WO2011058976A1 - 中空ナノ粒子の製法、中空ナノ粒子及びその分散液 - Google Patents

中空ナノ粒子の製法、中空ナノ粒子及びその分散液 Download PDF

Info

Publication number
WO2011058976A1
WO2011058976A1 PCT/JP2010/069951 JP2010069951W WO2011058976A1 WO 2011058976 A1 WO2011058976 A1 WO 2011058976A1 JP 2010069951 W JP2010069951 W JP 2010069951W WO 2011058976 A1 WO2011058976 A1 WO 2011058976A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
hollow
ionic liquid
metal
solid
Prior art date
Application number
PCT/JP2010/069951
Other languages
English (en)
French (fr)
Inventor
鳥本 司
岡崎 健一
俊正 鈴木
庸介 冨田
桑畑 進
Original Assignee
国立大学法人名古屋大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 国立大学法人大阪大学 filed Critical 国立大学法人名古屋大学
Priority to JP2011540511A priority Critical patent/JP5799362B2/ja
Priority to US13/508,217 priority patent/US8999225B2/en
Publication of WO2011058976A1 publication Critical patent/WO2011058976A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0035Testing
    • B81C99/0045End test of the packaged device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J35/23
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0036Microsized or nanosized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing hollow nanoparticles, hollow nanoparticles, and a dispersion thereof.
  • Patent Document 1 discloses that hollow particles of titanium oxide can be obtained by adding a toluene solution of titanium butoxide to an ionic liquid and stirring vigorously. It is explained that this is formed by a sol-gel reaction of titanium butoxide caused by a trace amount of moisture in the ionic liquid at the interface of the toluene microdroplets formed in the ionic liquid.
  • Patent Document 2 discloses that a layered oxide nanosheet and a cationic polymer are alternately adsorbed in a liquid phase on a polymer sphere to form a multilayer thin film of the nanosheet and the cationic polymer on the polymer spherical surface, Subsequently, a method for producing a hollow oxide shell structure by removing polymer spheres is disclosed.
  • Non-Patent Document 1 reports that, when morphological changes after Cu nanoparticles were oxidized at room temperature to 400 ° C. were observed by TEM, hollow nanoparticles were formed by oxidation.
  • the hollow particles of Patent Documents 1 and 2 described above are those having a particle size of the order of micrometers, and those having a size of the order of nanometers are not obtained.
  • the hollow nanoparticles of Non-Patent Document 1 are on the order of nanometers, but are formed by being attached to a substrate by vacuum deposition, so that it takes time and effort to peel off the substrate and disperse it in a liquid. At this time, there is a risk of aggregation in the liquid.
  • the present invention has been made to solve such problems, and has as its main object to easily obtain hollow nanoparticles dispersed in a liquid.
  • the present inventors heated an ionic liquid containing indium nanoparticles obtained by sputter deposition of indium to an ionic liquid in air, and obtained hollow indium oxide nanoparticles. Has been found to have produced the present invention.
  • the method for producing the first hollow nanoparticle of the present invention includes: (A) obtaining a ionic liquid in which solid nanoparticles of the metal are dispersed by depositing a predetermined metal on the ionic liquid; (B) oxidizing the ionic liquid in which the solid nanoparticles are dispersed in a gas atmosphere containing an oxidizing gas to obtain hollow nanoparticles in which the core portion of the solid nanoparticles is hollow; Is included.
  • the method for producing the second hollow nanoparticle of the present invention is as follows.
  • the first method for producing hollow nanoparticles of the present invention it is possible to obtain hollow nanoparticles that are dispersed in an ionic liquid by a simple procedure in which a metal is vapor-deposited on an ionic liquid and then oxidized to prevent the particles from aggregating with each other. it can. Since the hollow nanoparticles obtained in this way have cavities inside, it is expected to store and transport substances using the cavities, and physical and chemical compared to solid nanoparticles Use in various fields is expected due to the different properties.
  • the first metal and the second metal that is less oxidizable are deposited in the ionic liquid and then dispersed in the ionic liquid by a simple procedure. Hollow nanoparticles that are difficult to aggregate are obtained.
  • This hollow nanoparticle is referred to as a jingle bell-type structure because the second metal particle enters the cavity. Since the hollow metal particles thus obtained have the second metal particles in the internal cavities, it is expected that a new reaction using the second metal particles as a catalyst will be developed. Use in various fields is expected due to the difference in physical and chemical properties compared to particles.
  • the first metal and the second metal are deposited on the ionic liquid, they may be deposited simultaneously or sequentially.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a vapor deposition apparatus 10.
  • FIG. 2 is a photograph showing a TEM image of solid nanoparticles in Example 1.
  • FIG. 3 is a graph showing the particle size distribution of solid nanoparticles in Example 1.
  • 2 is a graph showing the core size distribution of solid nanoparticles in Example 1.
  • FIG. 4 is a graph showing the XRD results of solid nanoparticles in Example 1.
  • 2 is a graph showing the XPS results of solid nanoparticles in Example 1.
  • 2 is a photograph showing a TEM image of hollow nanoparticles of Example 1.
  • FIG. 2 is a graph showing the particle size distribution of hollow nanoparticles of Example 1.
  • FIG. 3 is a graph showing a void size distribution of the hollow nanoparticles of Example 1.
  • FIG. 2 is a graph showing XRD results of hollow nanoparticles of Example 1.
  • FIG. 2 is an explanatory diagram of a mechanism for producing hollow nanoparticles of Example 1.
  • FIG. 10 is a photograph showing a TEM image of solid nanoparticles in Example 7.
  • FIG. 10 is a graph showing the particle size distribution of solid nanoparticles in Example 7.
  • 10 is a graph showing an absorption spectrum of solid nanoparticles in Example 7.
  • 6 is a photograph showing a TEM image of hollow nanoparticles of Example 7.
  • FIG. 6 is a graph showing the particle size distribution of hollow nanoparticles of Example 7.
  • 10 is a graph showing XRD results of hollow nanoparticles of Example 7. It is explanatory drawing which represented the gold-indium alternating arrangement board typically.
  • FIG. 10 is a photograph showing a TEM image of solid nanoparticles in Example 8.
  • FIG. 10 is a graph showing the particle size distribution of solid nanoparticles in Example 8.
  • 6 is a photograph showing a TEM image of hollow nanoparticles of Example 8.
  • FIG. 10 is a graph showing the particle size distribution of hollow nanoparticles of Example 8. It is a graph which shows the absorption spectrum of the solid nanoparticle before heating of Example 8, and the nanoparticle obtained after heating.
  • FIG. 10 is an explanatory diagram of a generation mechanism of hollow nanoparticles having a jingle bell structure in Example 8.
  • 10 is a photograph showing a TEM image of nanoparticles of Example 9.
  • examples of the predetermined metal include Al, Cr, Co, In, Cu, Sn, Ti, Ga, Mo, W, Si, Mg, V, Mn, and Fe. , Ni, Zn, Ge, Nb, Ta, etc., among which Al, Cr, Co, In, Cu, Sn, Ti, Ga, Mo, W, etc. are preferable, and Al, Cr, Co, In, Cu, etc. , Sn and the like are particularly preferable. These are preferred because they have the property that a very thin metal oxide film is formed only on the surface when they become solid nanoparticles.
  • examples of the first metal include Al, Cr, Co, In, Cu, Sn, Ti, Ga, Mo, W, Si, Mg, V, Mn, Fe, Ni, Zn, Ge, Nb, Ta, etc. are mentioned. Of these, Al, Cr, Co, In, Cu, Sn, Ti, Ga, Mo, W, etc. are preferable, and Al, Cr, Co, In, Cu, Sn and the like are particularly preferable.
  • examples of the second metal include metals that are less likely to be oxidized than the first metal, such as Au, Pt, Pd, Rh, Ru, and Ir.
  • an ionic liquid refers to a series of compounds that are liquid at room temperature despite being a salt composed only of cations and anions.
  • the ionic liquid is stable at high temperatures, has a wide liquid temperature range, has a vapor pressure of substantially zero, and has ionic properties such as low viscosity and high oxidation / reduction resistance.
  • the ionic liquid applicable to the present invention may be hydrophilic or hydrophobic, and the type thereof is not particularly limited. For example, aliphatic ionic liquid, imidazolium ionic liquid, Examples include pyridinium ionic liquids.
  • Aliphatic ionic liquids include N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide, N, N— Examples include diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide and N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate. be able to.
  • imidazolium-based ionic liquid examples include 1,3-dialkylimidazolium salts and 1,2,3-trialkylimidazolium salts.
  • 1,3-dialkylimidazolium salts include 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methyl-imidazolium chloride, 1-ethyl-3-methylimidazolium (L ) -Lactate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium chloride, 1-butyl- 3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimid
  • 1,2,3-trialkylimidazolium salts include 1-ethyl-2,3-dimethylimidazolium bromide, 1-ethyl-2,3-dimethylimidazolium chloride, 1-butyl-2,3-dimethylimidazole.
  • Examples of other imidazolium salts include 1-allyl-3-methylimidazolium tetrafluoroborate, 1-allyl-3-ethylimidazolium tetrafluoroborate, and the like.
  • Examples of pyridinium-based ionic liquids include ethyl pyridinium salts, butyl pyridinium salts, and hexyl pyridinium salts.
  • examples of the ethylpyridinium salt include 1-ethylpyridinium bromide and 1-ethylpyridinium chloride.
