングチャンネル28からピストン1の外部へとオイルが流出する。そして、クーリングチャンネル28内には、ピストン1の下側に存在するガスが流入する。したがって、エンジン100の停止時には、クーリングチャンネル28内がガスで満たされる。
 なお、遮断弁107は、ECU110により制御される。このECU110は、他に燃料噴射弁9の制御を行う。そして、本実施例においてはオイルポンプ103が、本発明における潤滑油供給装置に相当する。また、本実施例においては遮断弁107が、本発明における調節装置に相当する。さらに、本実施例においてはECU110が、本発明における制御装置に相当する。
 そして、クーリングチャンネル28内に供給されたオイルの一部は、環状溝30に沿って流れる。また、オイルの一部は環状溝30から溢れ出る。環状溝30から溢れ出たオイルは、図2の矢印に示されるように、凹部18の内周面20側(頂部11の外周側)を通るオイルと、凹部18の底面21側(頂部11の下側)を通るオイルとに分かれる。なお、環状溝30から溢れ出るオイルは、リブ34とリブ34との間を流れる。
 そうすると、頂部11の外周側及び下側に満遍なくオイルが行き渡るため、該頂部11を包み込むようにオイルが流れる。これにより、頂部11の全体を速やかに冷却することができる。また、頂部11には比熱が小さい材料が用いられ且つ頂部11は薄肉化されていることにより該頂部11の熱容量が小さくなっている。このため、エンジン100の冷間始動時等で頂部11の温度が低いときには、遮断弁107を全閉としてクーリングチャンネル28にオイルを流さなければ、燃焼による熱で頂部11の温度が速やかに上昇する。そうすると、燃焼状態を早期に改善することができるため、HCやCOの排出量を低減することができる。
 また、ピストン1の温度が適度に上昇した後には、遮断弁107を開いてクーリングチャンネル28へオイルを供給することにより、該ピストン1の過熱を抑制することができる。また、オイルの温度が低いときにクーリングチャンネル28へオイルを流通させることで、該オイルの温度を速やかに上昇させることができる。これにより、オイルの粘度を速やかに低下させることができるため、摩擦損失を低減することができる。
 また、図4及び図5に示したように、中心補強部24の周りの外周部12にオイルが貯留される構造をしているため、頂部11の中心軸A付近の温度上昇を抑制することができる。これにより、キャビティ壁面15にヒートスポットが発生することを抑制できる。
 さらに、リブ34により頂部11が補強されているため、クーリングチャンネル28の容積を拡大することができるので、オイルの暖機性能を向上させると共に、頂部11の温度制御も容易になる。
 ここで、図6は、キャビティ壁面15の温度の推移を示したタイムチャートである。実線は本実施例に係るピストン1の場合を示し、一点鎖線は従来からあるアルミニウム合金製のピストンの場合を示している。Aで示される時刻においてエンジン100が始動される。このときには、遮断弁107が閉じられており、オイルの供給は停止されている。エンジン100の始動後から、キャビティ壁面15の温度が徐々に上昇する。このときの温度上昇率は、本実施例に係るピストン1の方が高い。すなわち、頂部11の熱容量を小さくしたことにより、キャビティ壁面15の温度の上昇速度が高くなる。そして、本実施例1に係るピストン1では、Bで示される時刻においてCで示される温度に到達している。なお、Cで示される温度は、スモークの増加、または充填効率の低下が許容範囲を超える温度である。Cで示される温度に到達すると、遮断弁107が開かれてオイルジェット106からオイルが噴射される。従来からあるピストンでは、Dで示される時刻にCで示される温度まで上昇している。すなわち、エンジン100が始動してからCで示される温度に上昇するまでにかかる時間は、従来からあるピストンよりも本実施例に係るピストン1の方が早い。このように、本実施例に係るピストン1のほうが暖機性能は高い。
 なお、図2に示すリブ34の形状では、オイルが一方の貫通孔29から他方の貫通孔29へ流れるときに中心軸A付近を流れ易い。このために、クーリングチャンネル28内のオイルの循環量を多くするという点では有利であるが、頂部11の外周側へオイルが流れ難いという問題もある。ここで、頂部11の外周側を流れるオイルの量と、下側を流れるオイルの量とは、リブ34の形状により調節可能である。すなわち、リブ34の形状によってオイルが流れ易い方向やオイルの流通量が変わるため、リブ34の形状を調節することにより頂部11の冷却性能等を調節することができる。例えば、頂部11の外周側へオイルが流れ易くなるリブの形状を図7に示す。
