WO2023078362A1 - 开关电源的控制方法和开关电源 - Google Patents

开关电源的控制方法和开关电源 Download PDF

Info

Publication number
WO2023078362A1
WO2023078362A1 PCT/CN2022/129615 CN2022129615W WO2023078362A1 WO 2023078362 A1 WO2023078362 A1 WO 2023078362A1 CN 2022129615 W CN2022129615 W CN 2022129615W WO 2023078362 A1 WO2023078362 A1 WO 2023078362A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
control module
switching
voltage
switching power
Prior art date
Application number
PCT/CN2022/129615
Other languages
English (en)
French (fr)
Inventor
顾蝶芬
Original Assignee
力源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力源科技有限公司 filed Critical 力源科技有限公司
Publication of WO2023078362A1 publication Critical patent/WO2023078362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control

Definitions

  • the flyback AC-DC (Alternating Current and Direct Current, AC-DC) isolated switching power supply is widely used in the power supply process of electrical equipment such as mobile phones, tablet computers, and household appliances.
  • the typical flyback AC-DC isolated switching power supply has large primary switching loss, low efficiency, and serious Electromagnetic Interference (EMI), which limits the increase of switching frequency and hinders the miniaturization of switching power supply.
  • EMI Electromagnetic Interference
  • the active clamp flyback design that can realize zero-voltage switching came into being.
  • the active-clamped flyback AC-DC isolated switching power supply requires additional control links and corresponding circuit structures, so the structure of the switching power supply tends to Due to the complexity, the hardware cost and the complexity of power control are high.
  • an embodiment of the present application provides a control method for a switching power supply
  • the switching power supply includes a primary side winding, a secondary side winding, a primary side control module, a secondary side control module, and a power supply connected to the primary side winding
  • the first switching tube of the first switch tube and the second switch tube connected to the secondary side winding
  • the primary-side control module controls the first switch to be turned on, so as to realize the zero-voltage turn-on of the primary side
  • the primary side control module controls the first switch tube to be turned off
  • the secondary side control module controls the second switch tube to be turned on
  • the secondary side control module controls the second switching tube to be turned off.
  • the embodiment of the present application also provides a switching power supply, including a primary side winding, a secondary side winding, a primary side control module, a secondary side control module, a first switching tube connected to the primary side winding, and a second switching tube connected to the secondary side winding;
  • the primary side winding is configured to store energy when the first switch tube is turned on;
  • the secondary side winding is configured to generate an output voltage when the second switch tube is turned on;
  • the first switch tube is configured to be turned on or off according to a driving signal generated by the primary side control module
  • the second switch tube is configured to be turned on or off according to a driving signal generated by the secondary side control module
  • the primary side control module is configured to control the first switching tube to turn on when the voltage waveform at the first connection point just returns to zero; it is also configured to adjust the The peak current of the first switching tube; it is also set to control the first switching tube to turn off when the peak current of the first switching tube reaches a preset value;
  • the secondary side control module is configured to adjust the second switch according to the voltage waveform of the second connection point between the secondary side winding and the second switch tube after the switching power supply is started at high voltage.
  • the cut-off current of the tube it is also set to control the conduction of the second switch tube after the first switch tube is turned off; it is also set to be the case where the switching current of the second switch tube is at the current zero-crossing point Next, control the second switching tube to turn off.
  • the embodiment of the present application also provides a control method for a switching power supply, the switching power supply includes a primary winding, a secondary winding, a primary control module, a secondary control module, and a a third switch tube, a fourth switch tube connected to the secondary winding, and a photocoupler;
  • the control method of the switching power supply includes:
  • the primary-side control module controls the third switch to be turned on, so as to realize the zero-voltage turn-on of the primary side
  • the primary side control module adjusts the peak current of the third switching tube until the peak current of the third switching tube reaches a set value
  • the primary side control module controls the third switch tube to be turned off
  • the secondary side control module controls the fourth switch tube to be turned on
  • the primary side control module controls the switching power supply according to the feedback signal of the photocoupler.
  • the switching current of the third switching tube is adjusted to adjust the output voltage of the switching power supply.
  • FIG. 1 is a schematic structural diagram of a switching power supply provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a control method for a switching power supply provided in an embodiment of the present application
  • FIG. 3 is a flow chart of another switching power supply control method provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of another switching power supply control method provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of another switching power supply control method provided by the embodiment of the present application.
  • FIG. 6 is a schematic waveform diagram of a switching power supply provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of another switching power supply control method provided by the embodiment of the present application.
  • FIG. 8 is a schematic waveform diagram of another switching power supply provided by the embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of another switching power supply provided by the embodiment of the present application.
  • FIG. 10 is a flow chart of another method for controlling a switching power supply provided by an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a switching power supply provided by an embodiment of the present application
  • Fig. 2 is a flowchart of a control method of a switching power supply provided by an embodiment of the present application.
  • This embodiment is applicable to the power supply scene of any device with a typical flyback AC-DC isolated switching power supply structure.
  • the switching power supply control method can be executed by the switching power supply in the embodiment of the present application as the execution subject. It can be realized by means of software and/or hardware.
  • the switching power supply includes a primary side winding X1, a secondary side winding X2, a primary side control module K1, a secondary side control module K2, a first switching tube M1 connected to the primary side winding X1, and a first switching tube M1 connected to the secondary side winding X2.
  • Vin is the input voltage of the switching power supply
  • Vout is the output voltage of the switching power supply.
  • the secondary side control module adjusts the cut-off current of the second switching tube according to the voltage waveform of the second connection point between the secondary side winding and the second switching tube until the primary side winding and the second switching tube The voltage waveform at the first connection point between the switch tubes just returns to zero.
  • the high-voltage startup method of the switching power supply may be to obtain electric energy from the bus voltage through a high-voltage startup circuit in the related art, and then start the switching power supply.
  • the cut-off current of the second switch M2 refers to the cut-off current of the second switch M2.
  • the adjustment process of the cut-off current of the second switching tube M2 by the secondary side control module K2 may be increased, or may be decreased, or may be first increased and then decreased, or may be first decreased and then increased, Or it can be an adjustment process of repeated oscillations. It can be understood that, the adjustment process of the cut-off current of the second switching tube M2 can be changed according to the setting of the switching power supply and the adaptability of parameter selection.
  • the primary-side control module controls the first switch to be turned on, so as to realize the zero-voltage turn-on of the primary side.
  • the fact that the voltage waveform at the first connection point A exactly returns to zero means that the valley value of the voltage waveform at the first connection point A just returns to a zero voltage state.
  • the primary-side control module K1 controls the first switch M1 to be turned on, and the voltage difference between the source and the drain of the first switch M1 is zero.
  • the embodiment of the present application controls the conduction of the first switching tube M1 by setting the primary side control module K1 at the moment when the voltage waveform of the first connection point A just returns to zero, thereby realizing the zero voltage of the first switching tube M1 open.
  • the switching power supply provided in this embodiment has a typical flyback AC-DC isolated switching power supply structure, the first switching tube M1 and the second switching tube M2 cannot be turned on at the same time. Therefore, when the primary side control module K1 controls the first switching tube M1 to be turned on, the second switching tube M2 is in an off state.
  • the primary side control module adjusts the peak current of the first switching tube until the peak current of the first switching tube reaches a preset value.
  • the adjustment process of the primary side control module K1 to the peak current of the first switching tube M1 can be kept constant at a fixed value, or can be increased, or can be decreased, or can be increased first Then decrease, or it can be reduced first and then increased, or it can be an adjustment process of repeated oscillations. It can be understood that the above-mentioned adjustment process of the peak current of the first switching tube M1 can be changed according to the setting of the switching power supply and the adaptability of parameter selection.
  • the primary-side control module K1 may adjust the peak current of the first switching tube M1 by adjusting the peak current according to the switching frequency of the first switching tube M1, so as to optimize the efficiency of the switching power supply.
  • the primary side control module controls the first switch tube to be turned off.
  • the preset value refers to a fixed or adjustable current value.
  • the way of setting the preset value can be the initial setting of the switching power supply, or can be set according to a specific algorithm.
  • the secondary side control module controls the second switch tube to be turned on.
  • the secondary side control module controls the second switch tube to be turned off.
  • the current zero-crossing point corresponds to the moment when the switching current of the second switching tube M2 is zero. It can be understood that when the switching current of the second switching tube M2 is at the current zero-crossing point, the secondary side control module K2 controls the second switching tube M2 to turn off, which means that the switching current of the second switching tube M2 is zero At the moment of , the secondary side control module K2 controls the second switching tube M2 to turn off.
  • the primary side control module K1 and the secondary side control module K2 may be a kind of control chip or circuit. It should be noted that no matter what circuit the primary side control module K1 and the secondary side control module K2 use, they only need to be able to realize the corresponding control function, and do not need to know the internal implementation of the chip or the circuit.
  • the control method of the switching power supply includes: after the switching power supply is started at high voltage, the secondary side control module adjusts the second switch according to the voltage waveform of the second connection point between the secondary side winding and the second switching tube.
  • the switch tube is turned on to realize the zero-voltage turn-on of the primary side; after the zero-voltage turn-on of the primary side, the primary-side control module adjusts the peak current of the first switch tube until the peak current of the first switch tube reaches a preset value; When the peak current of a switch tube reaches a preset value, the primary side control module controls the first switch tube to be turned off; after the first switch tube is turned off, the secondary side control module controls the second switch tube to be turned on; When the switching current of the second switching tube is at the
  • this embodiment omits circuit structures such as photocouplers or other isolated converters, reduces the circuit cost and control complexity of the switching power supply, and also It has the advantages of the secondary side feedback control strategy, including fast loop response, and can be widely applied to various fast charging protocols.
  • a typical flyback AC-DC isolated switching power supply cannot achieve ZVS.
  • the secondary side control module K2 is set to obtain the voltage waveform of the second connection point B, and adjust the cut-off current of the second switching tube M2; the primary When the voltage waveform of the first connection point A just returns to zero, the side control module K1 controls the first switching tube M1 to turn on, and completes the secondary side control to turn on the first switching tube M1, and finally realizes the switching power supply.
  • ZVS can not only reduce the switching loss of the switching power supply, but also improve the EMI characteristics of the switching power supply.
  • the embodiment of the present application does not need to add additional control links and corresponding hardware circuit structures, thus simplifying the circuit structure of the switching power supply and reducing the number of switches
