WO2011058869A1 - 化合物半導体素子 - Google Patents

化合物半導体素子 Download PDF

Info

Publication number
WO2011058869A1
WO2011058869A1 PCT/JP2010/068822 JP2010068822W WO2011058869A1 WO 2011058869 A1 WO2011058869 A1 WO 2011058869A1 JP 2010068822 W JP2010068822 W JP 2010068822W WO 2011058869 A1 WO2011058869 A1 WO 2011058869A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
compound semiconductor
layer
atoms
index
Prior art date
Application number
PCT/JP2010/068822
Other languages
English (en)
French (fr)
Inventor
真寛 足立
慎司 徳山
浩二 片山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP10829829A priority Critical patent/EP2500953A1/en
Priority to KR1020117027870A priority patent/KR101265018B1/ko
Priority to CN2010800504696A priority patent/CN102687293A/zh
Publication of WO2011058869A1 publication Critical patent/WO2011058869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table

Definitions

  • the present invention relates to a compound semiconductor element.
  • Patent Document 1 discloses a nitride semiconductor element having a counter electrode structure.
  • the surface showing the n polarity of the nitride semiconductor has at least an inclined surface other than the (000-1) plane, and an electrode is formed. Further, the n-polarity surface of the nitride semiconductor has an uneven step. Further, the inclined surface other than the (000-1) plane is formed on the step side surface of the uneven step, and the inclined surface other than the (000-1) plane has an off angle of 0 from the (000-1) plane. .2 degrees or more and 90 degrees or less.
  • Patent Document 2 discloses a semiconductor device (HFET).
  • the HFET is formed on a first nitride semiconductor layer formed on a SiC substrate with a buffer layer interposed therebetween, and formed on the first nitride semiconductor layer.
  • the upper portion of the first nitride semiconductor layer is formed on the HFET.
  • the second nitride semiconductor layer has a contact section having a concave cross section with an inclined portion whose bottom surface or wall surface is inclined with respect to the substrate surface, and the two electrodes having ohmic properties are formed in the contact portion.
  • Patent Document 3 discloses a semiconductor element in which an n-electrode having a low contact resistance is formed on a nitrogen polar surface of a GaN-based semiconductor. This semiconductor element has a vacant region of a group V atom having a value of (group III atom number) / (group V atom number) larger than 1 at a portion in contact with the n electrode.
  • Patent Document 4 discloses a nitride semiconductor device. The nitride semiconductor device includes an n-type GaN substrate, a semiconductor multilayer structure including a p-type region and an n-type region formed on the main surface of the n-type GaN substrate, and a part of the p-type region included in the semiconductor multilayer structure.
  • the p-side electrode which contacts is provided, and the n-side electrode provided in the back surface of the n-type GaN substrate.
  • the back surface of the n-type GaN substrate includes a nitrogen surface, and the carbon concentration at the interface between the back surface and the n-side electrode is adjusted to 5 atomic% or less.
  • Patent Documents 1 to 4 disclose a configuration in which an electrode is provided on a compound semiconductor.
  • selection of the conductivity type of the electrode selection of n-type or p-type
  • the present invention has been made in view of the above-described matters, and an object thereof is to provide a compound semiconductor element having reduced contact resistance with an electrode.
  • a compound semiconductor device includes a compound semiconductor layer having a first surface and a second surface opposite to the first surface and made of a hexagonal compound semiconductor, A first electrode provided on the first surface of the compound semiconductor layer; and a plurality of semiconductor layers provided on the second surface of the compound semiconductor layer, wherein the plurality of semiconductor layers are stacked. And a second electrode provided on the laminate, wherein the number of anion atoms contained in the first surface is greater than the number of cation atoms contained in the first surface.
  • the first electrode is an n-electrode, the oxygen concentration of the first surface is 5 atomic percent or less, and the compound semiconductor layer is made of a group III nitride semiconductor or SiC.
  • the surface on which the n-type first electrode is provided is a surface in which the number of anion atoms is larger than the number of cation atoms and the vacancies of the anion atoms are relatively large.
  • the contact resistance value between the first electrode and the compound semiconductor layer can be reduced.
  • the n-electrode can be made of a material containing at least one element of Al, Ti, In, and Au, and the crystallographic plane index (h, i) of the first surface.
  • J, k) may be a negative integer
  • the first surface may be a ⁇ 20-2-1 ⁇ plane, ⁇ 10-1-1 ⁇ It can be any surface.
  • the compound semiconductor element has a first surface and a second surface opposite to the first surface, the compound semiconductor layer made of a hexagonal compound semiconductor, and the compound semiconductor layer including the first surface.
  • a first electrode provided on one surface, and a stacked body including a plurality of semiconductor layers provided on the second surface of the compound semiconductor layer, wherein the plurality of semiconductor layers are stacked;
  • a second electrode provided on the laminate, wherein the number of anion atoms contained in the first surface is smaller than the number of cation atoms contained in the first surface, and the first electrode Is a p-electrode, the oxygen concentration of the first surface is 5 atomic percent or less, and the compound semiconductor layer is made of a group III nitride semiconductor or SiC.