  • Examples of the butylpyridinium salt include 1-butylpyridinium bromide, 1-butylpyridinium chloride, and 1-butylpyridinium hexafluoro. Examples thereof include phosphate, 1-butylpyridinium tetrafluoroborate, 1-butylpyridinium trifluoromethanesulfonate, etc.
  • Examples of hexylpyridinium salts include 1-hexylpyridinium bromide, 1-hexylpyridinium chloride, and 1-hexylpyridinium. Examples include hexafluorophosphate, 1-hexylpyridinium tetrafluoroborate, 1-hexylpyridinium trifluoromethanesulfonate, and the like.
  • the vapor deposition performed in the step (a) is performed by a dry film formation method such as a well-known chemical vapor deposition method (CVD method) or physical vapor deposition method (PVD method). It can be carried out with the same apparatus and procedure as for depositing solid nanoparticles on the surface, but among these, physical vapor deposition methods (for example, vacuum vapor deposition method or ion deposition method) in which metal atoms are evaporated from solid state metals. Plating method, sputtering method, etc.) are preferable. According to physical vapor deposition, solid nanoparticles can be produced directly from a bulk material in a relatively simple system.
  • CVD method chemical vapor deposition method
  • PVD method physical vapor deposition method
  • the sputtering method is more preferable.
  • the sputtering method does not require a crucible when performing metal evaporation, so that solid nanoparticles with high purity can be produced.
  • a resistance heating method, a far infrared heating method, an electron beam heating method, an arc heating method, a high frequency induction heating method, etc. can be used.
  • a high frequency excitation method, an ion beam method, a cluster method, or the like can be used.
  • a sputtering method for example, a DC sputtering method, a magnetron sputtering method, a high frequency sputtering method, an ion beam sputtering method, or the like is used. Can do.
  • the step (a) is preferably performed under reduced pressure. If performed under reduced pressure, solid nanoparticles with high purity can be produced in a short time.
  • “under reduced pressure” may be any pressure as long as the atmospheric pressure is lower than the atmosphere, and is preferably 20 Pa or less.
  • the gas used is preferably a rare gas, more preferably argon gas.
  • the pressure of the argon gas at this time is preferably 20 Pa or less. What is necessary is just to set the magnitude
  • the preferred range of the reaction time varies depending on the reaction temperature and the amount of ionic liquid, but is preferably set in the range of several tens of seconds to several hours, more preferably in the range of 30 seconds to 20 minutes.
  • a vapor deposition apparatus 10 When producing solid nanoparticles using a sputtering method, for example, the following may be performed.
  • a vapor deposition apparatus 10 As shown in FIG. 1, as a vapor deposition apparatus 10, a vapor deposition chamber 12 that can be evacuated, a cathode 14 that is installed on the upper surface of the vapor deposition chamber 12 and can be fitted with a target material 18, and a position facing the cathode 14.
  • the target material 18 is mounted on the cathode 14, and the glass substrate 20 on which the ionic liquid 22 is placed is placed on the anode 16.
  • a high voltage is applied to the cathode 14 in a state where the inside of the vapor deposition chamber 12 is in a vacuum or a gas atmosphere (for example, argon gas).
  • glow discharge is generated in the vapor deposition chamber 12, and gas ions generated by the glow discharge collide with the target material 18, so that the metal constituting the target material 18 is sputter evaporated.
  • solid nanoparticles of the metal are generated on the ionic liquid 22 or in the ionic liquid 22.
  • the particle size of the solid nanoparticles obtained in the step (a) can be varied depending on the type of the ionic liquid used. Moreover, the particle size of the solid nanoparticles obtained in the step (a) can be made different depending on the deposition time. Specifically, as the reaction time increases, the particle size of the solid nanoparticles increases, and particle growth tends to stop when reaching a predetermined size. Therefore, by changing the ionic liquid and the reaction time, solid nanoparticles having a target particle size can be produced.
  • the type of ionic liquid used in the step (a) or The particle size of the hollow nanoparticles can be controlled by the deposition time in step (a).
  • the oxidizing gas in the step (b) is not particularly limited as long as it has the ability to oxidize metals.
  • oxygen gas or air Etc oxygen gas or air Etc.
  • the heating temperature is not particularly limited as long as the metal constituting the hollow particles can be oxidized by the oxidizing gas,
  • the heating time is 100 to 400 ° C., preferably 200 to 300 ° C.
  • the heating time is not particularly limited as long as the metal constituting the hollow particles can be oxidized by the oxidizing gas, but for example, several minutes to several It's time.
  • a solvent having a high affinity for the ionic liquid is added to the used ionic liquid.
  • the solvent having a high affinity for the ionic liquid includes, for example, water, methanol, ethanol, acetone and the like when a hydrophilic one is used as the ionic liquid, and a hydrophobic one is used. If present, ether, heptane, chloroform, methylene chloride and the like can be mentioned.
  • the step (a) and the step (b) may be carried out in one step rather than in two steps.
  • a predetermined metal is deposited on an ionic liquid in a gas atmosphere containing an oxidizing gas, whereby the solid of the metal is added to the ionic liquid in one step. You may make it obtain the hollow nanoparticle in which the core part of the nanoparticle became a cavity.
  • a predetermined metal for example, Al, Cr, Co, In, Cu, Sn, Ti, Ga, Mo, W, Si, Mg, V
  • a low-purity rare gas atmosphere containing oxygen gas as an impurity
  • Mn, Fe, Ni, Zn, Ge, Nb, Ta, etc. can be deposited on the ionic liquid to obtain an ionic liquid in which hollow nanoparticles are dispersed.
  • a solid metal particle having a two-layer structure in which a predetermined metal is present in the portion and an oxide of the metal is present in the shell portion may be used.
  • Al, Cr, Co, In, Cu, Sn, Ti, Ga, Mo, W, Si, Mg, V, Mn, Fe, Ni, Zn, Ge, Nb, or Ta is deposited on an ionic liquid. Is easy to obtain solid nanoparticles of such a two-layer structure.
  • the metal oxide in the shell portion was generated using oxygen gas as an oxygen source.
  • oxygen gas oxygen gas
  • the hollow nanoparticle of the present invention has a spherical shape with a shell made of a metal oxide and an average particle diameter of more than 4 nm and 50 nm or less.
  • Such hollow nanoparticles can be obtained, for example, by the production method of the first hollow nanoparticles of the present invention.
  • the film thickness of the shell is about 2 nm regardless of the average particle diameter.
  • the average particle diameter can be adjusted in the range of more than 4 nm and 50 nm or less by changing the kind of the ionic liquid in the first method for producing hollow nanoparticles of the present invention.
  • hollow nanoparticles made of indium oxide it can be adjusted in the range of 6 to 18 nm (see Examples 1 to 6 described later).
  • the hollow nanoparticle of the nonpatent literature 1 is not produced
  • spherical hollow particles made of an inorganic oxide they are not nanoparticles because the particle size is 1 to 100 ⁇ m.
  • the hollow nanoparticle of the present invention may be one in which a metal that is less oxidized than the metal constituting the metal oxide forming the shell exists in the hollow interior.
  • Such hollow nanoparticles can be obtained, for example, by the method for producing the second hollow nanoparticles of the present invention.
  • the hollow nanoparticle dispersion of the present invention is obtained by dispersing the above-described hollow nanoparticles of the present invention in an ionic liquid. Since such a dispersion is easier to handle than the hollow nanoparticles themselves, it is highly convenient.
  • Examples 1 to 6 are examples in which hollow nanoparticles are produced in two steps using indium
  • Example 7 is an example in which hollow nanoparticles are produced in two steps using copper
  • Example 8 is In this example, hollow nanoparticles having a jingle bell structure are manufactured in two stages using gold and indium
  • Example 9 is an example in which hollow nanoparticles are manufactured in one stage using indium.
  • EMI-BF4 (1-ethyl-3-methylimidazolium tetrafluoroborate) was dried under reduced pressure at 120 ° C. for 3 hours.
  • FIG. 2 shows a TEM image of nanoparticles dispersed in an ionic liquid
  • FIG. 3 shows the particle size distribution
  • FIG. 4 shows the core size distribution.
  • the TEM image was observed using a transmission electron microscope (manufactured by Hitachi High-Technologies Corporation, model H7650).
  • a commercially available Cu grid with a carbon support film (Oken Shoji, STEM100Cu grid) is used as the TEM grid.
  • the excess ionic liquid is filtered with a filter paper. Prepared by removing. Therefore, it can be said that the nanoparticles on the TEM grid are isolated from the ionic liquid.
  • the nanoparticles in FIG. 2 have a core-shell structure consisting of a light gray shell and a dark gray core particle present inside this, and no voids are observed inside.
  • 3 and 4 show that the solid nanoparticles have an average particle size of about 8 nm, a core size of about 4 nm, and a shell thickness of about 2 nm.
  • the solid nanoparticles were analyzed by XRD and XPS. The results are shown in FIGS. From the XRD pattern of FIG. 5, only the peak corresponding to metal indium was observed as a crystal, and the peak corresponding to indium oxide was not observed. Further, from XPS in FIG.
  • the solid nanoparticles have a core-shell structure in which metallic indium is present in the core portion and amorphous indium oxide is present in the shell portion.