  • the hardware cost of the power supply is conducive to simplifying the control link of the switching power supply.
  • the embodiment of the present application realizes the secondary side feedback and control on the basis of omitting optocoupler and other devices, which is beneficial to support various fast charging protocols and improve the response of the control loop speed.
  • the present application can simplify the circuit structure of the switching power supply, reduce the hardware cost of the switching power supply, reduce the switching loss of the switching power supply, and improve the EMI characteristics of the switching power supply.
  • FIG. 3 is a flow chart of another method for controlling a switching power supply provided by an embodiment of the present application. Referring to Fig. 3, the control flow of the switching power supply shown in S210-S260 is as follows:
  • the secondary side control module K2 adjusts the cut-off current of the second switching tube M2 according to the voltage waveform of the second connection point B between the secondary side winding X2 and the second switching tube M2 until The voltage waveform at the first connection point A between the primary side winding X1 and the first switching tube M1 returns exactly to zero.
  • the primary-side control module K1 controls the first switch M1 to turn on, so as to realize the zero-voltage turn-on of the primary side.
  • the primary side control module K1 adjusts the conduction time of the first switch M1 until the conduction time of the first switch M1 reaches the time reference value. Again, when the conduction time of the first switch M1 reaches the time reference value, the primary side control module K1 controls the first switch M1 to turn off. Again, after the first switching tube M1 is turned off, the secondary side control module K2 controls the second switching tube M2 to be turned on. Finally, when the switching current of the second switching tube M2 is at the current zero-crossing point, the secondary side control module K2 controls the second switching tube M2 to turn off.
  • this embodiment does not need optocoupler and other devices, which not only simplifies the circuit structure of the switching power supply, but also reduces the hardware cost of the switching power supply. , which is beneficial to simplify the control link of the switching power supply, and can also realize the feedback and control of the secondary side, which is conducive to improving the reliability of the switching power supply.
  • FIG. 4 is a flow chart of another method for controlling a switching power supply provided by an embodiment of the present application.
  • the switching power supply further includes an auxiliary winding X3 and a first voltage dividing circuit E1, and the first voltage dividing circuit E1 is connected between the auxiliary winding X3 and the voltage detection terminal of the primary side control module K1.
  • the switching power supply further includes a snubber circuit Q, the snubber circuit Q is connected in parallel with both ends of the primary side winding X1, and the snubber circuit Q includes a fifth resistor R5 and a first capacitor C1 connected in series.
  • the control method of the switching power supply provided in this embodiment includes the following steps:
  • the secondary side control module acquires a voltage waveform of a second connection point between the secondary side winding and the second switching tube.
  • the primary-side control module When the primary-side control module detects that the voltage waveform of the first connection point just returns to zero through the first voltage divider circuit, the primary-side control module controls the first switch to turn on, so as to realize the zero-voltage turn-on of the primary side.
  • a typical flyback AC-DC isolated switching power supply sets the auxiliary winding X3 and the first voltage dividing circuit E1, and connects the first voltage dividing circuit between the auxiliary winding X3 and the voltage detection terminal of the primary side control module K1 E1, the voltage waveform of the first connection point A can be obtained indirectly.
  • the primary side control module K1 when the primary side control module K1 detects that the minimum value of the voltage waveform at the first connection point A is close to zero through the first voltage divider circuit E1, the primary side control module K1 may The first switching tube M1 is controlled to be turned on, so as to realize the zero-voltage turn-on of the primary side.
  • the primary side control module adjusts the peak current of the first switching tube until the peak current of the first switching tube reaches a preset value.
  • the primary side control module controls the first switch tube to be turned off.
  • the secondary side control module controls the second switch tube to be turned on.
  • the secondary side control module controls the second switching tube to turn off.
  • the secondary side control module controls the second switching tube to turn off.
  • the technical solution of this embodiment saves the coupling device between the primary side and the secondary side, and can reduce the switching power of the switching power supply on the premise of simplifying the additional circuit cost and controlling the complexity. losses, and improve the EMI characteristics of switching power supplies.
  • this embodiment also realizes the secondary side feedback control, which is beneficial to improve the output dynamic response performance of the switching power supply, and can be compatible with the practical application of various fast charging protocols.
  • the switching power supply further includes a second voltage divider circuit E2, and the second voltage divider circuit E2 is connected between the secondary side winding X2 and the output voltage detection terminal of the secondary side control module K2.
  • FIG. 5 is a flow chart of another method for controlling a switching power supply provided by an embodiment of the present application. As shown in FIG. 5, the control method of the switching power supply provided in this embodiment includes the following steps:
  • the secondary side control module acquires a voltage waveform of a second connection point between the secondary side winding and the second switching tube.
  • the secondary side control module adjusts the cut-off current of the second switch tube until the first connection point between the primary side winding and the first switch tube The voltage waveform goes exactly to zero.
  • the primary-side control module When the primary-side control module detects that the voltage waveform of the first connection point just returns to zero through the first voltage divider circuit, the primary-side control module controls the first switch to turn on, so as to realize the zero-voltage turn-on of the primary side.
  • the primary side control module adjusts the peak current of the first switching tube until the peak current of the first switching tube reaches a preset value.
  • the primary side control module controls the first switch tube to be turned off.
  • the secondary side control module controls the second switch tube to be turned on.
  • the secondary side control module detects that the load at the output end of the switching power supply changes through the second voltage divider circuit, the secondary side control module controls the return-to-high frequency of the voltage waveform at the second connection point to adjust the switching power supply output voltage.
  • the second connection point B rises to a voltage value according to the ratio of the primary side winding and the secondary side winding.
  • the voltage V A of the first connection point A returns to zero
  • the voltage V B of the second connection point rises to a voltage value, that is, returns to high
  • the voltage V A returns to zero again
  • V The B voltage rises to a voltage value again, that is, returns to high.
  • the time interval for the voltage waveform of the second connection point B to return to high can be determined.
  • the return-to-high frequency of the voltage waveform at the second connection point B can be determined.
  • the zeroing of the voltage V A of the first connection point A can be obtained by detecting that the voltage V Z of the third connection point Z drops to a voltage value, that is, returns to low.
  • the secondary side control module K2 detects that the load at the output end of the switching power supply changes through the second voltage divider circuit E2, the secondary side control module K2 can according to the current output of the switching power supply The voltage controls the zero-return frequency of the voltage waveform at the first connection point A, thereby realizing the stable loop regulation of the output voltage of the switching power supply.
  • the control module K2 on the secondary side passes through the second When the voltage divider circuit E2 detects that the load at the output end of the switching power supply changes, the secondary side control module K2 controls the time interval for the voltage waveform at the second connection point B to return to high, so as to adjust the output voltage of the switching power supply.
  • the frequency at which the voltage waveform at the first connection point A returns to zero is related to the time interval at which the voltage waveform at the first connection point A returns to zero. It can be seen that, in other embodiments, when the secondary side control module K2 detects that the load at the output end of the switching power supply changes through the second voltage divider circuit E2, the secondary side control module K2 can The output voltage is used to control the time interval for the voltage waveform of the first connection point A to return to zero, thereby realizing the stable loop regulation of the output voltage of the switching power supply.
  • this embodiment can realize the stable loop control of the output voltage of the switching power supply when the load at the output end of the switching power supply changes.
  • the technical solution of this embodiment saves the coupling device between the primary side and the secondary side, and can reduce the switching loss of the switching power supply and improve the switching power supply while reducing the extra circuit cost and the control complexity.
  • EMI characteristics of the power supply In addition, this embodiment also realizes the secondary side feedback control, which is beneficial to improve the output dynamic response performance of the switching power supply, and can be compatible with the practical application of various fast charging protocols.
  • the switching power supply includes a primary side winding X1, a secondary side winding X2, a primary side control module K1, a secondary side control module K2, a first switching tube M1 connected to the primary side winding X1, and a first switching tube M1 connected to the secondary side winding
  • the second switching tube M2 connected to X2.
  • the primary side winding X1 is configured to store energy when the first switch M1 is turned on.
  • the secondary winding X2 is configured to generate an output voltage Vout when the second switch M2 is turned on.
  • the first switching tube M1 is configured to be turned on or off according to the driving signal generated by the primary side control module K1.
  • the second switching tube M2 is configured to be turned on or off according to the driving signal generated by the secondary side control module K2.
  • the primary side control module K1 is set to control the first switching tube M1 to turn on when the voltage waveform of the first connection point A just returns to zero; it is also set to adjust the first switching tube M1 after the primary side zero voltage is turned on.
  • the peak current of M1 is also set to control the first switch M1 to turn off when the peak current of the first switch M1 reaches a preset value.
  • the secondary side control module K2 is configured to adjust the cut-off current of the second switching tube M2 according to the voltage waveform of the second connection point B between the secondary side winding X2 and the second switching tube M2 after the switching power supply is started at high voltage; It is also set to control the second switch tube M2 to turn on after the first switch tube M1 is turned off; it is also set to control the second switch tube M2 when the switching current of the second switch tube M2 is at the current zero crossing point off.
  • the first switch M1 and the second switch M2 may be metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET). It can be understood that the type selection and structural parameters of the first switching tube M1 and the second switching tube M2 are related to the desired power supply effect.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the primary-side control module K1 can also be configured to adjust the conduction time of the first switch M1 after the primary-side zero-voltage turn-on until the conduction time of the first switch M1 reaches the time reference value, and at the first When the conduction time of the switch tube M1 reaches the time reference value, the first switch tube M1 is controlled to be turned off.
  • the primary side control module K1 can also be configured to control the first switch when the primary side control module K1 detects that the valley of the voltage waveform at the first connection point A is close to zero through the first voltage divider circuit E1 The tube M1 is turned on, thereby realizing the zero-voltage turn-on of the primary side.
  • the secondary side control module K2 can also be configured to, when the secondary side control module K2 detects that the load at the output end of the switching power supply changes through the second voltage divider circuit E2, according to the current output voltage of the switching power supply, Controlling the return-to-zero frequency of the voltage waveform at the first connection point A, or the return-to-high frequency of the voltage waveform at the second connection point B, thereby realizing a stable loop regulation of the output voltage Vout of the switching power supply.