  • the surface on which the p-type first electrode is provided is a surface in which the number of cation atoms is larger than the number of anion atoms and the vacancies of the cation atoms are relatively large.
  • the contact resistance value between the first electrode and the compound semiconductor layer can be reduced.
  • the p electrode can be made of a material containing at least one element of Pd, Pt, Ni, Au, and W, and the crystallographic plane index (h of the first face) , I, j, k), the fourth index k may be a positive integer, and the first plane is the ⁇ 20-21 ⁇ plane, ⁇ 10-11 ⁇ plane Can be in any aspect.
  • the stacked body may have an active layer.
  • FIG. 1 shows a configuration of a compound semiconductor element according to the embodiment.
  • the compound semiconductor element 1 shown in FIG. 1 is an LED.
  • the compound semiconductor device 1 includes an n substrate 3, an n clad layer 5, an active layer 7, a p clad layer 9, a contact layer 11, an n electrode 13, and a p electrode 15.
  • the n substrate 3 has a surface S1 and a surface S2 on the opposite side of the surface S1, and is made of GaN which is a hexagonal compound semiconductor, but other group III nitride semiconductors such as GaAs. Or SiC.
  • the number of anion atoms is larger than the number of cation atoms.
  • the donor concentration (cm ⁇ 2 ) on the surface S1 is also higher by the vacancy of the anion atom.
  • the n substrate 3 is made of GaN, the anion atoms correspond to N atoms and the cation atoms correspond to Ga atoms. Therefore, since the surface S1 contains more N atoms than Ga atoms, the number of vacancies of N atoms contained in the surface S1 also increases. Since the vacancies of N atoms are considered to be equivalent to the donors, the donor concentration (cm ⁇ 2 ) on the surface S1 is also higher by the amount of vacancies of N atoms. Therefore, when the electrode is provided on the surface S1 in which the number of anion atoms is larger than the number of cation atoms, the n electrode has a lower contact resistance than the p electrode, and thus the ohmic property is improved. To do. For this reason, the electrode provided on the surface S ⁇ b> 1 of the n substrate 3 is the n electrode 13.
  • the oxygen concentration on the surface S1 is 5 atomic percent or less, and the thickness of the oxide film on the surface S1 is 50 angstroms or less. The lower the oxygen concentration on the surface S1 and the smaller the oxide film thickness, the lower the contact resistance with the n-electrode 13.
  • the fourth index k included in the crystallographic plane index (h, i, j, k) of the surface S1 is negative when the surface S1 contains more anion atoms than cation atoms. (H, i, j are all integers), for example, (20-2-1), (11-2-2), (10-1-1), (10-1-3) Etc.
  • the surface S1 can be either a ⁇ 20-2-1 ⁇ plane or a ⁇ 10-1-1 ⁇ plane when the symmetry of the crystal lattice is taken into consideration.
  • the measured value of the contact resistance value of the n-electrode 13 provided on the surface S1 is shown in FIG. 2A for each crystallographic plane index of the surface S1.
  • the crystallographic plane index of the surface S1 is (20-2-1), (11-2-2), (10-1-1), (10-1-3).
  • the contact resistance value of the n-electrode 13 is While a 1.0 ⁇ 10 -4 ⁇ cm 2 about less, whereas crystallographic plane index of the surface S1 is (20-21), (11-22), (10-11), (10 ⁇ 13), that is, when the fourth index k included in the crystallographic plane index (h, i, j, k) of the surface S1 is a positive integer, the n-electrode 13
  • the contact resistance value is about 2.0 ⁇ 10 ⁇ 4 ⁇ cm 2 or more.
  • the number of anion atoms is also the surface of a group III nitride semiconductor other than GaN (such as GaAs) or a semiconductor made of SiC.
  • a group III nitride semiconductor other than GaN such as GaAs
  • SiC silicon carbide
  • crystallographic plane indices (h, i, j, k) of such surfaces are, for example, (20-2-1), (11-2-2), (10-1-1), (10-1 As in (-3), the fourth index k included in (h, i, j, k) is a negative integer.
  • a stacked body including the n clad layer 5, the active layer 7, the p clad layer 9, and the contact layer 11 is provided on the surface S ⁇ b> 2 of the n substrate 3.
  • the n clad layer 5, the active layer 7, the p clad layer 9, and the contact layer 11 are sequentially stacked on the n substrate 3.
  • the n clad layer 5 is made of n-type InGaN.
  • the active layer 7 includes one or more barrier layers and one or more well layers.
  • the barrier layer is made of, for example, GaN, and the well layer is made of, for example, InGaN.
  • the p-clad layer 9 is made of p-type AlGaN, and the contact layer 11 is made of p-type GaN.
  • the contact layer 11 is a surface of the contact layer 11 on the side opposite to the interface with the p-cladding layer 9 (surface S4 of the contact layer 11), and has a surface S3 on which the p-electrode 15 is provided.
  • a laminate composed of the p-clad layer 9, the active layer 7, the n-clad layer 5 and the n-substrate 3 is provided.
  • the surface S3 of the contact layer 11 has a larger number of cation atoms than the number of anion atoms. Thus, when the number of cation atoms is larger, the number of vacancies in the cation atoms also increases.
  • the acceptor concentration (cm ⁇ 2 ) of the surface S3 is also higher by the vacancy of the cation atom. Since the contact layer 11 is made of GaN, the anion atoms correspond to N atoms and the cation atoms correspond to Ga atoms. Therefore, since the surface S3 contains more Ga atoms than N atoms, the number of Ga atoms contained in the surface S3 also increases. Since the vacancies of Ga atoms are considered to be equivalent to the acceptors, the acceptor concentration (cm ⁇ 2 ) on the surface S3 is also higher by the vacancies of Ga atoms.