 図7は、本実施例に係るピストン1を切断したときの他の横断面図である。リブ35の形状以外は、図2に示したピストン1と同じである。図2に示したリブ34はピストン1の中心軸Aを中心として放射状に複数配置されるのに対し、図7に示したリブ35はピストン1の中心軸Aを中心とした円の円周に沿って複数配置されている。図7に示すリブ35も、環状溝30と対向する部位に形成されている。すなわち、リブ35の下方向に環状溝30が形成されているので、リブ35の下側にオイルの通路が備わることになる。また、各リブ35の間には隙間が設けてあり、この隙間がオイルの通路となる。すなわち、頂部11よりも外周方向及び下方向に備わる夫々のクーリングチャンネル28間でオイルの移動が可能である。
 図7に示すリブ35の形状では、オイルが一方の貫通孔29から他方の貫通孔29へ流れるときに、一方の貫通孔29から中心軸A方向へオイルが流れ難くなる。このため、クーリングチャンネル28内のオイルの循環量を多くするという点では不利であるものの、頂部11の外周側へオイルが流れ易くなる。このように、リブの形状により冷却され易い位置が変わるため、該リブの形状はエンジン100の種類や使用条件によって設定しても良い。なお、本実施例ではリブ34,35が、本発明における補強部に相当する。
 図8は、本実施例に係る遮断弁107の制御フローを示したフローチャートである。本ルーチンはECU110により所定時間毎に繰り返し実行される。なお、エンジン100の始動時には、遮断弁107は閉じられている。
 ステップS101では、エンジン100が始動してからの経過時間が所定時間以上であるか否か判定される。この所定時間は、遮断弁107を開くタイミングを計るために設定される値である。この所定時間は、HCの排出量又は摩擦損失の少なくとも一方に応じて設定される。例えば、エンジン100が始動されてからキャビティ壁面15の温度が上昇して、HCの排出量が許容範囲となるまでの時間を所定時間とすることができる。所定時間は、例えば実験等により最適値を求める。
 ここで、エンジン100の冷間始動時において遮断弁107を開く時期を遅くすると、キャビティ壁面15の温度上昇を促進させることはできるが、遮断弁107を開くまではクーリングチャンネル28にてオイルの温度を上昇させることはできない。一方、遮断弁107を開く時期を早くすると、オイルの温度を上昇させることはできるものの、キャビティ壁面15の温度上昇が緩慢となる。すなわち、HCの排出量の低減又は摩擦損失の低減のどちらを優先するのかにより、遮断弁107を開くタイミングを決定しても良い。また、エンジン100に要求される性能に応じて所定時間を決定しても良い。
 そして、ステップ101で肯定判定がなされた場合にはステップS102へ進み、否定判定がなされた場合には遮断弁107を閉じたまま本ルーチンを終了させる。
 ステップS102では、遮断弁107が開かれる。これにより、クーリングチャンネル28内にオイルが供給される。なお、本ルーチンでは、エンジン100が始動してからの経過時間に基づいてオイルを供給しているが、これに代えて、エンジン1の冷却水又はオイルの温度に基づいてオイルを供給しても良い。すなわち、冷却水又はオイルの温度が例えば25℃から40℃位のときには、オイルの供給を停止させるか供給量を少なくして、キャビティ壁面15の温度上昇を図っても良い。また、エンジン100の始動からの経過時間または冷却水等の温度に応じてオイルの供給量を増加させても良い。
 以上説明したように本実施例によれば、頂部11の熱容量が小さいために、冷間始動時であってもキャビティ壁面15の温度を早期に上昇させることができる。これにより、HC等の排出量を低減することができる。また、キャビティ14で発生する熱がオイルに伝わり易いため、該オイルの温度を速やかに上昇させることができる。これにより、摩擦損失を低減することができる。さらに、キャビティ14の外周側及び下側にオイルを流通させるため、キャビティ壁面15の過熱を抑制できる。