  • the secondary side control module K2 can also be configured to control the second connection point B when the secondary side control module K2 detects that the load at the output end of the switching power supply changes through the second voltage divider circuit E2 The time interval during which the voltage waveform of the first connection point A returns to zero, so as to adjust the output voltage of the switching power supply.
  • the switching power supply further includes an auxiliary winding X3 and a first voltage dividing circuit E1, and the first voltage dividing circuit E1 includes a first resistor R1 and a second resistor R2.
  • the auxiliary winding X3 is configured to provide electric energy for the primary side control module K1.
  • the first voltage dividing circuit E1 is configured to generate a first voltage dividing signal, so that the primary side control module K1 obtains the voltage waveform of the first connection point A.
  • the first divided voltage signal may be a voltage signal. It can be seen that the first divided voltage signal is used as the input signal of the primary side control module K1 and is set to provide a basis for the primary side control module K1 to obtain the voltage waveform of the first connection point A.
  • the switching power supply further includes a second voltage dividing circuit E2, and the second voltage dividing circuit E2 includes a third resistor R3 and a fourth resistor R4.
  • the second voltage dividing circuit E2 is configured to generate a second voltage dividing signal, so that the secondary side control module K2 obtains the output voltage Vout of the switching power supply.
  • the second divided voltage signal may be a voltage signal. It can be seen that the second divided voltage signal is used as the input signal of the secondary side control module K2 and is set to provide a basis for the secondary side control module K2 to obtain the output voltage Vout of the switching power supply.
  • the switching power supply further includes a snubber circuit Q, and the snubber circuit Q includes a fifth resistor R5 and a first capacitor C1 connected in series.
  • the absorbing circuit Q provided in the embodiment of the present application can realize a simpler clamping and absorbing function, and reduce the The hardware cost of the switching power supply optimizes the switching loss of the system and improves the electromagnetic interference characteristics of the switching power supply.
  • the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4 and the fifth resistor R5 can be any kind of resistors, and the types and parameters of the above resistors can be obtained according to the power supply to be obtained by the switching power supply. The effect is adaptively adjusted.
  • the above-mentioned resistors may all be chip resistors.
  • the first capacitor C1 can be any kind of capacitor, and the type and parameters of the capacitor can be adaptively adjusted according to the intended power supply effect of the switching power supply.
  • the first capacitor C1 may be a mica capacitor.
  • circuit element connection relationship of the switching power supply based on the typical flyback AC-DC isolated switching power supply topology provided by the embodiment of the present application is shown in FIG. 1 .
  • the secondary control module K2 obtains the voltage waveform of the second connection point B between the secondary winding X2 and the second switching tube M2. Secondly, when the voltage waveform at the second connection point B does not realize zero-voltage switching, the secondary side control module K2 adjusts the cut-off current of the second switching tube M2 until the primary side winding X1 and the first switching tube M1 The voltage waveform at the first connection point A exactly returns to zero.
  • the primary side control module K1 detects that the voltage waveform of the first connection point A just returns to zero through the first voltage divider circuit E1, the primary side control module K1 controls the first switch tube M1 to turn on, so as to realize the primary The zero voltage on the side turns on.
  • the primary side control module K1 adjusts the peak current of the first switching tube M1 until the peak current of the first switching tube M1 reaches a preset value.
  • the primary-side control module K1 controls the first switch M1 to turn off.
  • the secondary side control module K2 controls the second switching tube M2 to be turned on.
  • the secondary side control module K2 controls the second switching tube M2 to turn off.
  • the secondary side control module K2 detects that the load at the output end of the switching power supply changes through the second voltage divider circuit E2
  • the secondary side control module K2 controls the return-to-high frequency of the voltage waveform at the second connection point B, to adjust the output voltage Vout of the switching power supply.
  • the secondary side control module K2 in the embodiment of the present application can internally integrate a typical 431 voltage reference module (a voltage reference chip) or other voltage reference modules, or an external 431 voltage reference module can be used Or other voltage reference modules to realize the comparison between the output voltage Vout of the switching power supply and the module reference voltage provided by the 431 voltage reference module, and then realize the controllable loop adjustment of the output voltage Vout of the switching power supply.
  • a typical 431 voltage reference module a voltage reference chip
  • an external 431 voltage reference module can be used
  • other voltage reference modules to realize the comparison between the output voltage Vout of the switching power supply and the module reference voltage provided by the 431 voltage reference module, and then realize the controllable loop adjustment of the output voltage Vout of the switching power supply.
  • FIG. 6 is a schematic waveform diagram of a switching power supply provided by an embodiment of the present application. Referring to the above-mentioned working process of the switching power supply and Fig. 6, it can be seen that when the waveform of the voltage V A of the first connection point A just returns to zero, the waveform of the voltage V B of the second connection point B just returns to high, and the waveform of the voltage V B of the third connection point B just returns to high. The waveform of the voltage V Z at the connection point Z is exactly low. In addition, at the moment when the second switching tube M2 is turned off, the switching current I S of the second switching tube M2 reaches the cut-off current I S_min . In FIG.
  • M1 ON means that the first switch tube M1 is turned on, M1 OFF means that the first switch tube M1 is turned off; M2 ON means that the second switch tube M2 is turned on, and M2 OFF means that the second switch tube M2 is turned off; I S represents the current flowing between the source and the drain of the second switching tube M2.
  • the voltage difference between the source and the drain of M2 can be collected to calculate the switching current I S .
  • the technical solution of this embodiment can realize the ZVS of the switching power supply under any state according to the load change of the output end of the switching power supply under the premise of reducing the additional circuit cost and control complexity, such as light load Or heavy load state, etc., not only reduces the switching loss of the switching power supply, but also improves the EMI characteristics of the switching power supply.
  • the primary side control module K1 in the embodiment of the present application can integrate a voltage reference module inside, such as a typical 431 voltage reference module, or an external voltage reference module can be used
  • the module is used to compare the output voltage Vout of the switching power supply with the module reference voltage provided by the voltage reference module through the first voltage dividing circuit E1, so as to realize the controllable loop adjustment of the output voltage Vout of the switching power supply.
  • FIG. 7 is a flow chart of another switching power supply control method provided by the embodiment of the present application. Compared with the switching power supply control method shown in FIG. 5 , the switching power supply shown in FIG. 7 The control method of the switching power supply is completely different in terms of the method for adjusting the output voltage of the switching power supply, refer to the control flow of the switching power supply shown in S510-S580 in FIG. 7 .
  • the secondary control module K2 enters the heavy-duty ZVS mode, and the primary-side control module K1 also enters the heavy-duty ZVS mode by detecting the voltage waveform of the first connection point A.
  • the primary side control module K1 collects the feedback signal of the output voltage Vout according to the first voltage divider circuit E1, and compares the feedback signal of the output voltage Vout with the module reference voltage of the primary side control module K1, and adjusts the first switching tube
  • the switching current of M1 realizes the stable control of the switching power supply output loop.
  • the switching current of the first switching tube M1 represents the current flowing between the source and the drain of the first switching tube M1.
  • the source of M1 can be collected.
  • voltage calculate the current flowing through the resistor Rs to obtain the switching current of the first switching tube M1.
  • FIG. 8 is a schematic waveform diagram of another switching power supply provided by the embodiment of the present application.
  • the waveform of the voltage V A at the first connection point A just returns to zero the waveform of the voltage V B at the second connection point B is just right Return to high, the waveform of the voltage V Z of the third connection point Z just returns to low.
  • the switching current I S of the second switching tube M2 reaches the cut-off current I S_min .
  • the switching power supply When the switching current I S of the second switching tube M2 is less than or equal to the first preset value, or the switching frequency of the second switching tube M2 is less than or equal to the first preset frequency value, the switching power supply is in a light-load ZVS state. At this time, in this embodiment, the output loop of the switching power supply is stably controlled according to the control flow shown in S410-S480.
  • FIG. 9 is a schematic structural diagram of another switching power supply provided by an embodiment of the present application.
  • the technical solution of this embodiment adds a photocoupler P' between the primary side control module K1' and the secondary side control module K2'.
  • FIG. 10 is a flow chart of another switching power supply control method provided by the embodiment of the present application. Referring to FIG. 10, the control flow of the switching power supply shown in S610-S670 is as follows:
  • the secondary side control module K2' adjusts the cut-off current of the fourth switching tube M2' according to the voltage waveform of the fourth connection point B' between the secondary winding and the fourth switching tube M2' until the original The voltage waveform of the third connection point A' between the side winding and the third switch tube M1' exactly returns to zero.
  • the primary-side control module K1' controls the third switch M1' to turn on, so as to realize the zero-voltage turn-on of the primary side.
  • the primary side control module K1' adjusts the peak current of the third switching tube M1' until the peak current of the third switching tube M1' reaches the set value.
  • the primary side control module K1' controls the third switching tube M1' to turn off.
  • the secondary side control module K2' controls the fourth switching tube M2' to be turned on.
  • the switching current of the fourth switching tube M2' is at the current zero-crossing point, the secondary side control module K2' controls the fourth switching tube M2' to turn off.
  • the secondary side control module K2' When the switching current I S ' of the fourth switching tube M2' is greater than the second preset value, or the switching frequency of the fourth switching tube M2' is greater than the second preset frequency value, the secondary side control module K2' enters into heavy load In the ZVS mode, the primary-side control module K1' also enters the heavy-load ZVS mode after detecting the voltage waveform of the third connection point A'. At this time, the primary side control module K1' adjusts the switching current of the third switching tube M1' according to the feedback signal of the photocoupler P', so as to realize the stable control of the output loop of the switching power supply.
  • the secondary side control module K2' can generate the driving signal of the photocoupler P' according to the signal fed back by the voltage divider circuit E2', so that the primary side control module K1' can know the change of the output voltage of the switching power supply.
  • I S ' represents the current flowing between the source and drain of the fourth switch M2', and when the fourth switch M2' is turned on, the source and drain of M2' can be collected Between the voltage difference, calculate the switch current I S '.
  • the switching current of the third switching tube M1' represents the current flowing between the source and the drain of the third switching tube M1', and when the third switching tube M1' is turned on, the voltage of the source of M1' can be collected, Calculate the current flowing through the resistor Rs' to obtain the switching current of the third switching tube M1'.
  • the switching power supply is under light load ZVS state. At this time, this embodiment can still perform stable control on the output loop of the switching power supply according to the control process shown in S410-S480.
  • the primary side control module K1' and the secondary side control module K2' can be a kind of control chip or circuit. It should be noted that no matter what circuit the primary side control module K1' and secondary side control module K2' use, it only needs to be able to realize the corresponding control function, and it is not necessary to know the internal implementation of the chip or the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例公开了一种开关电源的控制方法和开关电源。该开关电源的控制方法包括:在开关电源高压启动之后,次级边控制模块根据第二连接点的电压波形,调节第二开关管的截止电流;直至第一连接点的电压波形恰好归零,初级边控制模块控制第一开关管导通;在第一开关管导通之后,初级边控制模块调节第一开关管的峰值电流;直至第一开关管的峰值电流达到预设值,初级边控制模块控制第一开关管关断;在第一开关管关断之后,次级边控制模块控制第二开关管导通;在第二开关管的开关电流处于电流过零点的情况下,次级边控制模块控制第二开关管关断。