  • the oxygen source of indium oxide in the shell portion is considered to be a small amount of oxygen gas present as an impurity in the argon gas.
  • FIG. 7 shows a TEM image of nanoparticles dispersed in an ionic liquid after heating in air
  • Fig. 8 shows the particle size distribution
  • Fig. 8 shows the void size distribution inside the particles.
  • 9 shows.
  • the nanoparticle in FIG. 7 is a hollow nanoparticle having a hollow inside because a dark gray ring surrounds a light gray circle. 8 and 9, it can be seen that the hollow nanoparticles have an average particle size of about 8 nm, a void size of about 4 nm, and a shell thickness of about 2 nm.
  • the hollow nanoparticles were analyzed by XRD. The result is shown in FIG. From the XRD pattern of FIG.
  • this hollow nanoparticle is a hollow nanoparticle of indium oxide having good crystallinity.
  • the hollow nanoparticle generation mechanism is as follows. When solid nanoparticles of indium metal in the core and indium oxide in the shell are heated in air, oxygen in the air passes through the minute gaps in the shell. It is considered that the gas and indium metal in the core portion react to generate indium oxide and a cavity is generated in the core portion.
  • Example 2 to 6 solid nanoparticles were produced using another ionic liquid instead of the ionic liquid EMI-BF4 of Example 1 described above. Specifically, BMMI-BF4 (1-butyl-2,3-dimethylimidazolium tetrafluoroborate) is used in Example 2, and BMI-PF6 (1-butyl-3-methylimidazolium hexafluoro) is used in Example 3.
  • Example 2 Phosphate), BMI-BF4 (1-butyl-3-methylimidazolium tetrafluoroborate) in Example 4, AMI-BF4 (1-allyl-3-methylimidazolium tetrafluoroborate in Example 5) Salt), in Example 6, AEI-BF4 (1-allyl-3-ethylimidazolium tetrafluoroborate) was used.
  • the particle size was about 6 nm
  • Example 3 the particle size was about 7 nm
  • Example 4 the particle size was about 10 nm
  • Example 5 the particle size was about 16 nm
  • Example 6 the particle size was about 18 nm. Nanoparticles were obtained.
  • Example 7 (1) Production Method of Solid Nanoparticles EMI-BF4 0.60 cm 3 after drying was uniformly placed on the same slide glass as in Example 1. This was left in the same vapor deposition apparatus as in Example 1, and copper (disk shape, diameter 49 mm ⁇ thickness 0.5 mm) was attached as a target material at a position facing EMI-BF4, and copper sputter deposition was performed. (Distance between target and ionic liquid: 2.0 cm, inside vapor deposition chamber: high purity argon, pressure: 2.0 Pa, vapor deposition current: 40 mA, reaction time: 10 minutes). After sputtering, the EMI-BF4 solution on the slide glass surface, that is, the ionic liquid in which the nanoparticles were dispersed was collected.
  • FIG. 12 shows a TEM image of nanoparticles dispersed in an ionic liquid
  • FIG. 13 shows a particle size distribution.
  • the nanoparticles shown in FIG. 12 are shown as gray circles having a uniform density, which indicates that the nanoparticles are solid solid nanoparticles.
  • the average particle diameter of the solid nanoparticle is about 10 nm from FIG.
  • the absorption spectrum of the ionic liquid after sputter deposition is shown in FIG. A peak considered to be derived from surface plasmon resonance of Cu nanoparticles was observed in the vicinity of 580 nm. This suggests that the surface of the solid nanoparticles does not have copper oxide or exists as a very thin layer even if it exists.
  • FIG. 15 shows a TEM image of nanoparticles dispersed in an ionic liquid after heating in air
  • FIG. 16 shows the particle size distribution.
  • the nanoparticles shown in FIG. 15 are hollow nanoparticles because a dark gray ring surrounds a light gray circle.
  • FIG. 15 shows that the hollow nanoparticles have a shell thickness of about 2.5 nm and a void size of about 15 nm.
  • FIG. 16 shows that the hollow nanoparticles have an average particle diameter of about 20 nm.
  • the hollow nanoparticles were analyzed by XRD. The result is shown in FIG. From the XRD pattern shown in FIG. 17, only peaks corresponding to Cu 2 O were observed as crystals.
  • the hollow nanoparticles are Cu 2 O hollow nanoparticles with good crystallinity.
  • the particle size is increased by about 2 times with the change from solid nanoparticles to hollow nanoparticles. This is because the solid particles are first aggregated by heating and the particle size is increased. This is considered to be because the particles were oxidized by gas to form hollow particles.
  • Example 8 (1) Production Method of Solid Nanoparticles EMI-BF4 0.60 cm 3 after drying was uniformly placed on the same slide glass as in Example 1. This was left in the same vapor deposition apparatus as in Example 1, gold and indium were mounted as target materials at a position facing EMI-BF4, and both were sputter deposited simultaneously (distance between target and ionic liquid). : 2.0 cm, inside the deposition chamber: high purity argon, pressure: 2.0 Pa, deposition current: 10 mA, reaction time: 10 minutes). After sputtering, the EMI-BF4 solution on the slide glass surface, that is, the ionic liquid in which the nanoparticles were dispersed was collected. As shown in FIG.
  • the target material is divided into six sections by three straight lines passing through the center of the disk, and is divided into six sections.
  • the gold-indium alternating array plate in which gold and indium are alternately arranged (Diameter 49 mm x thickness 0.5 mm) was used.
  • FIG. 19 shows a TEM image of nanoparticles dispersed in an ionic liquid
  • FIG. 20 shows the particle size distribution. Since the nanoparticles shown in FIG. 19 are shown as gray circles having a uniform density, it can be seen that the nanoparticles are solid solid nanoparticles. In addition, FIG. 20 shows that the solid nanoparticles have an average particle diameter of about 6 nm.
  • FIG. 21 shows a TEM image of nanoparticles dispersed in an ionic liquid after heating in air
  • FIG. 22 shows the particle size distribution.
  • the nanoparticles in FIG. 21 are surrounded by a dark gray ring around a light gray circle, and a darker gray circle is recognized in the light gray circle. It can be seen that the nanoparticle has a jingle bell type structure in which gold particles are present in the cavity.
  • FIG. 21 shows that the hollow nanoparticles have a void size of about 6 nm and an internal gold size of about 4 nm.
  • FIG. 22 shows that the hollow nanoparticles have an average particle diameter of about 12 nm.
  • FIG. 21 shows a TEM image of nanoparticles dispersed in an ionic liquid after heating in air
  • FIG. 22 shows the particle size distribution.
  • the nanoparticles in FIG. 21 are surrounded by a dark gray ring around a light gray circle, and a darker gray circle is recognized in the light gray circle. It
  • FIG. 23 is a graph showing absorption spectra before and after heating of the ionic liquid in which the solid nanoparticles obtained in (1) are dispersed. After heating, the peak position shifted by a long wavelength and appeared at about 520 nm. This wavelength agrees well with that of the surface plasmon resonance peak of Au nanoparticles. From this, by heating InAu alloy nanoparticles generated in the ionic liquid by simultaneous sputter deposition of indium and gold in air, only the nanoparticles of In are oxidized and de-alloyed to produce Au nanoparticles. It is suggested that As shown in FIG.
  • the generation mechanism of a hollow nanoparticle having a jingle bell type structure is that solid nanoparticles of indium and gold in the core portion and indium oxide in the shell portion are generated by the above (1).
  • the oxygen gas in the air reacts with the indium in the core through a minute gap in the shell and indium oxide is generated and a cavity is formed in the core.
  • gold is not easily oxidized, it remains in the cavity as it is. Conceivable.
  • Example 9 EMI-BF4 0.60 cm 3 after drying was uniformly placed on the same slide glass as in Example 1. This was left in the vapor deposition apparatus similar to Example 1, indium was attached as a target material at a position facing EMI-BF4, and sputter deposition was performed (distance between target and ionic liquid: 2.0 cm, In the vapor deposition chamber: standard purity argon (purity 99.99%), pressure: 1.5 Pa, vapor deposition current: 20 mA, reaction time: 10 minutes). After sputtering, the EMI-BF4 solution on the slide glass surface, that is, the ionic liquid in which the nanoparticles were dispersed was collected.
  • FIG. 9 EMI-BF4 0.60 cm 3 after drying was uniformly placed on the same slide glass as in Example 1. This was left in the vapor deposition apparatus similar to Example 1, indium was attached as a target material at a position facing EMI-BF4, and sputter deposition was performed (distance between target and ionic liquid: 2.0 cm, In
  • FIG. 25 shows a TEM image of nanoparticles dispersed in the ionic liquid.
  • hollow nanoparticles having a hollow inside also exist.
  • the number of hollow nanoparticles was about 10% of the whole.
  • the particle size was 18.3 nm and the inner core size was 8.7 nm.
  • the mechanism by which such hollow nanoparticles are generated is that solid nanoparticles are formed in the ionic liquid by sputter deposition, and the metal indium core in the particles is rapidly oxidized by oxygen gas present in a trace amount in argon gas. It is thought that it became hollow nanoparticles.
  • this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
  • the hollow nanoparticles of the present invention and dispersions thereof can be used for materials such as novel catalysts, optoelectronic elements, biomolecular markers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 まず、スライドガラス上にイオン液体をのせ、これを蒸着装置内に静置し、イオン液体に対向する位置にターゲット材として金属(例えばインジウム)を装着し、該金属のスパッタ蒸着を行う。スパッタ後、ナノ粒子が分散したイオン液体を回収する。このナノ粒子は中の詰まった中実ナノ粒子である。次に、こうして得られた中実ナノ粒子が分散したイオン液体を試験管に採取し、空気中で250℃、1時間加熱して酸化する。これにより、中実ナノ粒子のコア部分が空洞になった中空ナノ粒子が得られる。