  • the electrode provided on the surface S ⁇ b> 3 of the contact layer 11 is a p-electrode 15.
  • the fourth index k included in the crystallographic plane index (h, i, j, k) of the surface S3 is positive when the surface S3 contains more cation atoms than the anion atoms. It is an integer (h, i, j are all integers), for example, (20-21), (11-22), (10-11), (10-13), etc.
  • the surface S3 can be either a ⁇ 20-21 ⁇ plane or a ⁇ 10-11 ⁇ plane when the symmetry of the crystal lattice is taken into consideration.
  • the oxygen concentration on the surface S3 is 5 atomic percent or less, and the thickness of the oxide film on the surface S3 is 50 angstroms or less.
  • the measured value of the contact resistance value of the p-electrode 15 provided on the surface S3 is shown in FIG. 2B for each crystallographic plane index of the surface S3.
  • the actually measured values shown in FIG. 2B are measured with respect to the contact layer 11 made of GaN.
  • the crystallographic plane index of the surface S3 is (20-21), (11-22), (10-11), (10-13), that is, the surface S3
  • the fourth index k included in the crystallographic plane index (h, i, j, k) is a positive integer
  • the contact resistance value of the p-electrode 15 is 1.0 ⁇ 10 ⁇ 3 ⁇ cm.
  • crystallographic plane index of the surface S3 is (20-2-1), (11-2-2), (10-1-1), (10-1 -3), that is, when the fourth index k included in the crystallographic plane index (h, i, j, k) of the surface S3 is a negative integer
  • the p electrode 15 Has a contact resistance value of about 4.0 ⁇ 10 ⁇ 3 ⁇ cm 2 or more.
  • the contact resistance value of the p-electrode 15 is smaller when the index k is positive than when it is negative.
  • the number of cation atoms is also the surface of a group III nitride semiconductor other than GaN (for example, GaAs) or a semiconductor made of SiC.
  • a group III nitride semiconductor other than GaN for example, GaAs
  • SiC a semiconductor made of SiC.
  • the crystallographic plane index (h, i, j, k) of such a surface is, for example, (20-21), (11-22), (10-11), (10-13), etc.
  • the fourth index k included in (h, i, j, k) is a positive integer.
  • the n electrode 13 is provided on the surface S1 of the n substrate 3 and is in contact with the surface S1.
  • the n-electrode 13 is made of a material containing at least one element of Al, Ti, In, and Au.
  • the n-electrode 13 can be made of a material containing Al and Au elements.
  • the p electrode 15 is provided on the surface S3 of the contact layer 11 and is in contact with the surface S3.
  • the p electrode 15 is made of a material containing at least one element of Pd, Pt, Ni, Au, and W.
  • a material containing an element of Pd, Au, or a material containing an element of Pt, Au Can consist of
  • an n substrate 3 is prepared.
  • the n clad layer 5, the active layer 7, the p clad layer 9 and the contact layer 11 are epitaxially grown on the n substrate 3.
  • a p-electrode 15 is formed on the surface S3 of the contact layer 11, and an n-electrode 13 is formed on the surface S1 of the n substrate 3.
  • the n-electrode 13 is formed by first depositing Al using an electron beam vapor deposition apparatus and then vapor-depositing Au using a resistance overheating vapor deposition apparatus.
  • the p-electrode 15 is formed by first depositing Pd (or Pt) using an electron beam deposition apparatus, and then depositing Au using a resistance overheating deposition apparatus. In addition, before the formation of the n electrode 13 and the p electrode 15, a surface treatment for removing the oxide film formed on the surface S1 of the n substrate 3 and the surface S3 of the contact layer 11 is performed on the surface S1 and the surface S3. Apply.
  • the surface S1 is subjected to organic cleaning with acetone and isopropyl alcohol, and then subjected to surface treatment with a mixed solution of sulfuric acid and hydrogen peroxide, hydrofluoric acid, aqua regia and hydrochloric acid, and then Al and
  • the n-electrode 13 is formed by evaporating Au.
  • the surface S3 is subjected to organic cleaning with acetone and isopropyl alcohol, and then subjected to surface treatment with a mixed solution of sulfuric acid and hydrogen peroxide, hydrofluoric acid, aqua regia, and hydrochloric acid, and then Pd and
  • the p electrode 15 is formed by evaporating Au or evaporating Pt and Au.
  • a hexagonal compound semiconductor layer for example, an n substrate 3
  • a surface having a large number of anion atoms ie, a surface having many vacancies of anion atoms
  • a crystal N-type electrode for example, n-electrode 13
  • LD LD
  • Schottky diode transistor
  • HEMT hexagonal compound semiconductor layer
  • semiconductor for example, contact layer 11
  • a surface where k is a positive integer A structure including a p-type electrode provided on the surface S3) (e.g. p-electrode 15), the other elements (e.g., LD, Schottky diodes, transistors may be applied to the HEMT, etc.).
  • the surface on which the n-type electrode is provided is a surface in which the number of anion atoms is larger than the number of cation atoms and the vacancies of the anion atoms are relatively large, so that the contact resistance between the electrode and the compound semiconductor layer The value can be reduced.
  • the contact resistance value between this electrode and the compound semiconductor layer can be further reduced.
  • SYMBOLS 1 Compound semiconductor element, 11 ... Contact layer, 13 ... n electrode, 15 ... p electrode, 3 ... n substrate, 5 ... n clad layer, 7 ... Active layer, 9 ... p clad layer, S1, S2, S3, S4 ...surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