Description

开关电源的控制方法和开关电源
本公开要求在2021年11月4日提交中国专利局、申请号为202111299476.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电源技术领域,例如涉及一种开关电源的控制方法和开关电源。
背景技术
在电源领域中,隔离开关电源的地位举足轻重。作为最常见的一种隔离开关电源,反激式交直流(Alternating Current and Direct Current,AC-DC)隔离开关电源广泛应用于手机、平板电脑及家用电器等电器设备的电源供电过程。
相关技术中,典型的反激式AC-DC隔离开关电源的初级开关损耗大,效率低,电磁干扰(Electromagnetic Interference,EMI)严重,因而限制了开关频率的提高,阻碍了开关电源的小型化。基于此,能够实现零电压开关切换的有源箝位反激设计应运而生。然而,相较于典型的反激式AC-DC隔离开关电源,有源箝位的反激式AC-DC隔离开关电源需要额外增加多个控制环节及相应的电路结构,因而开关电源的结构趋于复杂,硬件成本和电源控制的复杂程度偏高。
除此以外,相关技术的反激式AC-DC隔离开关电源的初级边与次级边控制通常需要光电耦合器或其他类别的耦合变换器,上述器件的使用不仅增加了开关电源结构的复杂程度,还降低了开关电源控制的可靠性。相关技术的常用的初级边反馈控制方法虽然省略了光耦等器件,但该控制方法的控制环路响应速度偏慢,难以应用于具备USB/C(也即USB Type-C,一种USB接口外形标准)等快充协议的充电器中。
发明内容
本申请实施例提供一种开关电源的控制方法和开关电源,以简化开关电源的电路结构,缩减开关电源的硬件成本,降低开关电源的开关损耗,改善开关电源的EMI特性,并实现次级边反馈和控制,有利于支持各类快充协议,以及提高控制环路响应速度。
第一方面,本申请实施例提供了一种开关电源的控制方法,所述开关电源包括初级边绕组、次级边绕组、初级边控制模块、次级边控制模块、与所述初级边绕组连接的第一开关管、以及与所述次级边绕组连接的第二开关管;
所述开关电源的控制方法包括:
在所述开关电源高压启动之后,所述次级边控制模块根据所述次级边绕组与所述第二开关管之间的第二连接点的电压波形,调节所述第二开关管的截止电流,直至所述初级边绕组与所述第一开关管之间的第一连接点的电压波形恰好归零;
在所述第一连接点的电压波形恰好归零的情况下,所述初级边控制模块控制所述第一开关管导通,以实现初级边的零电压开启;
在所述初级边零电压开启之后,所述初级边控制模块调节所述第一开关管的峰值电流,直至所述第一开关管的峰值电流达到预设值;
当所述第一开关管的峰值电流达到预设值的情况下,所述初级边控制模块控制所述第一开关管关断;
在所述第一开关管关断之后,所述次级边控制模块控制所述第二开关管导通;
在所述第二开关管的开关电流处于电流过零点的情况下,所述次级边控制模块控制所述第二开关管关断。
第二方面,本申请实施例还提供了一种开关电源,包括初级边绕组、次级边绕组、初级边控制模块、次级边控制模块、与所述初级边绕组连接的第一开关管以及与所述次级边绕组连接的第二开关管;
所述初级边绕组被设置为在所述第一开关管导通的情况下,存储能量;
所述次级边绕组被设置为在所述第二开关管导通的情况下,产生输出电压;
所述第一开关管被设置为根据所述初级边控制模块产生的驱动信号导通或者关断;
所述第二开关管被设置为根据所述次级边控制模块产生的驱动信号导通或者关断;
所述初级边控制模块被设置为在第一连接点的电压波形恰好归零的情况下,控制所述第一开关管导通;还被设置为在所述初级边零电压开启之后,调节所述第一开关管的峰值电流;还被设置为在所述第一开关管的峰值电流达到预设值的情况下,控制所述第一开关管关断;
所述次级边控制模块被设置为在所述开关电源高压启动之后,根据所述次级边绕组与所述第二开关管之间的第二连接点的电压波形,调节所述第二开关管的截止电流;还被设置为在所述第一开关管关断之后,控制所述第二开关管导通;还被设置为在所述第二开关管的开关电流处于电流过零点的情况下,控制所述第二开关管关断。
第三方面,本申请实施例还提供了一种开关电源的控制方法,所述开关电源包括原边绕组、副边绕组、原边控制模块、副边控制模块、与所述原边绕组连接的第三开关管、与所述副边绕组连接的第四开关管、以及光电耦合器;
所述开关电源的控制方法包括:
所述开关电源高压启动之后,所述副边控制模块根据所述副边绕组与所述第四开关管之间的第四连接点的电压波形,调节所述第四开关管的截止电流,直至所述原边绕组与所述第三开关管之间的第三连接点的电压波形恰好归零;
在所述第三连接点的电压波形恰好归零的情况下,所述原边控制模块控制所述第三开关管导通,以实现原边的零电压开启;
在所述原边零电压开启之后,所述原边控制模块调节所述第三开关管的峰值电流,直至所述第三开关管的峰值电流达到设定值;
在所述第三开关管的峰值电流达到设定值的情况下,所述原边控制模块控制所述第三开关管关断;
在所述第三开关管关断之后,所述副边控制模块控制所述第四开关管导通;
在所述第四开关管的开关电流处于电流过零点的情况下,所述副边控制模块控制所述第四开关管关断;
在所述开关电源的输出端负载发生改变,且所述第四开关管的开关电流大于第二预设值的情况下,所述原边控制模块根据所述光电耦合器的反馈信号,控制所述第三开关管的开关电流,以调节所述开关电源的输出电压。
附图说明
图1是本申请实施例提供的一种开关电源的结构示意图;
图2是本申请实施例提供的一种开关电源的控制方法的流程图;
图3是本申请实施例提供的另一种开关电源的控制方法的流程图;
图4是本申请实施例提供的又一种开关电源的控制方法的流程图;
图5是本申请实施例提供的又一种开关电源的控制方法的流程图;
图6是本申请实施例提供的一种开关电源的波形示意图;
图7是本申请实施例提供的又一种开关电源的控制方法的流程图;
图8是本申请实施例提供的另一种开关电源的波形示意图;
图9是本申请实施例提供的另一种开关电源的结构示意图;
图10是本申请实施例提供的又一种开关电源的控制方法的流程图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1是本申请实施例提供的一种开关电源的结构示意图,图2是本申请实施例提供的一种开关电源的控制方法的流程图。本实施例可适用于具备典型的反激式AC-DC隔离开关电源结构的任意设备的电源供电场景,开关电源的控制方法可以由本申请实施例中的开关电源作为执行主体来执行,该执行主体可以采用软件和/或硬件的方式实现。其中,开关电源包括初级边绕组X1、次级边绕组X2、初级边控制模块K1、次级边控制模块K2、与初级边绕组X1连接的第一开关管M1以及与次级边绕组X2连接的第二开关管M2,Vin为开关电源输入电压,Vout为开关电源输出电压。如图2所示,开关电源的控制方法包括如下步骤:
S110、在开关电源高压启动之后,次级边控制模块根据次级边绕组与第二开关管之间的第二连接点的电压波形,调节第二开关管的截止电流,直至初级边绕组与第一开关管之间的第一连接点的电压波形恰好归零。
在一实施例中,开关电源的高压启动方式可以是通过相关技术的一高压启动电路从母线电压获取电能,进而启动开关电源。可知地,第二开关管M2的截止电流是指第二开关管M2的关断电流。此外,次级边控制模块K2对第二开关管M2截止电流的调节过程可以是增大,或者可以是减小,或者可以是先增大后减小,或者可以是先减小后增大,或者可以是一种反复震荡的调节过程。可以理解的是,上述第二开关管M2截止电流的调节过程可以根据开关电源的设置和参数选择适应性进行改变。
S120、在第一连接点的电压波形恰好归零的情况下,初级边控制模块控制第一开关管导通,以实现初级边的零电压开启。
第一连接点A的电压波形恰好归零是指,第一连接点A的电压波形的波谷值恰好恢复到零电压状态。此时,初级边控制模块K1控制第一开关管M1导通,第一开关管M1的源极与漏极之间的电压差为零。