Description

中空ナノ粒子の製法、中空ナノ粒子及びその分散液
 本発明は、中空ナノ粒子の製法、中空ナノ粒子及びその分散液に関する。
 金属酸化物の中空粒子は、触媒機能の向上や新しい機能の実現に寄与することが期待されている。例えば、特許文献1には、イオン液体中にチタンブトキシドのトルエン溶液を加え激しく攪拌することにより酸化チタンの中空粒子が得られることが開示されている。これは、イオン液体中に形成されたトルエンのマイクロ液滴界面において、イオン液体中の微量水分によりチタンブトキシドのゾルゲル反応が起こることにより形成されると説明されている。また、特許文献2には、層状酸化物のナノシートとカチオン性ポリマーとを、ポリマー球上に液相にて交互に吸着させ、ポリマー球面上にナノシートとカチオン性ポリマーとの多層薄膜を形成し、その後ポリマー球を除去することにより中空酸化物のシェル構造体を製造する方法が開示されている。一方、非特許文献1には、Cuナノ粒子を室温~400℃で酸化した後の形態変化をTEMによって観察したところ、酸化によって中空ナノ粒子が形成されたと報告されている。
特開2004-35303号公報 特開2004-130429号公報 触媒、第49巻、第5号、2007年、344-349頁
 しかしながら、上述した特許文献1,2の中空粒子は粒径がマイクロメートルオーダーの大きさのものであり、ナノメートルオーダーの大きさのものは得られていない。また、非特許文献1の中空ナノ粒子は、ナノメートルオーダーではあるが、真空蒸着によって基板上に貼り付けて形成されるものであるため、その後基板から剥がして液体に分散するなどの手間がかかるし、その際に液体中で凝集するおそれもある。
 本発明はこのような課題を解決するためになされたものであり、液体中に分散した中空ナノ粒子を容易に得ることを主目的とする。
 上述した目的を達成するために、本発明者らは、イオン液体にインジウムをスパッタ蒸着することにより得られたインジウムナノ粒子を含むイオン液体を空気中で加熱したところ、中空構造の酸化インジウムナノ粒子が生成していることを見いだし、本発明を完成するに至った。
 即ち、本発明の第1の中空ナノ粒子の製法は、
(a)所定の金属をイオン液体に蒸着することにより、前記金属の中実ナノ粒子が分散したイオン液体を得る工程と、
(b)前記中実ナノ粒子が分散したイオン液体を、酸化ガスを含有するガス雰囲気中で酸化することにより、前記中実ナノ粒子のコア部分が空洞になった中空ナノ粒子を得る工程と、
 を含むものである。
 本発明の第2の中空ナノ粒子の製法は、
(a)第1の金属と該第1の金属よりも酸化されにくい第2の金属とをイオン液体に蒸着することにより、前記第1及び第2の金属からなる合金の中実ナノ粒子が分散したイオン液体を得る工程と、
(b)前記中実ナノ粒子が分散したイオン液体を、酸化ガスを含有するガス雰囲気中で酸化することにより、前記中実ナノ粒子のコア部分が空洞になると共に該空洞に前記第2の金属の粒子が残ったジングルベル型構造の中空ナノ粒子を得る工程と、
 を含むものである。
 本発明の第1の中空ナノ粒子の製法によれば、金属をイオン液体に蒸着したあと酸化するという簡単な手順でイオン液体中に分散し、粒子同士が凝集しにくい中空ナノ粒子を得ることができる。こうして得られる中空ナノ粒子は、内部に空洞を有することから、その空洞を利用して物質を貯蔵したり輸送したりすることが期待されるし、中実ナノ粒子に比べて物理的・化学的性質が異なることにより様々な分野での利用が期待される。
 本発明の第2の中空ナノ粒子の製法によれば、第1の金属とそれより酸化されにくい第2の金属とをイオン液体に蒸着したあと酸化するという簡単な手順でイオン液体中に分散し凝集しにくい中空ナノ粒子が得られる。この中空ナノ粒子は、空洞に第2の金属の粒子が入り込んでいるため、ジングルベル型構造体と称することとする。こうして得られる中空ナノ粒子は、内部の空洞に第2の金属粒子が存在することから、その第2の金属粒子を触媒とする新規な反応が開発されることが期待されるし、中実ナノ粒子に比べて物理的・化学的性質が異なることにより様々な分野での利用が期待される。なお、第1の金属と第2の金属とをイオン液体に蒸着する場合、同時に蒸着してもよいし、逐次的に蒸着してもよい。
蒸着装置10の概略構成を示す説明図である。 実施例1の中実ナノ粒子のTEM像を示す写真である。 実施例1の中実ナノ粒子の粒径分布を示すグラフである。 実施例1の中実ナノ粒子のコアサイズ分布を表すグラフである。 実施例1の中実ナノ粒子のXRDの結果を示すグラフである。 実施例1の中実ナノ粒子のXPSの結果を示すグラフである。 実施例1の中空ナノ粒子のTEM像を示す写真である。 実施例1の中空ナノ粒子の粒径分布を示すグラフである。 実施例1の中空ナノ粒子の空隙サイズ分布を示すグラフである。 実施例1の中空ナノ粒子のXRDの結果を示すグラフである。 実施例1の中空ナノ粒子の生成メカニズムの説明図である。 実施例7の中実ナノ粒子のTEM像を示す写真である。 実施例7の中実ナノ粒子の粒径分布を示すグラフである。 実施例7の中実ナノ粒子の吸収スペクトルを示すグラフである。 実施例7の中空ナノ粒子のTEM像を示す写真である。 実施例7の中空ナノ粒子の粒径分布を示すグラフである。 実施例7の中空ナノ粒子のXRDの結果を示すグラフである。 金-インジウム交互配列板を模式的に表した説明図である。 実施例8の中実ナノ粒子のTEM像を示す写真である。 実施例8の中実ナノ粒子の粒径分布を示すグラフである。 実施例8の中空ナノ粒子のTEM像を示す写真である。 実施例8の中空ナノ粒子の粒径分布を示すグラフである。 実施例8の加熱前の中実ナノ粒子及び加熱後に得られたナノ粒子の吸収スペクトルを示すグラフである。 実施例8のジングルベル型構造の中空ナノ粒子の生成メカニズムの説明図である。 実施例9のナノ粒子のTEM像を示す写真である。
 本発明の第1の中空ナノ粒子の製法において、所定の金属としては、例えば、Al,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb,Taなどが挙げられるが、このうちAl,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,Wなどが好ましく、Al,Cr,Co,In,Cu,Snなどが特に好ましい。これらが好ましいのは、中実ナノ粒子となった段階で表面にのみ非常に薄い金属酸化物の膜が形成される性質を有するからである。また、本発明の第2の中空ナノ粒子の製法において、第1の金属としては、例えば、Al,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb,Taなどが挙げられるが、このうちAl,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,Wなどが好ましく、Al,Cr,Co,In,Cu,Snなどが特に好ましい。また、第2の金属としては、第1の金属よりも酸化しにくい金属、例えば、Au,Pt,Pd,Rh,Ru,Irなどが挙げられる。
 本発明の第1、第2の中空ナノ粒子の製法では、イオン液体を使用する。イオン液体とは、陽イオンと陰イオンのみから構成される塩であるにもかかわらず常温で液体である一連の化合物をいう。イオン液体は、高温安定性であり液体温度範囲が広い、蒸気圧が略ゼロ、イオン性でありながら低粘性、高い酸化・還元耐性などの特性を有している。本発明に適用可能なイオン液体は、親水性であっても疎水性であってもよく、またその種類は特に限定されるものではないが、例えば脂肪族系イオン液体、イミダゾリウム系イオン液体、ピリジニウム系イオン液体などが挙げられる。脂肪族系イオン液体としては、N,N,N-トリメチル-N-プロピルアンモニウムビス(トリフルオロメタンスルホニル)イミドやN-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロホウ酸塩などを挙げることができる。イミダゾリウム系イオン液体としては、1,3-ジアルキルイミダゾリウム塩、1,2,3-トリアルキルイミダゾリウム塩などが挙げられる。具体的には、1,3-ジアルキルイミダゾリウム塩としては、1-エチル-3-メチルイミダゾリウムブロマイドや1-エチル-3-メチル-イミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウム(L)-乳酸塩、1-エチル-3-メチルイミダゾリウムヘキサフルオロリン酸塩、1-エチル-3-メチルイミダゾリウムテトラフルオロホウ酸塩、1-ブチル-3-メチルイミダゾリウムクロライド、1-ブチル-3-メチルイミダゾリウムヘキサフルオロリン酸塩、1-ブチル-3-メチルイミダゾリウムテトラフルオロホウ酸塩、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホン酸塩、1-ブチル-3-メチルイミダゾリウム(L)-乳酸塩、1-ヘキシル-3-メチルイミダゾリウムブロマイド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムヘキサフルオロリン酸塩、1-ヘキシル-3-メチルイミダゾリウムテトラフルオロホウ酸塩、1-ヘキシル-3-メチルイミダゾリウムトリフルオロメタンスルホン酸塩、1-オクチル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムヘキサフルオロリン酸塩、1-デシル-3-メチルイミダゾリウムクロライド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-ヘキサデシル-3-メチルイミダゾリウムクロライド、1-オクタデシル-3-メチルイミダゾリウムクロライドなどが挙げられる。1,2,3-トリアルキルイミダゾリウム塩としては、1-エチル-2,3-ジメチルイミダゾリウムブロマイドや1-エチル-2,3-ジメチルイミダゾリウムクロライド、1-ブチル-2,3-ジメチルイミダゾリウムブロマイド、1-ブチル-2,3-ジメチルイミダゾリウムクロライド、1-ブチル-2,3-ジメチルイミダゾリウムテトラフルオロホウ酸塩、1-ブチル-2,3-ジメチルイミダゾリウムトリフルオロメタンスルホン酸塩、1-ヘキシル-2,3-ジメチルイミダゾリウムブロマイド、1-ヘキシル-2,3-ジメチルイミダゾリウムクロライド、1-ヘキシル-2,3-ジメチルイミダゾリウムテトラフルオロホウ酸塩、1-ヘキシル-2,3-ジメチルイミダゾリウムトリフルオロメタンスルホン酸塩などが挙げられる。その他のイミダゾリウム塩としては、1-アリル-3-メチルイミダゾリウムテトラフルオロホウ酸塩、1-アリル-3-エチルイミダゾリウムテトラフルオロホウ酸塩などが挙げられる。また、ピリジニウム系イオン液体としては、エチルピリジニウム塩やブチルピリジニウム塩、ヘキシルピリジニウム塩などが挙げられる。具体的には、エチルピリジニウム塩としては、1-エチルピリジニウムブロマイドや1-エチルピリジニウムクロライドが挙げられ、ブチルピリジニウム塩としては、1-ブチルピリジニウムブロマイドや1-ブチルピリジニウムクロライド、1-ブチルピリジニウムヘキサフルオロリン酸塩、1-ブチルピリジニウムテトラフルオロホウ酸塩、1-ブチルピリジニウムトリフルオロメタンスルホン酸塩などが挙げられ、ヘキシルピリジニウム塩としては、1-ヘキシルピリジニウムブロマイドや1-ヘキシルピリジニウムクロライド、1-ヘキシルピリジニウムヘキサフルオロリン酸塩、1-ヘキシルピリジニウムテトラフルオロホウ酸塩、1-ヘキシルピリジニウムトリフルオロメタンスルホン酸塩などが挙げられる。
 本発明の第1、第2の中空ナノ粒子の製法において、工程(a)で行う蒸着は、周知の化学蒸着法(CVD法)や物理蒸着法(PVD法)などの乾式成膜法により基板上に中実ナノ粒子を析出させるのと同様の装置・手順で実施可能であるが、このうち、金属原子が固体状態の金属から蒸発したものである物理蒸着法(例えば、真空蒸着法やイオンプレーティング法、スパッタリング法など)が好ましい。物理蒸着法によれば、バルク材料から中実ナノ粒子を比較的簡単な系で直接に製造することができる。また、物理蒸着法のうちスパッタリング法がより好ましい。スパッタリング法では、金属の蒸発を行う際にるつぼを必要としないため、純度の高い中実ナノ粒子を製造することができる。なお、蒸発原理としては、真空蒸着法の場合には、例えば抵抗加熱方式や遠赤外線加熱方式、電子ビーム加熱方式、アーク加熱方式、高周波誘導加熱方式などを用いることができ、イオンプレーティング法の場合には、例えば高周波励起方式やイオンビーム方式、クラスタ方式などを用いることができ、スパッタリング法の場合には、例えばDCスパッタ方式、マグネトロンスパッタ方式、高周波スパッタ方式、イオンビームスパッタ方式などを用いることができる。
 本発明の第1、第2の中空ナノ粒子の製法において、工程(a)を行う際、減圧下で行うのが好ましい。減圧下で行えば、純度の高い中実ナノ粒子を短時間で生成することができる。ここで、「減圧下」とは、気圧が大気よりも低い状態であればよく、好ましくは20Pa以下である。スパッタリング法により中実ナノ粒子を製造する場合にはガス雰囲気下で行うとしてもよい。ガスを送り込む場合、使用するガスは希ガスが好ましく、アルゴンガスがより好ましい。このときのアルゴンガスの圧力は、20Pa以下が好ましい。蒸着電流の大きさは、原料や蒸着装置に応じて適宜設定すればよい。また、反応時間も反応温度やイオン液体の量などによって好ましい範囲が変わるが、数十秒~数時間の範囲で設定するのが好ましく、30秒~20分の範囲で設定するのがより好ましい。
 スパッタリング法を利用して中実ナノ粒子を製造する場合、例えば以下のようにして行うとしてもよい。図1に示すように、蒸着装置10として、真空にすることが可能な蒸着チャンバ12と、蒸着チャンバ12の上面に設置されターゲット材18を装着可能な陰極14と、陰極14に対向する位置に設置された陽極16とを備えたものを使用する場合には、まず、ターゲット材18を陰極14に装着し、イオン液体22を載せたガラス基板20を陽極16上に配置する。そして、蒸着チャンバ12内を真空又はガス雰囲気下(例えばアルゴンガスなど)にした状態で陰極14に高電圧を印加する。すると、蒸着チャンバ12内にグロー放電が発生し、グロー放電によって生じたガスイオンがターゲット材18に衝突することにより、ターゲット材18を構成している金属がスパッタ蒸発される。そして、ターゲット材18からたたき出された金属が対面するイオン液体22に付着することにより、その金属の中実ナノ粒子がイオン液体22上又はイオン液体22中に生成される。
 本発明の第1、第2の中空ナノ粒子の製法において、工程(a)で得られる中実ナノ粒子の粒径は、用いるイオン液体の種類に応じて異なるものにすることができる。また、工程(a)で得られる中実ナノ粒子の粒径は、蒸着時間に応じて異なるものにすることもできる。具体的には、反応時間が長くなるにつれて中実ナノ粒子の粒径が大きくなり、所定の大きさまで至ると粒子成長が停止する傾向にある。したがって、イオン液体や反応時間を変えることにより、目的とする粒径を持つ中実ナノ粒子を製造することができる。そして、工程(b)で得られる中空ナノ粒子の粒径は、工程(a)で得られる中実ナノ粒子の粒径に依存して決まるため、工程(a)で使用するイオン液体の種類あるいは工程(a)の蒸着時間によって、中空ナノ粒子の粒径を制御することが可能になる。
 本発明の第1、第2の中空ナノ粒子の製法において、工程(b)の酸化ガスとしては、金属を酸化する能力のあるものであれば特に限定するものではないが、例えば酸素ガスや空気などが挙げられる。また、工程(b)の酸化を空気中で加熱することにより実施する場合、その加熱温度は、中空粒子を構成する金属が酸化ガスにより酸化され得る温度であれば特に限定するものではないが、例えば100~400℃、好ましくは200~300℃であり、その加熱時間は、中空粒子を構成する金属が酸化ガスにより酸化され得る時間であれば特に限定するものではないが、例えば数分~数時間である。
 本発明の第1、第2の中空ナノ粒子の製法により製造された中空ナノ粒子をイオン液体から回収するには、用いたイオン液体に該イオン液体に対して親和性の高い溶媒を添加することにより行うことができる。すなわち、イオン液体に対して親和性の高い溶媒を該イオン液体に添加することにより、イオン液体中の中空ナノ粒子が沈降する。このように、煩雑な操作を必要とすることなくイオン液体から中空ナノ粒子を回収することができる。ここで、イオン液体に対して親和性の高い溶媒とは、例えばイオン液体として親水性のものを用いた場合には水、メタノール、エタノール、アセトンなどを挙げることができ、疎水性のものを用いた場合にはエーテル、ヘプタン、クロロホルム、塩化メチレンなどが挙げられる。
 本発明の第1、第2の中空ナノ粒子の製法において、工程(a)と工程(b)とを2段階に分けて実施するのではなく、1段階で実施してもよい。具体的には、本発明の第1の中空ナノ粒子の製法において、酸化ガスを含有するガス雰囲気中で所定の金属をイオン液体に蒸着することにより、1段階で、イオン液体に金属の中実ナノ粒子のコア部分が空洞になった中空ナノ粒子を得るようにしてもよい。例えば、低純度の希ガス雰囲気(不純物として酸素ガスを含む)で減圧下に所定の金属(例えばAl,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb,Taなど)をイオン液体に蒸着することにより、中空ナノ粒子が分散したイオン液体を得ることができる。
 本発明の第1の中空ナノ粒子の製法においては、工程(a)で得られる中実ナノ粒子は、球形のコア部分とそのコア部分を覆うシェル部分(外皮部分)とに分けたとき、コア部分には所定の金属が存在し、シェル部分にはその金属の酸化物が存在する二層構造の中実ナノ粒子としてもよい。例えば、Al,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb又はTaをイオン液体に蒸着させた場合には、このような二層構造の中実ナノ粒子が得られやすい。なお、シェル部分の金属の酸化物は、酸素ガスを酸素源として生成したと考えられる。このような二層構造の中実ナノ粒子を酸化して中空ナノ粒子を製造する場合、中実ナノ粒子のコア部分の金属が酸化して中空になるが、シェル部分の金属酸化物は既に酸化されているため変化しない。つまり、工程(a)で生成した中実ナノ粒子のサイズがほぼそのまま工程(b)で生成する中空ナノ粒子のサイズとなる。このため、ナノ粒子のサイズを制御することで中空ナノ粒子のサイズを制御することができる。
 本発明の中空ナノ粒子は、シェルが金属酸化物からなり、平均粒径が4nmを超え50nm以下の球状のものである。こうした中空ナノ粒子は、例えば、本発明の第1の中空ナノ粒子の製法によって得ることができる。この製法によると、シェルの膜厚は平均粒径にかかわらず約2nmとなる。また、平均粒径は、本発明の第1の中空ナノ粒子の製法においてイオン液体の種類を変えることにより、4nmを超え50nm以下の範囲で調節することができる。例えば、インジウム酸化物からなる中空ナノ粒子では、6~18nmの範囲で調節することができる(後述する実施例1~6参照)。なお、非特許文献1の中空ナノ粒子は、液体中で生成させるものではないため、球状ではなく歪んだ形状となっている。また、特許文献1,2では、無機酸化物からなる球状の中空粒子が得られるものの、粒径が1~100μmであるためナノ粒子ではない。
 本発明の中空ナノ粒子は、中空内部に、シェルをなす金属酸化物を構成する金属よりも酸化されにくい金属が存在するものであってもよい。こうした中空ナノ粒子は、例えば、本発明の第2の中空ナノ粒子の製法によって得ることができる。
 本発明の中空ナノ粒子分散液は、上述した本発明の中空ナノ粒子をイオン液体に分散させたものである。こうした分散液は、中空ナノ粒子そのものに比べて取り扱い易いため、利便性が高い。
 以下、本発明の好適な実施例を詳しく説明する。実施例1~6は、インジウムを用いて2段階で中空ナノ粒子を製造した例であり、実施例7は、銅を用いて2段階で中空ナノ粒子を製造した例であり、実施例8は、金とインジウムを用いて2段階でジングルベル型構造の中空ナノ粒子を製造した例であり、実施例9は、インジウムを用いて1段階で中空ナノ粒子を製造した例である。
[実施例1]
(1)中実ナノ粒子の製法
 EMI-BF4(1-エチル-3-メチルイミダゾリウムテトラフルオロホウ酸塩)を120℃で3時間減圧乾燥を行った。スライドガラス(26mm×38mm)上に、乾燥後のEMI-BF4 0.60cm3を均一にのせた。このとき、EMI-BF4は、その表面張力によりガラス基板からこぼれることはなかった。これを蒸着装置(サンユー電子社製SC701-HMCII)内に静置し、EMI-BF4に対向する位置にターゲット材としてインジウム(円板状、直径49mm×厚さ1.0mm)を装着し、インジウムのスパッタ蒸着を行った(ターゲットとイオン液体との距離:2.0cm、蒸着チャンバ内:高純度アルゴン(純度99.995%)、圧力:2.0Pa、蒸着電流:10mA、反応時間:10分)。スパッタ後、スライドガラス表面のEMI-BF4溶液すなわちナノ粒子が分散したイオン液体を回収した。
(2)中実ナノ粒子の構造解析
 イオン液体中に分散したナノ粒子のTEM像を図2に、その粒径分布を図3に、コアサイズ分布を図4に示す。なお、TEM像は、透過型電子顕微鏡(日立ハイテクノロジーズ(株)社製、型式 H7650)を用いて観察した。このとき、TEMグリッドは市販のカーボン支持膜付きCuグリッド(応研商事、STEM100Cuグリッド)を使用し、測定用試料はスパッタ後のイオン液体をTEMグリッド上に滴下したのち、過剰のイオン液体をろ紙により除去して調製した。したがって、TEMグリッド上のナノ粒子はイオン液体から単離したものといえる。図2のナノ粒子は、薄いグレーのシェルと、この内部に存在する濃いグレーのコア粒子からなるコア・シェル構造を持ち、内部に空隙が観察されないことから、中の詰まった中実ナノ粒子であることがわかる。また、図3及び図4から、その中実ナノ粒子は、平均粒径が約8nm、コアサイズが約4nm、シェル厚が約2nmであることがわかる。この中実ナノ粒子につきXRD、XPSで解析を行った。その結果を図5及び図6に示す。図5のXRDパターンから、結晶としては金属インジウムと一致するピークのみ観察され、酸化インジウムと一致するピークは観察されなかった。また、図6のXPSから、粒子表面には金属インジウムではなく酸化インジウムと一致するピークが観察された。図5及び図6の結果から、この中実ナノ粒子は、コア部分に金属インジウムが存在し、シェル部分にアモルファスの酸化インジウムが存在するコア-シェル構造であるといえる。なお、シェル部分の酸化インジウムの酸素源は、アルゴンガス中に不純物として存在する微量の酸素ガスと考えられる。
(3)中空ナノ粒子の製法
 上記(1)で得られた中実ナノ粒子が分散したイオン液体を試験管に0.1cm3とり、空気中で250℃、1時間加熱した。
(4)中空ナノ粒子の構造解析
 空気中で加熱したあとのイオン液体に分散しているナノ粒子のTEM像を図7に、その粒径分布を図8に、粒子内部の空隙サイズ分布を図9に示す。図7のナノ粒子は、薄いグレーの円の周りを濃いグレーのリングが取り囲んでいることから、中が空洞になった中空ナノ粒子であることがわかる。また、図8及び図9から、その中空ナノ粒子は、平均粒径が約8nm、空隙サイズが約4nm、シェル厚が約2nmであることがわかる。この中空ナノ粒子につきXRDで解析を行った。その結果を図10に示す。図10のXRDパターンから、結晶としては酸化インジウムと一致するピークのみ観察された。このことから、この中空ナノ粒子は、結晶性のよい酸化インジウムの中空ナノ粒子であるといえる。なお、中空ナノ粒子の生成メカニズムは、図11に示すように、コア部分が金属インジウム、シェル部分が酸化インジウムの中実ナノ粒子を空気中で加熱すると、シェル部分の微小隙間を通じて空気中の酸素ガスとコア部分の金属インジウムとが反応して酸化インジウムが生成すると共にコア部分に空洞が生じたと考えられる。
[実施例2~6]
 実施例2~6では、上述した実施例1のイオン液体EMI-BF4の代わりに別のイオン液体を用いて中実ナノ粒子を製造した。具体的には、実施例2ではBMMI-BF4(1-ブチル-2,3-ジメチルイミダゾリウムテトラフルオロホウ酸塩)、実施例3ではBMI-PF6(1-ブチル-3-メチルイミダゾリウムヘキサフルオロリン酸塩)、実施例4ではBMI-BF4(1-ブチル-3-メチルイミダゾリウムテトラフルオロホウ酸塩)、実施例5ではAMI-BF4(1-アリル-3-メチルイミダゾリウムテトラフルオロホウ酸塩)、実施例6ではAEI-BF4(1-アリル-3-エチルイミダゾリウムテトラフルオロホウ酸塩)を用いた。そうしたところ、実施例2では粒径約6nm、実施例3では粒径約7nm、実施例4では粒径約10nm、実施例5では粒径約16nm、実施例6では粒径約18nmの中実ナノ粒子が得られた。これらのシェル厚はいずれも約2nmであった。また、各中実ナノ粒子につき、上述した実施例1と同様に空気中で250℃、1時間加熱したところ、もとの中実ナノ粒子とほぼ同じ粒径の中空ナノ粒子が得られた。
[実施例7]
(1)中実ナノ粒子の製法
 実施例1と同様のスライドガラス上に、乾燥後のEMI-BF4 0.60cm3を均一にのせた。これを実施例1と同様の蒸着装置内に静置し、EMI-BF4に対向する位置にターゲット材として銅(円板状、直径49mm×厚さ0.5mm)を装着し、銅のスパッタ蒸着を行った(ターゲットとイオン液体との距離:2.0cm、蒸着チャンバ内:高純度アルゴン、圧力:2.0Pa、蒸着電流:40mA、反応時間:10分)。スパッタ後、スライドガラス表面のEMI-BF4溶液すなわちナノ粒子が分散したイオン液体を回収した。
(2)中実ナノ粒子の構造解析
 イオン液体中に分散したナノ粒子のTEM像を図12に、粒径分布を図13に示す。図12のナノ粒子は、均一な濃さのグレーの円として写っていることから、中の詰まった中実ナノ粒子であることがわかる。また、図13から、その中実ナノ粒子の平均粒径は約10nmであることがわかる。更に、スパッタ蒸着後のイオン液体の吸収スペクトルを図14に示す。580nm付近にCuナノ粒子の表面プラズモン共鳴に由来すると考えられるピークが見られた。このことから、中実ナノ粒子の表面は銅酸化物が存在していないか、存在しているとしても非常に薄い層として存在していることが示唆される。
(3)中空ナノ粒子の製法
 上記(1)の中実ナノ粒子が分散したイオン液体を試験管に0.1cm3とり、空気中で250℃、1時間加熱した。
(4)中空ナノ粒子の構造解析
 空気中で加熱したあとのイオン液体に分散しているナノ粒子のTEM像を図15に、その粒径分布を図16に示す。図15のナノ粒子は、薄いグレーの円の周りを濃いグレーのリングが取り囲んでいることから、中空ナノ粒子であることがわかる。図15から、その中空ナノ粒子は、シェル厚が約2.5nm、空隙サイズが約15nmであることがわかる。また、図16から、その中空ナノ粒子は、平均粒径が約20nmであることがわかる。この中空ナノ粒子につきXRDで解析を行った。その結果を図17に示す。図17のXRDパターンから、結晶としてはCu2Oと一致するピークのみ観察された。このことから、この中空ナノ粒子は、結晶性のよいCu2Oの中空ナノ粒子であることがわかる。なお、中実ナノ粒子から中空ナノ粒子に変化したのに伴って粒径が約2倍に増えているが、これは、まず加熱により中実粒子が凝集して粒子サイズが増大したあと、酸素ガスにより酸化されて中空粒子になったためであると考えられる。
[実施例8]
(1)中実ナノ粒子の製法
 実施例1と同様のスライドガラス上に、乾燥後のEMI-BF4 0.60cm3を均一にのせた。これを実施例1と同様の蒸着装置内に静置し、EMI-BF4に対向する位置にターゲット材として金とインジウムを装着し、両者の同時スパッタ蒸着を行った(ターゲットとイオン液体との距離:2.0cm、蒸着チャンバ内:高純度アルゴン、圧力:2.0Pa、蒸着電流:10mA、反応時間:10分)。スパッタ後、スライドガラス表面のEMI-BF4溶液すなわちナノ粒子が分散したイオン液体を回収した。なお、ターゲット材は、図18に示すように、円板の中心を通る3本の直線で6等分して6つの区域に分け、金とインジウムとが交互に並んだ金-インジウム交互配列板(直径49mm×厚さ0.5mm)を用いた。
(2)中実ナノ粒子の構造解析
 イオン液体中に分散したナノ粒子のTEM像を図19に、その粒径分布を図20に示す。図19のナノ粒子は、均一の濃さのグレーの円として写っていることから、中の詰まった中実ナノ粒子であることがわかる。また、図20から、その中実ナノ粒子は、平均粒径が約6nmであることがわかる。
(3)中空ナノ粒子の製法
 上記(1)で得られた中実ナノ粒子が分散したイオン液体を試験管に0.1cm3とり、空気中で250℃、1時間加熱した。
(4)中空ナノ粒子の構造解析
 空気中で加熱したあとのイオン液体に分散しているナノ粒子のTEM像を図21に、その粒径分布を図22に示す。図21のナノ粒子は、薄いグレーの円の周りを濃いグレーのリングが取り囲んでいると共に、薄いグレーの円の中に一段と濃いグレーの小円が認められることから、中が空洞になった中空ナノ粒子であって、空洞に金粒子が存在するジングルベル型構造であることがわかる。図21から、この中空ナノ粒子は、空隙サイズが約6nm、内部の金のサイズが約4nmであることがわかる。また、図22から、この中空ナノ粒子は、平均粒径が約12nmであることがわかる。図23は、上記(1)で得られた中実ナノ粒子が分散したイオン液体の加熱前と加熱後の吸収スペクトルを示すグラフである。加熱後には、ピーク位置が長波長シフトし、約520nmに現れた。この波長は、Auナノ粒子の表面プラズモン共鳴ピークのものと良く一致する。このことから、インジウムと金の同時スパッタ蒸着によりイオン液体中に生成したInAu合金ナノ粒子を、空気中で加熱することによって、ナノ粒子のInのみが酸化されて脱合金化し、Auナノ粒子が生成したことが示唆される。ジングルベル型構造の中空ナノ粒子の生成メカニズムは、図24に示すように、上記(1)によりコア部分がインジウムと金、シェル部分が酸化インジウムの中実ナノ粒子が生成し、これを空気中で加熱すると、シェル部分の微小隙間を通じて空気中の酸素ガスとコア部分のインジウムとが反応して酸化インジウムが生成すると共にコア部分に空洞が生じるが、金は酸化されにくいためそのまま空洞に残ったと考えられる。
[実施例9]
 実施例1と同様のスライドガラス上に、乾燥後のEMI-BF4 0.60cm3を均一にのせた。これを実施例1と同様の蒸着装置内に静置し、EMI-BF4に対向する位置にターゲット材としてインジウムを装着し、スパッタ蒸着を行った(ターゲットとイオン液体との距離:2.0cm、蒸着チャンバ内:標準純度アルゴン(純度99.99%)、圧力:1.5Pa、蒸着電流:20mA、反応時間:10分)。スパッタ後、スライドガラス表面のEMI-BF4溶液すなわちナノ粒子が分散したイオン液体を回収した。イオン液体中に分散したナノ粒子のTEM像を図25に示す。図25には、中の詰まった中実ナノ粒子のほか、中が空洞の中空ナノ粒子も存在していることがわかる。中空ナノ粒子の数は全体の約10%程度であった。また、粒子サイズは18.3nm、内部のコアサイズは8.7nmであった。このような中空ナノ粒子が生成したメカニズムは、スパッタ蒸着によりイオン液体中に中実ナノ粒子が生成すると共に、この粒子中の金属インジウムコアが、アルゴンガス中に微量に存在する酸素ガスにより素早く酸化されて中空ナノ粒子になったと考えられる。
 なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 本出願は、2009年11月11日に出願された日本国特許出願第2009-258325号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明の中空ナノ粒子やその分散液は、例えば新規な触媒やオプトエレクトロニクス素子、生体分子マーカーなどの材料に利用可能である。

Claims (10)

  1. (a)所定の金属をイオン液体に蒸着することにより、前記金属の中実ナノ粒子が分散したイオン液体を得る工程と、
    (b)前記中実ナノ粒子が分散したイオン液体を、酸化ガスを含有するガス雰囲気中で酸化することにより、前記中実ナノ粒子のコア部分が空洞になった中空ナノ粒子を得る工程と、
     を含む中空ナノ粒子の製法。
  2.  前記工程(a)では、減圧下、希ガスがリッチな雰囲気で前記金属を前記イオン液体に蒸着し、前記工程(b)では、前記中実ナノ粒子が分散したイオン液体を、酸素ガスを含有するガス雰囲気中で加熱する、
     請求項1に記載の中空ナノ粒子の製法。
  3.  前記工程(a)では、前記金属としてAl,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb又はTaを使用し、前記中実ナノ粒子としてコア部分に前記金属が存在しシェル部分に前記金属の酸化物が存在するものを製造し、
     前記工程(b)では、前記中実ナノ粒子が分散したイオン液体を、酸素ガスを含有するガス雰囲気中で加熱することにより、前記中空ナノ粒子として前記中実ナノ粒子と同等の径を持つものを製造する、
     請求項1又は2に記載の中空ナノ粒子の製法。
  4. (a)第1の金属と該第1の金属よりも酸化されにくい第2の金属とをイオン液体に蒸着することにより、前記第1及び第2の金属からなる合金の中実ナノ粒子が分散したイオン液体を得る工程と、
    (b)前記中実ナノ粒子が分散したイオン液体を、酸化ガスを含有するガス雰囲気中で酸化することにより、前記中実ナノ粒子のコア部分が空洞になると共に該空洞に前記第2の金属の粒子が残ったジングルベル型構造の中空ナノ粒子を得る工程と、
     を含む中空ナノ粒子の製法。
  5.  前記工程(a)では、減圧下、希ガスがリッチな雰囲気で前記第1及び第2の金属を前記イオン液体に蒸着し、前記工程(b)では、前記中実ナノ粒子が分散したイオン液体を、酸素ガスを含有するガス雰囲気中で加熱する、
     請求項4に記載の中空ナノ粒子の製法。
  6.  前記第1の金属はAl,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb又はTaであり、前記第2の金属はAu,Pt,Pd,Rh,Ru又はIrである、
     請求項4又は5に記載の中空ナノ粒子の製法。
  7.  金属酸化物からなり平均粒径が4nmを超え50nm以下の球状の中空ナノ粒子。
  8.  中空内部に前記金属酸化物を構成する金属よりも酸化されにくい金属が存在する、請求項7に記載の中空ナノ粒子。
  9.  前記金属酸化物を構成する金属は、Al,Cr,Co,In,Cu,Sn,Ti,Ga,Mo,W,Si,Mg,V,Mn,Fe,Ni,Zn,Ge,Nb又はTaである、請求項7又は8に記載の中空ナノ粒子。
  10.  請求項7~9のいずれか1項に記載の中空ナノ粒子をイオン液体に分散させた、中空ナノ粒子分散液。
PCT/JP2010/069951 2009-11-11 2010-11-09 中空ナノ粒子の製法、中空ナノ粒子及びその分散液 WO2011058976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011540511A JP5799362B2 (ja) 2009-11-11 2010-11-09 中空ナノ粒子の製法
US13/508,217 US8999225B2 (en) 2009-11-11 2010-11-09 Method for producing hollow nanoparticle comprising deposition on/in an ionic liquid, hollow nanoparticle, and dispersion liquid thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009258325 2009-11-11
JP2009-258325 2009-11-11

Publications (1)

Publication Number Publication Date
WO2011058976A1 true WO2011058976A1 (ja) 2011-05-19

Family

ID=43991634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069951 WO2011058976A1 (ja) 2009-11-11 2010-11-09 中空ナノ粒子の製法、中空ナノ粒子及びその分散液

Country Status (3)

Country Link
US (1) US8999225B2 (ja)
JP (1) JP5799362B2 (ja)
WO (1) WO2011058976A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014027568A1 (ja) * 2012-08-13 2016-07-25 千住金属工業株式会社 インジウムボールおよびその製造方法
WO2019078100A1 (ja) * 2017-10-16 2019-04-25 国立大学法人山形大学 固体微粒子で被覆された金属を含む複合体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220270B4 (de) * 2012-10-15 2016-10-06 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Herstellung von hohlen PT- und PT-Legierungskatalysatoren
US9425462B2 (en) 2012-10-15 2016-08-23 GM Global Technology Operations LLC Preparation of hollow Pt and Pt-alloy catalysts
JP6526635B2 (ja) 2013-06-07 2019-06-05 エルジー・ケム・リミテッド 金属ナノ粒子
JP6176224B2 (ja) * 2013-12-25 2017-08-09 日亜化学工業株式会社 半導体素子及びそれを備える半導体装置、並びに半導体素子の製造方法
US10385437B2 (en) * 2016-01-13 2019-08-20 Wisconsin Alumni Research Foundation Synthesis of metal-oxygen based materials with controlled porosity by oxidative dealloying

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224036A (ja) * 2005-02-18 2006-08-31 Hokkaido Univ 光触媒及び光触媒反応方法
JP2007231306A (ja) * 2006-02-27 2007-09-13 Univ Nagoya ナノ粒子の製造方法
WO2009064964A2 (en) * 2007-11-15 2009-05-22 The University Of California Switchable nano-vehicle delivery systems, and methods for making and using them
JP2009525396A (ja) * 2006-01-17 2009-07-09 ピーピージー インダストリーズ オハイオ インコーポレーテツド 物理的蒸着によるイオン性液体中の粒子の生成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035303A (ja) 2002-07-02 2004-02-05 Sangaku Renkei Kiko Kyushu:Kk 無機酸化物中空粒子とその製造方法
JP2004130429A (ja) 2002-10-10 2004-04-30 National Institute For Materials Science コア・シェル構造体とこのコア・シェル構造体から誘導されてなる中空酸化物シェル構造体およびこれらの製造方法
JP4058720B2 (ja) 2003-08-29 2008-03-12 独立行政法人科学技術振興機構 コア・シェル構造体からなる光記録媒体及びその調製方法
US7547347B2 (en) * 2005-05-13 2009-06-16 University Of Rochester Synthesis of nano-materials in ionic liquids
JP4478959B2 (ja) 2006-11-13 2010-06-09 独立行政法人科学技術振興機構 内部に制御された空隙を有するコア・シェル構造体の調整方法と、該コア・シェル構造体を構成要素とする構造体の調製方法
JP2007111855A (ja) 2006-11-13 2007-05-10 Japan Science & Technology Agency ナノ粒子複合体をコアとしたコア・シェル構造体及びそれを構成要素とする構造体並びにそれらとそれらから調製される構造体の調製方法
TWI307297B (en) * 2006-12-14 2009-03-11 Ind Tech Res Inst Method for manufacturing metal nano particles having hollow structure
GB0914390D0 (en) * 2009-08-17 2009-09-30 Univ St Andrews Preparation of CoPt and FePt nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224036A (ja) * 2005-02-18 2006-08-31 Hokkaido Univ 光触媒及び光触媒反応方法
JP2009525396A (ja) * 2006-01-17 2009-07-09 ピーピージー インダストリーズ オハイオ インコーポレーテツド 物理的蒸着によるイオン性液体中の粒子の生成方法
JP2007231306A (ja) * 2006-02-27 2007-09-13 Univ Nagoya ナノ粒子の製造方法
WO2009064964A2 (en) * 2007-11-15 2009-05-22 The University Of California Switchable nano-vehicle delivery systems, and methods for making and using them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYUSUKE NAKAMURA ET AL.: "Formation of Hollow Oxides via Oxidation of Metallic Nanoparticles", CATALYSTS & CATALYSIS, vol. 49, no. 5, 10 August 2007 (2007-08-10), pages 344 - 349 *
Y.YIN ET AL.: "Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect", SCIENCE, vol. 304, 30 April 2004 (2004-04-30), pages 711 - 714, XP002562562, DOI: doi:10.1126/science.1096566 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014027568A1 (ja) * 2012-08-13 2016-07-25 千住金属工業株式会社 インジウムボールおよびその製造方法
WO2019078100A1 (ja) * 2017-10-16 2019-04-25 国立大学法人山形大学 固体微粒子で被覆された金属を含む複合体の製造方法
JPWO2019078100A1 (ja) * 2017-10-16 2020-12-17 国立大学法人山形大学 固体微粒子で被覆された金属を含む複合体の製造方法

Also Published As

Publication number Publication date
JPWO2011058976A1 (ja) 2013-04-04
US20120219800A1 (en) 2012-08-30
JP5799362B2 (ja) 2015-10-21
US8999225B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
JP5799362B2 (ja) 中空ナノ粒子の製法
JP5232988B2 (ja) ナノ粒子の製造方法
US9837668B2 (en) Cost-effective core-shell catalyst with high electrochemical stability
EP2729411B1 (de) Schichtsystem mit einer schicht aus parallel zueinander angeordneten kohlenstoffnanoröhren und einer elektrisch leitenden deckschicht, verfahren zur herstellung des schichtsystems und dessen verwendung in der mikrosystemtechnik
US7790243B2 (en) Method for producing large-diameter 3D carbon nano-onion structures at room temperature
Gu et al. Synthesis and defect engineering of molybdenum oxides and their SERS applications
JPWO2015194579A1 (ja) 炭素被覆金属粉末、炭素被覆金属粉末を含有する導電性ペースト及びそれを用いた積層電子部品、並びに炭素被覆金属粉末の製造方法
KR101621693B1 (ko) 밀도구배를 갖는 다공성 박막의 제조방법 및 이를 이용하는 다공성 박막 및 다공성 전극
Kim et al. Growth, structural, Raman, and photoluminescence properties of rutile TiO2 nanowires synthesized by the simple thermal treatment
JP5765727B2 (ja) ナノ粒子の製造方法及びナノ粒子分散液
Merchan-Merchan et al. Electron beam induced formation of tungsten sub-oxide nanorods from flame-formed fragments
Dellasega et al. Nanostructured Ag4O4 thin films produced by ion beam oxidation of silver
Pradhan et al. Template-free single-step electrochemical synthesis of ZnO hollow nanospheres: Self-assembly of hollow nanospheres from nanoparticles
Dai et al. Carbon-encapsulated metal nanoparticles deposited by plasma enhanced magnetron sputtering
Castaneda Synthesis and characterization of ZnO micro-and nano-cages
KR20170095865A (ko) 박막의 습식 증착 방법
Etula et al. Room‐Temperature Micropillar Growth of Lithium–Titanate–Carbon Composite Structures by Self‐Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries
CN112041266A (zh) 由含碳材料与金属氧化物组成的纳米材料的获得方法
Obrero et al. Supported porous nanostructures developed by plasma processing of metal phthalocyanines and porphyrins
Yu et al. Interfacial reaction growth approach to preparing patterned nanomaterials and beyond
US8221853B2 (en) Microwave plasma CVD of NANO structured tin/carbon composites
CN111204799B (zh) 一种双面神型金属氧或氮化物空心壳层结构的制备方法
Potter et al. Nanoassembly control and optical absorption in CdTe-ZnO nanocomposite thin films
Fares et al. Structural, thermal and optical properties of nickel nanomaterial synthesized by the open-air heat treatment method
Polyakov et al. Comparison of the resistivities of nanostructured films made from silver, copper-silver and copper nanoparticle and nanowire suspensions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540511

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13508217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829935

Country of ref document: EP

Kind code of ref document: A1