WO2011057523A1 - 逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置 - Google Patents

逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置 Download PDF

Info

Publication number
WO2011057523A1
WO2011057523A1 PCT/CN2010/077332 CN2010077332W WO2011057523A1 WO 2011057523 A1 WO2011057523 A1 WO 2011057523A1 CN 2010077332 W CN2010077332 W CN 2010077332W WO 2011057523 A1 WO2011057523 A1 WO 2011057523A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
llc resonant
resonant circuit
driving signal
synchronous
Prior art date
Application number
PCT/CN2010/077332
Other languages
English (en)
French (fr)
Inventor
司徒琴
李俊凯
刘辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to IN5129DEN2012 priority Critical patent/IN2012DN05129A/en
Publication of WO2011057523A1 publication Critical patent/WO2011057523A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to the field of communications, and in particular to a logic link control (Logical Link Control, LLC) resonant converter control method, synchronous rectification Control method, LLC resonant converter controller and synchronous rectification control device.
  • a logic link control Logical Link Control, LLC
  • the LLC resonant circuit Compared with other soft-switching technologies, the LLC resonant circuit has some obvious advantages: It can realize zero-voltage turn-on of the primary-side switching transistor in a relatively wide frequency range, and has better power-down maintaining time characteristics; The zero current of the rectifier is turned off, thus reducing the turn-off loss of the rectifier; the high operating frequency of the circuit can reduce the volume of the power supply.
  • LLC can achieve zero-current shutdown of the secondary rectifier, in the application of high current, the conduction loss of the rectifier is relatively large. Therefore, the synchronous rectification technology is proposed in the related art, and several synchronous rectification schemes of the LLC resonant circuit are proposed, which mainly include the following:
  • a synchronous rectification LLC resonant half-bridge converter scheme based on secondary side controller control The implementation method is as follows: The controller is placed on the secondary side, and the driving signals of the control switch tube and the secondary side synchronous rectifier switch tube are synchronized. When the switch is turned on, the primary side switch tube is turned on first, and after the fixed delay, the secondary side switch is turned on. The tube is turned on; when the switch is turned off, the secondary side switch tube is first turned off, and then the primary side switch tube is turned off after a fixed delay. In this solution, the diode conduction time of the synchronous rectifier tube is too long, and the loss is relatively large. For large current output, the efficiency improvement of the scheme is limited.
  • the secondary side synchronous rectification controller controls the on/off of the synchronous rectification circuit by detecting the zero-crossing of the output current of the power conversion circuit, so that the synchronous rectification circuit is turned on when the current is greater than zero, and is turned off for the rest of the time.
  • the problem with this solution is that it requires an additional current zero-crossing detection circuit, which increases the cost, requires high detection accuracy, and is easily disturbed, causing the synchronous rectifier to malfunction.
  • the implementation method is: synchronizing the secondary side synchronous rectification switch tube by the driving signal of the power switch tube Drive signal.
  • the synchronous tube driving signal is a constant pulse width signal whose pulse width is smaller than the power switching pulse width; when the switching frequency is greater than the resonant frequency, the synchronous tube driving signal is completely consistent with the power switch driving signal.
  • the main object of the present invention is to provide an LLC resonant converter control method, a synchronous rectification control method, and LLC resonance.
  • the converter controller and the synchronous rectification control device solve at least one of the above problems.
  • a LLC resonant converter control method comprising: determining whether a load is operating in a predetermined state according to an input switching tube conduction frequency of an LLC resonant circuit, and if so, The LLC resonant circuit operates in a widened control mode, otherwise, the LLC resonant circuit operates in an FM control mode, wherein the predetermined state includes a light load state or an idle state. Further, the method further includes: obtaining a feedback signal of the load according to the conduction frequency of the input switch tube of the LLC resonant circuit, and calculating the conduction frequency of the input switch according to the feedback signal.
  • the feedback signal includes one of the following: an output voltage, an output current.
  • calculating the conduction frequency of the input switch according to the feedback signal comprises: integrating the absolute value of the difference between the feedback signal and the predetermined value, and multiplying by a certain ratio to obtain the conduction frequency of the input switch.
  • determining whether the load operates in a predetermined state according to an input switching tube conduction frequency of the LLC resonant circuit includes: determining whether an input switching tube conduction frequency of the LLC resonant circuit is greater than a predetermined frequency, and if yes, determining that the load is operating in a predetermined state; , to determine that the load is not working in the predetermined state.
  • a synchronous rectification control is provided The method is applied to an LLC resonant circuit using the method of claim 1, the method comprising: determining whether the load is operating in a predetermined state according to an input switching tube conduction frequency of the LLC resonant circuit, and if so, turning off the synchronous tube driving; otherwise, When the switching transistor conduction frequency is greater than the resonant frequency of the LLC resonant circuit, the opening of the synchronous tube driving signal is delayed by the opening of the power tube driving signal corresponding to the synchronous tube driving signal, and the closing of the synchronous tube driving signal is synchronized with the power tube driving.
  • the signal is turned off, wherein the predetermined state includes a light load state or an idle state. Further, the method further includes: when the input switching tube conduction frequency is less than or equal to the resonant frequency of the LLC resonant circuit, the turn-on of the synchronous tube driving signal is delayed by the opening of the power tube driving signal corresponding to the synchronous tube driving signal, And the pulse width of the synchronous tube driving signal is half of the resonant period of the LLC resonant circuit.
  • the opening of the synchronous tube driving signal is delayed by the opening of the power tube driving signal corresponding to the synchronous tube driving signal, including: after the predetermined time of the power-on driving signal is delayed, the synchronous tube driving signal is turned on, wherein the predetermined time includes One of the following: Fixed time, time that varies with the operating frequency of the LLC resonant circuit.
  • an LLC resonant converter controller comprising: a determining module, configured to determine whether a load is working according to an input switching tube conduction frequency of an LLC resonant circuit a predetermined state, wherein the predetermined state comprises: a light load state or a no-load state; a first adjustment module, configured to: when the determination module determines to be YES, to operate the resonant circuit in the widening control mode; When the judgment module determines NO, the resonant circuit is operated in the FM control mode.
  • a synchronous rectification control apparatus comprising: a judging module, configured to determine, according to an on-frequency of an input switch of an LLC resonant circuit, whether a load is operating in a predetermined state, The predetermined state includes: a light load state or a no-load state; a drive shutdown module, configured to turn off the synchronous tube drive if the determination module determines to be YES; and the first drive signal control module is configured to determine whether the determination module is And when the switching transistor conduction frequency is greater than the resonant frequency of the LLC resonant circuit, the turn-on of the synchronous tube driving signal is delayed by the opening of the power tube driving signal corresponding to the synchronous tube driving signal,
  • the device further includes: a second driving signal control module, configured to: when the determining module determines to be no, and the input switching tube conduction frequency is less than or equal to the resonant frequency of the LLC resonant circuit, the synchronous tube driving signal is The turn-on delay is on the turn-on of the power tube drive signal, and the pulse width of the sync tube drive signal is half of the resonant period of the LLC resonant circuit.