 電極との接触抵抗が低減された化合物半導体素子を提供する。化合物半導体素子は、表面S1と表面S2とを有しており六方晶系化合物半導体のGaNからなるn基板3と、n基板3の表面S1に設けられたn電極13と、n基板3の表面S2に設けられたnクラッド層5、活性層7、pクラッド層9及びコンタクト層11を有する積層体と、pクラッド層9上に設けられたp電極15とを備える。n基板3の表面S1に含まれるN原子の数は表面S1に含まれるGa原子の数より大きく、表面S1に設けられる電極はn電極13であり、表面S1の酸素濃度は5原子パーセント以下である。コンタクト層11の表面S3に含まれるGa原子の数は表面S3に含まれるN原子の数より大きく、表面S3に設けられる電極はp電極15であり、表面S3の酸素濃度は5原子パーセント以下である。

Description

化合物半導体素子
 本発明は、化合物半導体素子に関する。
 特許文献1には、対向電極構造の窒化物半導体素子が開示されている。この窒化物半導体のn極性を示す面には、少なくとも(000-1)面以外の傾斜面を有し、且つ電極を形成している。また、この窒化物半導体のn極性を示す面は凹凸段差を有する。さらに上記(000-1)面以外の傾斜面は、凹凸段差の段差側面に形成されており、上記(000-1)面以外の傾斜面は、(000-1)面からのオフ角が0.2度以上90度以下となっている。特許文献2には、半導体装置(HFET)が開示されている。このHFETは、SiC基板上にバッファ層を介在させて形成された第1の窒化物半導体層と、この第1の窒化物半導体層の上に形成され、この第1の窒化物半導体層の上部に2次元電子ガス層を生成する第2の窒化物半導体層と、この第2の窒化物半導体層の上に選択的に形成されたオーム性を持つ二つの電極とを有する。第2の窒化物半導体層は、底面又は壁面が基板面に対して傾斜した傾斜部を持つ断面凹状のコンタクト部を有し、オーム性を持つ上記二つの電極はコンタクト部に形成されている。
 特許文献3には、GaN系半導体の窒素極性面上に、コンタクト抵抗の低いn電極が形成された半導体素子が開示されている。この半導体素子は、n電極と接する部分に、(III族原子数)/(V族原子数)の値が1よりも大きいV族原子の空孔領域を有する。特許文献4には、窒化物半導体装置が開示されている。この窒化物半導体装置は、n型GaN基板と、n型GaN基板の主面に形成されp型領域およびn型領域を含む半導体積層構造と、半導体積層構造に含まれるp型領域の一部に接触するp側電極と、n型GaN基板の裏面に設けられたn側電極とを備える。この窒化物半導体装置は、n型GaN基板の裏面が窒素面を含み、その裏面とn側電極との界面における炭素濃度が5原子%以下に調整されている。
特開2004-172568号公報 特開2005-129696号公報 特開2007-116076号公報 国際公開第WO2006/098215号パンフレット
 上記のように、特許文献1~4には化合物半導体に電極が設けられた構成が開示されている。しかしながら、特許文献1~4の場合、電極の導電型の選択(n型又はp型の選択)が、電極の接触抵抗を十分低減できるようなものにはなっていない。そこで、本発明は、上記の事項を鑑みてなされたものであり、電極との接触抵抗が低減された化合物半導体素子を提供することを目的としている。
 本発明の一側面に係る化合物半導体素子は、第1の面と該第1の面の反対側にある第2の面とを有しており六方晶系化合物半導体からなる化合物半導体層と、前記化合物半導体層の前記第1の面に設けられた第1の電極と、前記化合物半導体層の前記第2の面に設けられた複数の半導体層を有しており該複数の半導体層が積層されてなる積層体と、前記積層体上に設けられた第2の電極と、を備え、前記第1の面に含まれるアニオン原子の数は前記第1の面に含まれるカチオン原子の数より大きく、前記第1の電極はn電極であり、前記第1の面の酸素濃度は5原子パーセント以下であり、前記化合物半導体層は、III族窒化物半導体、又は、SiC、からなる、ことを特徴とする。電極の導電型の選択には、この電極の設けられる化合物半導体層の表面のアニオン原子数及びカチオン原子数や表面の酸化濃度を考慮する必要がある。本発明の一側面によれば、n型の第1の電極を設ける面を、アニオン原子の数がカチオン原子の数よりも大きい面であってアニオン原子の空孔を比較的大きい面とすることによって、第1の電極と化合物半導体層との接触抵抗値を低減できる。第1の電極を設ける面を、酸素濃度の比較的低い面とすることによって、第1の電極と化合物半導体層との接触抵抗値をさらに低減できる。
 この化合物半導体素子では、前記n電極は、Al,Ti,In,Auの元素のうち少なくとも一の元素を含む材料からなることができ、前記第1の面の結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kは負の整数となっていることができ、前記第1の面は、{20-2-1}面、{10-1-1}面のいずれかの面であることができる。
 この化合物半導体素子は、第1の面と該第1の面の反対側にある第2の面とを有しており六方晶系化合物半導体からなる化合物半導体層と、前記化合物半導体層の前記第1の面に設けられた第1の電極と、前記化合物半導体層の前記第2の面に設けられた複数の半導体層を有しており該複数の半導体層が積層されてなる積層体と、前記積層体上に設けられた第2の電極と、を備え、前記第1の面に含まれるアニオン原子の数は前記第1の面に含まれるカチオン原子の数より小さく、前記第1の電極はp電極であり、前記第1の面の酸素濃度は5原子パーセント以下であり、前記化合物半導体層は、III族窒化物半導体、又は、SiC、からなる、ことを特徴とする。電極の導電型の選択には、この電極の設けられる化合物半導体層の表面のアニオン原子数及びカチオン原子数や表面の酸化濃度を考慮する必要がある。この化合物半導体素子によれば、p型の第1の電極を設ける面を、カチオン原子の数がアニオン原子の数よりも大きい面であってカチオン原子の空孔が比較的大きい面とすることによって、第1の電極と化合物半導体層との接触抵抗値を低減できる。第1の電極を設ける面を、酸素濃度の比較的低い面とすることによって、第1の電極と化合物半導体層との接触抵抗値をさらに低減できる。