可知地,第一连接点A的电压波形恰好归零能够表明开关电源能够在该时刻刚好实现零电压切换(Zero Voltage Switch,ZVS)。基于此,本申请实施例通过设置初级边控制模块K1在第一连接点A的电压波形恰好归零的时刻,恰好控制第一开关管M1导通,进而实现了第一开关管M1的零电压开启。
可以理解的是,由于本实施例提供的开关电源具备典型的反激式AC-DC隔离开关电源结构,因而第一开关管M1和第二开关管M2不能同时导通。因此,在初级边控制模块K1控制第一开关管M1导通的情况下,第二开关管M2处于关断状态。
S130、在初级边零电压开启之后,初级边控制模块调节第一开关管的峰值电流,直至第一开关管的峰值电流达到预设值。
在一实施例中,初级边控制模块K1对第一开关管M1峰值电流的调节过程可以是在一固定数值保持不变,或者可以是增大,或者可以是减小,或者可以是先增大后减小,或者可以是先减小后增大,或者可以是一种反复震荡的调节过程。可以理解的是,上述第一开关管M1峰值电流的调节过程可以根据开关电源 的设置和参数选择适应性进行改变。另外,初级边控制模块K1调节第一开关管M1的峰值电流的方式可以是根据第一开关管M1的开关频率对峰值电流进行调节,以实现开关电源的效率最优化。
S140、在第一开关管的峰值电流达到预设值的情况下,初级边控制模块控制第一开关管关断。
预设值是指一固定或可调电流值。预设值的设定方式可以是开关电源的初始设定,或者可以根据特定的算法进行设定。
S150、在第一开关管关断之后,次级边控制模块控制第二开关管导通。
S160、在第二开关管的开关电流处于电流过零点的情况下,次级边控制模块控制第二开关管关断。
电流过零点对应于第二开关管M2的开关电流为零的时刻。可以理解的是,在第二开关管M2的开关电流处于电流过零点的情况下,次级边控制模块K2控制第二开关管M2关断是指,在第二开关管M2的开关电流为零的时刻,次级边控制模块K2控制第二开关管M2关断。
可知地,初级边控制模块K1和次级边控制模块K2可以为一种控制芯片或电路。需要说明的是,初级边控制模块K1和次级边控制模块K2无论使用什么电路,只需要能够实现相应的控制功能即可,不需要知道芯片或电路内部的实现方式。
本申请实施例提供的开关电源的控制方法包括:在开关电源高压启动之后,次级边控制模块根据次级边绕组与第二开关管之间的第二连接点的电压波形,调节第二开关管的截止电流,直至初级边绕组与第一开关管之间的第一连接点的电压波形恰好归零;在第一连接点的电压波形恰好归零的情况下,初级边控制模块控制第一开关管导通,以实现初级边的零电压开启;在初级边零电压开启之后,初级边控制模块调节第一开关管的峰值电流,直至第一开关管的峰值电流达到预设值;在第一开关管的峰值电流达到预设值的情况下,初级边控制模块控制第一开关管关断;在第一开关管关断之后,次级边控制模块控制第二开关管导通;在第二开关管的开关电流处于电流过零点的情况下,次级边控制模块控制第二开关管关断。
与相关技术的典型的反激式AC-DC隔离开关电源相比,本实施例省略了例如光电耦合器或其他隔离转换器等电路结构,降低了开关电源的电路成本和控制复杂程度,还兼具次级边反馈控制策略如包括环路响应速度快的优势,并能够广泛适用于各类快充协议。此外,典型的反激式AC-DC隔离开关电源无法实现ZVS,本申请实施例设置次级边控制模块K2获取第二连接点B的电压波形,并调节第二开关管M2的截止电流;初级边控制模块K1在第一连接点A的电压波形恰好归零的情况下,控制第一开关管M1导通,完成了次级边控制第一开关管M1的开启,并最终实现了开关电源的ZVS,不仅能够降低开关电源的开关损耗,还改善了开关电源的EMI特性。
与相关技术的有源箝位的反激式AC-DC隔离开关电源相比,本申请实施例无需增加额外的控制环节以及相应的硬件电路结构,因而简化了开关电源的电路结构,缩减了开关电源的硬件成本,有利于精简开关电源的控制环节。
与相关技术的初级边反馈控制方法相比,本申请实施例在省略光耦等器件的基础上,实现了次级边反馈和控制,有利于支持各类快充协议,以及提高控制环路响应速度。
在一实施例中,本申请能够简化开关电源的电路结构,缩减开关电源的硬件成本,降低开关电源的开关损耗,并改善开关电源的EMI特性。
需要说明的是,第一开关管M1的峰值电流与第一开关管M1的导通时间密切相关,导通时间越长,则峰值电流越大,相应地,导通时间越短,峰值电流越小。示例性地,在其他实施例中,在初级边零电压开启之后,初级边控制模块K1可以调节第一开关管M1的导通时间,直至第一开关管M1的导通时间达到时间基准值;在第一开关管M1的导通时间达到时间基准值的情况下,初级边控制模块K1控制第一开关管M1关断。基于此,图3是本申请实施例提供的另一种开关电源的控制方法的流程图。参见图3,S210~S260所示的开关电源的控制流程如下:
首先,在开关电源高压启动之后,次级边控制模块K2根据次级边绕组X2与第二开关管M2之间的第二连接点B的电压波形,调节第二开关管M2的截止电流,直至初级边绕组X1与第一开关管M1之间的第一连接点A的电压波形恰好归零。其次,在第一连接点A的电压波形恰好归零的情况下,初级边控制模块K1控制第一开关管M1导通,以实现初级边的零电压开启。再次,在初级边零电压开启之后,初级边控制模块K1调节第一开关管M1的导通时间,直至第一开关管M1的导通时间达到时间基准值。复次,在第一开关管M1的导通时间达到时间基准值的情况下,初级边控制模块K1控制第一开关管M1关断。再次,在第一开关管M1关断之后,次级边控制模块K2控制第二开关管M2导通。最后,在第二开关管M2的开关电流处于电流过零点的情况下,次级边控制模块K2控制第二开关管M2关断。
由此可见,一方面,与相关技术的典型的反激式AC-DC隔离开关电源相比,本实施例的技术方案不仅降低了开关电源的电路成本和控制复杂程度,还实现了开关电源的ZVS,有效减少了开关电源的开关损耗,改善了开关电源的EMI特性。另一方面,与相关技术的有源箝位的反激式AC-DC隔离开关电源相比,本实施例无需光耦等器件,不仅简化了开关电源的电路结构,缩减了开关电源的硬件成本,有利于精简开关电源的控制环节,还能够实现次级边的反馈与控制,有利于提高开关电源的可靠性。
在上述方案的基础上,图4是本申请实施例提供的又一种开关电源的控制方法的流程图。参见图1,可选地,开关电源还包括辅助绕组X3和第一分压电路E1,第一分压电路E1连接于辅助绕组X3和初级边控制模块K1的电压检测端之间。继 续参见图1,可选地,开关电源还包括吸收电路Q,吸收电路Q并联于初级边绕组X1的两端,吸收电路Q包括相互串联的第五电阻R5和第一电容C1。如图4所示,本实施例提供的开关电源的控制方法包括如下步骤:
S310、在开关电源高压启动之后,次级边控制模块获取次级边绕组与第二开关管之间的第二连接点的电压波形。
S320、在第二连接点的电压波形未实现零电压切换的情况下,次级边控制模块调节第二开关管的截止电流,直至初级边绕组与第一开关管之间的第一连接点的电压波形恰好归零。
可知地,第二连接点B的电压波形未实现零电压切换表明开关电源未实现ZVS。此时,开关电源的开关损耗偏大,效率较低且EMI严重。
S330、在初级边控制模块通过第一分压电路检测到第一连接点的电压波形恰好归零的情况下,初级边控制模块控制第一开关管导通,以实现初级边的零电压开启。
在典型的反激式AC-DC隔离开关电源的电路结构中,由于初级边控制模块K1的电压检测端未与第一连接点A直接连接,因而初级边控制模块K1无法直接获取第一连接点A的电压波形。
基于此,典型的反激式AC-DC隔离开关电源通过设置辅助绕组X3和第一分压电路E1,通过在辅助绕组X3和初级边控制模块K1的电压检测端之间连接第一分压电路E1,能够间接获取第一连接点A的电压波形。
此外,示例性地,在其他实施例中,在初级边控制模块K1通过第一分压电路E1检测到第一连接点A的电压波形最小值接近归零的情况下,初级边控制模块K1可以控制第一开关管M1导通,进而实现初级边的零电压开启。
S340、在初级边零电压开启之后,初级边控制模块调节第一开关管的峰值电流,直至第一开关管的峰值电流达到预设值。
S350、在第一开关管的峰值电流达到预设值的情况下,初级边控制模块控制第一开关管关断。
S360、在第一开关管关断之后,次级边控制模块控制第二开关管导通。