  • the output voltage is adjusted by changing the mode of operation of the LLC resonant circuit, and the driving signal of the synchronous rectifying switch is obtained according to the frequency of the input power switching tube, the load condition and the resonant frequency of the circuit, and the output of the synchronous rectification scheme is solved.
  • FIG. 1 is a schematic structural diagram of an LLC resonant circuit that does not include synchronous rectification according to the related art
  • FIG. 2 is a flowchart of a method for controlling an LLC resonant converter according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • Figure 5 is a UN-light f m ⁇ f ⁇ fi Example 1 of the present invention; f ⁇ ⁇ 1 light load when the signal timing diagram;
  • FIG. 4 is a signal timing chart when overloaded UN embodiment f ⁇ ⁇ 1 of the embodiment of the present invention
  • FIG. 6 is a timing chart of the heavy-duty signal when f m ⁇ f ⁇ fi in the first embodiment of the present invention;
  • FIG. 7 is a control method of the LLC resonant converter according to the second embodiment of the present invention and its synchronous rectification
  • FIG. 8 is a flowchart of generating a primary side power switch control signal according to Embodiment 2 of the present invention
  • FIG. 9 is a flowchart of an algorithm of a synchronous rectification control method according to Embodiment 2 of the present invention
  • 10 is a structural block diagram of an LLC resonant converter controller according to an embodiment of the present invention
  • Figure 11 is a block diagram showing the structure of a synchronous rectification control apparatus according to an embodiment of the present invention.
  • embodiments of the present invention provide an LLC resonant converter control scheme.
  • the processing principle of the scheme is: determining whether the load works according to the input switching frequency of the LLC resonant circuit. In a predetermined state, if so, the LLC resonant circuit is operated in a widened control mode, otherwise, the LLC resonant circuit is operated in an FM control mode, wherein the predetermined state includes a light load state or an idle state.
  • the scheme realizes voltage regulation in the case of the LLC resonant circuit under no load or light load, reduces the loss of the circuit, and simplifies the peripheral hardware circuit, and is more reliable than the prior art solution.
  • FIG. 2 is a flow chart of a LLC resonant converter control method according to an embodiment of the present invention.
  • the method includes the following step 4 S202 to step 4 gather S204: Step S202, obtaining a feedback signal of the load, and calculating an on-switching frequency of the input switch according to the feedback signal, wherein the feedback signal comprises one of the following: an output voltage and an output current.
  • Calculating the conduction frequency of the input switch tube according to the feedback signal includes: integrating the absolute value of the difference between the feedback signal and the predetermined value, and multiplying by a certain ratio to obtain the conduction frequency of the input switch tube.
  • the above process may be: The detected digital value of the output voltage or the output current is compared with a given value, and a proportional-integral operation is performed on the comparison result to obtain a frequency signal.
  • Step S204 determining whether the load operates in a predetermined state according to the input switching frequency of the LLC resonant circuit, and if so, operating the LLC resonant circuit in the widening control mode; otherwise, operating the LLC resonant circuit in the FM control mode,
  • the predetermined state includes a light load state or an idle state.
  • Determining whether the load operates in a predetermined state according to the input switching frequency of the LLC resonant circuit includes: determining whether the input switching tube of the LLC resonant circuit is greater than a predetermined frequency, and if so, determining that the load is operating in a predetermined state; otherwise, determining the load Not working in the predetermined state.
  • step S204 it is determined whether the circuit operates in a light load or no load state according to the input switch tube conduction frequency. If the input switch tube obtained in step S202 has a conduction frequency greater than the maximum frequency (ie, a predetermined frequency), the mode is switched to the widening control mode, and the circuit operates at a fixed maximum frequency, thereby avoiding the circuit under light load or no load conditions.
  • the operating frequency is too high, otherwise it works at a fixed duty cycle.
  • the maximum frequency described above is determined by the electrical characteristics of the circuit.
  • the determination of the predetermined frequency in step S204 is related to the circuit parameter of the LLC resonant circuit. Specifically, the predetermined frequency is determined according to the resonant inductance, the magnetizing inductance, and the resonant capacitance of the LLC resonant circuit.
  • the technician can According to the above parameters, the predetermined frequency is set, and after the switching tube conduction frequency of the LLC resonant circuit is obtained, it is compared with a predetermined frequency, and when the switching tube conduction frequency is greater than the predetermined frequency, the current circuit can be judged to be lightly loaded or The no-load state, which in turn switches the circuit to the wide control mode.
  • the method adjusts the output voltage by changing the conduction frequency of the input circuit of the resonant circuit, and determines whether the load operates in a light load or no load state according to the switching frequency, such as operating the frequency converter or the no-load condition to make the frequency converter The mode enters the control mode.
  • a synchronous rectification control method applied to an LLC resonant circuit using the above-described LLC resonant converter control method comprising: conducting according to an input switch of the LLC resonant circuit The frequency determines whether the load operates in a predetermined state, and if so, turns off the synchronous tube driving; otherwise, when the input switching tube conduction frequency is greater than the resonant frequency of the LLC resonant circuit, the turn-on delay of the synchronous tube driving signal is Turning on the power tube driving signal corresponding to the synchronous tube driving signal, the closing of the synchronous tube driving signal is synchronized with the closing of the power tube driving signal, wherein the predetermined state includes a light load state or a no-load state; When the input switch tube conduction frequency is less than or equal to the resonant frequency of the LLC resonant circuit, the turn-on of the synchronous tube driving signal is delayed by the turn-on of the power tube driving signal, and the pulse width of the
  • the opening of the synchronous tube driving signal is delayed by the opening of the power tube driving signal corresponding to the synchronous tube driving signal, comprising: after the predetermined time of delaying the power-on driving signal is turned on, opening the The sync tube drive signal, wherein the predetermined time comprises one of: a fixed time, a time that varies with an operating frequency of the LLC resonant circuit. That is to say, the turn-on delay time can be fixed or changed according to the operating frequency, so that the diode conduction time in the synchronous rectifier body is minimized, thereby reducing the loss and effectively improving the efficiency.
  • the synchronous rectification control method is to obtain a driving signal of the synchronous rectification switch according to the frequency of the input power switching tube (ie, the input switching tube conduction frequency), the load condition, and the resonant frequency of the circuit (ie, the resonant frequency of the LLC resonant circuit).
  • the frequency of the input power switching tube ie, the input switching tube conduction frequency
  • the load condition ie, the load condition
  • the resonant frequency of the circuit ie, the resonant frequency of the LLC resonant circuit.
  • 3 embodiment is only lightly loaded
  • Gen a signal timing diagram of the embodiment ⁇ ⁇ ⁇ 1, from top to bottom in FIG waveforms are: primary resonant current and excitation current, the secondary rectified current, the main switch drive; 4 is a timing diagram of a heavy load signal when f ⁇ f s according to Embodiment 1, wherein the waveforms from top to bottom are: primary resonant current and excitation current, secondary rectified current, and main switch tube driving;
  • the light load signal timing diagram the waveforms from top to bottom are: primary resonant current and excitation current, secondary rectified current, main switch tube drive;
  • the waveforms in the figure are from top to bottom: primary resonant current and excitation current, secondary rectified current, and main switch. From the above waveform, we can know:
  • the synchronous rectification control method provided by the embodiment of the present invention is based on the above facts, according to the frequency of the input power switch tube (ie, the input switch tube conduction frequency), the load condition, and the resonant frequency of the circuit (ie, The resonant frequency of the LLC resonant circuit) to obtain the synchronous rectification switch Drive signal.
  • the sync tube drive signal is turned off at light load or no load to prevent negative currents from being generated.
  • FIG. 7 is a schematic structural diagram of a control device for controlling an LLC resonant converter according to Embodiment 2 and a synchronous rectification control method thereof. As shown in FIG. 7, the control device is configured by a feedback feedback circuit 301 and a controller. 302. The driving circuits 303 305 305 are formed.
  • the controller 302 uses a digital signal processor (DSP) to output control signals required for the primary side power switch and the synchronous rectification switch, and the drive circuit 303-305 converts the control signal into a drive signal capable of driving the power switch.
  • DSP digital signal processor
  • 8 is a flow chart showing the generation of the primary side power switch control signal of Embodiment 2. As shown in FIG. 8, the process of generating the primary side power switch control signal includes the following steps 801 to 807: Step 801: Calculating the voltage error: LLC The output voltage of the resonant circuit is input to the DSP through the sampling circuit, and the DSP compares the feedback voltage with the given value to obtain a compared value.
  • Step 802 voltage PI adjustment: performing a PI adjustment operation on the compared value obtained in step 801 to obtain a pulse width modulation (PWM) signal period value of the DSP, and changing a period value of the PWM register of the DSP to implement frequency conversion, thereby adjusting the output voltage.
  • PWM pulse width modulation
  • Step 803 the switching of the widening control and the frequency modulation control is implemented in software by setting a voltage PI operation output threshold, the threshold corresponding to the working maximum frequency of the circuit, that is, the minimum period, so it is necessary to determine whether the output period value is less than a preset value, If the voltage PI operation output is less than the threshold, the circuit load is too light, and the process proceeds to step 804, otherwise, the process proceeds to step 805.
  • Step 4 gathers 804, starts the widening loop, fixes the highest frequency, and re-calculates the voltage with the PI parameter of the widened loop, and outputs the duty cycle.
  • Step 805 the fixed duty ratio is used, and the frequency modulation control is used.
  • Step 807 Reset the period value and the comparison value of the PWM.
  • FIG. 9 is a flowchart of an algorithm of a synchronous rectification control method according to an embodiment.
  • the DSP generates a control pulse of a synchronous rectification switch through the synchronous rectification processing algorithm. As shown in FIG. 9, the method mainly includes the following steps: Step 901: A main switch logic control circuit acquires an LLC resonant circuit main power switch Q1 and
  • Step 902 Determine whether the working frequency is less than a preset frequency value. This frequency value is set to prevent a negative current from being generated when the synchronous tube is turned on at no load or light load. If the working frequency is greater than the preset value, it is judged that the work is in the light load or no load state, and the process proceeds to step 503, otherwise the process proceeds to step 504.
  • Step 4 gathers 903 to turn off the drive of the synchronous rectifier switch.
  • Step 904 determining whether the operating frequency is greater than Fs, where Fs is the resonant frequency of Lr and Cr in FIG. If it is greater than the frequency resonance frequency, the process proceeds to step 905.
  • step 906 is entered.
  • Step 905 The synchronous tube driving signal is delayed by a fixed time 1 and turned off at the same time as the corresponding power tube driving signal.
  • the synchronous tube driving signal is delayed by a fixed time 2 compared to its corresponding power tube driving signal, and the driving signal is a fixed pulse width, and the pulse width is half of the resonant period.
  • the frequency of the synchronous rectification switches SR1 and SR2 drive signals coincides with the frequency of the drive signals of the primary side power switches Q1 and Q2.
  • FIG. 10 is a structural block diagram of an LLC resonant converter controller according to an embodiment of the present invention. As shown in FIG.
  • the controller includes: a determining module 101, configured to determine a conduction frequency of an input switch according to an LLC resonant circuit Whether the load is in a predetermined state, wherein the predetermined state includes: a light load state or a no-load state; the first adjustment module 103 is connected to the determining module 101, and configured to enable the resonant circuit to work if the determining module 101 determines YES The second adjustment module 105 is connected to the determination module 101 for operating the resonance circuit in the FM control mode if the determination module 101 determines NO.
  • the determining module 101 includes: an obtaining sub-module 107, configured to obtain a feedback signal of the load; a calculating sub-module 109, connected to the obtaining sub-module 107, configured to calculate an input switch-on frequency according to the feedback signal acquired by the obtaining sub-module 107 .
  • a synchronous rectification control apparatus for implementing the synchronous rectification control method described in the above method embodiments is provided.
  • FIG. 11 is a structural block diagram of a synchronous rectification control apparatus according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes: a judging module 111, configured to determine whether a load is working according to an on-frequency of an input switch of an LLC resonant circuit; In a predetermined state, wherein the predetermined state includes: a light load state or an idle state; the drive shutdown module 113 is coupled to the determination module 111, and configured to turn off the synchronous tube drive if the determination module 111 determines YES; the first drive The signal control module 115 is connected to the determining module 111 for delaying the synchronization of the synchronization tube driving signal when the determining module 111 determines NO and the switching transistor conduction frequency is greater than the resonant frequency of the LLC resonant circuit.
  • the power tube driving signal corresponding to the tube driving signal is turned on, and the closing of the synchronous tube driving signal is synchronized with the closing of the power tube driving signal.
  • the device further includes: a second driving signal control module 117 connected to the determining module 111, configured to determine, in the determining module 111, that the switching transistor conduction frequency is less than or equal to the resonant frequency of the LLC resonant circuit In this case, the turn-on of the sync tube drive signal is delayed by the turn-on of the power tube drive signal, and the pulse width of the sync tube drive signal is half of the resonance period of the LLC resonant circuit.
  • the solution provided by the embodiment of the present invention has the following advantages compared with the prior art: Introducing a bandwidth control mode in the frequency modulation control mode, so that the frequency modulation control mode is used when the operating frequency is low, at the working frequency At higher time, the widening control mode is used to solve the problem that the LLC resonant circuit is difficult to regulate at no load or light load; in the light load or no-load state, the synchronous tube drive is turned off to prevent negative current from being generated at the switching frequency.
  • the synchronous tube drive signal When the resonance frequency is greater than the resonant frequency, the synchronous tube drive signal is delayed compared with its corresponding power tube drive signal, which prevents the common problem of the synchronous rectifier under heavy load conditions, and is more practical and reliable; the turn-on delay time can follow the operating frequency of the LLC resonant circuit.
  • the change makes the diode conduction time in the synchronous rectifier tube as small as possible, reduces the loss, and effectively improves the efficiency; it is easy to realize in the field of digital control, and can effectively simplify the peripheral hardware circuit.
  • modules or steps of the present invention may be Implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of computing devices, optionally, they may be implemented by program code executable by the computing device, such that They may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof may be implemented as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Abstract

本发明公开了一种逻辑链路控制LLC谐振变换器控制方法、同步整流控制方法及装置,该LLC谐振变换器控制方法包括:根据LLC谐振电路的输入开关管导通频率判断负载是否工作在预定状态,若是,则使LLC谐振电路工作在调宽控制模式,否则,使LLC谐振电路工作在调频控制模式,其中,预定状态包括轻载状态或空载状态。本发明在LLC谐振电路空载或轻载的情况下实现了稳压,降低了电路的损耗,有效简化了外围硬件电路,与现有技术方案相比更加使用可靠。

Description

逻辑链路控制谐振变换器控制方法、 同步整流控制方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种逻辑链路控制 (Logical Link Control, LLC )谐振变换器控制方法、 同步整流控制方法、 LLC谐振变换器 控制器及同步整流控制装置。 背景技术 随着开关电源技术的发展, 高效率和高功率密度成为发展趋势。 在这种 情况下, LLC谐振电路在业界的应用越来越广泛。 与其它软开关技术相比, LLC谐振电路具有一些明显的优势: 在比较宽的频率范围内能够实现一次侧 开关管的零电压开通, 且具有较好的掉电维持时间特性; 由于二次侧整流管 零电流关断, 因此减小了整流管的关断损耗; 电路工作频率高可减小电源的 体积。 虽然 LLC能够实现二次侧整流管的零电流关断,但是在大电流的应用场 合, 整流管的导通损耗比较大。 因此, 相关技术中提出了同步整流技术, 并 提出了几种 LLC谐振电路的同步整流方案, 主要包括以下几种:
1. 基于二次侧控制器控制的带同步整流 LLC谐振半桥变换器方案。 其 实现方法是: 控制器置于二次侧, 控制开关管和二次侧同步整流开关管的驱 动信号同步, 开通时先使一次侧开关管导通, 经过固定延时后使二次侧开关 管导通; 关断时则先使二次侧开关管关断, 再经过固定延时后关断一次侧开 关管。 该方案同步整流管的体内二极管导通时间过长, 损耗比较大, 对于大 电流输出, 釆用该方案对效率改善有限。
2. 基于电流检测电路的带同步整流 LLC控制方案。 其实现方法是: 二 次侧同步整流控制器通过对电源变换电路输出电流的过零检测, 控制同步整 流电路的通断, 使同步整流电路在电流大于零时导通, 其余时间关断。 该方 案存在的问题是需要额外的电流过零检测电路, 增加了成本, 检测精度要求 很高, 并且容易被千扰, 导致同步整流管误动作。
3. 基于一次侧控制器控制的带同步整流 LLC谐振半桥变换器方案。 其 实现方法是: 通过功率开关管的驱动信号得到二次侧同步整流开关管的同步 驱动信号。 在开关频率小于谐振频率时, 同步管驱动信号为脉宽小于功率开 关脉宽的恒定脉宽信号; 在开关频率大于谐振频率时, 同步管驱动信号与功 率开关驱动信号完全一致。 该方案不能保证在轻载、 空载下可靠运行, 可能 造成短时间输出电压反灌, 另外当开关频率大于谐振频率且工作在重载情况 下, 可能造成共通炸机问题。 针对相关技术中存在的同步整流方案输出电压不稳定、 损耗大、 存在共 通缺陷的问题, 目前尚未提出有效的解决方案。 发明内容 针对同步整流方案输出电压不稳定、 损耗大、 存在共通缺陷的问题而提 出本发明,为此,本发明的主要目的在于提供一种 LLC谐振变换器控制方法、 同步整流控制方法、 LLC谐振变换器控制器及同步整流控制装置, 以解决上 述问题至少之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种 LLC谐振变换 器控制方法, 该方法包括: 根据 LLC谐振电路的输入开关管导通频率判断负 载是否工作在预定状态, 若是, 则使 LLC谐振电路工作在调宽控制模式, 否 则, 使 LLC谐振电路工作在调频控制模式, 其中, 预定状态包括轻载状态或 空载状态。 进一步地,根据 LLC谐振电路的输入开关管导通频率判断负载是否工作 在预定状态之前, 上述方法还包括: 获取负载的反馈信号, 根据反馈信号计 算输入开关管导通频率。 进一步地, 反馈信号包括以下之一: 输出电压、 输出电流。 进一步地, 根据反馈信号计算输入开关管导通频率包括: 对反馈信号与 预定值的差的绝对值进行积分运算后乘以一定比例得到输入开关管导通频 率。 进一步地,根据 LLC谐振电路的输入开关管导通频率判断负载是否工作 在预定状态包括:判断 LLC谐振电路的输入开关管导通频率是否大于预定频 率, 若是, 则判断负载工作在预定状态, 否则, 判断负载未工作在预定状态。 为了实现上述目的, 居本发明的另一个方面, 提供了一种同步整流控 制方法, 应用于使用权利要求 1的方法的 LLC谐振电路, 该方法包括: 根据 LLC谐振电路的输入开关管导通频率判断负载是否工作在预定状态, 若是, 则关闭同步管驱动; 否则, 在输入开关管导通频率大于 LLC谐振电路的谐振 频率的情况下, 同步管驱动信号的开通延迟于与同步管驱动信号对应的功率 管驱动信号的开通, 同步管驱动信号的关闭同步于功率管驱动信号的关闭, 其中, 预定状态包括轻载状态或空载状态。 进一步地, 上述方法还包括:在输入开关管导通频率小于或等于 LLC谐 振电路的谐振频率的情况下, 同步管驱动信号的开通延迟于与同步管驱动信 号对应的功率管驱动信号的开通,且同步管驱动信号的脉冲宽度为 LLC谐振 电路的谐振周期的一半。 进一步地, 同步管驱动信号的开通延迟于与同步管驱动信号对应的功率 管驱动信号的开通包括: 在功率管驱动信号的开通时间上延迟预定时间后, 开通同步管驱动信号, 其中预定时间包括以下之一: 固定时间、 随 LLC谐振 电路的工作频率变化而变化的时间。 为了实现上述目的, 根据本发明的又一个方面, 提供了一种 LLC谐振变 换器控制器, 该控制器包括: 判断模块, 用于根据 LLC谐振电路的输入开关 管导通频率判断负载是否工作在预定状态, 其中, 预定状态包括: 轻载状态 或空载状态; 第一调整模块, 用于在判断模块判断为是的情况下, 使谐振电 路工作在调宽控制模式; 第二调整模块, 用于在判断模块判断为否的情况下, 使谐振电路工作在调频控制模式。 进一步地, 判断模块包括: 获取子模块, 用于获取负载的反馈信号; 计 算子模块, 用于根据获取子模块获取的反馈信号计算输入开关管导通频率。 为了实现上述目的, 居本发明的另一个方面, 提供了一种同步整流控 制装置, 该装置包括: 判断模块, 用于根据 LLC谐振电路的输入开关管导通 频率判断负载是否工作在预定状态, 其中, 预定状态包括: 轻载状态或空载 状态; 驱动关闭模块, 用于在判断模块判断为是的情况下, 关闭同步管驱动; 第一驱动信号控制模块, 用于在判断模块判断为否, 且输入开关管导通频率 大于 LLC谐振电路的谐振频率的情况下,使同步管驱动信号的开通延迟于与 同步管驱动信号对应的功率管驱动信号的开通, 同步管驱动信号的关闭同步 于功率管驱动信号的关闭。 进一步地, 上述装置还包括: 第二驱动信号控制模块, 用于在判断模块 判断为否,且输入开关管导通频率小于或等于 LLC谐振电路的谐振频率的情 况下, 使同步管驱动信号的开通延迟于功率管驱动信号的开通, 且同步管驱 动信号的脉冲宽度为 LLC谐振电路的谐振周期的一半。 通过本发明, 釆用通过改变 LLC谐振电路工作的模式来调节输出电压, 并根据输入功率开关管的频率、 负载状况和电路的谐振频率来获取同步整流 开关的驱动信号, 解决了同步整流方案输出电压不稳定、 损耗大、 存在共通 缺陷的问题, 在 LLC谐振电路空载或轻载的情况下实现了稳压, 降低了电路 的损耗, 有效简化了外围硬件电路, 与现有技术方案相比更加使用可靠。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的不包含同步整流的 LLC谐振电路结构示意图; 图 2是根据本发明实施例的 LLC谐振变换器控制方法的流程图; 图 3是 居本发明实施例 1 的 f ^时轻载信号时序图; 图 4是 居本发明实施例 1 的 f ^时重载信号时序图; 图 5是 居本发明实施例 1 的 fm < f < fi时轻载信号时序图; 图 6是 居本发明实施例 1 的 fm < f < fi时重载信号时序图; 图 7是才艮据本发明实施例 2的 LLC谐振变换器控制方法及其同步整流控 制方法应用的控制装置结构示意图; 图 8是 居本发明实施例 2的一次侧功率开关控制信号的产生流程图; 图 9是 居本发明实施例 2的同步整流控制方法的算法流程图; 图 10是根据本发明实施例的 LLC谐振变换器控制器的结构框图; 图 11是才艮据本发明实施例的同步整流控制装置的结构框图。 具体实施方式 考虑到现有技术中存在的问题,本发明实施例提供了一种 LLC谐振变换 器控制方案, 该方案的处理原则为: 根据 LLC谐振电路的输入开关管导通频 率判断负载是否工作在预定状态, 若是, 则使所述 LLC谐振电路工作在调宽 控制模式, 否则, 使所述 LLC谐振电路工作在调频控制模式, 其中, 所述预 定状态包括轻载状态或空载状态。该方案在 LLC谐振电路空载或轻载的情况 下实现了稳压, 降低了电路的损耗, 有效简化了外围硬件电路, 与现有技术 方案相比更加使用可靠。 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 根据本发明的实施例, 提供了一种 LLC谐振变换器控制方法, 图 2是根 据本发明实施例的 LLC谐振变换器控制方法的流程图, 如图 2所示, 该方法 包括如下的步 4聚 S202至步 4聚 S204: 步骤 S202, 获取负载的反馈信号, 根据反馈信号计算输入开关管导通频 率, 其中, 反馈信号包括以下之一: 输出电压、 输出电流。 根据反馈信号计 算输入开关管导通频率包括: 对反馈信号与预定值的差的绝对值进行积分运 算后乘以一定比例得到输入开关管导通频率, 在实际应用中, 上述过程可以 为: 将输出电压或输出电流的检测数字值与给定值比较, 对比较结果进行比 例 -积分运算得到频率信号。 步骤 S204, 才艮据 LLC谐振电路的输入开关管导通频率判断负载是否工 作在预定状态, 若是, 则使 LLC 谐振电路工作在调宽控制模式, 否则, 使 LLC谐振电路工作在调频控制模式, 其中, 预定状态包括轻载状态或空载状 态。根据 LLC谐振电路的输入开关管导通频率判断负载是否工作在预定状态 包括: 判断 LLC谐振电路的输入开关管导通频率是否大于预定频率, 若是, 则判断负载工作在预定状态, 否则, 判断负载未工作在预定状态。 优选地, 步骤 S204 中根据输入开关管导通频率判断电路是否工作在轻 载或空载状态。 如果步骤 S202 中得到的输入开关管导通频率大于最大频率 (即, 预定频率)则切换到调宽控制模式, 此时电路以固定的最大频率工作, 从而避免在轻载或空载情况下电路工作频率过高, 否则以固定占空比工作在 调频控制模式, 上述的最大频率由电路的电气特性决定。 步骤 S204中的预定频率的确定与 LLC谐振电路的电路参数有关, 具体 地, 该预定频率根据 LLC谐振电路的谐振电感、 励磁电感、 和谐振电容来确 定, 在实际应用中, 技术人员可以才艮据以上参数设定预定频率, 在得到 LLC 谐振电路的开关管导通频率后将其与预定频率进行比较, 在开关管导通频率 大于预定频率的情况下即可判断当前电路工作在轻载或空载状态, 进而将电 路切换到调宽控制模式。 该方法是通过改变谐振电路输入开关管的导通频率来调节输出电压的, 根据开关频率判断负载是否工作在轻载或空载状态, 如工作在轻载或空载情 况则使变换器由调频模式进入调宽控制方式。 才艮据本发明的实施例, 还提供了一种同步整流控制方法, 应用于使用上 述 LLC谐振变换器控制方法的 LLC谐振电路, 该方法包括: 根据所述 LLC 谐振电路的输入开关管导通频率判断负载是否工作在预 定状态, 若是, 则关闭同步管驱动; 否则, 在所述输入开关管导通频率大于 所述 LLC谐振电路的谐振频率的情况下,同步管驱动信号的开通延迟于与所 述同步管驱动信号对应的功率管驱动信号的开通, 所述同步管驱动信号的关 闭同步于所述功率管驱动信号的关闭, 其中, 所述预定状态包括轻载状态或 空载状态;在所述输入开关管导通频率小于或等于所述 LLC谐振电路的谐振 频率的情况下, 同步管驱动信号的开通延迟于所述功率管驱动信号的开通, 且所述同步管驱动信号的脉冲宽度为所述 LLC谐振电路的谐振周期的一半, 为一个固定的脉冲宽度。 其中, 所述同步管驱动信号的开通延迟于与所述同 步管驱动信号对应的所述功率管驱动信号的开通包括: 在所述功率管驱动信 号的开通时间上延迟预定时间后, 开通所述同步管驱动信号, 其中所述预定 时间包括以下之一: 固定时间、 随所述 LLC谐振电路的工作频率变化而变化 的时间。 也就是说, 开通延迟时间可以是固定的, 也可以随着工作频率而改 变, 使得同步整流管体内二极管导通时间尽量少, 从而降低损耗, 有效地提 高效率。 上述同步整流控制方法是根据输入功率开关管的频率 (即, 输入开关管 导通频率)、 负载状况和电路的谐振频率 (即, LLC 谐振电路的谐振频率) 来获取同步整流开关的驱动信号。 下面将结合实例对本发明实施例的实现过程进行详细描述。 实施例 1 图 3至图 6是图 1所示的 LLC谐振电路在不同频率段和不同负载下一次 侧功率管驱动、 二次侧整流电流、 谐振电流和励磁电流的波形。 具体地, 图 3是才艮据实施例 1 的 · ^时轻载信号时序图, 图中波形由 上至下分别是: 初级谐振电流和励磁电流、 次级整流电流、 主开关管驱动; 图 4是根据实施例 1 的 f fs时重载信号时序图, 图中波形由上至下分别是: 初级谐振电流和励磁电流、 次级整流电流、 主开关管驱动; 图 5是才艮据实施 例 i^ fm <f〈fi时轻载信号时序图, 图中波形由上至下分别是: 初级谐振电 流和励磁电流、 次级整流电流、 主开关管驱动; 图 6 是才艮据实施例 1 的 fm <f <fi时重载信号时序图, 图中波形由上至下分别是: 初级谐振电流和励 磁电流、 次级整流电流、 主开关管驱动。 从以上波形可以得知:
1. 当/ ( 为图 1中1 >和 <^的谐振频率)时, 副边整流电流 滞后 于主开关管的驱动波形^ , 特别是在轻载的情况下尤其明显, 所以同步整流 开关 SR1和 SR2的驱动应该比相应的主功率开关 Q1和 Q2的驱动延迟开通, 否则会造成两个同步整流开关 SR1和 SR2同时开通, 构成一个氐阻抗回路, 产生极大的电流, 进而损害同步管。
2. 当 /™ < / < ( /™为图 1中1 、 Cr和 Lm的谐振频率)轻载时, 一次侧 功率管开通时二次侧整流电流仍然为零, 延迟一段时间后整流电流变成正电 流。 如果同步整流管驱动与一次侧开关管驱动一致, 就会在导通起始阶段产 生负电流, 能量向初级传送。 因此同步整流开关管的开通时间应该比一次侧 功率开关管延迟。 另外电路工作频率 ^时, 二次侧同步整流开关管的 导通时间不变, 为1 和 ^串联谐振周期的一半。 从以上结论可以看出, 本发明实施例提供的同步整流控制方法是基于以 上事实, 根据输入功率开关管的频率(即, 输入开关管导通频率)、 负载状况 和电路的谐振频率 (即, LLC谐振电路的谐振频率)来获取同步整流开关的 驱动信号。 在轻载或空载状态关断同步管驱动信号, 以防止产生负的电流。 另外在开关频率 (即, 输入开关管导通频率) 大于谐振频率时, 同步管驱动 信号与其对应的功率管驱动信号相比, 延迟一定的时间开通、 同时关断(即, 同步管驱动信号的关断时间与功率管驱动信号的关断时间相同),防止了重载 情况下同步整流管共通的问题。 实施例 2 图 7是才艮据实施例 2的 LLC谐振变换器控制方法及其同步整流控制方法 应用的控制装置结构示意图, 如图 7所示, 该控制装置由釆样反馈电路 301、 控制器 302、 驱动电路 303〜305组成。 其中控制器 302釆用数字信号处理器 ( DSP ), 输出一次侧功率开关和同步整流开关所需的控制信号, 驱动电路 303-305将控制信号转换成能够驱动功率开关的驱动信号。 图 8是 居实施例 2的一次侧功率开关控制信号的产生流程图, 如图 8 所示, 一次侧功率开关控制信号的产生过程包括以下步骤 801至步骤 807: 步骤 801 , 计算电压误差: LLC谐振电路的输出电压经釆样电路输入到 DSP, DSP将反馈电压与给定值比较得到比较后的值。 步骤 802 , 电压 PI调节: 将步骤 801得到的比较后的值进行 PI调节运 算得到 DSP的脉宽调制 ( PWM )信号周期值, 改变 DSP的 PWM寄存器的 周期值即可实现变频,从而调节输出电压。 当电路工作在轻载或空载状态下, 输出电压难以稳定, 特别是在输出电压比较低的情况下, 开关频率很高, 需 要釆用调宽控制, 进入步 4聚 803。 步骤 803 , 调宽控制和调频控制的切换在软件上的实现是设置一个电压 PI运算输出阈值, 该阈值对应电路的工作最高频率, 即最小周期, 因此需要 判断输出周期值是否小于预设值, 如果电压 PI运算输出小于阈值, 则电路负 载过轻, 进入步骤 804, 否则进入步骤 805。 步 4聚 804, 启动调宽环路, 固定最高频率, 釆用调宽环路的 PI参数重新 进行电压的 PI运算, 输出占空比。 步骤 805 , 固定占空比, 釆用调频控制。 步骤 806 , 周期和占空比限幅。 步骤 807 , 重置 PWM的周期值与比较值。 图 9是 居实施例的同步整流控制方法的算法流程图, DSP经过该同步 整流处理算法产生同步整流开关的控制脉冲。 如图 9所示, 主要包括以下步 骤: 步骤 901 , 主开关管逻辑控制电路获取 LLC谐振电路主功率开关 Q1和
Q2的工作频率并输出主功率开关的控制脉冲。 步骤 902, 判断工作频率是否小于预设的一个频率值。 设定该频率值是 为了防止空载和轻载的时候同步管开通而产生负的电流。 如果工作频率大于 预设值, 则判断工作在轻载或空载状态, 进入步骤 503 , 否则进入步骤 504。 步 4聚 903 , 关断同步整流开关的驱动。 步骤 904, 判断工作频率是否大于 Fs, 其中 Fs为图 1中 Lr和 Cr的谐振 频率。 如果大于频率谐振频率则进入步骤 905 , 如果开关频率小于等于谐振 频率, 则进入步骤 906。 步骤 905 , 同步管驱动信号与其对应的功率管驱动信号相比, 延迟一个 固定时间 1开通, 同时关断。 步骤 906, 同步管驱动信号与其对应的功率管驱动信号相比, 延迟一个 固定时间 2开通, 其驱动信号为一固定脉冲宽度, 该脉冲宽度为谐振周期的 一半。 无论工作频率大于还是小于谐振频率, 同步整流开关 SR1和 SR2驱动 信号的频率与一次侧功率开关 Q1和 Q2的驱动信号频率一致。 装置实施例 才艮据本发明的实施例, 提供了一种 LLC谐振变换器控制器, 该控制器用 于实现上述方法实施例中描述的 LLC谐振变换器控制方法。 图 10是才艮据本 发明实施例的 LLC谐振变换器控制器的结构框图, 如图 10所示, 该控制器 包括: 判断模块 101 , 用于根据 LLC谐振电路的输入开关管导通频率判断负 载是否工作在预定状态, 其中, 预定状态包括: 轻载状态或空载状态; 第一 调整模块 103 , 连接于判断模块 101 , 用于在判断模块 101 判断为是的情况 下, 使谐振电路工作在调宽控制模式; 第二调整模块 105 , 连接于判断模块 101 , 用于在判断模块 101 判断为否的情况下, 使谐振电路工作在调频控制 模式。 其中, 判断模块 101包括: 获取子模块 107 , 用于获取负载的反馈信号; 计算子模块 109 , 连接于获取子模块 107 , 用于根据获取子模块 107获取的 反馈信号计算输入开关管导通频率。 根据本发明的实施例, 提供了一种同步整流控制装置, 该控制器用于实 现上述方法实施例中描述的同步整流控制方法。图 11是才艮据本发明实施例的 同步整流控制装置的结构框图, 如图 11所示, 该装置包括: 判断模块 111 , 用于根据 LLC 谐振电路的输入开关管导通频率判断负载是否工作在预定状 态, 其中, 预定状态包括: 轻载状态或空载状态; 驱动关闭模块 113 , 连接 于判断模块 111 , 用于在判断模块 111判断为是的情况下, 关闭同步管驱动; 第一驱动信号控制模块 115 , 连接于判断模块 111 , 用于在判断模块 111判断 为否, 且输入开关管导通频率大于 LLC谐振电路的谐振频率的情况下, 使同 步管驱动信号的开通延迟于与同步管驱动信号对应的功率管驱动信号的开 通, 同步管驱动信号的关闭同步于功率管驱动信号的关闭。 优选地, 上述装置还可以包括: 第二驱动信号控制模块 117 , 连接于判 断模块 111 , 用于在判断模块 111 判断为否, 且输入开关管导通频率小于或 等于 LLC谐振电路的谐振频率的情况下,使同步管驱动信号的开通延迟于功 率管驱动信号的开通,且同步管驱动信号的脉冲宽度为 LLC谐振电路的谐振 周期的一半。 综上所述, 本发明实施例提供的方案与现有技术相比, 具有以下优点: 在调频控制方式中引入调宽控制方式, 使得在工作频率较低时釆用调频控制 方式, 在工作频率较高时釆用调宽控制方式, 解决了 LLC谐振电路空载或轻 载难以稳压的难题; 在轻载或空载状态下, 关断同步管驱动, 防止产生负的 电流, 在开关频率大于谐振频率时, 同步管驱动信号与其对应的功率管驱动 信号相比, 延迟开通, 防止了重载情况下同步整流管共通问题, 更加实用可 靠; 开通延迟时间可以随着 LLC谐振电路的工作频率而改变, 从而使得同步 整流管体内二极管导通时间尽量少, 降低损耗, 有效地提高了效率; 在数字 控制领域很容易实现, 能够有效地简化外围硬件电路。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种逻辑链路控制 LLC谐振变换器控制方法, 其特征在于, 包括:
根据 LLC 谐振电路的输入开关管导通频率判断负载是否工作在预 定状态, 若是, 则使所述 LLC谐振电路工作在调宽控制模式, 否则, 使 所述 LLC谐振电路工作在调频控制模式, 其中, 所述预定状态包括轻载 状态或空载状态。
2. 居权利要求 1所述的方法, 其特征在于, 居所述 LLC谐振电路的所 述输入开关管导通频率判断所述负载是否工作在所述预定状态之前, 所 述方法还包括:
获取所述负载的反馈信号, 根据所述反馈信号计算所述输入开关管 导通频率。
3. 根据权利要求 2所述的方法, 其特征在于, 所述反馈信号包括以下之一: 输出电压、 输出电¾¾。
4. 根据权利要求 2所述的方法, 其特征在于, 所述根据所述反馈信号计算 所述输入开关管导通频率包括:
对所述反馈信号与预定值的差的绝对值进行积分运算后乘以一定比 例得到所述输入开关管导通频率。
5. 居权利要求 1所述的方法, 其特征在于, 居所述 LLC谐振电路的所 述输入开关管导通频率判断所述负载是否工作在所述预定状态包括: 判断所述 LLC 谐振电路的所述输入开关管导通频率是否大于预定 频率, 若是, 则判定所述负载工作在所述预定状态, 否则, 判定所述负 载未工作在所述预定状态。
6. —种同步整流控制方法, 应用于使用权利要求 1所述的方法的逻辑链路 控制 LLC谐振电路, 其特征在于, 包括:
根据所述 LLC 谐振电路的输入开关管导通频率判断负载是否工作 在预定状态, 若是, 则关闭同步管驱动; 否则, 在所述输入开关管导通 频率大于所述 LLC谐振电路的谐振频率的情况下, 同步管驱动信号的开 通延迟于与所述同步管驱动信号对应的功率管驱动信号的开通, 所述同 步管驱动信号的关闭同步于所述功率管驱动信号的关闭, 其中, 所述预 定状态包括轻载状态或空载状态。
7. 居权利要求 6所述的方法, 其特征在于, 所述方法还包括:在所述输入 开关管导通频率小于或等于所述 LLC谐振电路的谐振频率的情况下,所 述同步管驱动信号的开通延迟于与所述同步管驱动信号对应的功率管驱 动信号的开通,且所述同步管驱动信号的脉冲宽度为所述 LLC谐振电路 的谐振周期的一半。
8. 根据权利要求 6所述的方法, 其特征在于, 所述同步管驱动信号的开通 延迟于与所述同步管驱动信号对应的功率管驱动信号的开通包括:
在所述功率管驱动信号的开通时间上延迟预定时间后, 开通所述同 步管驱动信号,其中所述预定时间包括以下之一: 固定时间、随所述 LLC 谐振电路的工作频率变化而变化的时间。
9. 一种逻辑链路控制 LLC谐振变换器控制器, 其特征在于, 所述控制器包 括:
判断模块,用于根据 LLC谐振电路的输入开关管导通频率判断负载 是否工作在预定状态, 其中, 所述预定状态包括: 轻载状态或空载状态; 第一调整模块, 用于在所述判断模块判断为是的情况下, 使所述谐 振电路工作在调宽控制模式; 第二调整模块, 用于在所述判断模块判断为否的情况下, 使所述谐 振电路工作在调频控制模式。
10. 根据权利要求 9所述的 LLC谐振变换器控制器, 其特征在于, 所述判断 模块包括:
获取子模块, 用于获取所述负载的反馈信号;
计算子模块, 用于根据所述获取子模块获取的所述反馈信号计算所 述输入开关管导通频率。
11. 一种同步整流控制装置, 其特征在于, 包括:
判断模块,用于根据逻辑链路控制 LLC谐振电路的输入开关管导通 频率判断负载是否工作在预定状态, 其中, 所述预定状态包括: 轻载状 态或空载状态; 驱动关闭模块, 用于在所述判断模块判断为是的情况下, 关闭同步 管驱动;
第一驱动信号控制模块, 用于在所述判断模块判断为否, 且所述输 入开关管导通频率大于所述 LLC谐振电路的谐振频率的情况下,使同步 管驱动信号的开通延迟于与所述同步管驱动信号对应的功率管驱动信号 的开通,所述同步管驱动信号的关闭同步于所述功率管驱动信号的关闭。
12. 根据权利要求 11所述的装置, 其特征在于, 所述装置还包括:
第二驱动信号控制模块, 用于在所述判断模块判断为否, 且所述输 入开关管导通频率小于或等于所述 LLC谐振电路的谐振频率的情况下, 使同步管驱动信号的开通延迟于所述功率管驱动信号的开通, 且所述同 步管驱动信号的脉冲宽度为所述 LLC谐振电路的谐振周期的一半。
PCT/CN2010/077332 2009-11-12 2010-09-26 逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置 WO2011057523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN5129DEN2012 IN2012DN05129A (zh) 2009-11-12 2010-09-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910221471.4 2009-11-12
CN200910221471A CN101707440A (zh) 2009-11-12 2009-11-12 Llc谐振变换器控制方法、同步整流控制方法及装置

Publications (1)

Publication Number Publication Date
WO2011057523A1 true WO2011057523A1 (zh) 2011-05-19

Family

ID=42377638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077332 WO2011057523A1 (zh) 2009-11-12 2010-09-26 逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置

Country Status (3)

Country Link
CN (1) CN101707440A (zh)
IN (1) IN2012DN05129A (zh)
WO (1) WO2011057523A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置
US8547711B2 (en) * 2010-11-19 2013-10-01 General Electric Company LLC converter active snubber circuit and method of operation thereof
CN102545614A (zh) * 2010-12-16 2012-07-04 台达电子工业股份有限公司 谐振式电源转换电路
US8681513B2 (en) * 2011-06-28 2014-03-25 General Electric Company Optimization of a power converter employing an LLC converter
CN102857103A (zh) * 2011-06-30 2013-01-02 艾默生网络能源系统北美公司 一种三电平llc直流变换器及其控制方法
CN102355147A (zh) * 2011-10-28 2012-02-15 上海大学 数字化 llc同步整流谐振变换器控制装置和方法
CN102437750B (zh) * 2011-10-31 2014-07-30 上海大学 Llc同步整流谐振变换器数字控制装置和方法
CN102497105A (zh) * 2011-12-02 2012-06-13 深圳市菱晟科技有限公司 同步整流反激式开关电源装置及其控制方法
CN103138590B (zh) * 2011-12-02 2017-02-08 中兴通讯股份有限公司 谐振电路限流保护方法和装置
JP5995139B2 (ja) * 2012-10-12 2016-09-21 富士電機株式会社 双方向dc/dcコンバータ
CN103795252B (zh) * 2012-10-31 2016-02-24 中兴通讯股份有限公司 一种串联谐振变换器的控制方法
CN103066853B (zh) * 2012-12-24 2015-02-04 成都芯源系统有限公司 控制电路、开关电源及其控制方法
CN103023335B (zh) * 2012-12-27 2015-01-14 万仁春 Llc变换器同步整流方法及其装置
CN103326587B (zh) * 2013-07-17 2015-09-30 潘海铭 Llc谐振变换器轻负载控制方法及装置
US9479073B2 (en) * 2013-11-12 2016-10-25 Futurewei Technologies, Inc. Gate drive apparatus for resonant converters
CN104333240A (zh) * 2014-11-21 2015-02-04 小米科技有限责任公司 一种谐振整流装置、谐振整流控制方法及装置
CN104716960B (zh) * 2015-03-30 2018-07-24 安徽师范大学 一种基于dsp的数字化llc电路采集控制方法
CN104734502B (zh) * 2015-04-13 2017-04-05 无锡新硅微电子有限公司 一种dc‑dc变换器轻载高效实现电路
CN106300984A (zh) * 2015-05-29 2017-01-04 三垦电气(上海)有限公司 Llc电路的控制方法以及电子设备
CN106211408B (zh) * 2016-06-30 2019-12-31 广东美的厨房电器制造有限公司 微波炉的控制方法和微波炉
CN107666244B (zh) * 2016-07-29 2020-11-27 中兴通讯股份有限公司 一种谐振变换器的控制方法及装置
US10218279B2 (en) * 2016-10-26 2019-02-26 Texas Instruments Incorporated Methods and circuitry for operating switching power supplies based on switching frequency comparison
CN106358354B (zh) * 2016-11-15 2018-04-03 上海联影医疗科技有限公司 X射线高压发生器、谐振变换器的控制电路和控制方法
KR102429957B1 (ko) * 2017-06-01 2022-08-09 현대자동차주식회사 차량용 obc 제어방법 및 시스템
CN110291708B (zh) * 2018-01-11 2021-06-04 深圳欣锐科技股份有限公司 Llc控制器及控制方法
CN108988648B (zh) * 2018-07-06 2019-10-18 华南理工大学 一种llc谐振变换器同步整流预测控制方法
CN108880268B (zh) * 2018-08-01 2020-07-28 北京理工大学 电压源型半有源桥dc-dc变换器的多模式控制方法
CN110957916B (zh) * 2019-01-15 2022-05-03 河南嘉晨智能控制股份有限公司 一种半桥llc变换器的数字同步整流方法
CN109768711A (zh) * 2019-02-28 2019-05-17 深圳市西林电气技术有限公司 一种同步整流控制电路及方法
CN110138230A (zh) * 2019-06-25 2019-08-16 西安特锐德智能充电科技有限公司 谐振电路控制方法、电源电路及充电桩
CN110391804B (zh) * 2019-07-23 2023-03-14 深圳市海派特光伏科技有限公司 电子烟自动调频方法、装置、设备及存储介质
CN111884510B (zh) * 2019-09-29 2022-02-11 株洲中车时代电气股份有限公司 增益频率调制方法及相关装置
CN111200365B (zh) * 2020-03-02 2021-07-09 上海南芯半导体科技有限公司 一种反激变换器的控制方法及其控制电路
CN111769742A (zh) * 2020-05-06 2020-10-13 国网江苏省电力有限公司电力科学研究院 谐振式双向有源桥控制死区计算方法、装置及系统
CN112436732B (zh) * 2020-11-13 2022-06-17 北京航天发射技术研究所 一种电源轻载间歇输出全数字控制方法和控制系统
CN114679060B (zh) * 2020-12-24 2023-08-18 宁德时代新能源科技股份有限公司 隔离型谐振变换控制方法、装置、系统、可读存储介质
CN112953180B (zh) * 2021-04-26 2023-06-23 江苏应能微电子有限公司 开关电源开通时间控制方法、装置及开关电源
CN114094837B (zh) * 2021-11-15 2023-10-10 珠海格力电器股份有限公司 一种同步整流的控制方法、电路、装置、设备及存储介质
CN115173714B (zh) * 2022-08-09 2023-05-23 河北科技大学 一种三相clllc谐振变换器轻载运行控制系统及方法
CN117277787A (zh) * 2023-09-25 2023-12-22 苏州博沃创新能源科技有限公司 一种高压宽电压范围输入电源dc-dc变换器及控制方法
CN117424459B (zh) * 2023-12-19 2024-03-01 苏州元脑智能科技有限公司 电源控制电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595780A (zh) * 2003-09-08 2005-03-16 艾默生网络能源有限公司 串联谐振直流/直流变换器的控制方法及装置
CN1825743A (zh) * 2005-02-25 2006-08-30 台达电子工业股份有限公司 Llc串联谐振变换器与其同步整流功率开关驱动方法
CN1996730A (zh) * 2006-12-27 2007-07-11 中国科学院上海光学精密机械研究所 高效率同步整流降压型开关变换器
US20080290854A1 (en) * 2007-05-23 2008-11-27 Nec Electronics Corporation Switching regulator having reverse current detector
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595780A (zh) * 2003-09-08 2005-03-16 艾默生网络能源有限公司 串联谐振直流/直流变换器的控制方法及装置
CN1825743A (zh) * 2005-02-25 2006-08-30 台达电子工业股份有限公司 Llc串联谐振变换器与其同步整流功率开关驱动方法
CN1996730A (zh) * 2006-12-27 2007-07-11 中国科学院上海光学精密机械研究所 高效率同步整流降压型开关变换器
US20080290854A1 (en) * 2007-05-23 2008-11-27 Nec Electronics Corporation Switching regulator having reverse current detector
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置

Also Published As

Publication number Publication date
CN101707440A (zh) 2010-05-12
IN2012DN05129A (zh) 2015-10-23

Similar Documents

Publication Publication Date Title
WO2011057523A1 (zh) 逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置
US10439501B2 (en) Resonant power converter and frequency tracking method for resonant power converter
US10141868B2 (en) Method and apparatus for resonant power conversion
US8861236B2 (en) Switching power supply with self-optimizing efficiency
TWI474589B (zh) 諧振轉換器混合控制方法、諧振轉換器系統及混合控制器
TWI527351B (zh) 變換器、控制器與控制方法
CN113595398B (zh) 控制装置及控制方法
KR101811740B1 (ko) 직렬 공진 컨버터에 대한 하이브리드 제어 기술
TWI535173B (zh) 諧振電源轉換裝置及其控制方法
US20090034298A1 (en) Control Method And Apparatus Of Resonant Type DC/DC Converter With Low Power Loss At Light Load And Standby
TWM568411U (zh) 切換模式電力供應器控制器以及切換模式電力供應器
US20070139984A1 (en) Resonant conversion control method and device with a very low standby power consumption
US11296611B2 (en) Control circuit, control method and resonant converter
WO2022127589A1 (zh) 隔离型电源的控制电路、隔离型电源及其控制方法
WO2020015391A1 (zh) 一种提高开关电源输出精度的控制方法
TW202046610A (zh) 電壓轉換器中交叉傳導保護
JP2003323994A (ja) 放電灯点灯装置
Shih et al. Adaptive DC-link voltage control of LLC resonant converter
WO2018157796A1 (zh) 一种谐振变换器
TWI752891B (zh) Llc諧振轉換器及其控制方法
CN112701882B (zh) 反激式变换器的控制电路及控制方法
WO2023078362A1 (zh) 开关电源的控制方法和开关电源
CN114024441A (zh) 一种自适应负载的降频控制电路
CN115473448A (zh) 一种llc谐振变换器的同步整流控制方法
CN110086368B (zh) 一种基于断续电流模式的全桥逆变器的轻载效率优化方案

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5129/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10829487

Country of ref document: EP

Kind code of ref document: A1