 この化合物半導体素子では、前記p電極は、Pd,Pt,Ni,Au,Wの元素のうち少なくとも一の元素を含む材料からなることができ、前記第1の面の結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kは正の整数となっていることができ、前記第1の面は、{20-21}面、{10-11}面のいずれかの面であることができる。また、この化合物半導体素子では、前記積層体が活性層を有していてもよい。
 本発明の各側面によれば、電極との接触抵抗が低減された化合物半導体素子を提供できる。
実施形態に係る化合物半導体素子の構成を示す図である。 実施形態に係る化合物半導体素子の効果を説明するためのグラフである。
 以下、図面を参照して、本発明に係る好適な実施形態について詳細に説明する。なお、図面の説明において、可能な場合には、同一要素には同一符号を付し、重複する説明を省略する。図1に、実施形態に係る化合物半導体素子の構成を示す。図1に示す化合物半導体素子1はLEDである。化合物半導体素子1は、n基板3、nクラッド層5、活性層7、pクラッド層9、コンタクト層11、n電極13及びp電極15を備える。n基板3は、表面S1と、表面S1の反対側にある表面S2とを有しており、六方晶系化合物半導体であるGaNからなるものとするが、GaAs等の他のIII族窒化物半導体、又は、SiC、からなるものであってもよい。n基板3の表面S1は、カチオン原子の数よりもアニオン原子の数のほうが大きい。このように、アニオン原子の数のほうが大きい場合には、アニオン原子の空孔も多くなる。アニオン原子の空孔はドナーと同等と考えられるので、アニオン原子の空孔分だけ表面S1のドナー濃度(cm-2)も高い。n基板3はGaNからなるので、アニオン原子がN原子に対応し、カチオン原子がGa原子に対応する。よって、表面S1は、Ga原子よりもN原子のほうを多く含むので、表面S1に含まれるN原子の空孔も多くなる。N原子の空孔はドナーと同等と考えられるので、N原子の空孔分だけ表面S1のドナー濃度(cm-2)も高い。従って、このようにアニオン原子の数のほうがカチオン原子の数よりも大きい表面S1に電極を設ける場合には、n電極の方がp電極に比較して接触抵抗が低く、よって、オーミック性が向上する。このため、n基板3の表面S1に設けられる電極は、n電極13となっている。
 また、表面S1の酸素濃度は5原子パーセント以下となっており、表面S1上の酸化膜の膜厚は50オングストローム以下である。表面S1の酸素濃度が低いほど、及び、酸化膜の膜厚が小さいほど、n電極13との接触抵抗が低くなる。なお、表面S1の結晶学的面指数(h,i,j,k)に含まれている4番目の指数kは、カチオン原子よりもアニオン原子の方が表面S1に多く含まれる場合、負の整数となっており(h,i,jは何れも整数)、例えば、(20-2-1)、(11-2-2)、(10-1-1)、(10-1-3)等である。特に、表面S1は、結晶格子の対称性を考慮にいれると、{20-2-1}面、{10-1-1}面のいずれかの面となっていることができる。
 ここで、表面S1に設けられたn電極13の接触抵抗値の実測値を、表面S1の結晶学的面指数毎に図2(A)に示す。図2(A)に示すように、表面S1の結晶学的面指数が(20-2-1)、(11-2-2)、(10-1-1)、(10-1-3)の場合、すなわち、表面S1の結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kが負の整数の場合には、n電極13の接触抵抗値が1.0×10-4Ωcm程度以下となっているが、これに対し、表面S1の結晶学的面指数が(20-21)、(11-22)、(10-11)、(10-13)の場合、すなわち、表面S1の結晶学的面指数(h,i,j,k)に含まれている4番目の指数kが正の整数となっている場合には、n電極13の接触抵抗値が2.0×10-4Ωcm程度以上となっている。このように、指数kが負の場合のほうが正の場合に比較してn電極13の接触抵抗値が小さいことがわかる。
 なお、GaNからなるn基板3の表面S1と同様に、GaN以外の他のIII族窒化物半導体(例えばGaAs等)、又は、SiCからなる半導体、の表面であっても、アニオン原子の数がカチオン原子の数よりも大きい場合には、アニオン原子の空孔も多くなるので、n電極の方がp電極に比較して接触抵抗が低く、よって、オーミック性が向上する。このような表面の結晶学的面指数(h,i,j,k)は、例えば(20-2-1)、(11-2-2)、(10-1-1)、(10-1-3)等のように、(h,i,j,k)に含まれている第4番目の指数kが負の整数となっている。
 図1に戻って説明する。n基板3の表面S2には、nクラッド層5、活性層7、pクラッド層9及びコンタクト層11からなる積層体が設けられている。nクラッド層5、活性層7、pクラッド層9及びコンタクト層11は、n基板3上に順次積層される。nクラッド層5は、n型のInGaNからなる。活性層7は、一又は複数のバリア層と、一又は複数の井戸層とを含む。バリア層は例えばGaNからなり、井戸層は例えばInGaNからなる。pクラッド層9は、p型のAlGaNからなり、コンタクト層11は、p型のGaNからなる。
 コンタクト層11は、pクラッド層9との界面(コンタクト層11の表面S4)の反対側にあるコンタクト層11の面であり、p電極15が設けられる面である表面S3を有する。コンタクト層11の表面S4には、pクラッド層9、活性層7、nクラッド層5及びn基板3からなる積層体が設けられていることになる。コンタクト層11の表面S3は、n基板3の表面S1の場合とは逆に、アニオン原子の数よりもカチオン原子の数のほうが大きい。このように、カチオン原子の数のほうが大きい場合、カチオン原子の空孔も多くなる。カチオン原子の空孔はアクセプタと同等と考えられるので、カチオン原子の空孔分だけ表面S3のアクセプタ濃度(cm-2)も高い。コンタクト層11はGaNからなるので、アニオン原子がN原子に対応し、カチオン原子がGa原子に対応する。よって、表面S3は、N原子よりもGa原子のほうを多く含むので、表面S3に含まれるGa原子の空孔も多くなる。Ga原子の空孔はアクセプタと同等と考えられるので、Ga原子の空孔分だけ表面S3のアクセプタ濃度(cm-2)も高い。従って、このようにカチオン原子の数のほうがアニオン原子の数よりも大きい表面S3に電極を設ける場合には、p電極の方がn電極に比較して接触抵抗が低く、よって、オーミック性が向上する。このため、コンタクト層11の表面S3に設けられる電極は、p電極15となっている。なお、表面S3の結晶学的面指数(h,i,j,k)に含まれている4番目の指数kは、アニオン原子よりもカチオン原子の方が表面S3に多く含まれる場合、正の整数となっており(h,i,jは何れも整数)、例えば、(20-21)、(11-22)、(10-11)、(10-13)等である。特に、表面S3は、結晶格子の対称性を考慮にいれると、{20-21}面、{10-11}面のいずれかの面となっていることができる。
