WO2011061965A1 - 可視光受信回路 - Google Patents

可視光受信回路 Download PDF

Info

Publication number
WO2011061965A1
WO2011061965A1 PCT/JP2010/062144 JP2010062144W WO2011061965A1 WO 2011061965 A1 WO2011061965 A1 WO 2011061965A1 JP 2010062144 W JP2010062144 W JP 2010062144W WO 2011061965 A1 WO2011061965 A1 WO 2011061965A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
light receiving
resistance
photodiode
Prior art date
Application number
PCT/JP2010/062144
Other languages
English (en)
French (fr)
Inventor
公亮 中村
雅司 山田
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2011541831A priority Critical patent/JPWO2011061965A1/ja
Priority to DE112010004476T priority patent/DE112010004476T5/de
Publication of WO2011061965A1 publication Critical patent/WO2011061965A1/ja
Priority to US13/351,478 priority patent/US8742317B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks

Definitions

  • the present invention relates to a receiving circuit in a visible light communication system that performs communication using visible light, and more particularly to a technique for reducing the influence of ambient light noise.
  • FIG. 8 shows a general configuration of a visible light receiver 100 in a conventional visible light communication system.
  • the visible light receiving device 100 includes a photoelectric conversion unit 110 that converts signal light transmitted from the transmission side into an analog signal, and a signal level that can be recognized by the subsequent binarization unit 130 of the converted analog signal.
  • a binarization unit 130 that converts the analog signal amplified by the amplification unit 120 into a digital signal that can be recognized by the digital circuit 140 in the subsequent stage.
  • the digital circuit 140 corresponds to a communication control circuit, for example.
  • FIG. 9 shows a general configuration of a photoelectric conversion unit in a conventional visible light communication system.
  • the photoelectric conversion unit 110 includes a photodiode 111 that is a light receiving element, and a resistor 112 that is connected in series to the anode side of the photodiode 111.
  • the cathode side of the photodiode 111 is connected to the positive power supply Vcc, and the resistor 112 is connected to the ground GND.
  • a connection point between the photodiode 111 and the resistor 112 is connected to the amplifying unit 120 in the subsequent stage through a coupling capacitor 113.
  • a voltage expressed by (positive power supply Vcc ⁇ terminal voltage Vr of the resistor 112) is applied as a reverse bias to the photodiode 111, and a photocurrent Ipd corresponding to the light intensity of the signal light is applied to the photodiode 111. It flows to the diode 111. Therefore, the reverse bias voltage Vpd applied to the photodiode 111 is expressed by (positive power supply Vcc ⁇ resistance value R ⁇ photocurrent Ipd).
  • the resistor 112 functions as an I / V converter that converts a voltage of the photocurrent Ipd and also functions as a bias resistor that applies a bias voltage to the photodiode 111. Further, the low-frequency component is blocked by the coupling capacitor 113 and the alternating current component is input to the subsequent amplification unit 120 as an optical signal.
  • FIG. 10 shows a basic circuit configuration of the DC feedback method.
  • the light receiving element 201 is biased by a voltage controlled current source 202.
  • an alternating current from which a direct current component has been removed by the DC cut capacitor 203 out of the output of the light receiving element 201 is supplied to the amplifying unit 204.
  • the voltage controlled current source 202 is voltage controlled by the output of the amplifying unit 204. Thereby, the reverse bias voltage applied to the light receiving element 201 is kept constant.
  • Patent Document 2 proposes an active bias method.
  • a circuit is configured by replacing the resistor 112 in FIG. 9 with an element (for example, a Cds element) whose resistance value varies depending on the light intensity of signal light.
  • an element for example, a Cds element
  • the resistance value of the Cds element decreases, so that the reverse bias voltage applied to the photodiode 111 is maintained at a predetermined level or higher.
  • the DC feedback method uses an active circuit, there is a problem that noise increases.
  • the DC feedback method since feedback control is used, when the direct current component of the photocurrent Ipd increases, the feedback time constant decreases and the low-frequency cutoff frequency increases. That is, the DC feedback method has a problem that the frequency band of the signal is narrowed when the direct current component of the photocurrent Ipd is increased.
  • the circuit for realizing the DC feedback method since the circuit for realizing the DC feedback method has a complicated circuit configuration with a large number of parts, there is a problem that it is difficult to reduce the cost and the size.
  • An object of one embodiment of the present invention is to provide a visible light receiving circuit that is less affected by ambient light, has a simple configuration, and has less noise.
  • an embodiment of the present invention includes a light receiving element that operates in a state where a predetermined bias voltage is applied and outputs a photocurrent according to the light intensity of incident light, and Photoelectric conversion including a first resistance element connected in series, applying a DC voltage to a series circuit of the light receiving element and the first resistance element, and having a connection point between the light receiving element and the first resistance element as an output position
  • a non-linear resistance circuit whose resistance value decreases as the applied voltage increases is connected in parallel to the first resistance element.
  • the bias voltage applied to the light receiving element is derived from a DC voltage applied to the series circuit of the light receiving element and the first resistance element, and from the first resistance element and the nonlinear resistance circuit.
  • the value obtained by multiplying the resistance value of the parallel resistor by the photocurrent output from the light receiving element is subtracted.
  • the resistance value of the parallel resistance composed of the first resistance element and the nonlinear resistance circuit is smaller when the direct current component of the photocurrent is larger than when the direct current component is small. This is because the voltage applied to the nonlinear resistance circuit increases as the direct current component of the photocurrent increases. Thereby, even when the direct current component of the photocurrent becomes large, it is possible to secure the bias voltage applied to the light receiving element.
  • a non-linear resistance circuit is a circuit in which the relationship between the voltage applied between the terminals and the current flowing through the application of the voltage is non-linear, in other words, the resistance value depends on the voltage applied between the terminals. It means a variable circuit.
  • a non-linear resistance circuit in parallel with the first resistance element, so that a visible light receiving circuit can be realized with a simple configuration and low cost. Since no active element such as a bipolar transistor or an integrated circuit is used, low noise can be realized.
  • a plurality of nonlinear resistance circuits may be connected in parallel to the first resistance element. Thereby, the reverse bias voltage applied to the light receiving element can be controlled more flexibly.
  • An example of the non-linear resistance circuit includes a series circuit including a Zener diode and a second resistance element.
  • the non-linear resistance circuit is connected in parallel to the first resistance element connected in series with the light receiving element.
  • the non-linear resistance circuit is not an active circuit but a passive circuit, and can be simply constructed with a small number of components. As a result, a visible light receiving circuit that has a simple configuration, has less noise, and can secure a bias voltage applied to the light receiving element even when the direct current component of the photocurrent increases is obtained.
  • Configuration diagram of photoelectric conversion unit according to the present invention Graph showing relationship between photocurrent of photodiode and reverse bias voltage
  • the block diagram of the photoelectric conversion part which concerns on the other example of this invention Graph showing relationship between photocurrent of photodiode and reverse bias voltage
  • the block diagram of the photoelectric conversion part which concerns on the other example of this invention Graph showing the relationship between photocurrent and reverse bias voltage of photodiodes
  • FIG. 1 is a configuration diagram of a photoelectric conversion unit.
  • the photoelectric conversion unit 10 includes a photodiode 11 that is a light receiving element, and a resistor 12 connected in series to the anode side of the photodiode 11.
  • the cathode side of the photodiode 11 is connected to the positive power supply Vcc, and the resistor 12 is connected to the ground GND.
  • a subsequent stage amplifying unit 20 is connected to a connection point between the photodiode 11 and the resistor 12 via a coupling capacitor 13.
  • the configuration of the photodiode 11, the resistor 12, and the coupling capacitor 13 as a single unit is the same as the corresponding conventional one.
  • a non-linear resistance circuit is connected in parallel to the resistor 12.
  • a series circuit including a Zener diode 14 and a resistor 15 can be used as the non-linear resistance circuit.
  • the cathode side of the Zener diode 14 is connected to a connection point between the photodiode 11 and the resistor 12, and the resistor 15 is connected to the ground GND.
  • a reverse voltage is applied to the Zener diode 14.
  • the Zener diode 14 functions as a high resistance element while applying a reverse voltage equal to or lower than the breakdown voltage, and functions as a low resistance element when a reverse voltage exceeding the breakdown voltage is applied. Further, the voltage between the terminals becomes a substantially constant voltage (zener voltage) while applying a reverse voltage equal to or higher than the breakdown voltage. That is, the Zener diode 14 functions as a constant voltage source when a reverse voltage exceeding the breakdown voltage is applied, and the impedance at this time becomes almost zero (a sufficiently small value).
  • the terminal capacitance (junction capacitance, stray capacitance, etc.) of the Zener diode 14 is about 1/5 or less of the junction capacitance of the photodiode 11. This is because the junction capacitance of the photodiode 11 affects the frequency band of the circuit.
  • the reverse bias voltage Vpd of the photodiode 11 is expressed as a power supply voltage Vcc ⁇ voltage VR.
  • the voltage VR is a resistance value R1 of the resistor 12 and a combined resistance value of a series circuit including the Zener diode 14 and the resistor 15 (that is, the resistance value Rz of the Zener diode 14 + the resistance value R2 of the resistor 15).
  • the parallel resistance value is multiplied by the photocurrent Ipd. This parallel resistance value can be approximated by the resistance value R1 of the resistor 12 when the resistance value Rz of the Zener diode 14 is sufficiently large.
  • the parallel resistance value is approximated by the parallel resistance value of the resistance value R1 of the resistor 12 and the resistance value R2 of the resistor 15. Can do.
  • the reverse bias voltage Vpd of the photodiode 11 with respect to the photocurrent Ipd of the photodiode 11 is as shown in the graph of FIG.
  • the slope when the photocurrent Ipd is small is S1
  • the slope when the photocurrent Ipd is large is S2.
  • the slope S1 is determined by the resistance value R1 of the resistor 12.
  • the slope S2 is determined by the parallel resistance value of the resistance value R1 of the resistor 12 and the resistance value R2 of the resistor 15.
  • the turning point of the slope is determined by the breakdown voltage of the Zener diode 14.
  • the resistance value Rz of the Zener diode 14 varies greatly before and after the breakdown voltage.
  • the slope of the graph is depicted so as to change discontinuously from S1 to S2 at the turning point. However, in an actual circuit, this slope changes continuously. Therefore, there is no operational inconvenience at the turning point.
  • the maximum value Ipd (max) of the photocurrent Ipd of the photodiode 11 is limited by the minimum reverse bias voltage Vpd (min) necessary for causing the photodiode 11 to function as a reverse bias.
  • 2 represents the relationship between the photocurrent and the reverse bias voltage in the conventional photoelectric conversion unit 110 shown in FIG.
  • the maximum value Ipd (max) of the photocurrent Ipd according to the present embodiment is larger than the maximum photocurrent Ipd '(max) in the conventional example.
  • the direct current component of the photocurrent Ipd of the photodiode 11 becomes large, such as in an environment where sunlight is strong or where the distance to the transmission side is short, the reverse bias voltage of the photodiode 11 is increased. Vpd is secured, and the visible light receiving circuit can be operated normally.
  • the reverse bias voltage Vpd necessary for the operation of the photodiode 11 can be secured over a wide range of the photocurrent Ipd. Therefore, a normal communication state can be maintained even if the ambient light that affects the direct current component of the photocurrent Ipd is high in intensity.
  • a series circuit of a Zener diode 14 and a resistor 15 is connected in parallel to the resistor 12 as means for securing the reverse bias voltage Vpd necessary for the operation of the photodiode 11. Since a simple method is adopted, cost reduction and miniaturization are easy. Further, in the embodiment of the invention, since no active component is used in the photoelectric conversion unit 10, an increase in noise can be prevented.
  • a series circuit consisting of a Zener diode 14 and a resistor 15 is connected in parallel to the resistor 12 as a nonlinear resistance circuit, but a plurality of series circuits consisting of a Zener diode and a resistor are prepared.
  • a plurality of direct circuits may be connected to the resistor 12 in parallel.
  • another series circuit composed of a Zener diode 14 ′ and a resistor 15 ′ may be connected in parallel to the series circuit composed of the Zener diode 14 and the resistor 15 and the resistor 12. Good.
  • FIG. 4 shows the relationship between the photocurrent Ipd and the reverse bias voltage Vpd in the photoelectric conversion unit 10 shown in FIG.
  • the slope S1 is determined by the resistance value R1 of the resistor 12.
  • the slope S2 is determined by the resistance value R2 of the resistor 15.
  • the slope S2 is determined by the parallel resistance value of the resistance value R1 of the resistor 12 and the resistance value R2 of the resistor 15.
  • the slope S3 is determined by the parallel resistance value of the resistance value R3 of the resistor 15 'and the resistance value R1 of the resistor 12 and the resistance value R2 of the resistor 15.
  • a resistor 12 is connected to the positive power supply Vcc side, and the cathode side of the photodiode 11 is connected to the resistor 12 and its anode is connected.
  • the side may be grounded.
  • another nonlinear resistance element such as a varistor may be used instead of the Zener diode 11.
  • the varistor has no polarity, it is an element whose electrical resistance changes nonlinearly depending on the voltage applied between the terminals, like a Zener diode. The same effects as when used can be obtained.
  • a phototransistor can be used instead of the photodiode 11.
  • FIG. 6 shows a graph in which the relationship between the photocurrent Ipd of the photodiode 11 and the reverse bias voltage Vpd in the photoelectric conversion unit 10 according to the embodiment of the present invention is experimentally measured.
  • this measurement is performed by setting the resistance value of the resistor 12 to 5.1 [k ⁇ ], the resistance value of the resistor 15 to 0.5 [k ⁇ ], and the capacitance of the capacitor 13 to 0. 1 [ ⁇ F], 1N5227B was adopted as the Zener diode 14, and S6436 (capacitance between terminals was 15 pF) as the photodiode 11.
  • FIG. 1 shows a graph in which the relationship between the photocurrent Ipd of the photodiode 11 and the reverse bias voltage Vpd in the photoelectric conversion unit 10 according to the embodiment of the present invention is experimentally measured.
  • this measurement is performed by setting the resistance value of the resistor 12 to 5.1 [k ⁇ ], the resistance value of the resistor 15 to 0.5 [k ⁇ ], and the capacitance of the capacitor 13 to 0.
  • FIG. 6 shows, as a comparative example, the relationship between the photocurrent Ipd and the reverse bias voltage Vpd in the conventional photoelectric conversion unit 110 shown in FIG.
  • the resistance value of the resistor 112 is 5.1 [k ⁇ ]
  • the capacitance of the capacitor 113 is 0.1 [ ⁇ F]
  • the photodiode 111 is S6436 ( A terminal capacitance of 15 pF was used.
  • FIG. 6 clearly shows that the allowable range of the photocurrent Ipd is wide in the photoelectric conversion unit 10 according to the embodiment of the present invention.
  • FIG. 7 shows the result of evaluating the SNR of the output signal with the eye pattern under such conditions.
  • the photoelectric conversion unit 10 according to the present embodiment forms a good eye pattern with a sufficiently high SNR. From this eye pattern, it can be seen that the photoelectric conversion unit 10 according to the present embodiment is not affected by noise such as the Zener diode 14 and is sufficiently practical with a simple configuration.

Abstract

【課題】周囲光による影響が小さく、簡便な構成であり且つノイズの少ない可視光受信回路を提供する。 【解決手段】本発明の一実施形態に係る可視光受信回路は、光電変換部10を備える。光電変換部10は、カソード側が電源Vccに接続されたフォトダイオード11と、該フォトダイオード11のアノード側に直列に接続された抵抗器12と、該抵抗器12に並列に接続された非線形抵抗回路とを備える。非線形抵抗回路は、例えば、ツェナーダイオード14と抵抗器15とからなる直列回路を含む。

Description

可視光受信回路
本発明は、可視光を用いて通信を行なう可視光通信システムにおける受信回路に関し、特に周囲光ノイズの影響を低減するための技術に関する。
近年、電波や赤外線を利用した無線通信に加えて、室内の照明器具,屋外広告照明,信号機,自動車のヘッドライトなどの可視光を利用した通信が注目されている。特に最近は、白色LEDの開発が盛んに行われ、その応用範囲は照明,車載用ランプ,液晶バックライト等多岐に亘る。この白色LEDは、例えば蛍光灯などの白色光源と比較して、オン/オフの切り替え応答速度が非常に速いといった特徴を持っている。そこで、データ伝送媒体としてLEDによる白色光を用い、白色LEDの照明光にデータ伝送機能を持たせる可視光通信システムが提案されている。
図8に従来の可視光通信システムにおける可視光受信装置100の一般的な構成を示す。図8に示すように、可視光受信装置100は、送信側が送信した信号光をアナログ信号に変換する光電変換部110と、変換後のアナログ信号を後段の二値化部130が認識できる信号レベルにまで増幅する増幅部120と、増幅部120によって増幅されたアナログ信号を後段のデジタル回路140が認識できるデジタル信号に変換する二値化部130とを備えている。なお、デジタル回路140としては、例えば通信制御回路などが該当する。
図9に従来の可視光通信システムにおける光電変換部の一般的な構成を示す。図9に示すように、光電変換部110は、受光素子であるフォトダイオード111と、フォトダイオード111のアノード側に直列に接続した抵抗器112とを備えている。フォトダイオード111のカソード側は正電源Vccに接続されており、抵抗器112はグランドGNDに接続されている。フォトダイオード111と抵抗器112の接続点にはカップリングコンデンサ113を介して後段の増幅部120に接続されている。この光電変換部110では、フォトダイオード111に(正電源Vcc-抵抗器112の端子間電圧Vr)で表される電圧が逆バイアスとして印加され、信号光の光強度に応じた光電流Ipdがフォトダイオード111に流れる。したがって、フォトダイオード111に印加される逆バイアス電圧Vpdは、(正電源Vcc-抵抗値R×光電流Ipd)で表される。抵抗器112は光電流Ipdを電圧変換するI/V変換器として機能するとともにフォトダイオード111にバイアス電圧を印加するバイアス抵抗として機能する。また、カップリングコンデンサ113により低周波成分が遮断され交流成分が光信号として後段の増幅部120に入力される。
ところで、可視光通信においては、多くの場合、送信側から送られてくる信号光だけでなく、太陽光や照明用の白熱灯や蛍光灯などの周囲光がフォトダイオード111に入射する。この周囲光のうち太陽光はフォトダイオード111の光電流Ipdの直流成分として検出される。また送信側からの信号光も、プリエンファシスやプリバイアスの処理が行われている場合には、光電流Ipdの直流成分として検出される。このため強い太陽光が入射するような環境や送信側との距離が近い環境では、フォトダイオード111の光電流Ipdの直流成分が大きくなる。すると抵抗器112による電圧降下が大きくなる一方、フォトダイオード111に印加される逆バイアス電圧Vpdは小さくなる。これによりフォトダイオード111の動作に必要な逆バイアス電圧が確保できなくなり、通信エラーが生じる場合がある。
このような問題を解決するためにDCフィードバック法やアクティブバイアス法が提案されている。例えば、特開2006-5599号公報(特許文献1)には、DCフィードバック法が提案されている。図10にDCフィードバック法の基本的回路構成を示す。図10に示すように、DCフィードバック法では、受光素子201は電圧制御電流源202によりバイアスされている。また受光素子201の出力のうち、DCカットコンデンサ203によって直流成分が除去された交流電流が増幅部204に供給されている。そして前記電圧制御電流源202は増幅部204の出力により電圧制御されている。これにより受光素子201に印加する逆バイアス電圧が一定に維持される。
実開昭56-071643号公報(特許文献2)にはアクティブバイアス法が提案されている。アクティブバイアス法では、図9における抵抗器112を、信号光の光強度により抵抗値が可変する素子(例えばCds素子)に置き換えて回路が構成される。これにより、フォトダイオード111の光電流Ipdの直流成分が大きくなる場合にはCds素子の抵抗値が小さくなるため、フォトダイオード111に印加する逆バイアス電圧が所定レベル以上に維持される。
特開2006-5599号公報 実開昭56-071643号公報
しかし上記DCフィードバック法ではアクティブ回路を用いているためノイズが大きくなるという問題がある。またDCフィードバック法では、フィードバック制御を用いているため、光電流Ipdの直流成分が大きくなるとフィードバックの時定数が小さくなり、低域遮断周波数が高くなる。つまり、DCフィードバック法には、光電流Ipdの直流成分が大きくなると信号の周波数帯域が狭くなるという問題がある。さらにDCフィードバック法を実現する回路は部品点数が多く複雑な回路構成となるため、低コスト化や小型化が困難であるという問題がある。
一方上記アクティブバイアス法ではフォトダイオード111だけでなくCds素子にも信号光を入射させる必要があるため、素子の配置が極めて困難であり物理的設計の自由度が著しく低いという問題がある。特に、通信状況によって両素子の受光強度に差が生じないようにする必要があるため製品として採用するのは現実的でない。
本発明の一実施形態は、周囲光による影響が小さく、簡便な構成であり且つノイズの少ない可視光受信回路を提供することを目的とする。
上記目的を達成するために、本発明の一実施形態は、所定のバイアス電圧が印加された状態で動作し且つ入射光の光強度に応じて光電流を出力する受光素子と、該受光素子に直列接続された第1の抵抗素子とを備え、受光素子及び第1の抵抗素子の直列回路に直流電圧を印加するとともに受光素子と第1の抵抗素子との接続点を出力位置とする光電変換部を有する可視光受信回路において、印加電圧が大きくなると抵抗値が小さくなる非線形抵抗回路を前記第1の抵抗素子に対して並列に接続したことを特徴とする。
本発明の一実施形態によれば、受光素子に印加されるバイアス電圧は、受光素子及び第1の抵抗素子の直列回路に印加された直流電圧から、第1の抵抗素子と非線形抵抗回路とからなる並列抵抗の抵抗値に受光素子から出力される光電流を乗じたものを減じた値となる。ここで、第1の抵抗素子と非線形抵抗回路とからなる並列抵抗の抵抗値は、光電流の直流成分が大きくなると該直流成分が小さい場合よりも小さくなる。これは光電流の直流成分が大きくなると非線形抵抗回路の印加電圧が大きくなるためである。これにより、光電流の直流成分が大きくなった場合であっても受光素子に印加されるバイアス電圧を確保することができる。本発明の一実施形態において、非線形抵抗回路とは、端子間に印加する電圧と該電圧の印加により流れる電流との関係が非線形である回路、換言すれば端子間に印加する電圧によって抵抗値が可変する回路を意味する。
また本発明の一実施形態によれば、第1の抵抗素子に並列して非線形抵抗回路を設けるだけでよいので簡便な構成且つ低コストで可視光受信回路を実現することができるとともに、FETやバイポーラ・トランジスタや集積回路などの能動素子を用いることがないので低ノイズを実現することができる。
なお本発明の一実施形態においては複数の非線形抵抗回路を第1の抵抗素子に対して並列に接続するようにしてもよい。これにより、受光素子に印加される逆バイアス電圧をより柔軟に制御することができる。
上記非線形抵抗回路の一例としては、ツェナーダイオードと第2の抵抗素子との直列回路を含むものが挙げられる。
以上説明したように本発明の一実施形態では、受光素子と直列に接続した第1の抵抗素子に対して非線形抵抗回路を並列に接続している。本発明の一実施形態において、この非線形抵抗回路は、能動回路ではなく受動回路であり、しかも少ない部品数でシンプルに構築することができる。これにより、簡便な構成であり且つノイズの少なく、さらに光電流の直流成分が大きくなった場合であっても受光素子に印加されるバイアス電圧を確保することができる可視光受信回路が得られる。
本発明に係る光電変換部の構成図 フォトダイオードの光電流と逆バイアス電圧の関係を示すグラフ 本発明の他の例に係る光電変換部の構成図 フォトダイオードの光電流と逆バイアス電圧の関係を示すグラフ 本発明の他の例に係る光電変換部の構成図 フォトダイオードの光電流と逆バイアス電圧の関係を測定したグラフ 実施例に係る光電変換部の出力波形の一例 可視光受信装置の基本構成図 従来の光電変換部の構成図 従来の光電変換部の構成図
本発明の一実施形態に係る可視光受信回路について図面を参照して説明する。本実施の形態に係る可視光受信回路の基本構成は図8を参照して前述したものと同じである。本発明の一実施形態における特徴の1つは、光電変換部の回路構成である。以下に図1を参照して本発明の一実施形態に係る光電変換部について詳述する。図1は光電変換部の構成図である。
光電変換部10は、図1に示すように、受光素子であるフォトダイオード11と、フォトダイオード11のアノード側に直列に接続した抵抗器12とを備えている。フォトダイオード11のカソード側は正電源Vccに接続されており、抵抗器12はグランドGNDに接続されている。フォトダイオード11と抵抗器12の接続点にはカップリングコンデンサ13を介して後段の増幅部20が接続されている。フォトダイオード11、抵抗器12、及びカップリングコンデンサ13の単体としての構成は、それぞれ対応する従来のものと同様である。
 
本発明の一実施形態において、抵抗器12に対して非直線抵抗回路が並列に接続される。例えば、この非直線抵抗回路として、ツェナーダイオード14と抵抗器15とからなる直列回路を用いることができる。ツェナーダイオード14のカソード側は、図1に示すように、フォトダイオード11と抵抗器12との接続点に接続され、抵抗器15はグランドGNDに接続される。これによりツェナーダイオード14には逆電圧が印加された状態になる。周知のように、ツェナーダイオード14は、降伏電圧以下の逆電圧を印加しているあいだは電流はほとんど流れず、降伏電圧を超えた逆電圧を印加すると大きな電流が流れる。換言すれば、ツェナーダイオード14は、降伏電圧以下の逆電圧を印加しているあいだは高抵抗素子として機能し、降伏電圧を超えた逆電圧を印加すると低抵抗素子として機能する。また、降伏電圧以上の逆電圧を印加しているあいだは端子間電圧はほぼ一定の電圧(ツェナー電圧)となる。すなわち、ツェナーダイオード14は、降伏電圧を超えた逆電圧を印加すると定電圧源として機能し、このときのインピーダンスはほぼゼロ(十分に小さい値)になる。一実施形態において、ツェナーダイオード14の端子容量(接合容量,浮遊容量等)は、フォトダイオード11の接合容量の1/5以下程度である。これはフォトダイオード11の接合容量が回路の周波数帯域に影響するためである。
図1に示すように、フォトダイオード11の逆バイアス電圧Vpdは、電源電圧Vcc-電圧VRと表される。電圧VRは、抵抗器12の抵抗値R1と、ツェナーダイオード14と抵抗器15とからなる直列回路の合成抵抗値(すなわち、ツェナーダイオード14の抵抗値Rz+抵抗器15の抵抗値R2)と、の並列抵抗値に光電流Ipdを乗じたものである。この並列抵抗値は、ツェナーダイオード14の抵抗値Rzが十分に大きな値となっている場合には、抵抗器12の抵抗値R1で近似することができる。一方、ツェナーダイオード14の抵抗値Rzが十分に小さな値となっている場合には、並列抵抗値は抵抗器12の抵抗値R1と抵抗器15の抵抗値R2との並列抵抗値で近似することができる。
したがって、フォトダイオード11の光電流Ipdに対するフォトダイオード11の逆バイアス電圧Vpdは図2に示すグラフのようになる。図2に示すように、光電流Ipdが小さい場合の傾きはS1であり光電流Ipdが大きい場合の傾きはS2である。傾きS1は抵抗器12の抵抗値R1により定められる。また傾きS2は抵抗器12の抵抗値R1と抵抗器15の抵抗値R2の並列抵抗値により定められる。傾きの転換点はツェナーダイオード14の降伏電圧により決定される。なお、ツェナーダイオード14の抵抗値Rzは降伏電圧の前後で大きく変化する。図2では、便宜のため、グラフの傾きが転換点においてS1からS2へ非連続的に変化するように描写されているが、実際の回路においてはこの傾きは連続的に変化する。したがって該転換点における動作上の不都合はない。
図2から明らかなように、フォトダイオード11の光電流Ipdの最大値Ipd(max)は、フォトダイオード11を逆バイアスとして機能させるのに必要な最小逆バイアス電圧Vpd(min)により制限される。図2の点線は図9に示される従来の光電変換部110における光電流と逆バイアス電圧との関係を表す。図2に示すように、本実施の形態に係る光電流Ipdの最大値Ipd(max)は、従来例における最大光電流Ipd’(max)よりも大きくなる。よって、太陽光の強い環境下や送信側との距離が短い環境下などのようにフォトダイオード11の光電流Ipdの直流成分が大きくなるような場合であっても、フォトダイオード11の逆バイアス電圧Vpdが確保され、可視光受信回路を正常に動作させることができる。
このように本発明の一実施形態にかかる可視光受信装置によれば、フォトダイオード11の動作に必要な逆バイアス電圧Vpdを、光電流Ipdの広い範囲に亘って確保できる。したがって光電流Ipdの直流成分に影響を与える周囲光が高強度であっても正常な通信状態を維持することができる。特に本発明の一実施形態においては、フォトダイオード11の動作に必要な逆バイアス電圧Vpdを確保するための手段として、ツェナーダイオード14と抵抗器15の直列回路を抵抗器12に並列に接続するという簡便な方法を採用してので低コスト化や小型化が容易である。また、発明の一実施形態において、光電変換部10に能動部品を用いていないのでノイズの増大も防止できる。
本発明は、以上説明した本発明の一実施形態に限定されるものではなく、様々な変更を加えることができる。例えば上記実施の形態では、非線形抵抗回路としてツェナーダイオード14と抵抗器15とかるなる直列回路1組を抵抗器12に並列接続したが、ツェナーダイオードと抵抗器からなる直列回路を複数準備し、これらの複数の直接回路をそれぞれ抵抗器12に並列接続してもよい。例えば、図3に示すように、ツェナーダイオード14’と抵抗器15’とからなる他の直列回路をツェナーダイオード14と抵抗器15とかるなる直列回路及び抵抗器12に並列接続するようにしてもよい。本発明の一実施形態において、ツェナーダイオード14、14’の降伏電圧を互いに異なる値にすることができる。図3に示す光電変換部10における光電流Ipdと逆バイアス電圧Vpdの関係を図4に示す。傾きS1は抵抗器12の抵抗値R1により定められる。また傾きS2は抵抗器15の抵抗値R2により定められる。また傾きS2は抵抗器12の抵抗値R1と抵抗器15の抵抗値R2の並列抵抗値により定められる。また傾きS3は抵抗器12の抵抗値R1と抵抗器15の抵抗値R2との抵抗器15’の抵抗値R3の並列抵抗値により定められる。
本発明の一実施形態に係る光電変換部10において、図5に示すように、抵抗器12を正電源Vcc側に接続し、この抵抗器12にフォトダイオード11のカソード側を接続するとともにそのアノード側を接地してもよい。
本発明の一実施形態にに係る光電変換部10において、ツェナーダイオード11に代えてバリスタなどの他の非線形抵抗素子を用いてもよい。なお、バリスタには極性はないが、ツェナーダイオードのように端子間に印加する電圧によって非線形に電気抵抗が変化する素子であるため、ツェナーダイオード11に代えてバリスタを用いた場合でもツェナーダイオード11を用いた場合と同様の効果を得ることができる。
本発明の一実施形態において、フォトダイオード11に代えてフォトトランジスタを用いることができる。
図6は、本発明の一実施形態に係る光電変換部10におけるフォトダイオード11の光電流Ipdと逆バイアス電圧Vpdの関係を実験により測定したグラフを示す。この測定は、図1に示す光電変換部10において、抵抗器12の抵抗値を5.1[kΩ]、抵抗器15の抵抗値を0.5[kΩ]、コンデンサ13の静電容量を0.1[μF]とするとともに、ツェナーダイオード14として1N5227B、フォトダイオード11としてS6436(端子間容量15pF)をそれぞれ採用して行った。また、図6には、図9に示す従来品の光電変換部110における光電流Ipdと逆バイアス電圧Vpdとの関係を比較例として示す。測定に用いられた従来品の光電変換部110においては、抵抗器112の抵抗値を5.1[kΩ]、コンデンサ113の静電容量を0.1[μF]とし、フォトダイオード111としてS6436(端子間容量15pF)を用いた。図6から、本発明の一実施形態に係る光電変換部10では光電流Ipdの許容範囲が広いことが明らかにわかる。
またこの光電変換部10を用い、フォトダイオード11に変調済みの信号光を入射させて光電変換部10の出力波形を評価した。この出力波形が図7に示される。測定は、光源となる発光ダイオードを50Mbpsのランダムパターンで駆動し、この発光ダイオードからの信号光をフォトダイオード11に入射させて行われた。このとき、光電流Ipdの変調電流が2[mA]、直流成分が20[mA]となるように光源や周囲環境を調整した。このような条件において出力信号のSNRをアイパターンにて評価した結果が図7に示されている。図7から明らかなように本実施例に係る光電変換部10によって、SNRが十分に高く良好なアイパターンが形成される。このアイパターンから、本実施例に係る光電変換部10は、ツェナーダイオード14などのノイズの影響を受けておらず、簡便な構成ながら十分に実用的であることがわかる。
10,110…光電変換部、11…フォトダイオード、12,15,15’…抵抗器、13…カップリングコンデンサ、14,14’…ツェナーダイオード、100…可視光受信装置

Claims (3)

  1. 所定のバイアス電圧が印加された状態で動作し且つ入射光の光強度に応じて光電流を出力する受光素子と、該受光素子に直列接続された第1の抵抗素子と、前記受光素子及び前記第1の抵抗素子からなる直列回路に直流電圧を印加するとともに前記受光素子と前記第1の抵抗素子との接続点を出力位置とする光電変換部とを有する可視光受信回路において、
     印加電圧が大きくなると抵抗値が小さくなる非線形抵抗回路を前記第1の抵抗素子に対して並列に接続した
     可視光受信回路。
  2. 複数の非線形抵抗回路が前記第1の抵抗素子に対して並列に接続された請求項1記載の可視光受信回路。
  3. 前記非線形抵抗回路がツェナーダイオードと第2の抵抗素子とからなる直列回路を含む請求項1又は2記載の可視光受信回路。
PCT/JP2010/062144 2009-11-18 2010-07-20 可視光受信回路 WO2011061965A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011541831A JPWO2011061965A1 (ja) 2009-11-18 2010-07-20 可視光受信回路
DE112010004476T DE112010004476T5 (de) 2009-11-18 2010-07-20 Empfangsschaltung für sichtbares Licht
US13/351,478 US8742317B2 (en) 2009-11-18 2012-01-17 Visible light receiver circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263291 2009-11-18
JP2009263291 2009-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/351,478 Continuation US8742317B2 (en) 2009-11-18 2012-01-17 Visible light receiver circuit

Publications (1)

Publication Number Publication Date
WO2011061965A1 true WO2011061965A1 (ja) 2011-05-26

Family

ID=44059450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062144 WO2011061965A1 (ja) 2009-11-18 2010-07-20 可視光受信回路

Country Status (5)

Country Link
US (1) US8742317B2 (ja)
JP (1) JPWO2011061965A1 (ja)
KR (1) KR20120030543A (ja)
DE (1) DE112010004476T5 (ja)
WO (1) WO2011061965A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117213A1 (en) * 2011-11-25 2014-05-01 Omron Corporation Photoelectric sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264821B2 (ja) * 2013-10-07 2018-01-24 パナソニックIpマネジメント株式会社 可視光通信装置
CN105050291B (zh) * 2015-08-27 2018-05-08 桂林理工大学 一种按键控制的可见光车灯信号发送装置
CN105101562B (zh) * 2015-08-27 2018-07-03 桂林理工大学 复杂指令的可见光车灯通信信号发送控制方法
CN105050290B (zh) * 2015-08-27 2017-05-31 桂林理工大学 不断电激活的双控制可见光车灯通信信号发送装置
FR3046512B1 (fr) * 2015-12-31 2019-02-01 Sunpartner Technologies Recepteur photovoltaique optimise pour la communication par lumiere codee
EP3429097B1 (en) * 2016-03-08 2021-11-17 Kuang-Chi Intelligent Photonic Technology Ltd. Optical noise removal circuit, optical receiver, and optical chip
KR101984855B1 (ko) 2017-12-27 2019-05-31 부경대학교 산학협력단 주변광 노이즈에 강한 가시광 통신 장치 및 방법
CN109860310A (zh) * 2019-01-28 2019-06-07 三明学院 一种电压信号光电探测器
CN111431611B (zh) * 2020-03-19 2022-09-09 青岛海信宽带多媒体技术有限公司 一种光模块
KR20220167088A (ko) * 2021-06-11 2022-12-20 현대자동차주식회사 공조 제어 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214821A (ja) * 1982-06-07 1983-12-14 Toshiba Corp 半導体受光装置
JPS6441531A (en) * 1987-08-07 1989-02-13 Nec Corp Optical detection circuit
JPH03113924A (ja) * 1989-09-27 1991-05-15 Matsushita Electric Ind Co Ltd リモートコントロール受光用回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910835Y2 (ja) * 1979-11-01 1984-04-04 松下電器産業株式会社 光受信器
JPS5920498B2 (ja) 1979-11-15 1984-05-14 マツダ株式会社 パツシブシ−トベルト装置
JP3113924B2 (ja) 1992-02-03 2000-12-04 芝浦メカトロニクス株式会社 空缶回収機
JPH06276157A (ja) * 1993-03-16 1994-09-30 Siemens Ag 高速データ伝送用光受信機
US6791161B2 (en) * 2002-04-08 2004-09-14 Fabtech, Inc. Precision Zener diodes
JP2006005599A (ja) 2004-06-17 2006-01-05 Kyosan Electric Mfg Co Ltd 受光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214821A (ja) * 1982-06-07 1983-12-14 Toshiba Corp 半導体受光装置
JPS6441531A (en) * 1987-08-07 1989-02-13 Nec Corp Optical detection circuit
JPH03113924A (ja) * 1989-09-27 1991-05-15 Matsushita Electric Ind Co Ltd リモートコントロール受光用回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117213A1 (en) * 2011-11-25 2014-05-01 Omron Corporation Photoelectric sensor

Also Published As

Publication number Publication date
US8742317B2 (en) 2014-06-03
JPWO2011061965A1 (ja) 2013-04-04
DE112010004476T5 (de) 2012-10-04
US20120112046A1 (en) 2012-05-10
KR20120030543A (ko) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2011061965A1 (ja) 可視光受信回路
Pang et al. LED traffic light as a communications device
US7650082B2 (en) Optical communication transmitter, optical communication receiver, optical communication system, and communication apparatus
CN101770151B (zh) 微型投影仪亮度调节系统
US7214922B2 (en) Semiconductor photosensor device and information apparatus with sensitivity region for wide dynamic range
WO2011118097A1 (ja) 可視光通信用送信機及び可視光通信システム
US11133871B1 (en) Receiving and sending integrated chip for OLT
Zhao et al. Design of visible light communication receiver for on-off keying modulation by adaptive minimum-voltage cancelation
CN107210814B (zh) 用于优化vlc型双向传输流量的与光伏模块相关的电子设备
CA3069646A1 (en) Sensor front end
Sindhubala et al. Design and implementation of visible light communication system in indoor environment
CN106953696B (zh) 兼容8472协议、数字可编程的olt收发一体芯片
KR20060043809A (ko) 광학 신호를 디지털 신호로 변환하는 장치 및 방법
Sindhubala et al. Design and performance analysis of visible light communication system through simulation
US20080230684A1 (en) Gain Control System for Visible Light Communication Systems
KR101572492B1 (ko) 적외선 수신기 회로
US7299022B2 (en) Carrier detecting circuit and infrared communication device using same
CN201637994U (zh) 微型投影仪亮度调节系统
JP2010153484A (ja) 受光回路
US20080118252A1 (en) Optical coupler with reduced pulse width distortion
CN106953697B (zh) 模拟可编程的olt收发一体芯片
CN207835463U (zh) 一种led可见光通信接收装置
JP6241243B2 (ja) Apd回路
TW200744034A (en) Brightness control circuit and backlight control module
KR101023981B1 (ko) 가시광선 통신을 위한 방법, 송신 장치, 수신 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127001138

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011541831

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100044767

Country of ref document: DE

Ref document number: 112010004476

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831364

Country of ref document: EP

Kind code of ref document: A1