 図9及び図10はこの実施例2に係る直接噴射式ディーゼルエンジン用ピストン200を示す。図9は、ピストン200の中心軸Aに沿って該ピストン1を縦方向に切断したときの縦断面図である。また、図10は、図9に示した切断線Zによりピストン200を切断したときの横断面図である。なお、ピストン200を簡潔に表示するため、一部の構成要素の表示を省略している。また、ピストン200以外の装置については、実施例1と同じため説明を省略する。
 ピストン200は、中心部201と外周部202とを備えて構成されている。中心部201は、中心軸A側に配置される。また、外周部202は、中心部201の外周側であって、リング溝32を含む範囲に配置される。中心部201と外周部202とは、別々に製造された後に接合される。中心部201の上面と、外周部202の上面とでピストン200の上面13が形成されている。
 中心部201には、キャビティ14が設けられている。キャビティ14は、ピストン200の上面13から該ピストン200の下方向に凹むことにより形成される。キャビティ14の形状は、キャビティ壁面15により規定される。キャビティ14よりも下側には、クーリングチャンネル203が形成されている。
 クーリングチャンネル203の上面204は、キャビティ壁面15に沿って形成される。キャビティ壁面15とクーリングチャンネル203の上面204との間の肉厚は、例えば、エンジン100の運転中にキャビティ14に発生する応力に耐え得る範囲で可及的に小さくする。中心部201の外周側の面である外周面205は、ピストン200の中心軸Aを中心とした円柱形状に形成されている。
 なお、本実施例では、ピストン200の中心軸Aとキャビティ14の中心軸とが同じであるが、キャビティ14の中心軸がピストン200の中心軸Aからずれていても良い。また、本実施例では、キャビティ14は横方向の断面形状が円形であるが、楕円形等の他の形状としても良い。
 クーリングチャンネル203の底面206には、ピストン200の中心軸Aと平行に中心部201の下側に貫通する貫通孔29が設けられている。この貫通孔29は、中心軸Aに対して線対称に2つ設けられ、一方がオイルの入口となり、他方がオイルの出口となる。また、クーリングチャンネル203の底面206には、ピストン200の中心軸Aを中心として環状溝30が形成されており、該環状溝30の底面に貫通孔29が設けられている。
 また、環状溝30よりも外周側には、クーリングチャンネル203の上面204と底面206とを接続する断面が長方形の柱207が複数設けられている。この柱207は、ピストン200の中心軸Aを中心とした放射状に配置される。また、ピストン200の中心軸A上には、クーリングチャンネル203の上面204と底面206とを接続する断面が円形の中心補強部208が設けられている。なお、本実施例では柱207が、本発明における補強部に相当する。そして、クーリングチャンネル203よりも下側の中心部201は、スカート部212まで延びている。このスカート部212は、中心部201に含まれる。
 外周部202は、中心軸Aを中心とする筒状に形成されており、その内面213の直径は、中心部201の外周面205の直径よりも若干大きく、中心部201に外周部202を嵌め込むことができる。また、外周部202の外周面31には、ピストンリングを保持するためのリング溝32が3つ形成されている。なお、コネクティングロッド101は中心部201に接続されている。
 外周部202は、キャビティ14及びクーリングチャンネル203よりも外周側に設けられている。外周部202の内面213の上部209及び下部210にて中心部201と接合される。そして、外周部202の上部209と下部210との間では、外周部202と中心部201との間に隙間が設けられている。この隙間はクーリングチャンネル211として機能する。すなわち、本実施例に係るピストン200には、キャビティ14よりも外周方向及び下方向にクーリングチャンネル203,211が備わる。
 そして、キャビティ14よりも下側に設けられているクーリングチャンネル203と、キャビティ14よりも外周方向に設けられているクーリングチャンネル211とは、柱207と柱207との間で連通されている。
 中心部201には、例えば鉄系またはステンレス鋼系の材料を用いる。すなわち、キャビティ壁面15には、燃料の燃焼により大きな応力が発生するため、該キャビティ壁面15が形成される中心部201にはヤング率の高い材料又は疲れ限度の高い材料を用いる。このような材料を用いることにより、キャビティ壁面15とクーリングチャンネル203の上面204との間の薄肉化を図ることができるため、キャビティ14周辺の熱容量を小さくすることができる。