 また、表面S3の酸素濃度は5原子パーセント以下となっており、表面S3上の酸化膜の膜厚は50オングストローム以下である。表面S3の酸素濃度が低いほど、及び、酸化膜の膜厚が小さいほど、p電極15との接触抵抗が低くなる。
 ここで、表面S3に設けられたp電極15の接触抵抗値の実測値を、表面S3の結晶学的面指数毎に図2(B)に示す。図2(B)に示す実測値は、GaNからなるコンタクト層11に対して測定されたものである。図2(B)に示すように、表面S3の結晶学的面指数が(20-21)、(11-22)、(10-11)、(10-13)の場合、すなわち、表面S3の結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kが正の整数の場合には、p電極15の接触抵抗値が1.0×10-3Ωcm程度以下となっているが、これに対し、表面S3の結晶学的面指数が(20-2-1)、(11-2-2)、(10-1-1)、(10-1-3)の場合、すなわち、表面S3の結晶学的面指数(h,i,j,k)に含まれている4番目の指数kが負の整数となっている場合には、p電極15の接触抵抗値が4.0×10-3Ωcm程度以上となっている。このように、指数kが正の場合のほうが負の場合に比較してp電極15の接触抵抗値が小さいことがわかる。
 なお、GaNからなるコンタクト層11の表面S3と同様に、GaN以外の他のIII族窒化物半導体(例えばGaAs等)、又は、SiCからなる半導体、の表面であっても、カチオン原子の数がアニオン原子の数よりも大きい場合には、カチオン原子の空孔も多くなるので、p電極の方がn電極に比較して接触抵抗が低く、よって、オーミック性が向上する。このような表面の結晶学的面指数(h,i,j,k)は、例えば(20-21)、(11-22)、(10-11)、(10-13)等のように、(h,i,j,k)に含まれている第4番目の指数kが正の整数となっている。
 図1に戻って説明する。n電極13は、n基板3の表面S1に設けられており、表面S1に接触している。n電極13は、Al,Ti,In,Auの元素のうち少なくとも一の元素を含む材料からなるが、例えば、Al、Auの元素を含む材料からなることができる。p電極15は、コンタクト層11の表面S3に設けられており、表面S3に接触している。p電極15は、Pd,Pt,Ni,Au,Wの元素のうち少なくとも一の元素を含む材料からなるが、例えば、Pd,Auの元素を含む材料、又は、Pt,Auの元素を含む材料からなることができる。
 次に、化合物半導体素子1の製造方法について説明する。まず、n基板3を用意する。次に、n基板3上に、nクラッド層5、活性層7、pクラッド層9及びコンタクト層11をエピタキシャル成長させる。そして、この後、コンタクト層11の表面S3にp電極15を形成し、n基板3の表面S1にn電極13を形成する。n電極13は、まず電子ビーム蒸着装置を用いてAlを蒸着し、この後、抵抗過熱型蒸着装置を用いてAuを蒸着することによって、形成される。p電極15は、まず電子ビーム蒸着装置を用いてPd(又はPt)を蒸着し、この後、抵抗過熱型蒸着装置を用いてAuを蒸着することによって、形成される。なお、n電極13及びp電極15の形成前に、n基板3の表面S1及びコンタクト層11の表面S3に形成される酸化膜を除去するための表面処理を、表面S1と表面S3とに対して施す。表面S1に対しては、表面S1をアセトン、イソプロピル・アルコールを用いて有機洗浄した後に、硫酸及び過酸化水素水の混合液、フッ酸、王水、塩酸を用いて表面処理した後に、Al及びAuを蒸着することによってn電極13を形成する。表面S3に対しては、表面S1をアセトン、イソプロピル・アルコールを用いて有機洗浄した後に、硫酸及び過酸化水素水の混合液、フッ酸、王水、塩酸を用いて表面処理した後に、Pd及びAuを蒸着する、又は、Pt及びAuを蒸着する、ことによって、p電極15を形成する。
 以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。具体的には、六方晶系化合物半導体の半導体層(例えばn基板3)と、この半導体層の表面のうちアニオン原子の数の多い表面(すなわち、アニオン原子の空孔の多い表面であり、結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kが負の整数となっている面。例えば表面S1)に設けられるn型の電極(例えばn電極13)とを含む構成を、他の素子(例えば、LD、ショットキーダイオード、トランジスタ、HEMT等)に適用してもよいし、六方晶系化合物半導体の半導体層(例えばコンタクト層11)と、この半導体層の表面のうちカチオン原子の数の多い表面(すなわち、カチオン原子の空孔の多い面であり、結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kが正の整数となっている面。例えば表面S3)に設けられるp型の電極(例えばp電極15)とを含む構成を、他の素子(例えば、LD、ショットキーダイオード、トランジスタ、HEMT等)に適用してもよい。
 電極との接触抵抗が低減された化合物半導体素子である。n型の電極を設ける面を、アニオン原子の数がカチオン原子の数よりも大きい面であってアニオン原子の空孔を比較的大きい面とすることによって、この電極と化合物半導体層との接触抵抗値を低減できる。この電極を設ける面を、酸素濃度の比較的低い面とすることによって、この電極と化合物半導体層との接触抵抗値をさらに低減できる。
 1…化合物半導体素子、11…コンタクト層、13…n電極、15…p電極、3…n基板、5…nクラッド層、7…活性層、9…pクラッド層、S1,S2,S3,S4…表面。