S370、在第二开关管的开关电流处于电流过零点的情况下,次级边控制模块控制第二开关管关断。
在一实施例中,在第二开关管的开关电流处于电流过零点的时刻,次级边控制模块控制第二开关管关断。
综上所述,与相关技术相比,本实施例的技术方案节省了初级边和次级边之间的耦合器件,在精简额外电路成本和控制复杂程度的前提下,能够降低开关电源的开关损耗,并改善开关电源的EMI特性。此外,本实施例还实现了次级边反馈控制,有利于提高开关电源的输出动态响应性能,并能够与各类快充协 议的实际应用相契合。
在上述各实施例的基础上,以下对ZVS下开关电源输出电压Vout的调节方法进行说明。继续参见图1,可选地,开关电源还包括第二分压电路E2,第二分压电路E2连接于次级边绕组X2和次级边控制模块K2的输出电压检测端之间。图5是本申请实施例提供的又一种开关电源的控制方法的流程图。如图5所示,本实施例提供的开关电源的控制方法包括如下步骤:
S410、在开关电源高压启动之后,次级边控制模块获取次级边绕组与第二开关管之间的第二连接点的电压波形。
S420、在第二连接点的电压波形未实现零电压切换的情况下,次级边控制模块调节第二开关管的截止电流,直至初级边绕组与第一开关管之间的第一连接点的电压波形恰好归零。
S430、在初级边控制模块通过第一分压电路检测到第一连接点的电压波形恰好归零的情况下,初级边控制模块控制第一开关管导通,以实现初级边的零电压开启。
S440、在初级边零电压开启之后,初级边控制模块调节第一开关管的峰值电流,直至第一开关管的峰值电流达到预设值。
S450、在第一开关管的峰值电流达到预设值的情况下,初级边控制模块控制第一开关管关断。
S460、在第一开关管关断之后,次级边控制模块控制第二开关管导通。
S470、在第二开关管的开关电流处于电流过零点的情况下,次级边控制模块控制第二开关管关断。
S480、在次级边控制模块通过第二分压电路检测到开关电源的输出端负载发生改变的情况下,次级边控制模块控制第二连接点的电压波形的归高频率,以调节开关电源的输出电压。
可知地,在第一连接点A的电压归零的情况下,根据变压器耦合原理,第二连接点B按初级边绕组和次级边绕组的比例上升至一电压值。参见图6,在t1时刻,第一连接点A的电压V A归零,第二连接点的电压V B上升至一电压值也即归高;在t2时刻,V A电压再次归零,V B电压再次上升至一电压值也即归高。根据t1和t2之间的时间间隔,可以确定第二连接点B的电压波形归高的时间间隔。根据归高的时间间隔与归高频率成反比,可以确定第二连接点B的电压波形的归高频率。
在一实施例中,参见图6,第一连接点A的电压V A归零可以通过检测第三连接点Z的电压V Z下降至一电压值也即归低得到。
在第二连接点B的电压波形归高的情况下,第一连接点A的电压波形归零。基于此,在其他实施例中,在次级边控制模块K2通过第二分压电路E2检测到开 关电源的输出端负载发生改变的情况下,次级边控制模块K2可以根据开关电源的当前输出电压,对第一连接点A的电压波形的归零频率进行控制,进而实现对开关电源输出电压的稳定环路调节。
可以理解的是,第二连接点B的电压波形的归高频率与第二连接点B的电压波形归高的时间间隔相关,因此,在其他实施例中,在次级边控制模块K2通过第二分压电路E2检测到开关电源的输出端负载发生改变的情况下,次级边控制模块K2控制第二连接点B的电压波形归高的时间间隔,以调节开关电源的输出电压。
相应地,第一连接点A的电压波形的归零频率与第一连接点A的电压波形归零的时间间隔相关。由此可知,在其他实施例中,在次级边控制模块K2通过第二分压电路E2检测到开关电源的输出端负载发生改变的情况下,次级边控制模块K2可以根据开关电源的当前输出电压,对第一连接点A的电压波形归零的时间间隔进行控制,进而实现对开关电源输出电压的稳定环路调节。
基于此,在上述实施例实现开关电源ZVS的基础上,本实施例能够在开关电源的输出端负载发生改变的情况下,实现开关电源的输出电压的稳定环路控制。与相关技术相比,本实施例的技术方案节省了初级边和次级边之间的耦合器件,能够在精简额外电路成本和控制复杂程度的前提下,降低开关电源的开关损耗,并改善开关电源的EMI特性。另外,本实施例还实现了次级边反馈控制,有利于提高开关电源的输出动态响应性能,并能够与各类快充协议的实际应用相契合。
继续参见图1,开关电源包括初级边绕组X1、次级边绕组X2、初级边控制模块K1、次级边控制模块K2、与初级边绕组X1连接的第一开关管M1以及与次级边绕组X2连接的第二开关管M2。
初级边绕组X1被设置为在第一开关管M1导通的情况下,存储能量。
次级边绕组X2被设置为在第二开关管M2导通的情况下,产生输出电压Vout。
第一开关管M1被设置为根据初级边控制模块K1产生的驱动信号导通或者关断。
第二开关管M2被设置为根据次级边控制模块K2产生的驱动信号导通或者关断。
初级边控制模块K1被设置为在第一连接点A的电压波形恰好归零的情况下,控制第一开关管M1导通;还被设置为在初级边零电压开启之后,调节第一开关管M1的峰值电流;还被设置为在第一开关管M1的峰值电流达到预设值的情况下,控制第一开关管M1关断。
次级边控制模块K2被设置为在开关电源高压启动之后,根据次级边绕组X2与第二开关管M2之间的第二连接点B的电压波形,调节第二开关管M2的截止电流;还被设置为在第一开关管M1关断之后,控制第二开关管M2导通;还被设置为在第二开关管M2的开关电流处于电流过零点的情况下,控制第二开关管M2 关断。
示例性地,第一开关管M1和第二开关管M2可以是金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。可以理解的是,第一开关管M1和第二开关管M2的类别选择和结构参数与拟取得的供电效果相关。
此外,初级边控制模块K1还可以被设置为在初级边零电压开启之后,调节第一开关管M1的导通时间,直至第一开关管M1的导通时间达到时间基准值,并在第一开关管M1的导通时间达到时间基准值的情况下,控制第一开关管M1关断。
可以理解的是,初级边控制模块K1还可以被设置为在初级边控制模块K1通过第一分压电路E1检测到第一连接点A的电压波形波谷接近归零的情况下,控制第一开关管M1导通,进而实现初级边的零电压开启。
可知地,次级边控制模块K2还可以被设置为在次级边控制模块K2通过第二分压电路E2检测到开关电源的输出端负载发生改变的情况下,根据开关电源的当前输出电压,对第一连接点A的电压波形的归零频率,或第二连接点B的电压波形的归高频率进行控制,进而实现对开关电源输出电压Vout的稳定环路调节。
可以理解的是,次级边控制模块K2还可以被设置为在次级边控制模块K2通过第二分压电路E2检测到开关电源的输出端负载发生改变的情况下,控制第二连接点B的电压波形归高的时间间隔,或第一连接点A的电压波形归零的时间间隔,以调节开关电源的输出电压。
可选地,开关电源还包括辅助绕组X3和第一分压电路E1,第一分压电路E1包括第一电阻R1和第二电阻R2。
辅助绕组X3被设置为为初级边控制模块K1提供电能。
第一分压电路E1被设置为生成第一分压信号,以使初级边控制模块K1获取第一连接点A的电压波形。
在一实施例中,第一分压信号可以是电压信号。可知地,第一分压信号作为初级边控制模块K1的输入信号,被设置为为初级边控制模块K1获取第一连接点A的电压波形提供依据。
可选地,开关电源还包括第二分压电路E2,第二分压电路E2包括第三电阻R3和第四电阻R4。
第二分压电路E2被设置为生成第二分压信号,以使次级边控制模块K2获取开关电源的输出电压Vout。
在一实施例中,第二分压信号可以是电压信号。可知地,第二分压信号作为次级边控制模块K2的输入信号,被设置为为次级边控制模块K2获取开关电源的输出电压Vout提供依据。
可选地,开关电源还包括吸收电路Q,吸收电路Q包括相互串联的第五电阻 R5和第一电容C1。
可以理解的是,相较于相关技术广泛采用的由电阻、电容和二极管组成的箝位吸收电路,本申请实施例所提供的吸收电路Q能够实现更为简易的箝位吸收功能,并降低了开关电源的硬件成本,优化了系统的开关损耗,改善了开关电源的电磁干扰特性。