 一方、外周部202には、例えばアルミニウム系の材料を用いる。例えば、中心部201を鋳造にて予め製造しておき、鋳込みにて外周部202を製造する。そして、外周部202の上部209及び下部210は、例えば電子ビーム溶接により中心部201へ接合される。このような材料を用いることにより、シリンダ3の壁面との摺動による摩耗を抑制できる。また、ピストンリングが固着することを抑制できる。そして、外周部202よりも中心部201の比熱のほうが小さくなる。なお、中心部201と外周部202との材料が同じであっても、クーリングチャンネル203,211の効果を得ることはできる。
 このように構成されたピストン200では、キャビティ14の熱をスカート部212へ速やかに伝えることができるため、オイルの粘度を速やかに低下させることができる。また、リング溝32周辺は熱伝導率が鉄よりも高いアルミニウム系の材料を用いているため、ピストンリングの固着を抑制することができる。
 そして、キャビティ14周辺の熱容量が小さいために、冷間始動時であってもキャビティ壁面15の温度を早期に上昇させることができる。これにより、HC等の排出量を低減することができる。また、キャビティ14で発生する熱がオイルに伝わり易いため、該オイルの温度を速やかに上昇させることができる。これにより、摩擦損失を低減することができる。さらに、キャビティ14の外周側及び下側にオイルを流通させるため、キャビティ壁面15の過熱を抑制できる。すなわち、本実施例によれば、ピストンリングの固着を抑制しつつ摩擦損失を低減することができる。
 図11及び図12はこの実施例3に係る直接噴射式ディーゼルエンジン用ピストン300を示す。図11は、ピストン300の中心軸Aに沿って該ピストン300を縦方向に切断したときの縦断面図である。また、図12は、図11に示した切断線Zによりピストン300を切断したときの横断面図である。なお、ピストン300を簡潔に表示するため、一部の構成要素の表示を省略している。また、ピストン300以外の装置については、実施例1と同じため説明を省略する。また、ピストン300については実施例2と異なる点について説明する。
 ピストン300は、中心部301と外周部302とを備えて構成されている。中心部301は、中心軸A側に配置される。また、外周部302は、中心部301の外周側であって、リング溝32の周辺及びその下側のスカート部303に配置される。中心部301と外周部302とは、別々に製造された後に接合される。
 スカート部303の中心軸A側には、中心部301から延びるリブ304が設けられている。リブ304は、中心軸Aを中心として放射状に複数配置されている。そして、スカート部303とリブ304とは、例えば電子ビーム溶接により接合される。
 このように構成されたピストン300では、キャビティ14の熱がリブ304を介してスカート部303へ速やかに伝わるため、オイルの粘度を速やかに低下させることができる。ここで、仮にスカート部303に全て鉄系の材料を用いると、温度が高くなりすぎることにより境界潤滑となり摩擦損失が増大する虞があるが、本実施例では、これを抑制できる。
 すなわち、本実施例によれば、ピストンリングの固着を抑制しつつ摩擦損失をより低減することができる。
1     ピストン
2     シリンダブロック
3     シリンダ
4     シリンダヘッド
5     吸気ポート
6     吸気弁
7     排気ポート
8     排気弁
9     燃料噴射弁
11   頂部
12   外周部
13   上面
14   キャビティ
15   キャビティ壁面
16   外面
17   外周面
18   凹部
19   開口部
20   内周面
21   底面
22   上面接合部
23   中心接合部
24   中心補強部
25   貫通孔
26   縁
27   内面
28   クーリングチャンネル
29   貫通孔
30   環状溝
31   外周面
32   リング溝
33   スカート部
34   リブ
35   リブ
100 エンジン
101 コネクティングロッド
102 クランクシャフト
103 オイルポンプ
104 オイル通路
105 オイルパン
106 オイルジェット
107 遮断弁
110 ECU

Claims (8)

  1.  ピストン上面からピストン下側に向かって凹んだキャビティが形成される頂部と、
     前記頂部の少なくともピストン外周側を囲んで該頂部と接合され、外周にピストンリングを保持するためのリング溝を有する外周部と、
     前記頂部と前記外周部との間の隙間を含み、前記キャビティよりもピストン外周側及びピストン下側に形成され、このピストン外周側とピストン下側とが連通されているクーリングチャンネルと、
     前記クーリングチャンネルとピストン外部とを連通し、潤滑油の入口または出口となる少なくとも2つの連通孔と、
     を備えることを特徴とする内燃機関用ピストン。
  2.  前記外周部は、前記頂部よりもピストン下側も囲み、
     前記クーリングチャンネルは、前記頂部と前記外周部との間の隙間であって、前記頂部よりもピストン外周側及びピストン下側に形成されることを特徴とする請求項1に記載の内燃機関用ピストン。
  3.  前記頂部は、前記クーリングチャンネル側へ突出して該頂部を補強し、前記キャビティよりもピストン外周側とピストン下側とに形成される夫々のクーリングチャンネル間を潤滑油が移動するための通路を残して配置される補強部を有することを特徴とする請求項1又は2に記載の内燃機関用ピストン。
  4.  前記潤滑油が移動するための通路を、前記補強部よりもピストン下側に設けることを特徴とする請求項3に記載の内燃機関用ピストン。
  5.  前記頂部は、前記外周部と比較して、比熱の小さな材料を用いることを特徴とする請求項1から4の何れか1項に記載の内燃機関用ピストン。
  6.  前記頂部は、前記キャビティの外面から突出してピストン中心線上に前記クーリングチャンネルの底面まで延びる中心補強部を有し、
     前記クーリングチャンネルの底面では、前記中心補強部の周辺がピストン下側に向かって凹んでいることを特徴とする請求項1から5の何れか1項に記載の内燃機関用ピストン。
  7.  前記頂部は、ピストンのスカート部を含んで構成されることを特徴とする請求項1,3,4,5,6の何れか1項に記載の内燃機関用ピストン。
  8.  請求項1から7の何れか1項に記載の内燃機関用ピストンと、
     前記連通孔を介して前記クーリングチャンネルに潤滑油を供給する潤滑油供給装置と、
     前記潤滑油供給装置から前記クーリングチャンネルへ供給する潤滑油の量を調節する調節装置と、
     内燃機関の温度が低いときには高いときよりも潤滑油の供給量を少なくする制御装置と、
     を備えることを特徴とする内燃機関。
PCT/JP2009/069877 2009-11-25 2009-11-25 内燃機関用ピストン及び内燃機関 WO2011064853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/069877 WO2011064853A1 (ja) 2009-11-25 2009-11-25 内燃機関用ピストン及び内燃機関
JP2011543034A JP5365700B2 (ja) 2009-11-25 2009-11-25 内燃機関用ピストン及び内燃機関
EP09851645.3A EP2505816B1 (en) 2009-11-25 2009-11-25 Piston for internal combustion engine and internal combustion engine
CN200980162614.7A CN102667127B (zh) 2009-11-25 2009-11-25 内燃机用活塞以及内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069877 WO2011064853A1 (ja) 2009-11-25 2009-11-25 内燃機関用ピストン及び内燃機関

Publications (1)

Publication Number Publication Date
WO2011064853A1 true WO2011064853A1 (ja) 2011-06-03

Family

ID=44065975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069877 WO2011064853A1 (ja) 2009-11-25 2009-11-25 内燃機関用ピストン及び内燃機関

Country Status (4)

Country Link
EP (1) EP2505816B1 (ja)
JP (1) JP5365700B2 (ja)
CN (1) CN102667127B (ja)
WO (1) WO2011064853A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185522A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd 内燃機関のピストン
WO2018093279A1 (en) * 2016-11-18 2018-05-24 Majewski Jacek The piston of the ecological clean, two-stroke internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2904248A1 (en) * 2012-10-08 2015-08-12 Componenta Finland Oy A piston for an internal combustion engine
CN105143653B (zh) * 2013-03-21 2017-11-03 日野自动车株式会社 内燃机的活塞
CN105986923B (zh) * 2015-02-09 2019-02-19 强哲菲 一种双油腔钢活塞及其加工方法
DE102016201621A1 (de) * 2016-02-03 2017-08-03 Mahle International Gmbh Kolben einer Brennkraftmaschine
US10662892B2 (en) * 2016-09-09 2020-05-26 Caterpillar Inc. Piston for internal combustion engine having high temperature-capable crown piece
CN107387253A (zh) * 2017-09-05 2017-11-24 湖南江滨机器(集团)有限责任公司 一种活塞及其制造方法
CN108999717A (zh) * 2018-08-15 2018-12-14 全椒县全动机械有限公司 一种柴油机活塞结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777105A (ja) 1993-07-16 1995-03-20 Isuzu Motors Ltd 副室を備えたピストンの構造
JPH0921319A (ja) 1995-07-06 1997-01-21 Isuzu Ceramics Kenkyusho:Kk No低減触媒機能を有する遮熱形エンジン
JPH1061436A (ja) * 1996-08-23 1998-03-03 Aichi Mach Ind Co Ltd エンジン
JPH11193721A (ja) * 1997-10-30 1999-07-21 Toyota Central Res & Dev Lab Inc 筒内噴射式火花点火機関
JP3290671B2 (ja) 1990-01-30 2002-06-10 ヴェルトジィレ シュヴァイツ アクチエンゲゼルシャフト 四サイクル内燃機関用ピストン
JP2004285944A (ja) 2003-03-24 2004-10-14 Toyota Motor Corp 内燃機関用のピストン
JP2006527326A (ja) * 2003-06-07 2006-11-30 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のためのピストン
JP2007270812A (ja) 2006-03-31 2007-10-18 Yamaha Motor Co Ltd 内燃機関用ピストン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221722A (en) * 1964-01-03 1965-12-07 Continental Aviat & Eng Corp Piston
US3221718A (en) * 1964-01-09 1965-12-07 Continental Aviat & Eng Corp Piston construction
FR1460906A (fr) * 1965-10-22 1966-03-04 Perfectionnements apportés aux pistons comportant un circuit de refroidissement intérieur et à leurs procédés de fabrication
DE1814123A1 (de) * 1968-12-12 1971-03-11 Maschf Augsburg Nuernberg Ag Verfahren und Einrichtung zur Kuehlung eines Brennkraftmaschinenkolbens
US6286414B1 (en) * 1999-08-16 2001-09-11 Caterpillar Inc. Compact one piece cooled piston and method
DE19962325C2 (de) * 1999-12-23 2003-09-25 Man B&W Diesel A/S, Copenhagen Sv Hubkolbenmaschine
DE102006027354A1 (de) * 2006-06-13 2007-12-20 Mahle International Gmbh Mehrteiliger gekühlter Kolben für einen Verbrennungsmotor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290671B2 (ja) 1990-01-30 2002-06-10 ヴェルトジィレ シュヴァイツ アクチエンゲゼルシャフト 四サイクル内燃機関用ピストン
JPH0777105A (ja) 1993-07-16 1995-03-20 Isuzu Motors Ltd 副室を備えたピストンの構造
JPH0921319A (ja) 1995-07-06 1997-01-21 Isuzu Ceramics Kenkyusho:Kk No低減触媒機能を有する遮熱形エンジン
JPH1061436A (ja) * 1996-08-23 1998-03-03 Aichi Mach Ind Co Ltd エンジン
JPH11193721A (ja) * 1997-10-30 1999-07-21 Toyota Central Res & Dev Lab Inc 筒内噴射式火花点火機関
JP2004285944A (ja) 2003-03-24 2004-10-14 Toyota Motor Corp 内燃機関用のピストン
JP2006527326A (ja) * 2003-06-07 2006-11-30 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のためのピストン
JP2007270812A (ja) 2006-03-31 2007-10-18 Yamaha Motor Co Ltd 内燃機関用ピストン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2505816A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185522A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Ltd 内燃機関のピストン
WO2018093279A1 (en) * 2016-11-18 2018-05-24 Majewski Jacek The piston of the ecological clean, two-stroke internal combustion engine

Also Published As

Publication number Publication date
JP5365700B2 (ja) 2013-12-11
CN102667127A (zh) 2012-09-12
EP2505816A1 (en) 2012-10-03
JPWO2011064853A1 (ja) 2013-04-11
CN102667127B (zh) 2014-05-28
EP2505816B1 (en) 2016-09-28
EP2505816A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5365700B2 (ja) 内燃機関用ピストン及び内燃機関
US9441528B2 (en) Prechamber device for internal combustion engine
EP2577015B1 (en) Cooling system for piston of internal combustion engine
KR20140050020A (ko) 내연기관용 피스톤
JPS605765B2 (ja) 内燃機関、殊にデイーゼル機関用のピストン
KR20120016073A (ko) 크라운 냉각 제트를 가진 피스톤
KR20150058245A (ko) 중공 포펫 밸브
JP2009520900A (ja) 内燃機関用のピストン
US9951714B2 (en) Steel piston with filled gallery
EP3377749B1 (en) Piston providing for reduced heat loss using cooling media
KR20140123547A (ko) 추가적인 냉각 갤러리를 지닌 피스톤 및 이를 장착한 내연 엔진
JP2009191779A (ja) 内燃機関のピストン
EP3864276B1 (en) Piston cooling gallery shaping to reduce piston temperature
JP2017008778A (ja) 内燃機関
JP2006029127A (ja) ピストン温度制御装置
JP2010255613A (ja) 内燃機関のシリンダブロック
JP4256790B2 (ja) ガスエンジンのピストン
JP6715614B2 (ja) 内燃機関用ピストン
JP2019052628A (ja) ピストン
JP2002256966A (ja) シリンダヘッドの冷却構造
JP2018131925A (ja) 内燃機関のピストン及びその製造方法
JP2008133752A (ja) 燃料噴射ノズル
JP2012132343A (ja) 内燃機関のピストン冷却装置
JP4501889B2 (ja) エンジンのピストン構造
JP6642244B2 (ja) シリンダブロック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162614.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543034

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009851645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009851645

Country of ref document: EP