Claims (9)

  1.  第1の面と該第1の面の反対側にある第2の面とを有しており六方晶系化合物半導体からなる化合物半導体層と、
     前記化合物半導体層の前記第1の面に設けられた第1の電極と、
     前記化合物半導体層の前記第2の面に設けられた複数の半導体層を有しており該複数の半導体層が積層されてなる積層体と、
     前記積層体上に設けられた第2の電極と、
     を備え、
     前記第1の面に含まれるアニオン原子の数は前記第1の面に含まれるカチオン原子の数より大きく、
     前記第1の電極はn電極であり、
     前記第1の面の酸素濃度は5原子パーセント以下であり、
     前記化合物半導体層は、III族窒化物半導体、又は、SiC、からなる、
     ことを特徴とする化合物半導体素子。
  2.  前記n電極は、Al,Ti,In,Auの元素のうち少なくとも一の元素を含む材料からなる、ことを特徴とする請求項1に記載の化合物半導体素子。
  3.  前記第1の面の結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kは負の整数である、ことを特徴とする請求項1又は2に記載の化合物半導体素子。
  4.  前記第1の面は、{20-2-1}面、{10-1-1}面のいずれかの面であることを特徴とする請求項1~請求項3の何れか一項に記載の化合物半導体素子。
  5.  第1の面と該第1の面の反対側にある第2の面とを有しており六方晶系化合物半導体からなる化合物半導体層と、
     前記化合物半導体層の前記第1の面に設けられた第1の電極と、
     前記化合物半導体層の前記第2の面に設けられた複数の半導体層を有しており該複数の半導体層が積層されてなる積層体と、
     前記積層体上に設けられた第2の電極と、
     を備え、
     前記第1の面に含まれるアニオン原子の数は前記第1の面に含まれるカチオン原子の数より小さく、
     前記第1の電極はp電極であり、
     前記第1の面の酸素濃度は5原子パーセント以下であり、
     前記化合物半導体層は、III族窒化物半導体、又は、SiC、からなる、
     ことを特徴とする化合物半導体素子。
  6.  前記p電極は、Pd,Pt,Ni,Au,Wの元素のうち少なくとも一の元素を含む材料からなる、ことを特徴とする請求項5に記載の化合物半導体素子。
  7.  前記第1の面の結晶学的面指数(h,i,j,k)に含まれている第4番目の指数kは正の整数である、ことを特徴とする請求項5又は6に記載の化合物半導体素子。
  8.  前記第1の面は、{20-21}面、{10-11}面のいずれかの面であることを特徴とする請求項5~請求項7の何れか一項に記載の化合物半導体素子。
  9.  前記積層体は活性層を有する、ことを特徴とする請求項1~請求項8の何れか一項に記載の化合物半導体素子。
PCT/JP2010/068822 2009-11-11 2010-10-25 化合物半導体素子 WO2011058869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10829829A EP2500953A1 (en) 2009-11-11 2010-10-25 Compound semiconductor element
KR1020117027870A KR101265018B1 (ko) 2009-11-11 2010-10-25 화합물 반도체 소자
CN2010800504696A CN102687293A (zh) 2009-11-11 2010-10-25 化合物半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-258215 2009-11-11
JP2009258215A JP2011103400A (ja) 2009-11-11 2009-11-11 化合物半導体素子

Publications (1)

Publication Number Publication Date
WO2011058869A1 true WO2011058869A1 (ja) 2011-05-19

Family

ID=43973502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068822 WO2011058869A1 (ja) 2009-11-11 2010-10-25 化合物半導体素子

Country Status (7)