需要说明的是,第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4和第五电阻R5可以是任意一种电阻,上述电阻的种类和参数可以根据开关电源拟取得的供电效果进行适应性调整。示例性地,上述电阻均可以是贴片电阻。
还需要说明的是,第一电容C1可以是任意一种电容,该电容的种类和参数可以根据开关电源拟取得的供电效果进行适应性调整。示例性地,第一电容C1可以是云母电容。
此外,本申请实施例所提供的基于典型的反激式AC-DC隔离开关电源拓扑的开关电源的电路元件连接关系如图1所示。
继续参见图1,开关电源的工作过程如下:
首先,在开关电源高压启动之后,次级边控制模块K2获取次级边绕组X2与第二开关管M2之间的第二连接点B的电压波形。其次,在第二连接点B的电压波形未实现零电压切换的情况下,次级边控制模块K2调节第二开关管M2的截止电流,直至初级边绕组X1与第一开关管M1之间的第一连接点A的电压波形恰好归零。复次,在初级边控制模块K1通过第一分压电路E1检测到第一连接点A的电压波形恰好归零的情况下,初级边控制模块K1控制第一开关管M1导通,以实现初级边的零电压开启。再次,在初级边零电压开启之后,初级边控制模块K1调节第一开关管M1的峰值电流,直至第一开关管M1的峰值电流达到预设值。再次,在第一开关管M1的峰值电流达到预设值的情况下,初级边控制模块K1控制第一开关管M1关断。再次,在第一开关管M1关断之后,次级边控制模块K2控制第二开关管M2导通。再次,在第二开关管M2的开关电流处于电流过零点的情况下,次级边控制模块K2控制第二开关管M2关断。最后,在次级边控制模块K2通过第二分压电路E2检测到开关电源的输出端负载发生改变的情况下,次级边控制模块K2控制第二连接点B的电压波形的归高频率,以调节开关电源的输出电压Vout。
需要说明的是,本申请实施例中的次级边控制模块K2可以在内部集成典型的431电压基准模块(一种电压基准芯片)或其他电压基准模块,或者可以采用外置的431电压基准模块或其他电压基准模块,以实现开关电源的输出电压Vout与431电压基准模块提供的模块基准电压的比较,进而实现对开关电源输出电压Vout的可控环路调节。
图6是本申请实施例提供的一种开关电源的波形示意图。参见上述开关电源的工作过程及图6,可知地,在第一连接点A的电压V A的波形恰好归零的情况下,第二连接点B的电压V B的波形恰好归高,第三连接点Z的电压V Z的波形恰好归低。此外,在第二开关管M2关断的时刻,第二开关管M2的开关电流I S达到截止电流 I S_min。图6中,M1 ON表示第一开关管M1导通,M1 OFF表示第一开关管M1关断;M2 ON表示第二开关管M2导通,M2 OFF表示第二开关管M2关断;I S表示流经第二开关管M2源极和漏极之间的电流。在一实施例中,在第二开关管M2导通的状态下,可以采集M2源极和漏极之间的电压差值,计算得到开关电流I S
由此可见,与相关技术相比,本实施例的技术方案在缩减额外电路成本和控制复杂程度的前提下,能够根据开关电源的输出端负载变化实现任意状态下的开关电源ZVS,例如轻载或重载状态等,不仅降低了开关电源的开关损耗,还改善了开关电源的EMI特性。
在上述各实施例的基础上,可选地,本申请实施例中的初级边控制模块K1可以在内部集成一电压基准模块,例如典型的431电压基准模块等,或者可以采用外置的电压基准模块,以通过第一分压电路E1对开关电源的输出电压Vout与电压基准模块提供的模块基准电压进行比较,进而实现对开关电源输出电压Vout的可控环路调节。
基于此,示例性地,图7是本申请实施例提供的又一种开关电源的控制方法的流程图,与如图5所示的开关电源的控制方法相比,图7所示的开关电源的控制方法在调节开关电源的输出电压的方法层面完全不同,参见图7中S510~S580所示的的开关电源的控制流程。
对于输出电压Vout相对固定的实际工况来说,在第二开关管M2的开关电流I S大于第一预设值,或者第二开关管M2的开关频率大于第一预设频率值的情况下,次级边控制模块K2进入重载ZVS模式,初级边控制模块K1通过检测第一连接点A的电压波形也相应进入重载ZVS模式。此时,初级边控制模块K1根据第一分压电路E1采集输出电压Vout的反馈信号,并对输出电压Vout的反馈信号和初级边控制模块K1的模块基准电压进行比较,通过调节第一开关管M1的开关电流,实现开关电源输出环路的稳定控制。在一实施例中,第一开关管M1的开关电流表示流经第一开关管M1源极和漏极之间的电流,在第一开关管M1导通的状态下,可以采集M1源极的电压,计算流经电阻Rs的电流得到第一开关管M1的开关电流。
示例性地,图8是本申请实施例提供的另一种开关电源的波形示意图。参见前述处于重载ZVS模式的开关电源工作过程和图8,可知地,在第一连接点A的电压V A的波形恰好归零的情况下,第二连接点B的电压V B的波形恰好归高,第三连接点Z的电压V Z的波形恰好归低。此外,在第二开关管M2关断的时刻,第二开关管M2的开关电流I S达到截止电流I S_min
在第二开关管M2的开关电流I S小于或等于第一预设值,或者第二开关管M2的开关频率小于或等于第一预设频率值的情况下,开关电源处于轻载ZVS状态。此时,本实施例根据如S410~S480所示的控制流程,对开关电源的输出环路进行稳定控制。
在上述各实施例的基础上,示例性地,图9是本申请实施例提供的另一种开关电源的结构示意图。参见图9,可知地,与图1所示的开关电源结构相比,本 实施例的技术方案在原边控制模块K1’和副边控制模块K2’之间增设了光电耦合器P’。基于如图9所示的开关电源,图10是本申请实施例提供的又一种开关电源的控制方法的流程图,参见图10,S610~S670所示的开关电源的控制流程如下:
在开关电源高压启动之后,副边控制模块K2’根据副边绕组与第四开关管M2’之间的第四连接点B’的电压波形,调节第四开关管M2’的截止电流,直至原边绕组与第三开关管M1’之间的第三连接点A’的电压波形恰好归零。在第三连接点A’的电压波形恰好归零的情况下,原边控制模块K1’控制第三开关管M1’导通,以实现原边的零电压开启。在原边零电压开启之后,原边控制模块K1’调节第三开关管M1’的峰值电流,直至第三开关管M1’的峰值电流达到设定值。在第三开关管M1’的峰值电流达到设定值的情况下,原边控制模块K1’控制第三开关管M1’关断。在第三开关管M1’关断之后,副边控制模块K2’控制第四开关管M2’导通。在第四开关管M2’的开关电流处于电流过零点的情况下,副边控制模块K2’控制第四开关管M2’关断。在第四开关管M2’的开关电流I S’大于第二预设值,或者第四开关管M2’的开关频率大于第二预设频率值的情况下,副边控制模块K2’进入重载ZVS模式,原边控制模块K1’检测到第三连接点A’的电压波形后也进入重载ZVS模式。此时,原边控制模块K1’根据光电耦合器P’的反馈信号,调节第三开关管M1’的开关电流,进而实现开关电源输出环路的稳定控制。可以理解的是,副边控制模块K2’可以根据分压电路E2’反馈的信号,生成光电耦合器P’的驱动信号,进而使原边控制模块K1’获知开关电源输出电压的变化情况。
在一实施例中,I S’表示流经第四开关管M2’源极和漏极之间的电流,在第四开关管M2’导通的状态下,可以采集M2’源极和漏极之间的电压差值,计算得到开关电流I S’。第三开关管M1’的开关电流表示流经第三开关管M1’源极和漏极之间的电流,在第三开关管M1’导通的状态下,可以采集M1’源极的电压,计算流经电阻Rs’的电流得到第三开关管M1’的开关电流。
在第四开关管M2’的开关电流I S’小于或等于第二预设值,或者第四开关管M2’的开关频率小于或等于第二预设频率值的情况下,开关电源处于轻载ZVS状态。此时,本实施例仍可以根据如S410~S480所示的控制流程,对开关电源的输出环路进行稳定控制。
可知地,原边控制模块K1’和副边控制模块K2’可以为一种控制芯片或电路。需要说明的是,原边控制模块K1’和副边控制模块K2’无论使用什么电路,只需要能够实现相应的控制功能即可,不需要知道芯片或电路内部的实现方式。

Claims (11)

  1. 一种开关电源的控制方法,所述开关电源包括初级边绕组、次级边绕组、初级边控制模块、次级边控制模块、与所述初级边绕组连接的第一开关管、以及与所述次级边绕组连接的第二开关管;
    所述开关电源的控制方法包括:
    在所述开关电源高压启动之后,所述次级边控制模块根据所述次级边绕组与所述第二开关管之间的第二连接点的电压波形,调节所述第二开关管的截止电流,直至所述初级边绕组与所述第一开关管之间的第一连接点的电压波形恰好归零;
    在所述第一连接点的电压波形恰好归零的情况下,所述初级边控制模块控制所述第一开关管导通,以实现初级边的零电压开启;
    在所述初级边零电压开启之后,所述初级边控制模块调节所述第一开关管的峰值电流,直至所述第一开关管的峰值电流达到预设值;
    在所述第一开关管的峰值电流达到预设值的情况下,所述初级边控制模块控制所述第一开关管关断;
    在所述第一开关管关断之后,所述次级边控制模块控制所述第二开关管导通;
    在所述第二开关管的开关电流处于电流过零点的情况下,所述次级边控制模块控制所述第二开关管关断。
  2. 根据权利要求1所述的方法,其中,所述在所述开关电源高压启动之后,所述次级边控制模块根据所述次级边绕组与所述第二开关管之间的第二连接点的电压波形,调节所述第二开关管的截止电流,直至所述初级边绕组与所述第 一开关管之间的第一连接点的电压波形恰好归零,包括:
    在所述开关电源高压启动之后,所述次级边控制模块获取所述次级边绕组与所述第二开关管之间的第二连接点的电压波形;
    在所述第二连接点的电压波形未实现零电压切换的情况下,所述次级边控制模块调节所述第二开关管的截止电流,直至所述初级边绕组与所述第一开关管之间的第一连接点的电压波形恰好归零。
  3. 根据权利要求1所述的方法,所述开关电源还包括辅助绕组和第一分压电路,所述第一分压电路连接于所述辅助绕组和所述初级边控制模块的电压检测端之间;
    其中,所述在所述第一连接点的电压波形恰好归零的情况下,所述初级边控制模块控制所述第一开关管导通,以实现初级边的零电压开启,包括:
    在所述初级边控制模块通过所述第一分压电路检测到所述第一连接点的电压波形恰好归零的情况下,所述初级边控制模块控制所述第一开关管导通,以实现初级边的零电压开启。
  4. 根据权利要求1所述的方法,所述方法还包括:
    在所述开关电源的输出端负载发生改变的情况下,所述次级边控制模块控制所述第二连接点的电压波形的归高频率,以调节所述开关电源的输出电压。
  5. 根据权利要求4所述的方法,所述开关电源还包括第二分压电路,所述第二分压电路连接于所述次级边绕组和所述次级边控制模块的输出电压检测端之间;
    其中,所述在所述开关电源的输出端负载发生改变的情况下,所述次级边 控制模块控制所述第二连接点的电压波形的归高频率,以调节所述开关电源的输出电压,包括:
    在所述次级边控制模块通过所述第二分压电路检测到所述开关电源的输出端负载发生改变的情况下,所述次级边控制模块控制所述第二连接点的电压波形的归高频率,以调节所述开关电源的输出电压。
  6. 根据权利要求1所述的方法,所述方法还包括:
    在所述开关电源的输出电压相对固定,且所述第二开关管的开关电流大于第一预设值的情况下,所述初级边控制模块根据所述开关电源的输出电压的反馈信号,控制所述第一开关管的开关电流,以调节所述开关电源的输出电压。
  7. 一种开关电源,包括初级边绕组、次级边绕组、初级边控制模块、次级边控制模块、与所述初级边绕组连接的第一开关管以及与所述次级边绕组连接的第二开关管;
    所述初级边绕组被设置为在所述第一开关管导通的情况下,存储能量;
    所述次级边绕组被设置为在所述第二开关管导通的情况下,产生输出电压;
    所述第一开关管被设置为根据所述初级边控制模块产生的驱动信号导通或者关断;
    所述第二开关管被设置为根据所述次级边控制模块产生的驱动信号导通或者关断;
    所述初级边控制模块被设置为在第一连接点的电压波形恰好归零的情况下,控制所述第一开关管导通;还被设置为在所述初级边零电压开启之后,调节所述第一开关管的峰值电流;还被设置为在所述第一开关管的峰值电流达到 预设值的情况下,控制所述第一开关管关断;
    所述次级边控制模块被设置为在所述开关电源高压启动之后,根据所述次级边绕组与所述第二开关管之间的第二连接点的电压波形,调节所述第二开关管的截止电流;还被设置为在所述第一开关管关断之后,控制所述第二开关管导通;还被设置为在所述第二开关管的开关电流处于电流过零点的情况下,控制所述第二开关管关断。
  8. 根据权利要求7所述的开关电源,所述开关电源还包括辅助绕组和第一分压电路,所述第一分压电路包括第一电阻和第二电阻;
    所述辅助绕组被设置为为所述初级边控制模块提供电能;
    所述第一分压电路被设置为生成第一分压信号,以使所述初级边控制模块获取所述第一连接点的电压波形。
  9. 根据权利要求7所述的开关电源,所述开关电源还包括第二分压电路,所述第二分压电路包括第三电阻和第四电阻;
    所述第二分压电路被设置为生成第二分压信号,以使所述次级边控制模块获取所述开关电源的输出电压。
  10. 根据权利要求7所述的开关电源,所述开关电源还包括吸收电路,所述吸收电路包括相互串联的第五电阻和第一电容。
  11. 一种开关电源的控制方法,所述开关电源包括原边绕组、副边绕组、原边控制模块、副边控制模块、与所述原边绕组连接的第三开关管、与所述副边绕组连接的第四开关管、以及光电耦合器;
    所述开关电源的控制方法包括:
    在所述开关电源高压启动之后,所述副边控制模块根据所述副边绕组与所述第四开关管之间的第四连接点的电压波形,调节所述第四开关管的截止电流,直至所述原边绕组与所述第三开关管之间的第三连接点的电压波形恰好归零;
    在所述第三连接点的电压波形恰好归零的情况下,所述原边控制模块控制所述第三开关管导通,以实现原边的零电压开启;
    在所述原边零电压开启之后,所述原边控制模块调节所述第三开关管的峰值电流,直至所述第三开关管的峰值电流达到设定值;
    在所述第三开关管的峰值电流达到设定值的情况下,所述原边控制模块控制所述第三开关管关断;
    在所述第三开关管关断之后,所述副边控制模块控制所述第四开关管导通;
    在所述第四开关管的开关电流处于电流过零点的情况下,所述副边控制模块控制所述第四开关管关断;
    在所述开关电源的输出端负载发生改变,且所述第四开关管的开关电流大于第二预设值的情况下,所述原边控制模块根据所述光电耦合器的反馈信号,控制所述第三开关管的开关电流,以调节所述开关电源的输出电压。
PCT/CN2022/129615 2021-11-04 2022-11-03 开关电源的控制方法和开关电源 WO2023078362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111299476.6A CN113890378A (zh) 2021-11-04 2021-11-04 一种开关电源的控制方法和开关电源
CN202111299476.6 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023078362A1 true WO2023078362A1 (zh) 2023-05-11

Family

ID=79016924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129615 WO2023078362A1 (zh) 2021-11-04 2022-11-03 开关电源的控制方法和开关电源

Country Status (2)

Country Link
CN (1) CN113890378A (zh)
WO (1) WO2023078362A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890378A (zh) * 2021-11-04 2022-01-04 力源科技有限公司 一种开关电源的控制方法和开关电源

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539986A (zh) * 2017-12-15 2018-09-14 杰华特微电子(杭州)有限公司 一种反激式开关电源
CN108667302A (zh) * 2017-03-28 2018-10-16 杰华特微电子(杭州)有限公司 一种隔离式开关电路及其控制方法
CN109039093A (zh) * 2018-09-29 2018-12-18 杰华特微电子(杭州)有限公司 隔离式开关电源及其控制方法
CN111478589A (zh) * 2020-04-10 2020-07-31 杭州士兰微电子股份有限公司 反激式变换器及其控制电路和控制方法
CN112054659A (zh) * 2020-09-25 2020-12-08 杰华特微电子(杭州)有限公司 零电压导通反激电路及其控制方法和控制电路
US20210143725A1 (en) * 2019-11-08 2021-05-13 Silergy Semiconductor Technology (Hangzhou) Ltd Zero-voltage-switching control circuit, control method and switching power supply
CN113131746A (zh) * 2021-03-16 2021-07-16 广州金升阳科技有限公司 反激变换器控制方法及控制装置
CN113890378A (zh) * 2021-11-04 2022-01-04 力源科技有限公司 一种开关电源的控制方法和开关电源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667302A (zh) * 2017-03-28 2018-10-16 杰华特微电子(杭州)有限公司 一种隔离式开关电路及其控制方法
CN108539986A (zh) * 2017-12-15 2018-09-14 杰华特微电子(杭州)有限公司 一种反激式开关电源
CN109039093A (zh) * 2018-09-29 2018-12-18 杰华特微电子(杭州)有限公司 隔离式开关电源及其控制方法
US20210143725A1 (en) * 2019-11-08 2021-05-13 Silergy Semiconductor Technology (Hangzhou) Ltd Zero-voltage-switching control circuit, control method and switching power supply
CN111478589A (zh) * 2020-04-10 2020-07-31 杭州士兰微电子股份有限公司 反激式变换器及其控制电路和控制方法
CN112054659A (zh) * 2020-09-25 2020-12-08 杰华特微电子(杭州)有限公司 零电压导通反激电路及其控制方法和控制电路
CN113131746A (zh) * 2021-03-16 2021-07-16 广州金升阳科技有限公司 反激变换器控制方法及控制装置
CN113890378A (zh) * 2021-11-04 2022-01-04 力源科技有限公司 一种开关电源的控制方法和开关电源

Also Published As

Publication number Publication date
CN113890378A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
US10587201B1 (en) Method for controlling smooth switching of operation direction of bidirectional resonant CLLC circuit
US9263960B2 (en) Power converters for wide input or output voltage range and control methods thereof
EP3584919B1 (en) Resonant converter and control method
CN110190751B (zh) 一种恒增益双向dc-dc谐振变换器及其控制方法
CN111669055B (zh) 电压转换电路及其控制方法
TW201918004A (zh) 具主動箝位之返馳式電源轉換電路及其中之轉換控制電路與控制方法
CA2811183A1 (en) Method for controlling a series resonant dc/dc converter
JP2004512798A (ja) コンバータ制御
TW201838303A (zh) 控制裝置及控制方法
TWI806213B (zh) 開關電源控制電路、控制系統及控制方法
KR20180004675A (ko) 보조 lc 공진 회로를 갖는 양방향 컨버터 및 그 구동 방법
CN111953186A (zh) 一种开关电源控制电路
WO2024060728A1 (zh) 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质
EP2975753B1 (en) A three-level converter
WO2015120689A1 (zh) 一种dc-dc转换电路及方法
WO2024051181A1 (zh) 一种双向谐振型直流变换器的控制方法及控制电路
CN111697799B (zh) 一种无线充电系统及其逆变器的零电压开关控制方法
WO2023078362A1 (zh) 开关电源的控制方法和开关电源
WO2022000217A1 (zh) 一种谐振变换器及电压转换方法
CN113726165A (zh) 反激变换器及反激变换器的控制方法
CN110380619B (zh) 一种直流转换电路及其控制方法、直流转换装置
CN113726166B (zh) 反激变换器及其控制方法
WO2023036176A1 (zh) 开关电源的控制方法和开关电源
WO2024051317A1 (zh) 一种三相交错宽范围高效隔离双向变换器
CN115378266A (zh) 适用于宽范围输出电压的变换器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889383

Country of ref document: EP

Kind code of ref document: A1