Country Link
US (1) US8581296B2 (ja)
EP (1) EP2500953A1 (ja)
JP (1) JP2011103400A (ja)
KR (1) KR101265018B1 (ja)
CN (1) CN102687293A (ja)
TW (1) TW201125174A (ja)
WO (1) WO2011058869A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365454B2 (ja) * 2009-09-30 2013-12-11 住友電気工業株式会社 Iii族窒化物半導体基板、エピタキシャル基板及び半導体デバイス
JP5816801B2 (ja) 2013-07-19 2015-11-18 パナソニックIpマネジメント株式会社 窒化物半導体発光素子およびその製造方法
US9349806B2 (en) * 2014-07-09 2016-05-24 Taiwan Semiconductor Manufacturing Company Limited and National Chiao-Tung University Semiconductor structure with template for transition metal dichalcogenides channel material growth
US10312414B1 (en) * 2017-12-01 2019-06-04 Innolux Corporation Light emitting unit and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172568A (ja) 2002-10-29 2004-06-17 Nichia Chem Ind Ltd 窒化物半導体素子
JP2005129696A (ja) 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005191530A (ja) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
WO2006098215A1 (ja) 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. 窒化物半導体装置及びその製造方法
JP2006339605A (ja) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd 化合物半導体部材のダメージ評価方法、化合物半導体部材の製造方法、窒化ガリウム系化合物半導体部材及び窒化ガリウム系化合物半導体膜
JP2007116076A (ja) 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd 半導体素子
JP2007129252A (ja) * 2002-03-26 2007-05-24 Sanyo Electric Co Ltd 窒化物系半導体素子の製造方法
JP2008010835A (ja) * 2006-05-31 2008-01-17 Sumitomo Electric Ind Ltd 窒化物結晶の表面処理方法、窒化物結晶基板、エピタキシャル層付窒化物結晶基板および半導体デバイス、ならびにエピタキシャル層付窒化物結晶基板および半導体デバイスの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333820A (ja) 1991-05-10 1992-11-20 Sony Corp 二次元表示素子の特性評価装置および二次元表示素子の製造方法
US6869820B2 (en) * 2002-01-30 2005-03-22 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
US6791120B2 (en) * 2002-03-26 2004-09-14 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and method of fabricating the same
JP2005086137A (ja) * 2003-09-11 2005-03-31 Mitsubishi Cable Ind Ltd GaN系発光ダイオード
KR101510461B1 (ko) * 2006-01-20 2015-04-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 반극성 (Al,In,Ga,B)N의 개선된 성장 방법
EP2041794A4 (en) * 2006-06-21 2010-07-21 Univ California OPTOELECTRONIC AND ELECTRONIC DEVICES USING N-FACIAL OR M-PLANNED GAN SUBSTRATES PREPARED BY AMMONIOTHERMIC GROWTH
US8021904B2 (en) * 2007-02-01 2011-09-20 Cree, Inc. Ohmic contacts to nitrogen polarity GaN
JP2008235802A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光装置
EP2174351A1 (en) * 2007-07-26 2010-04-14 The Regents of the University of California Light emitting diodes with a p-type surface
KR100882112B1 (ko) * 2007-09-28 2009-02-06 삼성전기주식회사 반도체 발광소자 및 그의 제조방법
JP5003527B2 (ja) * 2008-02-22 2012-08-15 住友電気工業株式会社 Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
JP4333820B1 (ja) * 2009-01-19 2009-09-16 住友電気工業株式会社 化合物半導体基板
US8709921B2 (en) * 2010-11-15 2014-04-29 Applied Materials, Inc. Method for forming a semiconductor device using selective epitaxy of group III-nitride

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129252A (ja) * 2002-03-26 2007-05-24 Sanyo Electric Co Ltd 窒化物系半導体素子の製造方法
JP2004172568A (ja) 2002-10-29 2004-06-17 Nichia Chem Ind Ltd 窒化物半導体素子
JP2005129696A (ja) 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005191530A (ja) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
WO2006098215A1 (ja) 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. 窒化物半導体装置及びその製造方法
JP2006339605A (ja) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd 化合物半導体部材のダメージ評価方法、化合物半導体部材の製造方法、窒化ガリウム系化合物半導体部材及び窒化ガリウム系化合物半導体膜
JP2007116076A (ja) 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd 半導体素子
JP2008010835A (ja) * 2006-05-31 2008-01-17 Sumitomo Electric Ind Ltd 窒化物結晶の表面処理方法、窒化物結晶基板、エピタキシャル層付窒化物結晶基板および半導体デバイス、ならびにエピタキシャル層付窒化物結晶基板および半導体デバイスの製造方法

Also Published As

Publication number Publication date
KR20120023687A (ko) 2012-03-13
US20110108853A1 (en) 2011-05-12
EP2500953A1 (en) 2012-09-19
CN102687293A (zh) 2012-09-19
US8581296B2 (en) 2013-11-12
KR101265018B1 (ko) 2013-05-24
TW201125174A (en) 2011-07-16
JP2011103400A (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4605193B2 (ja) Iii族窒化物系化合物半導体素子
JP4924185B2 (ja) 窒化物半導体発光素子
US20080308833A1 (en) Group III nitride-based compound semiconductor light-emitting device
WO2011021264A1 (ja) 窒化物半導体発光素子
US20150228851A1 (en) Semiconductor light emitting device
US20140110667A1 (en) Semiconductor light emitting device
JP2006173621A (ja) 半導体レーザ
US11575068B2 (en) Method of manufacturing semiconductor light emitting element
TW201115784A (en) Nitride-based semiconductor light-emitting element
WO2011058869A1 (ja) 化合物半導体素子
JP5434573B2 (ja) Iii族窒化物系化合物半導体素子
JP2006245165A (ja) 半導体発光素子
JP5132739B2 (ja) 半導体素子
US20080175293A1 (en) Semiconductor laser device
JP2012070016A (ja) 窒化物系半導体素子およびその製造方法
JP5380516B2 (ja) 窒化物半導体発光素子
WO2007032355A1 (ja) 半導体発光素子
US20130087805A1 (en) Semiconductor light emitting device
JP4929776B2 (ja) 窒化物半導体レーザ素子
JP2005064072A (ja) 半導体発光素子
US8174035B2 (en) Nitride-based semiconductor light emitting device
TW200924250A (en) Nitride semiconductor device
JP2006332225A (ja) 窒化物系発光ダイオード
JP6260159B2 (ja) 窒化物半導体発光ダイオード、及びその製造方法
EP3072189B1 (en) Light-emitting element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050469.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117027870

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010829829

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE