WO2024060728A1 - 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质 - Google Patents

双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2024060728A1
WO2024060728A1 PCT/CN2023/101268 CN2023101268W WO2024060728A1 WO 2024060728 A1 WO2024060728 A1 WO 2024060728A1 CN 2023101268 W CN2023101268 W CN 2023101268W WO 2024060728 A1 WO2024060728 A1 WO 2024060728A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
duty cycle
value
switching tube
output value
Prior art date
Application number
PCT/CN2023/101268
Other languages
English (en)
French (fr)
Inventor
孙礼貌
Original Assignee
如果新能源科技(江苏)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 如果新能源科技(江苏)股份有限公司 filed Critical 如果新能源科技(江苏)股份有限公司
Publication of WO2024060728A1 publication Critical patent/WO2024060728A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer

Definitions

  • the present application relates to the technical field of power conversion devices, and in particular to a control method, device, computer equipment, storage medium and bidirectional power conversion device for a bidirectional power conversion device.
  • a power conversion device is a power electronic device that can convert a certain type of current into other types of current, including DC conversion devices and AC conversion devices.
  • a DC converter can convert one DC current input into another with a different output. Characteristic DC current output.
  • DC converters are widely used. For example, they can be used in the field of RV power supply. They are connected between high-power batteries and RV electrical equipment or charging power sources to achieve bidirectional power conversion.
  • the bidirectional full-bridge resonant converter is a known DC power conversion device. When the input voltage range is wide, its gain can be changed through frequency modulation to meet the voltage stabilization requirements.
  • this power conversion device is mainly suitable for applications with high battery voltage, which can achieve a smaller voltage transformation ratio design.
  • the voltage transformation ratio is up to about 10 times (48V :400V), or when the battery voltage is 48V and the output voltage is 200V, the voltage transformation ratio is about 5 times (48V:200V).
  • the voltage transformation ratio will reach 40 times (12V:400V) or 20 times (12V:200V). This is compared to a 48V battery when outputting the same power. (or at higher power), the current on the 12V battery side will increase by more than 4 times, greatly increasing the number and cost of power switching device MOSFETs.
  • the frequency modulation control method when used and the input voltage range is wide, in order to meet the gain requirements, the frequency will be raised without limit, which will also significantly increase the switching loss.
  • the duty cycle control method when adopted, when the load is light and the gain required is small, the duty cycle is very small and the time is short. The switch tube is turned off before the turn-on voltage is reached, so the switch tube is always on. The driver cannot be driven. When the driver can be driven, the duty ratio is large, causing the voltage to oscillate.
  • this application provides a control method for a bidirectional power conversion device.
  • the bidirectional power conversion device includes at least one first switch.
  • the control method includes:
  • the switching frequency of the first switch tube and the duty cycle of the driving signal of the first switch tube are adjusted according to the control output value;
  • controlling the first switching tube In response to the control output value meeting the first preset condition, controlling the first switching tube to operate in a fixed frequency variable duty cycle mode; or,
  • controlling the first switching tube In response to the control output value meeting the second preset condition, controlling the first switching tube to operate in a fixed frequency and fixed duty cycle mode; or,
  • the first switch tube In response to the control output value meeting the fourth preset condition, the first switch tube is controlled to operate in a fixed-frequency accumulation duty cycle wave generation mode.
  • the present application also provides a bidirectional power conversion device, including a control unit and at least one first switching tube.
  • the control unit is used to execute the above control method.
  • this application also provides a control device for a bidirectional power conversion device, which device includes:
  • a control output value determination module configured to determine a control output value according to the output parameters of the bidirectional power conversion device
  • an adjustment module configured to adjust the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube according to the control output value
  • the adjustment module includes a first adjustment unit, a second adjustment unit, a third adjustment unit and a fourth adjustment unit;
  • the first adjustment unit is configured to control the first switching tube to operate in a fixed frequency variable duty cycle mode in response to the control output value meeting a first preset condition; or,
  • the second adjustment unit is used to control the first switching tube to operate in a fixed frequency and fixed duty cycle mode in response to the control output value meeting a second preset condition; or,
  • the third adjustment unit is used to control the first switching tube to operate in the frequency conversion fixed duty cycle mode in response to the control output value meeting a third preset condition; or,
  • the fourth adjustment unit is configured to control the first switching tube to operate in a fixed frequency accumulation duty cycle wave generation mode in response to the control output value meeting a fourth preset condition.
  • this application also provides a computer device.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube are adjusted according to the control output value;
  • controlling the first switching tube In response to the control output value meeting the first preset condition, controlling the first switching tube to operate in a fixed frequency variable duty cycle mode; or,
  • controlling the first switching tube In response to the control output value meeting the second preset condition, controlling the first switching tube to operate in a fixed frequency and fixed duty cycle mode; or,
  • the first switch tube In response to the control output value meeting the fourth preset condition, the first switch tube is controlled to operate in a fixed-frequency accumulation duty cycle wave generation mode.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by the processor, the following steps are implemented:
  • the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube are adjusted according to the control output value;
  • controlling the first switch tube In response to the control output value satisfying a first preset condition, controlling the first switch tube to operate in a fixed frequency variable duty cycle mode; or,
  • controlling the first switching tube In response to the control output value meeting the second preset condition, controlling the first switching tube to operate in a fixed frequency and fixed duty cycle mode; or,
  • the first switch tube In response to the control output value meeting the fourth preset condition, the first switch tube is controlled to operate in a fixed-frequency accumulated duty cycle wave generation mode.
  • the bidirectional power conversion device includes at least one first switch tube.
  • the control method includes: according to the bidirectional power conversion device The output parameter determines the control output value, and the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube are adjusted according to the control output value, wherein in response to the control output value satisfying the first preset condition, the first switching tube is controlled.
  • the switching tube operates in a fixed frequency and variable duty cycle mode; or, in response to the control output value satisfying the second preset condition, controlling the first switching tube to operate in a fixed frequency, fixed duty cycle mode; or, in response to the control output value satisfying the second preset condition.
  • Three preset conditions control the first switching tube to operate in a variable frequency constant duty cycle mode; or, in response to the control output value meeting the fourth preset condition, control the first switching tube to operate in a fixed frequency cumulative duty cycle mode Wave mode.
  • Figure 1 is a schematic structural diagram of a bidirectional power conversion device in an embodiment
  • Figure 2 is a flow chart of a control method of a bidirectional power conversion device in one embodiment
  • Figure 3 is a flow chart of a control method of a bidirectional power conversion device in another embodiment
  • Figure 4 is a flow chart of the steps of controlling the first switching tube to operate in a fixed-frequency accumulated duty cycle wave-generating mode in one embodiment
  • Figure 5 is a flow chart of a control method of a bidirectional power conversion device in yet another embodiment
  • Figure 6 is a schematic circuit structure diagram of a bidirectional power conversion device in an embodiment
  • Figure 7 is a switching timing diagram of switching transistors Q1 and Q2 in an embodiment
  • Figure 8 is a switching timing diagram of switching transistors Q3/Q6 and Q4/Q5 in one embodiment
  • Figure 9 is a schematic diagram of the bridge arm 0 voltage opening of the push-pull unit in one embodiment
  • FIG10 is a schematic diagram of a bridge arm of a rectifier bridge circuit being turned off at zero current in one embodiment
  • Figure 11 is a switching timing diagram of the switching transistors Q3/Q6 and Q4/Q5 of the bridge arm of the rectifier bridge circuit in one embodiment
  • Figure 12 is a switching timing diagram of the switching transistors Q1 and Q2 of the push-pull unit bridge arm in one embodiment
  • Figure 13 is a schematic diagram of the bridge arm 0 voltage opening of the rectifier bridge circuit in one embodiment
  • Figure 14 is a schematic diagram of the push-pull unit synchronous rectification zero current shutdown in one embodiment
  • Figure 15 is a control flow chart for the control unit to obtain the control output value in one embodiment
  • Figure 16 is a detailed flow chart of a control method of a bidirectional power conversion device in one embodiment
  • Figure 17 is a flow chart of small pulse modulation in charging mode and discharging mode in the control method of the bidirectional power conversion device in one embodiment
  • FIG. 18 is a schematic diagram of a simulation for generating a driving signal for a switching transistor of a bidirectional power conversion device in one embodiment.
  • first, second, third, etc. may be used herein to describe various parameters or modules, these parameters or modules should not be limited to these terms. These terms are only used to distinguish parameters or modules of the same type from each other.
  • a first parameter may also be referred to as a second parameter, and similarly, a second parameter may also be referred to as a first parameter.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if determined” or “if (stated condition or event) is detected” may be interpreted as “when determined” or “in response to determining” or “when (stated condition or event) is detected )” or “in response to detecting (a stated condition or event)”.
  • components, features, and elements with the same names in different embodiments of this application may have the same meaning or may have different meanings. Their specific meanings need to be explained in the specific embodiment or further combined with the specific embodiment. context to determine.
  • a control method of a bidirectional power conversion device for controlling the bidirectional power conversion device.
  • the control method may be performed by the bidirectional power conversion device.
  • the bidirectional power conversion device may be a bidirectional DC/DC conversion device or a bidirectional DC/AC conversion device.
  • the bidirectional power conversion device includes two current flow directions. Taking the bidirectional DC/DC conversion device as an example, the first side of the bidirectional DC/DC conversion device is connected to the battery, and the second side is connected to the load or charger. The first side of the bidirectional DC conversion device is the low-voltage side, and the second side of the bidirectional DC conversion device is the high-voltage side.
  • the first side of the bidirectional DC converter is used as a charging and discharging interface between the bidirectional DC converter and the battery.
  • the current flow direction in the bidirectional DC conversion device can flow from the first side to the second side, that is, from the battery to the load, when the battery is discharged.
  • the current flow direction in the bidirectional DC conversion device may also be from the second side to the first side, that is, from the charger to the battery to charge the battery.
  • FIG. 1 shows a schematic structural diagram of a bidirectional power conversion device 100 provided by an embodiment of the present application.
  • the bidirectional power conversion device 100 includes:
  • Push-pull unit 110 the first end of the push-pull unit 110 is connected to the output end of the low-voltage battery, serving as the low-voltage side of the bidirectional power conversion device 100;
  • the resonance unit 120 includes a high-frequency isolation transformer and a resonance circuit.
  • the first end of the resonance unit 120 is connected to the second end of the push-pull unit 110;
  • Full-bridge unit 130 the first end of the full-bridge unit 130 is connected to the second end of the resonant unit 120 , and the second end of the full-bridge unit 130 serves as the high-voltage side of the bidirectional power conversion device 100 .
  • the low-voltage battery may be a 12V lithium battery, and the DC bus voltage of the bidirectional power conversion device 100 may be 400V.
  • the control unit By controlling the bidirectional power conversion device 100 by the control unit, bidirectional automatic control of charging or discharging the low-voltage battery is realized.
  • the resonant unit 120 is used to realize electrical isolation between the low-voltage battery and the DC bus voltage.
  • the resonant unit 120 includes a resonant circuit and a high-frequency isolation transformer.
  • the primary side of the high-frequency isolation transformer is connected to the second end of the push-pull unit 110.
  • the secondary side of the high-frequency isolation transformer is connected to the third end of the full-bridge unit 130 through the resonant circuit. One end.
  • the first switching tube may be connected to the primary side of the transformer and/or connected to the resonant circuit.
  • the transformer performs step-up conversion, transmits the energy stored in the battery to the load, and supplies power to the load.
  • High-frequency isolation transformers can separate the circuits on the primary side and the secondary side to improve the safety of the device.
  • the resonant circuit can include a resonant inductor Lr and a resonant capacitor Cr.
  • the resonant signal source passes through the resonant inductor Lr, the secondary side of the transformer and the resonant capacitor Cr. It can realize zero-voltage turn-on and zero-current turn-off of each switch tube in the bidirectional power conversion device, and the switch The voltage stress and current stress of the tube at the turn-on and turn-off moments are minimized.
  • the bidirectional power conversion device includes at least one first switching tube.
  • the first switching tube is arranged between the first side and the second side of the bidirectional power conversion device.
  • the first switching tube has two working states: on and off. .
  • the driving signal of the first switching tube By changing the driving signal of the first switching tube, the first switching tube can be placed in different working states, thereby adjusting the bidirectional power conversion device to be in different working states. Therefore, the working state of the bidirectional power conversion device can be controlled by controlling the first switching tube.
  • the number of the first switch tubes may be more than two, and the bidirectional power conversion device may also include other switch tubes, and each switch tube may work together to achieve functions such as rectification or chopping.
  • the first switching transistor may be a power switching transistor in the push-pull unit 110 or the full-bridge unit 130 .
  • the control method of the bidirectional power conversion device can be executed by a control unit in the bidirectional power conversion device, such as an MCU, or an additional control unit can be provided for execution.
  • the control unit is connected to the first switch tube, and can also be connected to other switch tubes in the bidirectional power conversion device, for sending driving signals to the first switch tube and other switch tubes, and controlling the first switch tube and other switch tubes.
  • control method of the bidirectional power conversion device includes the following steps:
  • Step 102 Determine the control output value according to the output parameters of the bidirectional power conversion device.
  • the output parameters of the bidirectional power conversion device may be actual output power parameters of the bidirectional power conversion device, such as output voltage values and/or output current values.
  • the control unit of the bidirectional power conversion device may use the sampling unit to obtain the actual output voltage value and/or the actual output current value of the bidirectional power conversion device.
  • the output parameters of the bidirectional power conversion device can be the output parameters of the resonant circuit, the output parameters of the transformer, or the output parameters of the push-pull unit. There is no limitation here, as long as those skilled in the art think it can be realized.
  • the output parameters of the bidirectional power conversion device can represent the current working status of the bidirectional power conversion device.
  • the output parameters of the bidirectional power conversion device can represent the current flow direction of the bidirectional power conversion device, or the operating current, operating voltage, etc.
  • the control unit obtains the output parameters of the bidirectional power conversion device, and determines the control output value according to the output parameters of the bidirectional power conversion device.
  • the control output value may be the output value of the control unit.
  • the control unit can use the voltage loop and/or the current loop to control the obtained output parameters of the bidirectional power conversion device, and determine the control output value through the control algorithm of the digital PI regulator.
  • Step 104 Adjust the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube according to the control output value.
  • the working state of the bidirectional power conversion device can be determined according to the control output value, and based on this, the switching frequency of the first switch tube and the duty cycle of the driving signal of the first switch tube are adjusted to control the on and off time and the switching frequency of the first switch tube, thereby adjusting the working frequency and gain of the bidirectional power conversion device, and then changing the efficiency of the bidirectional power conversion device.
  • step 104 may include step 204 , or step 206 , or step 208 , or step 210 .
  • Step 204 In response to the control output value meeting the first preset condition, control the first switching tube to operate in a fixed frequency variable duty cycle mode.
  • Step 206 In response to the control output value meeting the second preset condition, control the first switching tube to operate in a fixed frequency and fixed duty cycle mode.
  • Step 208 In response to the control output value meeting the third preset condition, control the first switching tube to operate in the frequency conversion constant duty cycle mode.
  • Step 210 In response to the control output value meeting the fourth preset condition, control the first switching tube to operate in the fixed frequency accumulation duty cycle wave generation mode.
  • the fixed frequency variable duty cycle mode means that the switching frequency of the first switching tube is fixed, and the duty cycle of the driving signal of the first switching tube changes;
  • the fixed frequency and constant duty cycle mode means that the switching frequency of the first switching tube changes.
  • the duty cycle of the first switching tube and the driving signal of the first switching tube are both fixed values;
  • the variable frequency duty cycle mode means that both the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube change.
  • the fixed-frequency accumulated duty cycle wave generation mode means that the switching frequency of the first switch tube is a fixed value, and the duty cycle of the drive signal of the first switch tube is the duty cycle after the duty cycles of multiple drive signals are accumulated.
  • the switching frequency of the first switching tube and the driving signal of the first switching tube are different,
  • the first switching tube is controlled in a targeted manner according to the actual situation of the control output value, and the working state of the bidirectional power conversion device is adjusted in a targeted manner, thereby improving the efficiency of the bidirectional power conversion device.
  • the first switching tube when the control output value satisfies the first preset condition, the second preset condition, the third preset condition or the fourth preset condition, the first switching tube is controlled according to different modes.
  • the driving signal is used to perform targeted control on the first switching tube according to the actual situation of the control output value.
  • the driving signals of other switching tubes in the bidirectional power conversion device are also controlled accordingly.
  • the driving signals thereof can be consistent with the driving signals of the first switching tube, or the switching states can be complementary and have a phase difference. 180°.
  • the input voltage range is wide, it is possible to avoid the problem of excessive switching loss caused by changing the gain only through frequency modulation.
  • duty cycle adjustment is added, which can Reduce the switching loss of the bidirectional power conversion device and improve the efficiency and power density of the bidirectional power conversion device.
  • control method of the bidirectional power conversion device before step 104 , further includes step 103 .
  • Step 103 Determine the working status of the bidirectional power conversion device according to the control output value.
  • the control output value is determined according to the output parameters of the bidirectional power conversion device.
  • the working state of the bidirectional power conversion device can be obtained according to the control output value.
  • the working state includes a discharge state and a charging state, Among them, when the bidirectional power conversion device is in a discharge state, it means that the low-voltage battery discharges to the load or circuit on the high-voltage side through the bidirectional power conversion device. At this time, the bidirectional power conversion device works in the boost mode; when the bidirectional power conversion device is in a charging state, it means that the high-voltage battery is discharged to the load or circuit on the high-voltage side through the bidirectional power conversion device. The side power supply charges the low-voltage battery. At this time, the bidirectional power conversion device works in the buck mode.
  • the working state of the bidirectional power conversion device when the control output value is less than zero, the working state of the bidirectional power conversion device is considered to be the charging mode; when the control output value is greater than zero, the working state of the bidirectional power conversion device is considered to be the discharging mode.
  • the working status of the bidirectional power conversion device is determined based on the control output value. There is no need to determine whether the charging mode and the discharging mode are to be switched by judging the level of the target voltage. That is, there is no need to use logic to determine whether a switching event occurs, and there is no need to receive the event due to interruption. Events and initialization of relevant variables in the control part generate a time delay, which improves the response time of the control method of the bidirectional power conversion device. At the same time, the switching process of the charge and discharge process is smoother and does not cause overshoot during the switching process.
  • the working status of the bidirectional power conversion device is first determined before adjusting the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube. Subsequently, the working status of the bidirectional power conversion device can be determined according to the different working status of the bidirectional power conversion device. Adjust the first switch tube or other device The working mode of the device, etc., is used to improve the reliability of the control method of the bidirectional power conversion device.
  • step 104 when step 104 is performed to adjust the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube, in the discharge state, the switching frequency is greater than or equal to the first switch The frequency threshold, the duty cycle of the driving signal of the first switch tube is less than or equal to 50%.
  • the switching frequency in the charging state, the switching frequency is less than or equal to the third switching frequency threshold, and the duty cycle of the driving signal of the first switching tube is less than or equal to 50%.
  • the first switching frequency threshold is a preset minimum switching frequency value in the discharge state, which can be set according to the gain curve of the bidirectional power conversion device.
  • the switching frequency is greater than or equal to the first switching frequency threshold, which means that the switching frequency may be equal to or greater than the preset minimum switching frequency value in the discharge state.
  • the duty cycle of the driving signal of the first switching tube is less than or equal to 50%, which means that the duty cycle of the driving signal of the first switching tube may be 0, or it may be any value within 0-50%. value, but the maximum does not exceed 50%.
  • the third switching frequency threshold is a preset maximum switching frequency value in the charging state, and can be set according to the gain curve of the bidirectional power conversion device.
  • the switching frequency is less than or equal to the third switching frequency threshold, which means that the switching frequency may be equal to or less than the preset maximum switching frequency value in the charging state.
  • the duty cycle of the drive signal of the first switch tube is less than or equal to 50%, which means that the duty cycle of the drive signal of the first switch tube may be 0, or any value within 0-50%, but the maximum does not exceed 50%.
  • the switching frequency of the first switching tube by limiting the switching frequency of the first switching tube to an interval between the first switching frequency threshold and the third switching frequency threshold, and limiting the duty cycle of the driving signal of the first switching tube to less than or equal to Within the 50% interval, zero-voltage turn-on and zero-current turn-off of the power device can be achieved, minimizing the voltage stress and current stress of the power device at the turn-on and turn-off moments, and at the same time improving the working efficiency of the bidirectional power conversion device.
  • the bidirectional power conversion device includes a push-pull unit 110.
  • the push-pull unit 110 includes a first switching tube Q1 and a second switching tube Q2.
  • the first switching tube Q1 and the second switching tube Q2 The switching states are complementary, and the phase difference between the driving signal of the first switching tube Q1 and the driving signal of the second switching tube Q2 is 180°, which can realize synchronous rectification or chopping.
  • the bidirectional power conversion device includes a high-frequency isolation transformer.
  • the second end of the first switching tube Q1 and the second end of the second switching tube Q2 are respectively connected to the first end and the end of the primary winding of the high-frequency isolation transformer.
  • the control unit adjusts the working states of the first switching tube Q1 and the second switching tube Q2 by adjusting the driving signals sent to the control terminals of the first switching tube Q1 and the second switching tube Q2.
  • the driving signals include high and low level signals.
  • the control unit controls the working modes of the first switching tube Q1 and the second switching tube Q2 by adjusting the frequency and/or duty cycle of the driving signal.
  • the bidirectional power conversion device may also include a capacitor C1. The two ends of the capacitor C1 are respectively connected to the two ends of the first side (low voltage side) of the bidirectional power conversion device. When the first side of the bidirectional power conversion device is connected to the battery, the two ends of the capacitor C1 Connect the positive and negative terminals of the battery respectively.
  • the push-pull unit 110 has a simple topology and a small number of switch tubes, which can effectively reduce the increase in losses caused by the increase in current stress of the power device under conditions of low voltage, high power or large voltage transformation ratio.
  • the bidirectional power conversion device may also include a resonant circuit and a full-bridge unit 130.
  • the secondary winding of the high-frequency isolation transformer is connected to the resonant circuit, and the resonant circuit is connected to the full-bridge unit 130.
  • the full-bridge unit 130 serves as the second component of the bidirectional power conversion device. side.
  • the primary winding of the transformer is connected to the push-pull unit 110, and the push-pull unit 110 serves as the first side of the bidirectional power conversion device.
  • the push-pull unit 110 When the bidirectional power conversion device works in the discharging state, the push-pull unit 110 is used to chop the output voltage of the battery, and the full-bridge unit 130 is a high-voltage side rectifier circuit; when the bidirectional power conversion device works in the charging state, the full-bridge unit 130 is used to chop the output voltage of the battery. 130 is used to invert the high-voltage side DC voltage, and the push-pull unit 110 is used to synchronously rectify the output voltage of the high-frequency isolation transformer.
  • the resonant signal source passes through the resonant inductor Lr, the transformer secondary inductor Lm (winding Lm), and the resonant capacitor Cr can realize zero-voltage turn-on and zero-current turn-off of the power device of the conversion circuit, and reduce the voltage stress and voltage of the power device at the turn-on and turn-off moments. Current stress is reduced to a minimum.
  • the resonant circuit includes a resonant inductor Lr and a resonant capacitor Cr
  • the full-bridge unit 130 includes a switch transistor Q3, a switch transistor Q4, a switch transistor Q5, and a switch transistor Q6.
  • the control terminals of switch tube Q3, switch tube Q4, switch tube Q5 and switch tube Q6 are all connected to the control unit and receive drive signals from the control unit.
  • the first end of the switch tube Q4 and the first end of the switch tube Q6 are both connected to the second end of the second side of the bidirectional power conversion device.
  • the second end of the switch tube Q4 is connected to the first end of the switch tube Q3.
  • the second end of the switch tube Q6 is connected to the first end of the switch tube Q4.
  • the second end is connected to the first end of the switch transistor Q5, and the second end of the switch transistor Q3 and the second end of the switch transistor Q5 are both connected to the first end of the second side of the bidirectional power conversion device.
  • the first end of the resonant capacitor Cr is connected to the first end of the secondary winding of the transformer, and the second end of the resonant capacitor Cr is connected to the first end of the switching tube Q3 and the open end. Turn off the second end of Q4.
  • the first end of the resonant inductor Lr is connected to the end of the secondary winding of the transformer, and the second end of the resonant inductor Lr is connected to the first end of the switching tube Q5 and the second end of the switching tube Q6.
  • the bidirectional power conversion device may further include a capacitor C2, and two ends of the capacitor C2 are respectively connected to the first end and the second end of the second side of the bidirectional power conversion device.
  • the switch tube Q3, switch tube Q4, switch tube Q5 and switch tube Q6 in the rectifier bridge circuit form four switch bridge arms of the full bridge and are connected to the high-voltage side voltages HV+ and HV-.
  • the switching tube Q5 and the switching tube Q6 are turned on and off to perform synchronous rectification or inversion.
  • the resonant circuit is superimposed on the second side of the bidirectional power conversion device, the high-voltage side, to optimize conversion efficiency.
  • the duty cycle of the driving signal of the switching tube is 50%.
  • the working process of the bidirectional power conversion device is described as follows based on the structure of the bidirectional power conversion device. :
  • the push-pull unit 110 includes switching transistors Q1 and Q2.
  • the low-voltage side power supply is chopped by the push-pull unit 110 to convert the direct current into a rectangular wave.
  • the resonant unit 120 includes a resonant circuit and the transformer primary windings Ls1 and Ls2.
  • the resonant circuit includes an inductor Lr, a capacitor Cr and a transformer secondary winding Lm.
  • the rectangular wave generated by the push-pull unit 110 is boosted and converted by the transformer, and then converted into a signal input source of the resonant circuit. After the rectangular wave signal passes through the resonant circuit, it then enters the high-voltage side full-bridge unit 130. At this time, the full-bridge unit 130 is used as a rectifier circuit.
  • the rectifier bridge circuit includes switching tubes Q3, Q4, Q5 and Q6. After the rectangular wave signal passes through the resonant circuit, it enters the rectifier bridge circuit. Q3, Q6 and Q1 of the rectifier bridge circuit maintain the same switching logic and are turned on or off at the same time. Q4, Q5 and Q2 of the rectifier bridge circuit maintain the same switching logic and are turned on or off at the same time. At the same time, the switching states of Q3 and Q6 are complementary to the switching states of Q4 and Q5, with a phase sequence difference of 180° to achieve synchronous rectification, which can convert the energy on the low-voltage battery side to the high-voltage side capacitor C2 through the circuit.
  • the current flowing through the switch tube turns off the switching device when it drops to a very low level, which can effectively reduce the turn-off loss of the switching device. .
  • the rectifier bridge arm on the high-voltage side will perform synchronous rectification while Q1 and Q2 are switching.
  • switch Q6 as an example, when the power device is turned off, the drain-source current will be reduced to 0A. Achieve zero current turn-off and reduce the turn-off loss of high-voltage side switching devices.
  • the loss of the power device during turn-on will also be greatly optimized. Therefore, the combination of the above control methods can effectively reduce the overall switching loss of the high-voltage side switching device, so that the battery discharge efficiency can be greatly optimized.
  • the energy flow direction when charging the battery is from the high-voltage side to the low-voltage side.
  • the full-bridge unit 130 includes switching tubes Q3, Q4, Q5 and Q6, forming an inverter circuit on the high-voltage side.
  • the high-voltage HV generates a rectangular wave signal after passing through the inverter circuit, and this signal is used as the input signal of the resonant circuit.
  • the resonant circuit includes an inductor Lr, a capacitor Cr and a transformer secondary winding Lm.
  • the rectangular wave signal resonates after passing through the resonant circuit.
  • the resonant signal enters the transformer for conversion and enters the push-pull unit 110.
  • the push-pull unit 110 includes switching tubes Q1 and Q2 and the transformer primary windings Ls1 and Ls2 to form a synchronous rectification circuit to rectify the AC signal and output it to the capacitor C1 and charge the battery.
  • Q2, Q3, and Q6 maintain the same switching logic and are turned on or off at the same time.
  • Q1, Q4, and Q5 maintain the same switching logic and are turned on or off at the same time.
  • the switching state of Q1 is complementary to the switching state of Q2, and the phase sequence is 180° different to achieve synchronous rectification. This can convert the energy on the high-voltage side to the low-voltage side capacitor C1 through the circuit and charge the battery.
  • the switching timing of the inverter bridge Q3-Q6 is shown in Figure 11
  • the switching timing of the push-pull synchronous rectifier bridge Q1 and Q2 is shown in Figure 12.
  • the turn-on loss of the high-voltage side switching device is reduced.
  • the current flowing through the switch tube turns off the switching device when it drops to a very low level, which can effectively reduce the turn-off loss of the switching device. .
  • the rectifier bridge arm on the low-voltage side will perform synchronous rectification while the inverter bridge arm switches.
  • the drain-source current will be reduced to 0A, thereby achieving zero current.
  • Turn off reducing the turn-off loss of the high-voltage side switching device.
  • the loss of the power device during turn-on will also be greatly optimized.
  • step 210 includes steps 304 to 306.
  • Step 304 Obtain the duty cycle of the driving signal of the first switching tube according to the control output value.
  • Step 306 If the duty cycle of the driving signal of the first switch tube is less than the duty cycle critical value, control the first switch tube to operate in a fixed frequency accumulation duty cycle wave mode.
  • the duty cycle critical value is the minimum duty cycle value that enables the first switch tube to drive.
  • the duty cycle of the driving signal of the first switching tube can be obtained after controlling the first switching tube to operate in the fixed frequency variable duty cycle mode according to the control output value.
  • the duty cycle of the drive signal can be obtained after controlling the first switching tube to operate in the fixed frequency variable duty cycle mode according to the control output value.
  • the duty cycle of the drive signal of the first switch tube is less than the duty cycle critical value, it is considered that the duty ratio of the drive signal of the first switch tube is small at this time, and the drive signal of this duty cycle cannot cause the first switch tube to drive.
  • the first switching tube is controlled to work in the fixed frequency accumulation duty cycle wave mode, so that the switching frequency of the first switching tube is a fixed value, and the duty cycle of the driving signal of the first switching tube is the duty cycle after accumulation. .
  • step 306 includes step 308 and step 310.
  • Step 308 Accumulate the duty ratios of continuously sent driving signals to obtain an accumulated value.
  • Step 310 In response to the accumulated value being greater than or equal to the duty cycle critical value, control the duty cycle of the driving signal of the first switch tube to be the accumulated value.
  • the duty cycle of the drive signal of the first switch tube is less than the duty cycle critical value, it is considered that the duty ratio of the drive signal of the first switch tube is small at this time, and the drive signal of this duty cycle cannot cause the first switch tube to drive. . At this time, the duty ratios of the continuously sent driving signals are accumulated to obtain the accumulated value.
  • the accumulated value is greater than or equal to the critical value of the duty cycle, it is considered that the accumulated value of the duty cycle at this time can meet the demand and the first switch tube can be driven. Then the duty cycle of the drive signal controlling the first switch tube is accumulated value, and the driving signal with the duty cycle as the accumulated value controls the operation of the first switching tube.
  • step 312 is also included to clear the accumulated value to zero.
  • the accumulated value is cleared to zero to avoid affecting subsequent steps.
  • control method of the bidirectional power conversion device further includes step 314.
  • Step 314 In response to the accumulated value being less than the duty cycle critical value, return to step 308.
  • step 308 When the accumulated value is less than the critical value of the duty cycle, it is considered that the accumulated value of the duty cycle is still not enough to drive the first switch tube. At this time, return to step 308, continue to accumulate the duty ratios of the continuously sent driving signals to obtain an accumulated value, and execute step 310 or step 314 according to the accumulated value.
  • the switch tube is turned off before it reaches the turn-on voltage. Therefore, the switch tube has been unable to drive.
  • the small pulse wave modulation method is introduced, that is, when the duty ratio generated by the control unit is small, several consecutive small duty ratios that cannot send waves are superimposed to achieve normal output.
  • the critical value of the drive can generate waves normally through a small duty cycle to avoid violent oscillations of the controlled voltage.
  • control method of the bidirectional power conversion device before step 104 , further includes step 403 .
  • Step 403 Convert the control output value into a point value.
  • control output value After obtaining the control output value, the control output value is converted into a point value according to the preset algorithm, and subsequent control steps are executed based on the point value.
  • step 204 includes step 4041 or step 4042.
  • Step 4041 in the discharge state, if the point value is greater than or equal to the maximum cycle count value corresponding to the first switching frequency threshold, control the switching frequency of the first switching tube to maintain the first switching frequency threshold, and control the driving of the first switching tube.
  • the duty cycle of the signal varies with the control output changes as the value changes.
  • the first switching frequency threshold is a preset minimum switching frequency value in the discharge state.
  • the first switching tube In the discharge state, if the point value converted according to the control output value is greater than or equal to the maximum cycle count value corresponding to the first switching frequency threshold, the first switching tube is controlled to operate in the fixed frequency variable duty cycle mode, specifically: The switching frequency of the first switching tube is controlled to maintain the first switching frequency threshold, that is, the preset minimum switching frequency value in the discharge state, and the duty cycle of the driving signal of the first switching tube is controlled to change with the change of the control output value. It should be noted that the duty cycle of the driving signal of the first switching tube does not exceed 50%.
  • step 4042 in the charging state, if the point value is less than or equal to the minimum cycle count value corresponding to the third switching frequency threshold, control the switching frequency of the first switching tube to maintain the third switching frequency threshold, and control the first switching tube
  • the duty cycle of the drive signal changes as the control output value changes.
  • the third switching frequency threshold is a preset maximum switching frequency value in the charging state.
  • the first switching tube In the charging state, if the point value converted according to the control output value is less than or equal to the minimum cycle count value corresponding to the third switching frequency threshold, the first switching tube is controlled to operate in the fixed frequency variable duty cycle mode, specifically: The switching frequency of the first switching tube is controlled to maintain the third switching frequency threshold, that is, the preset maximum switching frequency value in the charging state, and the duty cycle of the driving signal of the first switching tube is controlled to change with the change of the control output value. It should be noted that the duty cycle of the driving signal of the first switching tube generally does not exceed 50%. During the charge and discharge switching process, the duty cycle is gradually adjusted from 0, and the switching process is relatively smooth.
  • the control output value satisfies the first preset condition, which means that the point value converted according to the control output value in the discharge state is greater than or equal to the maximum cycle count value corresponding to the first switching frequency threshold, or the point value converted according to the control output value in the charging state is less than or equal to the minimum cycle count value corresponding to the third switching frequency threshold, wherein the first switching frequency threshold is the preset minimum switching frequency value in the discharge state, and the third switching frequency threshold is the preset maximum switching frequency value in the charging state.
  • the switching frequency is no longer adjusted, and the switch tube is controlled by a fixed frequency variable duty cycle mode, so that when the input voltage range is wide, the problem of excessive switching loss caused by changing the gain only by frequency modulation is avoided, and the duty cycle adjustment is added on the basis of frequency modulation of the bidirectional power conversion device, which can reduce the switching loss of the bidirectional power conversion device and improve the efficiency and power density of the bidirectional power conversion device.
  • step 206 includes step 4061 or step 4062.
  • Step 4061 in the discharge state, if the point value is less than or equal to the minimum cycle count value corresponding to the second switching frequency threshold, control the switching frequency of the first switching tube to maintain the second switching frequency threshold, and control the driving of the first switching tube.
  • the signal's duty cycle remains at 50%.
  • the second switching frequency threshold is a preset maximum switching frequency value in the discharge state, which can be set according to the gain curve of the bidirectional power conversion device.
  • the first switching tube In the discharge state, if the point value is less than or equal to the minimum cycle count value corresponding to the second switching frequency threshold, the first switching tube is controlled to operate in a fixed frequency and constant duty cycle mode, specifically: the switching of the first switching tube is controlled.
  • the frequency maintains the second switching frequency threshold, that is, the preset maximum switching frequency value in the discharge state is maintained, and the duty cycle of the driving signal of the first switching tube is controlled to maintain 50%.
  • step 4062 in the charging state, if the point value is greater than or equal to the maximum cycle count value corresponding to the fourth switching frequency threshold, control the switching frequency of the first switching tube to maintain the fourth switching frequency threshold, and control the first switching tube The duty cycle of the drive signal is maintained at 50%.
  • the fourth switching frequency threshold is a preset minimum switching frequency value in the charging state, which can be set according to the gain curve of the bidirectional power conversion device.
  • controlling the first switching tube to operate in the fixed frequency and constant duty cycle mode may specifically include: controlling the switch of the first switching tube.
  • the frequency maintains the fourth switching frequency threshold, that is, the preset minimum switching frequency value in the charging state is maintained, and the duty cycle of the driving signal of the first switching tube is controlled to maintain 50%.
  • the control output value satisfying the second preset condition means that the point value converted according to the control output value in the discharge state is less than or equal to the minimum cycle count value corresponding to the second switching frequency threshold, or in the charging state
  • the point value converted according to the control output value in the state is greater than or equal to the maximum cycle count value corresponding to the fourth switching frequency threshold, where the second switching frequency threshold is the preset maximum switching frequency value in the discharge state, and the fourth switching frequency threshold It is the preset minimum switching frequency value in charging state. That is to say, when the control output value determined based on the output parameters of the bidirectional power conversion device is near the resonance point of the bidirectional power conversion device, the fixed frequency and constant duty cycle mode is used to control the switching tube so that the output voltage meets the voltage stabilization requirements. .
  • step 208 includes step 4081 or step 4082.
  • Step 4081 in the discharge state, if the point value is less than the maximum cycle count value corresponding to the first switching frequency threshold and greater than The minimum cycle count value corresponding to the second switching frequency threshold controls the switching frequency of the first switching tube to change with the change of the control output value, and controls the duty cycle of the driving signal of the first switching tube to maintain 50%.
  • the first switching frequency threshold is controlled.
  • the switching tube works in a frequency conversion constant duty cycle mode, specifically: controlling the switching frequency of the first switching tube to change with the change of the control output value, and controlling the duty cycle of the driving signal of the first switching tube to maintain 50%.
  • step 4082 in the charging state, if the point value is greater than the minimum cycle count value corresponding to the third switching frequency threshold and less than the maximum cycle count value corresponding to the fourth switching frequency threshold, control the switching frequency of the first switching tube It changes with the change of the control output value, and controls the duty cycle of the driving signal of the first switch tube to maintain 50%.
  • the first switching frequency threshold is controlled.
  • the switching tube works in a frequency conversion constant duty cycle mode, specifically: controlling the switching frequency of the first switching tube to change with the change of the control output value, and controlling the duty cycle of the driving signal of the first switching tube to maintain 50%.
  • the control output value satisfying the third preset condition means that the point value converted according to the control output value in the discharge state is less than the maximum cycle count value corresponding to the first switching frequency threshold and greater than the The minimum cycle count value corresponding to the second switching frequency threshold, or the point value converted according to the control output value in the charging state is greater than the minimum cycle count value corresponding to the third switching frequency threshold and less than the fourth switching frequency threshold.
  • the corresponding maximum cycle count value that is to say, when the control output value determined according to the output parameters of the bidirectional power conversion device is within the switching frequency threshold range, the frequency conversion constant duty cycle mode is used to control the switching tube. At this time, the duty cycle is constant at 50%, and the switch The frequency changes as the control output value changes. Therefore, in this embodiment, the switching loss of the bidirectional power conversion device can be reduced, and the efficiency and power density of the bidirectional power conversion device can be improved.
  • step 403 includes step 503:
  • Step 503 Determine the point value based on the control output value, the coefficient ratio between frequency control and duty cycle control, and the counting points corresponding to the interruption period.
  • Cnt is the point value
  • k1 and k2 represent the coefficient ratio between frequency control and duty cycle control in discharge mode and charging mode respectively
  • D_Out is the control output value
  • PRDs is the counting point corresponding to the interrupt period.
  • the control method of the bidirectional power conversion device is used to control the bidirectional power conversion device.
  • the bidirectional power conversion device includes a push-pull unit 110 on the low-voltage battery side, a transformer, a resonant circuit, and a full-bridge unit 130 on the high-voltage side.
  • the resonant circuit is an LLC circuit, and the resonant circuit includes a resonant inductor Lr and a resonant capacitor Cr.
  • the push-pull unit 110 includes switching tubes Q1 and Q2, and the input of the bidirectional power conversion device Terminals LV+ and LV- are respectively connected to the positive and negative poles of the battery and are used as the charging and discharging interface between the bidirectional power conversion device and the battery. By controlling the on and off of Q1 and Q2, synchronous rectification or chopping is performed.
  • the primary side of the transformer includes winding 1 (ie Ls1) and winding 2 (ie Ls2), and the secondary side of the transformer includes the secondary inductor Lm (ie winding Lm).
  • the full-bridge unit 130 on the high-voltage side adopts a full-bridge structure, and in order to optimize the conversion efficiency, an LLC circuit structure is superimposed on the high-voltage side.
  • the power devices Q3, Q4, Q5, and Q6 in the rectifier bridge form four switching bridge arms of the full bridge, and
  • the high-voltage side voltages HV+ and HV- are connected, and synchronous rectification or chopping is performed by controlling the on and off of Q3, Q4, Q5, and Q6.
  • the resonant signal source passes through the resonant inductor Lr and the resonant capacitor Cr to achieve zero-voltage turn-on and zero-current turn-off of the power device of the conversion circuit, minimizing the voltage stress and current stress of the power device at the turn-on and turn-off moments.
  • the low-voltage side power supply is chopped by the push-pull unit 110 to convert the direct current into a rectangular wave, which is boosted and converted by the transformer and converted into a signal input source for the resonant circuit.
  • the rectangular wave signal passes through the resonant circuit, it enters the full-bridge unit 130 on the high-voltage side.
  • Q3, Q6 and Q1 of the full bridge unit 130 maintain the same switching logic and are turned on or off at the same time.
  • Q4, Q5 and Q2 of the rectifier maintain the same switching logic and are turned on or off at the same time.
  • the switching states of Q3 and Q6 are complementary to the switching states of Q4 and Q5, with a phase sequence difference of 180°, achieving synchronous rectification, which can convert the energy on the low-voltage battery side to the high-voltage side capacitor C2 through the circuit.
  • the push-pull Q1 and Q2 switching timing is shown in Figure 7
  • the rectifier Q3 and Q4 switching timing is shown in Figure 8.
  • the turn-on time of Q1 and Q2 on the low-voltage side can be controlled to 2, forming zero-voltage turn-on, which reduces the turn-on loss of the low-voltage side switching device.
  • the current flowing through the switching tube turns off the switching device when it drops to a very low level, which can effectively reduce the turn-off loss of the switching device.
  • the rectifier bridge arm on the high-voltage side will perform synchronous rectification while Q1 and Q2 are switching.
  • the drain-source current will be reduced to 0A, thereby achieving zero current turn-off and reducing Turn-off losses of high-voltage side switching devices.
  • the loss of the power device during turn-on will also be greatly optimized, so that the battery discharge efficiency will be greatly optimized.
  • the rectifier bridge circuit acts as an inverter circuit, and the high-voltage HV generates a rectangular wave signal after passing through the inverter circuit.
  • This signal serves as the input signal of the resonant circuit.
  • the rectangular wave signal resonates after passing through the resonant circuit, and the resonant signal enters the transformer for conversion and enters the push-pull unit 110 .
  • the push-pull unit 110 rectifies the AC signal and outputs it to the capacitor C1, and charges the battery.
  • Q2, Q3, and Q6 maintain the same switching logic and are turned on or off at the same time.
  • Q1, Q4, and Q5 maintain the same switching logic and are turned on or off at the same time.
  • the switching state of Q1 is complementary to the switching state of Q2, and the phase sequence is 180° different, achieving synchronous rectification. In this way, the energy on the high-voltage side can be converted to the low-voltage side capacitor C1 through the circuit and charge the battery.
  • the switching timing of switching tubes Q3/Q6 and Q4/Q5 is shown in Figure 11, and the switching timing of Q1 and Q2 is shown in Figure 12.
  • the current flowing through the switch tube turns off the switching device when it drops to a very low level, which can effectively reduce the turn-off loss of the switching device.
  • the rectifier bridge arm in the push-pull unit 110 on the low-voltage side will perform synchronous rectification while the bridge arm of the inverter circuit switches.
  • the drain-source current will decrease. to 0A, thereby achieving 0 current shutdown and reducing the shutdown loss of the high-voltage side switching device.
  • the loss of the power device during turn-on will also be greatly optimized, so that the battery charging efficiency will be greatly optimized.
  • the control method of the bidirectional power conversion device adds duty cycle adjustment on the basis of frequency modulation. At the extreme frequency, that is, when the gain is minimum, the duty cycle adjustment is first performed. When the dead zone is ignored, when the duty cycle reaches 50 %, then perform frequency modulation. And the charging and discharging mode switching is no longer determined by logic by the event management part, but is controlled by controlling the output value (D_Out).
  • the control flow chart for the control unit to obtain the control output value is shown in Figure 15.
  • the control unit obtains the output parameters of the bidirectional power conversion device, including reference voltage, real-time voltage, reference current and real-time current, etc.
  • the voltage controller in the control unit obtains the output parameters according to the reference voltage.
  • control output value is less than zero, it is considered to be charging mode, and when it is greater than zero, it is considered to be discharging mode.
  • the duty cycle is gradually adjusted starting from 0, and the switching process is relatively smooth.
  • the control method of the bidirectional power conversion device is mainly divided into four parts from sampling to wave generation: in the first step, the control unit obtains the output variable related to the drive by controlling the voltage and current; in the second step, the variable is used as the input of modulation , through the bidirectional power conversion device
  • the control method outputs the frequency and duty cycle corresponding to each switching tube; the third step is to propose a corresponding solution to the voltage oscillation problem introduced by the new modulation method; the fourth step is to obtain the voltage obtained by the new modulation method.
  • the driving signal is sent into the resonant circuit to make it work normally.
  • Figure 16 is a flow chart of the control method of the bidirectional power conversion device.
  • PRDdischgmax is the EPWM module related register TBPRD value corresponding to the frequency lower limit value in discharge mode
  • PRDdischgmin is the EPWM module corresponding to the frequency upper limit value in discharge mode.
  • the TBPRD value of the relevant register PRDchgmax is the TBPRD value of the EPWM module related register corresponding to the frequency lower limit value in charging mode
  • PRDchgmin is the TBPRD value of the EPWM module related register corresponding to the frequency upper limit value in charging mode
  • PRD and CMPA respectively is the period value and comparison value sent to the EPWM module register
  • Cnt is the point value
  • k1 and k2 represent the coefficient ratio between frequency control and duty cycle control
  • D_Out is the control output value
  • PRDs is the counting point corresponding to the interrupt period.
  • Step 1 Determine whether the resonant circuit is working in charging mode or discharging mode based on the positive or negative control output value of the control unit. If it is working in discharging mode, go to step 2; otherwise, go to step 8;
  • Step 2 After converting the control output value into the corresponding point, enter step 3;
  • Step 3 If the point value calculated in step 2 is greater than the limited maximum cycle count value, go to step 4, otherwise go to step 5;
  • Step 4 At this time, when the discharge mode works at a fixed frequency and a variable duty cycle, the frequency is the lowest frequency in the discharge mode, and the duty cycle changes with the controller output value;
  • Step 5 If the point value calculated in step 2 is less than the limited minimum cycle count value, go to step 6, otherwise go to step 7;
  • Step 6 At this time, the discharge mode switch tube generates waves at constant frequency and constant duty cycle
  • Step 7 At this time, the discharge mode works under the condition of variable frequency and constant duty cycle, the frequency changes with the controller output value, and the duty cycle is constant at 50%;
  • Step 8 After converting the controller output value into the number of points corresponding to the interrupt period, proceed to step 9;
  • Step 9 If the point value calculated by step 8 is less than the limited minimum cycle count value, go to step 10, otherwise go to step 11;
  • Step 10 At this time, when the charging mode works at a fixed frequency and a variable duty cycle, the frequency is the highest frequency in the charging mode, and the duty cycle changes with the controller output value;
  • Step 11 If the point value calculated in step 2 is greater than the limited maximum cycle count value, go to step 12, otherwise go to step 13;
  • Step 12 At this time, the charging mode switch tube generates waves at a constant frequency and constant duty cycle
  • Step 13 At this time, the charging mode works with variable frequency and constant duty cycle, the frequency changes with the control output value, and the duty cycle is constant at 50%.
  • small pulse modulation is added after step 4 and step 10 in the discharge mode and the charging mode respectively.
  • steps 4-1 to 4-3 and step 10 are added. This includes steps 10-1 to 10-3.
  • PRD and CMPA are the period value and comparison value sent to the EPWM module register respectively
  • Cntminlim In order for the switch tube to produce a count value corresponding to the critical value of the drive, CMPATemp is the accumulated value.
  • Step 4-1 When the obtained duty cycle is less than the critical value that the switch tube can drive, go to step 4-2, otherwise go to step 4-3;
  • Step 4-2 Accumulate the small duty cycle and assign it to the comparison register of the EPWM module. If the accumulated value is greater than the critical value that the switch tube can drive, then the accumulated value is cleared. Otherwise, the accumulated value remains unchanged. Change;
  • Step 4-3 Clear the accumulated value to zero.
  • Step 10-1 When the duty cycle obtained by the control is less than the critical value that the switch tube can drive, go to step 10-2, otherwise go to step 10-3;
  • Step 10-2 Accumulate the small duty cycle and assign it to the comparison register of the EPWM module. If the accumulated value is greater than the critical value that the switch tube can drive, then the accumulated value is cleared. Otherwise, the accumulated value remains unchanged. Change;
  • Step 10-3 Clear the accumulated value to zero.
  • FIG. 18 shows a simulation schematic diagram of generating the driving signal of the switching transistor in the embodiment of the bidirectional power conversion device shown in FIG. 6 .
  • Output represents the controller output value
  • Cnt is the point value.
  • hchg(Output,Cnt) represents the transfer function that converts the controller output value into a point value based on the interrupt period in charging mode
  • f1(Output,Cnt,f_charge) f2(Output,Cnt,f_charge) and f3(Output , Cnt, f_charge) respectively represent the transfer function for obtaining the frequency when the Cnt value is in different limit value ranges in the charging mode
  • g1 (Output, Cnt, D_charge), g2 (Output, Cnt, D_charge) and g3 (Output, Cnt ,D_charge) respectively represent the transfer function for obtaining the duty cycle when the Cnt value is in different limit value ranges in the charging mode
  • the transfer functions of points, f4 (Output, Cnt, f_charge), f5 (Output, Cnt, f_charge) and f6 (Output, Cnt, f_charge) respectively represent the frequency calculation when the Cnt value is in different limit value ranges in the discharge mode.
  • the transfer functions, g4(Output,Cnt,D_charge), g5(Output,Cnt,D_charge) and g6(Output,Cnt,D_charge) respectively represent the transfer of duty cycle when the Cnt value is in different limit value ranges in the discharge mode.
  • p1 (D1) and p2 (D1) respectively represent the transfer function about the duty cycle when the Cnt value is less than or equal to Cntminlim in the charging mode or the discharging mode.
  • Cntminlim is the count value corresponding to the critical value of the driving that the switch tube can produce. .
  • PRDchgmax is the TBPRD value of the EPWM module related register corresponding to the lower limit of the frequency in the charging mode
  • PRDchgmin is the TBPRD value of the EPWM module related register corresponding to the upper limit of the frequency in the charging mode
  • PRDdischgmax is the TBPRD value of the EPWM module related register corresponding to the lower limit of the frequency in the discharge mode
  • PRDdischgmin is the TBPRD value of the EPWM module related register corresponding to the upper limit of the frequency in the discharge mode
  • TBPRD is the value of the time base period register.
  • f Charge represents the switching frequency value in the charging mode
  • D Charge represents the duty cycle in the charging mode
  • D ChgNarrow represents the duty cycle under small pulse modulation.
  • f DisCharge represents the switching frequency value in the discharge mode
  • D DisCharge represents the duty cycle in the discharge mode
  • D DisChgNarrow represents the duty cycle under small pulse modulation.
  • the frequency modulation basis of charging mode is:
  • the frequency modulation basis of discharge mode is:
  • the discharge mode duty cycle adjustment is based on:
  • the modulation basis of small pulse wave in discharge mode is:
  • the control method of the above-mentioned bidirectional power conversion device adds duty cycle adjustment on the basis of frequency modulation.
  • the duty cycle adjustment is first performed.
  • the dead zone is ignored, the duty cycle is adjusted.
  • it reaches 50% frequency modulation is performed again.
  • the charging and discharging mode switching is no longer determined by logic by the event management part, but is controlled by controlling the output value.
  • the control output value is less than zero, it is considered to be charging mode, and when it is greater than zero, it is considered to be discharging mode.
  • the duty cycle is gradually adjusted starting from 0, and the switching process is relatively smooth. In no-load or even light-load mode, small pulse wave modulation is introduced.
  • embodiments of the present application also provide a control device for a bidirectional power conversion device that is used to implement the above-mentioned control method for a bidirectional power conversion device.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, for the specific limitations in the control device embodiments of one or more bidirectional power conversion devices provided below, please refer to the bidirectional power conversion device mentioned above. The limitations of the control method of the conversion device will not be described again here.
  • a control device for a bidirectional power conversion device includes at least one first switching tube.
  • the control device of the bidirectional power conversion device includes a control output value acquisition module and a switch tube control module, wherein:
  • the control output value acquisition module is used to determine the control output value according to the output parameters of the control device.
  • the switching tube control module is used to adjust the switching frequency of the first switching tube and the duty cycle of the driving signal of the first switching tube according to the control output value.
  • the switch tube control module includes a first adjustment unit, a second adjustment unit, a third adjustment unit and a fourth adjustment unit.
  • the first adjustment unit is used to control the first switch tube in response to the control output value meeting the first preset condition.
  • the second adjustment unit is used to control the first switching tube to operate in a fixed frequency and fixed duty cycle mode in response to the control output value meeting the second preset condition.
  • the third adjustment unit is used to control the first switching tube to operate in the frequency conversion constant duty cycle mode in response to the control output value meeting the third preset condition.
  • the fourth adjustment unit is used to control the first switching tube to operate in a fixed frequency accumulation duty cycle wave mode in response to the control output value meeting the fourth preset condition.
  • control device of the bidirectional power conversion device further includes a working state acquisition module.
  • the working state acquisition module is used to adjust the switching frequency of the first switching tube and the driving of the first switching tube according to the control output value in the switching tube control module.
  • the working state of the bidirectional power conversion device is determined according to the control output value.
  • the working state includes the discharge state and the charging state.
  • Each module in the control device of the above-mentioned bidirectional power conversion device can be implemented in whole or in part by software, hardware, and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a bidirectional power conversion device including a control unit and at least one first switching transistor.
  • the control unit is used to perform the steps in each of the above method embodiments.
  • the bidirectional power conversion device includes at least one first switching tube, the control output value is determined according to the output parameters of the bidirectional power conversion device, and the switching of the first switching tube is adjusted according to the control output value.
  • the first switching tube in response to the control output value meeting the first preset condition, the first switching tube is controlled to operate in a fixed frequency variable duty cycle mode; or, in response to the control output value When the second preset condition is met, the first switching tube is controlled to operate in the fixed frequency and constant duty cycle mode; or, in response to the control output value meeting the third preset condition, the first switching tube is controlled to operate in the variable frequency and constant duty cycle mode.
  • the first switching tube is controlled to operate in the fixed frequency accumulation duty cycle wave generation mode.
  • a computer device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the steps in the above method embodiments.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in the above method embodiments are implemented.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic disk, optical disk), including several instructions to cause a terminal device (which may be a power electronic device or electrical device, etc.) to execute the method of each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及一种双向功率变换装置的控制方法及双向功率变换装置,双向功率变换装置包括至少一个第一开关管,根据双向功率变换装置的输出参数确定控制输出值,根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比,其中,响应于控制输出值满足第一预设条件,控制第一开关管工作于定频变占空比模式;或者,响应于控制输出值满足第二预设条件,控制第一开关管工作于定频定占空比模式;或者,响应于控制输出值满足第三预设条件,控制第一开关管工作于变频定占空比模式;或者,响应于控制输出值满足第四预设条件,控制第一开关管工作于定频累加占空比发波模式。通过上述方式,根据不同情况对双向功率变换装置采用不同的控制模式,可以减小双向功率变换装置的开关损耗,提高双向功率变换装置输出电压的稳定性。

Description

双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质
本申请要求于2022年9月19日申请的,申请号为2022111342539,名称为“双向功率变换装置的控制方法及双向功率变换装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及功率变换装置技术领域,特别是涉及一种双向功率变换装置的控制方法、装置、计算机设备、存储介质及双向功率变换装置。
背景技术
功率变换装置是一种可以将某种电流转换为其他类型电流的电力电子设备,包括直流变换装置和交流变换装置等,例如直流变换器可以将一种直流电流输入变换成另一种具有不同输出特性的直流电流输出。直流变换器的应用非常广泛,例如可应用在房车电源领域,连接在大功率的蓄电池与房车用电设备或充电电源之间,可以实现双向的电能转换。双向全桥谐振变换器是已知的一种直流功率变换装置,在输入电压范围较宽时,可以通过调频的方式改变其增益,满足稳压的要求。
然而,这种功率变换装置主要适用于电池电压较高的应用场景,这样可实现较小的电压变比设计,例如电池电压为48V、输出电压为400V时,电压变比最大约10倍(48V:400V),或电池电压为48V、输出电压为200V时,电压变比大约5倍(48V:200V)左右。但若将这种变换器用于12V等级的蓄电池时,电压的变比将达到40倍(12V:400V)或20倍(12V:200V)以上,这相比于48V电池,在输出相等的功率时(或者更大功率时),12V电池侧的电流将会增加4倍以上,极大地增加功率开关器件MOSFET的数量和成本,同时损耗增加,产品的功率密度和效率减小。另外,当采用调频控制方式,在输入电压范围较宽时,为了满足增益的需求,会出现将频率没有限制地往上抬升的情况,这同样也将会大幅度提高开关损耗。又如,当采用调占空比控制方式,在带载较轻所需增益较小时,打出的占空比非常小,时间很短,尚未达到开关管的开启电压就关断,故开关管一直无法打出驱动,当驱动能够打出时,占空比较大,导致电压发生振荡。
前面的叙述在于提供一般的相关技术信息,并不一定构成相关技术。
发明内容
基于此,有必要针对上述技术问题,提供一种双向功率变换装置的控制方法及双向功率变换装置,能够适用于宽电压范围和高电压变比的场景,以至少解决相关技术中所提出的开关损耗高、效率和功率密度低、成本高的问题。
第一方面,本申请提供了一种双向功率变换装置的控制方法,所述双向功率变换装置包括至少一个第一开关管,控制方法包括:
根据所述双向功率变换装置的输出参数确定控制输出值;
根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比;其中,
响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式;或者,
响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式;或者,
响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式;或者,
响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
第二方面,本申请还提供了一种双向功率变换装置,包括控制单元和至少一个第一开关管,所述控制单元用于执行上述的控制方法。
第三方面,本申请还提供了一种双向功率变换装置的控制装置,所述装置包括:
控制输出值确定模块,用于根据所述双向功率变换装置的输出参数确定控制输出值;
调节模块,用于根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比;
其中,所述调节模块包括第一调节单元、第二调节单元、第三调节单元和第四调节单元;
所述第一调节单元,用于响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式;或者,
所述第二调节单元,用于响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式;或者,
所述第三调节单元,用于响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式;或者,
所述第四调节单元,用于响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
第四方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
根据所述双向功率变换装置的输出参数确定控制输出值;
根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比;其中,
响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式;或者,
响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式;或者,
响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式;或者,
响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
第五方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
根据所述双向功率变换装置的输出参数确定控制输出值;
根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比;其中,
响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式;或者,
响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式;或者,
响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式;或者,
响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
如上所述,本申请提供的双向功率变换装置的控制方法、装置、计算机设备、存储介质及双向功率变换装置,双向功率变换装置包括至少一个第一开关管,控制方法包括:根据双向功率变换装置的输出参数确定控制输出值,根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比,其中,响应于控制输出值满足第一预设条件,控制第一开关管工作于定频变占空比模式;或者,响应于控制输出值满足第二预设条件,控制第一开关管工作于定频定占空比模式;或者,响应于控制输出值满足第三预设条件,控制第一开关管工作于变频定占空比模式;或者,响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
有益效果:通过上述方式,根据不同情况对双向功率变换装置采用不同的控制模式,可以减小双向功率变换装置的开关损耗,提高双向功率变换装置输出电压的稳定性。
提供上述发明内容以简化形式介绍一些概念,这些概念将在下面的具体实施方式中进一步详细描述。上述发明内容既不旨在标识所要求保护的主题的关键特征或必要特征,也不旨在用于帮助确定所要求保护的主题的范围。本申请所要求保护的主题不限于解决背景技术中指出的任何或所有缺点的实施方式。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。这些附图和文字描述并不是为了通过任何方式限制 本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1为一个实施例中双向功率变换装置的结构示意图;
图2为一个实施例中双向功率变换装置的控制方法的流程图;
图3为另一个实施例中双向功率变换装置的控制方法的流程图;
图4为一个实施例中控制第一开关管工作于定频累加占空比发波模式步骤的流程图;
图5为再一个实施例中双向功率变换装置的控制方法的流程图;
图6为一个实施例中双向功率变换装置的电路结构示意图;
图7为一个实施例中开关管Q1、Q2的开关时序图;
图8为一个实施例中开关管Q3/Q6、Q4/Q5的开关时序图;
图9为一个实施例中推挽单元的桥臂0电压开通示意图;
图10为一个实施例中整流桥电路的桥臂0电流关断示意图;
图11为一个实施例中整流桥电路桥臂的开关管Q3/Q6、Q4/Q5的开关时序图;
图12为一个实施例中推挽单元桥臂的开关管Q1、Q2的开关时序图;
图13为一个实施例中整流桥电路的桥臂0电压开通示意图;
图14为一个实施例中推挽单元同步整流0电流关断的示意图;
图15为一个实施例中控制单元得到控制输出值的控制流程图;
图16为一个实施例中双向功率变换装置的控制方法的详细流程图;
图17为一个实施例中双向功率变换装置的控制方法中充电模式及放电模式下小脉冲调制的流程图;
图18为一个实施例中生成双向功率变换装置的开关管的驱动信号的仿真示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。应当进一步理解,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。再者,本文中使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种参数或模块,但这些参数或模块不应限于这些术语。这些术语仅用来将同一类型的参数或模块彼此区分开。例如,在不脱离本文范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应该理解,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶 段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请的权利范围。
在一个实施例中,提供一种双向功率变换装置的控制方法,用于对双向功率变换装置进行控制,该控制方法可以由双向功率变换装置。双向功率变换装置可以为双向DC/DC变换装置或双向DC/AC变换装置。双向功率变换装置包括两种电流流向,以双向DC/DC变换装置为例,双向DC/DC变换装置的第一侧连接蓄电池,第二侧连接负载或充电器。双向直流变换装置的第一侧为低压侧,双向直流变换装置的第二侧为高压侧。双向直流变换装置的第一侧用作双向直流变换装置与蓄电池的充电和放电接口。双向直流变换装置中的电流流向可以从第一侧流向第二侧,即从蓄电池流向负载,此时蓄电池放电。或者,双向直流变换装置中的电流流向也可以为从第二侧流向第一侧,即从充电器流向蓄电池,给蓄电池充电。
请参阅图1,其示出了本申请实施例提供的双向功率变换装置100的结构示意图,该双向功率变换装置100包括:
推挽单元110,所述推挽单元110的第一端连接低压电池的输出端,作为双向功率变换装置100的低压侧;
谐振单元120,所述谐振单元120包括高频隔离变压器和谐振电路,所述谐振单元120的第一端连接所述推挽单元110的第二端;
全桥单元130,所述全桥单元130的第一端连接所述谐振单元120的第二端,所述全桥单元130的第二端作为双向功率变换装置100的高压侧。
在本实施例中,低压电池可以是12V的锂电池,双向功率变换装置100的直流母线电压可以为400V。通过控制单元对双向功率变换装置100的控制,实现对低压电池进行充电或放电的双向自动控制,同时利用谐振单元120实现低压电池与直流母线电压进行电气隔离。所述谐振单元120包括谐振电路和高频隔离变压器,所述高频隔离变压器的原边连接推挽单元110的第二端,高频隔离变压器的副边通过谐振电路连接全桥单元130的第一端。第一开关管可与变压器的原边连接,和/或,与谐振电路连接。在电池放电时,变压器进行升压转换,将蓄电池存储的能量传输至负载,给负载供电。高频隔离变压器可以将原边和副边两边的电路分开,以此提高装置的安全性。谐振电路可以包括谐振电感Lr和谐振电容Cr,谐振信号源经过谐振电感Lr、变压器副边和谐振电容Cr,可以实现双向功率变换装置中各开关管的零电压开通和零电流关断,将开关管在开通和关断时刻的电压应力和电流应力降至最小。
可选地,双向功率变换装置包括至少一个第一开关管,第一开关管设置在双向功率变换装置的第一侧和第二侧之间,第一开关管具有开通和关断两种工作状态。通过改变第一开关管的驱动信号,可以使所述第一开关管处于不同的工作状态,进而调节双向功率变换装置处于不同的工作状态。从而,可以通过对第一开关管的控制,实现对双向功率变换装置的工作状态的控制。进一步地,第一开关管的数量可以为两个以上,双向功率变换装置还可以包括其他开关管,各开关管配合工作,可以实现整流或斩波等功能。在一种可能的实施方式中,所述第一开关管可以是推挽单元110或全桥单元130中的一个功率开关管。
双向功率变换装置的控制方法可由双向功率变换装置中的控制单元执行,例如MCU,也可以另外设置一个控制单元执行。控制单元连接第一开关管,还可以连接双向功率变换装置中的其他开关管,用于发送驱动信号至第一开关管和其他开关管,对第一开关管和其他开关管进行控制。
在本实施例中,如图2所示,双向功率变换装置的控制方法包括以下步骤:
步骤102,根据双向功率变换装置的输出参数确定控制输出值。
其中,双向功率变换装置的输出参数可以为双向功率变换装置的实际输出电力参数,如输出电压值和/或输出电流值。双向功率变换装置的控制单元可以利用采样单元获取双向功率变换装置的实际输出电压值和/或实际输出电流值。双向功率变换装置的输出参数可以为谐振电路的输出参数或变压器的输出参数或者推挽单元的输出参数,在此不做限定,只要本领域技术人员认为可以实现即可。
双向功率变换装置的输出参数可以表征双向功率变换装置当前的工作状态,例如,双向功率变换装置的输出参数可以表征双向功率变换装置当前的电流流向,或者工作电流、工作电压等。控制单元获取双向功率变换装置的输出参数,根据双向功率变换装置的输出参数确定控制输出值,控制输出值可以为控制单元的输出值。控制单元可以利用电压环和/或电流环对获取到的双向功率变换装置的输出参数进行控制,通过数字PI调节器的控制算法确定控制输出值。
步骤104,根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比。
得到控制输出值后,可根据控制输出值确定双向功率变换装置的工作状态,并以此为依据,调整第一开关管的开关频率和第一开关管的驱动信号的占空比,以控制第一开关管的导通和关断时间及开关频率,从而调整双向功率变换装置的工作频率和增益,并进而改变双向功率变换装置的效率。
其中,根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比的方式有多种。如图3所示,步骤104可以包括步骤204,或步骤206,或步骤208,或步骤210。
步骤204,响应于控制输出值满足第一预设条件,控制第一开关管工作于定频变占空比模式。
步骤206,响应于控制输出值满足第二预设条件,控制第一开关管工作于定频定占空比模式。
步骤208,响应于控制输出值满足第三预设条件,控制第一开关管工作于变频定占空比模式。
步骤210,响应于控制输出值满足第四预设条件,控制第一开关管工作于定频累加占空比发波模式。
其中,定频变占空比模式是指第一开关管的开关频率固定,第一开关管的驱动信号的占空比发生变化;定频定占空比模式是指第一开关管的开关频率和第一开关管的驱动信号的占空比均为固定值;变频变占空比模式是指第一开关管的开关频率和第一开关管的驱动信号的占空比均发生变化。定频累加占空比发波模式是指第一开关管的开关频率为固定值,第一开关管的驱动信号的占空比为多个驱动信号的占空比累加之后的占空比。
在控制输出值分别满足第一预设条件、第二预设条件、第三预设条件或第四预设条件时,控制第一开关管的开关管频率和第一开关管的驱动信号不同,以根据控制输出值的实际情况对第一开关管进行针对性的控制,针对性地调整双向功率变换装置的工作状态,从而提高双向功率变换装置的效率。
上述双向功率变换装置的控制方法中,在控制输出值满足第一预设条件、第二预设条件、第三预设条件或第四预设条件时,分别按照不同的模式控制第一开关管的驱动信号,以根据控制输出值的实际情况对第一开关管进行针对性的控制。在一个可选的实施方式中,双向功率变换装置中的其他开关管的驱动信号也对应进行控制,其驱动信号可以与第一开关管的驱动信号保持一致,也可以是开关状态互补,相位相差180°。在本实施例中,能够在输入电压范围较宽时,避免仅通过调频的方式改变增益而导致开关损耗过高的问题,在对双向功率变换装置调频的基础上增加了占空比调节,可以减小双向功率变换装置的开关损耗,提高双向功率变换装置的效率和功率密度。
在一个实施例中,如图3所示,步骤104之前,双向功率变换装置的控制方法还包括步骤103。
步骤103,根据控制输出值,判断双向功率变换装置的工作状态。
其中,控制输出值根据双向功率变换装置的输出参数确定,得到控制输出值后,可根据控制输出值得到双向功率变换装置的工作状态,在本实施例中,工作状态包括放电状态和充电状态,其中,双向功率变换装置处于放电状态是指低压电池经双向功率变换装置向高压侧的负载或电路放电,此时双向功率变换装置工作在升压模式下;双向功率变换装置处于充电状态是指高压侧电源向低压电池进行充电,此时双向功率变换装置工作在降压模式下。
在本实施例中,当控制输出值小于零时,认为双向功率变换装置的工作状态是充电模式,当控制输出值大于零时,认为双向功率变换装置的工作状态是放电模式。根据控制输出值判断双向功率变换装置的工作状态,无需通过判断目标电压的高低来决定充电模式和放电模式是否要发生切换,即无需通过逻辑确定是否产生切换事件,也不会由于中断接收到该事件并对控制部分相关变量进行初始化而产生时间延时,提高了双向功率变换装置的控制方法的响应及时率,同时充放电过程的切换更为平滑,不会导致切换过程中出现过冲现象。
在本实施例中,在调整第一开关管的开关频率和第一开关管的驱动信号的占空比之前,先判断双向功率变换装置的工作状态,后续可根据双向功率变换装置的不同工作状态调整第一开关管或其他器 件的工作模式等,提高双向功率变换装置的控制方法的使用可靠性。
在一个实施例中,步骤103之后,在执行步骤104,调整第一开关管的开关频率和第一开关管的驱动信号的占空比时,在放电状态下,开关频率大于或等于第一开关频率阈值,第一开关管的驱动信号的占空比小于或等于50%。或者,在充电状态下,开关频率小于或等于第三开关频率阈值,第一开关管的驱动信号的占空比小于或等于50%。
在本实施例中,第一开关频率阈值为放电状态下预设的最小开关频率值,可以根据双向功率变换装置的增益曲线来设定。在放电状态下,开关频率大于或等于第一开关频率阈值是指,开关频率可能等于或大于放电状态下预设的最小开关频率值。在放电状态下,第一开关管的驱动信号的占空比小于或等于50%是指,第一开关管的驱动信号的占空比可能为0,也可能为0-50%之内的任意数值,但最大不超过50%。
第三开关频率阈值为充电状态下预设的最大开关频率值,可以根据双向功率变换装置的增益曲线来设定。在充电状态下,开关频率小于或等于第三开关频率阈值是指,开关频率可能等于或小于充电状态下预设的最大开关频率值。在充电状态下,第一开关管的驱动信号的占空比小于或等于50%是指,第一开关管的驱动信号的占空比可能为0,也可能为0-50%之内的任意数值,但最大不超过50%。
在本实施例中,通过将第一开关管的开关频率限制在第一开关频率阈值至第三开关频率阈值的区间内,以及将第一开关管的驱动信号的占空比限制在小于或等于50%的区间内,能够实现功率器件的零电压开通和零电流关断,将功率器件在开通和关断时刻的电压应力和电流应力降至最小,同时可以改善双向功率变换装置的工作效率。
在一个实施例中,如图6所示,双向功率变换装置包括推挽单元110,推挽单元110包括第一开关管Q1和第二开关管Q2,第一开关管Q1和第二开关管Q2的开关状态互补,且第一开关管Q1的驱动信号与第二开关管Q2的驱动信号的相位差为180°,可以实现同步整流或斩波。
具体地,第一开关管Q1的控制端和第二开关管Q2的控制端均连接控制单元,第一开关管Q1的第一端和第二开关管Q2的第一端均连接电池负极,当双向功率变换装置包括高频隔离变压器,第一开关管Q1的第二端和第二开关管Q2的第二端分别连接高频隔离变压器的原边绕组的首端和末端。控制单元通过调整发送至第一开关管Q1的控制端和第二开关管Q2的控制端的驱动信号,来调整第一开关管Q1和第二开关管Q2的工作状态。驱动信号包括高低电平信号,第一开关管Q1和第二开关管Q2在接收到高电平或低电平时,处于导通或截止的状态。控制单元通过调整驱动信号的频率和/或占空比,实现对第一开关管Q1和第二开关管Q2工作模式的控制。双向功率变换装置还可以包括电容C1,电容C1的两端分别连接双向功率变换装置的第一侧(低压侧)的两端,当双向功率变换装置的第一侧连接电池时,电容C1的两端分别连接电池的正极和负极。推挽单元110拓扑简单,开关管数量少,可以有效减少低压大功率或大电压变比条件下功率器件的电流应力增加而造成的损耗增加。
进一步地,双向功率变换装置还可以包括谐振电路和全桥单元130,高频隔离变压器的副边绕组连接谐振电路,谐振电路连接全桥单元130,全桥单元130作为双向功率变换装置的第二侧。变压器的原边绕组连接推挽单元110,推挽单元110作为双向功率变换装置的第一侧。当双向功率变换装置工作于放电状态时,推挽单元110用于对电池的输出电压进行斩波,全桥单元130为高压侧整流电路;当双向功率变换装置工作于充电状态时,全桥单元130用于对高压侧直流电压进行逆变,推挽单元110用于对高频隔离变压器的输出电压进行同步整流。谐振信号源经过谐振电感Lr,变压器副边电感Lm(绕组Lm),谐振电容Cr可以实现转换电路功率器件的零电压开通和零电流关断,将功率器件在开通和关断时刻的电压应力和电流应力降至最小。
如图6所示,谐振电路包括谐振电感Lr和谐振电容Cr,全桥单元130包括开关管Q3、开关管Q4、开关管Q5和开关管Q6。开关管Q3、开关管Q4、开关管Q5和开关管Q6的控制端均连接控制单元,接收来自控制单元的驱动信号。开关管Q4的第一端和开关管Q6的第一端均连接双向功率变换装置的第二侧的第二端,开关管Q4的第二端连接开关管Q3的第一端,开关管Q6的第二端连接开关管Q5的第一端,开关管Q3的第二端和开关管Q5的第二端均连接双向功率变换装置的第二侧的第一端。谐振电容Cr的第一端连接变压器的副边绕组的首端,谐振电容Cr的第二端连接开关管Q3的第一端和开 关管Q4的第二端。谐振电感Lr的第一端连接变压器的副边绕组的末端,谐振电感Lr的第二端连接开关管Q5的第一端和开关管Q6的第二端。双向功率变换装置还可以包括电容C2,电容C2的两端分别连接双向功率变换装置的第二侧的第一端和第二端。
整流桥电路中的开关管Q3、开关管Q4、开关管Q5和开关管Q6形成全桥四个开关桥臂,并和高压侧电压HV+,HV-连接,通过控制开关管Q3、开关管Q4、开关管Q5和开关管Q6的导通和关断,进行同步整流或者逆变。谐振电路叠加在双向功率变换装置的第二侧,即高压侧,可以优化转换效率。
以双向功率变换装置的第一侧连接蓄电池为例,在本示例中,按照开关管的驱动信号的占空比为50%,结合双向功率变换装置的结构对双向功率变换装置的工作过程说明如下:
在电池放电时:
推挽单元110包括开关管Q1,Q2,低压侧电源经过推挽单元110斩波,将直流电转变成矩形波。
谐振单元120包括谐振电路和变压器原边绕组Ls1,Ls2,谐振电路包括电感Lr、电容Cr和变压器副边绕组Lm。推挽单元110产生的矩形波经过变压器进行升压转换,转变成谐振电路的信号输入源。矩形波信号经过谐振电路后,再进入高压侧全桥单元130,此时全桥单元130用作整流电路。
整流桥电路包括开关管Q3,Q4,Q5和Q6,矩形波信号经过谐振电路后,再进入整流桥电路。整流桥电路的Q3,Q6与Q1保持相同的开关逻辑,同时开通或关断。整流桥电路的Q4,Q5与Q2保持相同的开关逻辑,同时开通或关断。同时Q3,Q6开关状态与Q4,Q5的开关状态互补,相序相差180°,实现同步整流,这样可将低压电池侧的能量通过电路转换至高压侧电容C2。
在电池放电工作模式中,各功率器件的工作时序说明:推挽Q1,Q2开关时序如图7所示,整流Q3-Q6的开关时序如图8所示。
如图9所示,通过控制开关管的开关时间,可以将低压侧Q1,Q2的开通时刻控制在Q1,Q2的漏源极电压为0V(Vds=0V)的时刻,形成零电压开通,降低了低压侧开关器件的开通损耗,同时由于谐振电路的存在,在关断时刻,流经开关管的电流在下降至很低的水平时关断开关器件,可有效降低开关器件的关断损耗。
如图10所示,高压侧的整流桥臂会在Q1,Q2开关的同时进行同步整流,以开关管Q6为例,功率器件在关断时,漏源极电流会减小到0A,以此实现零电流关断,降低高压侧开关器件的关断损耗。同时由于谐振电路的影响,功率器件在开通时的损耗也会得到极大的优化。因此,综合以上控制方式,可有效降低高压侧开关器件的整体开关损耗,使得电池放电的效率得到极大的优化。
在电池充电时:
如图6所示,电池充电时的能量流动方向,由高压侧流向低压侧。
全桥单元130包括开关管Q3,Q4,Q5和Q6,形成高压侧的逆变电路,高压HV经过逆变电路后产生一个矩形波信号,此信号作为谐振电路的输入信号。
谐振电路包括电感Lr、电容Cr和变压器副边绕组Lm,矩形波信号经过谐振电路后谐振,谐振信号进入变压器转换并进入推挽单元110。
推挽单元110包括开关管Q1、Q2与变压器原边绕组Ls1和Ls2一起,形成同步整流电路,对交流信号进行整流并输出至电容C1,并对电池进行充电。Q2与Q3,Q6保持相同的开关逻辑,同时开通或关断。Q1与Q4,Q5保持相同的开关逻辑,同时开通或关断。同时Q1开关状态与Q2的开关状态互补,相序相差180°,实现同步整流,这样可将高压侧的能量通过电路转换至低压侧电容C1,并对电池充电。
以上充电工作模式中,各功率器件的工作时序说明:逆变桥Q3-Q6开关时序如图11所示,推挽同步整流桥Q1,Q2开关时序如图12所示。如图13所示,通过控制开关管的开关时间,可以将高压侧Q3,Q4,Q5,Q6的开通时刻控制在漏源极电压为0V(Vds=0V)的时刻,形成零电压开通,降低了高压侧开关器件的开通损耗,同时由于谐振电路的存在,在关断时刻,流经开关管的电流在下降至很低的水平时关断开关器件,可有效降低开关器件的关断损耗。
如图14所示,低压侧的整流桥臂会在逆变桥臂开关的同时进行同步整流,功率器件Q1,Q2在关断时,漏源极电流会减小到0A,以此实现零电流关断,降低高压侧开关器件的关断损耗。同时由于谐振 电路的影响,功率器件在开通时的损耗也会得到极大的优化。
因此,综合以上控制方式,可以实现低压侧开关器件和高压侧开关器件的软开关,降低开关器件的整体开关损耗,使得电池放电和充电的效率得到极大的优化。
在一个实施例中,如图4所示,步骤210包括步骤304至步骤306。
步骤304,根据控制输出值得到第一开关管的驱动信号的占空比。
步骤306,若第一开关管的驱动信号的占空比小于占空比临界值,控制第一开关管工作于定频累加占空比发波模式。
其中,响应于控制输出值满足第四预设条件是指,根据控制输出值得到第一开关管的驱动信号的占空比,且得到的第一开关管的驱动信号的占空比小于占空比临界值。占空比临界值为使第一开关管能够打出驱动的最小占空比值。
可选地,根据控制输出值得到第一开关管的驱动信号的占空比时,可以在根据控制输出值控制第一开关管工作于定频变占空比模式之后,获取第一开关管的驱动信号的占空比。
若第一开关管的驱动信号的占空比小于占空比临界值,认为此时第一开关管的驱动信号的占空比较小,此占空比的驱动信号无法使第一开关管打出驱动。此时,控制第一开关管工作于定频累加占空比发波模式,使第一开关管的开关频率为固定值,第一开关管的驱动信号的占空比为累加之后的占空比。
具体的,在一个实施例中,步骤306包括步骤308和步骤310。
步骤308,将连续发出的驱动信号的占空比进行累加,得到累加值。
步骤310,响应于累加值大于或等于占空比临界值,控制第一开关管的驱动信号的占空比为累加值。
若第一开关管的驱动信号的占空比小于占空比临界值,认为此时第一开关管的驱动信号的占空比较小,此占空比的驱动信号无法使第一开关管打出驱动。此时,将连续发出的驱动信号的占空比进行累加,得到累加值。
当累加值大于或等于占空比临界值时,认为此时占空比的累加值可以满足需求,可以使第一开关管打出驱动,则控制第一开关管的驱动信号的占空比为累加值,以占空比为累加值的驱动信号控制第一开关管工作。
在一个实施例中,步骤310之后,还包括步骤312,将累加值清零。
在控制第一开关管的驱动信号的占空比为累加值,以占空比为累加值的驱动信号控制第一开关管工作后,将累加值清零,避免对后续步骤造成影响。
可选地,在一个实施例中,步骤308之后,双向功率变换装置的控制方法还包括步骤314。
步骤314,响应于累加值小于占空比临界值,返回步骤308。
当累加值小于占空比临界值时,认为此时占空比的累加值仍不足以使第一开关管打出驱动。此时返回步骤308,继续将连续发出的驱动信号的占空比进行累加,得到累加值,根据累加值执行步骤310或步骤314。
在本实施例中,由于引入占空比调制的方式,在带载较轻,所需增益较小时,打出的占空比非常小,时间很短,尚未达到开关管的开启电压就关断,故开关管一直无法打出驱动,当驱动能够打出时,占空比较大,导致电压发生振荡。因此,在空载甚至轻载模式下,引入小脉冲发波调制方式,即当控制单元发波产生的占空比较小时,将连续几个无法发波的小占空比进行叠加,达到正常打出驱动的临界值,通过小占空比能够正常发波避免被控电压剧烈震荡的情况。
在一个实施例中,如图5所示,步骤104之前,双向功率变换装置的控制方法还包括步骤403。
步骤403,将控制输出值转换为点数值。
得到控制输出值后,按照预设的算法将控制输出值转换为点数值,根据点数值执行后续的控制步骤。
对应的,在本实施例中,如图5所示,步骤204包括步骤4041或步骤4042。
步骤4041,在放电状态下,若点数值大于或等于与第一开关频率阈值对应的最大周期计数值,控制第一开关管的开关频率维持第一开关频率阈值,并控制第一开关管的驱动信号的占空比随控制输出 值的变化而变化。
其中,第一开关频率阈值为放电状态下预设的最小开关频率值。在放电状态下,若根据控制输出值转换后的点数值大于或等于与第一开关频率阈值对应的最大周期计数值,则控制第一开关管工作于定频变占空比模式,具体地:控制第一开关管的开关频率维持第一开关频率阈值,即放电状态下预设的最小开关频率值,并控制第一开关管的驱动信号的占空比随控制输出值的变化而变化。应当注意的是,第一开关管的驱动信号的占空比不超过50%。
或者,步骤4042,在充电状态下,若点数值小于或等于与第三开关频率阈值对应的最小周期计数值,控制第一开关管的开关频率维持第三开关频率阈值,并控制第一开关管的驱动信号的占空比随控制输出值的变化而变化。
其中,第三开关频率阈值为充电状态下预设的最大开关频率值。在充电状态下,若根据控制输出值转换后的点数值小于或等于与第三开关频率阈值对应的最小周期计数值,则控制第一开关管工作于定频变占空比模式,具体地:控制第一开关管的开关频率维持第三开关频率阈值,即充电状态下预设的最大开关频率值,并控制第一开关管的驱动信号的占空比随控制输出值的变化而变化。应当注意的是,第一开关管的驱动信号的占空比一般不超过50%。充放电切换过程中占空比均由0开始逐步调节,切换过程较为平滑。
在本实施例中,控制输出值满足第一预设条件是指,在放电状态下根据控制输出值转换后的点数值大于或等于与第一开关频率阈值对应的最大周期计数值,或者在充电状态下根据控制输出值转换后的点数值小于或等于与第三开关频率阈值对应的最小周期计数值,其中第一开关频率阈值为放电状态下预设的最小开关频率值,第三开关频率阈值为充电状态下预设的最大开关频率值。也就是说,当根据双向功率变换装置的输出参数确定的控制输出值超出了预设的开关频率阈值范围,则不再对开关频率进行调节,而采用定频变占空比模式对开关管进行控制,使得在输入电压范围较宽时,避免仅通过调频的方式改变增益而导致开关损耗过高的问题,在对双向功率变换装置调频的基础上增加了占空比调节,可以减小双向功率变换装置的开关损耗,提高双向功率变换装置的效率和功率密度。
在一个实施例中,如图5所示,步骤206包括步骤4061或步骤4062。
步骤4061,在放电状态下,若点数值小于或等于与第二开关频率阈值对应的最小周期计数值,控制第一开关管的开关频率维持第二开关频率阈值,并控制第一开关管的驱动信号的占空比维持50%。
其中,第二开关频率阈值为放电状态下预设的最大开关频率值,可以根据双向功率变换装置的增益曲线来设定。在放电状态下,若点数值小于或等于与第二开关频率阈值对应的最小周期计数值,则控制第一开关管工作于定频定占空比模式,具体地:控制第一开关管的开关频率维持第二开关频率阈值,即维持放电状态下预设的最大开关频率值,并控制第一开关管的驱动信号的占空比维持50%。
或者,步骤4062,在充电状态下,若点数值大于或等于与第四开关频率阈值对应的最大周期计数值,控制第一开关管的开关频率维持第四开关频率阈值,并控制第一开关管的驱动信号的占空比维持50%。
其中,第四开关频率阈值为充电状态下预设的最小开关频率值,可以根据双向功率变换装置的增益曲线来设定。在充电状态下,若点数值大于或等于与第四开关频率阈值对应的最大周期计数值,则控制第一开关管工作于定频定占空比模式具体可为:控制第一开关管的开关频率维持第四开关频率阈值,即维持充电状态下预设的最小开关频率值,并控制第一开关管的驱动信号的占空比维持50%。
在本实施例中,控制输出值满足第二预设条件是指,在放电状态下根据控制输出值转换后的点数值小于或等于与第二开关频率阈值对应的最小周期计数值,或者在充电状态下根据控制输出值转换后的点数值大于或等于与第四开关频率阈值对应的最大周期计数值,其中第二开关频率阈值为放电状态下预设的最大开关频率值,第四开关频率阈值为充电状态下预设的最小开关频率值。也就是说,当根据双向功率变换装置的输出参数确定的控制输出值在双向功率变换装置的谐振点附近,则采用定频定占空比模式对开关管进行控制,使得输出电压满足稳压要求。
在一个实施例中,如图5所示,步骤208包括步骤4081或步骤4082。
步骤4081,在放电状态下,若点数值小于与第一开关频率阈值对应的最大周期计数值、且大于与 第二开关频率阈值对应的最小周期计数值,控制第一开关管的开关频率随控制输出值的变化而变化,并控制第一开关管的驱动信号的占空比维持50%。
其中,在放电状态下,若根据控制输出值转换后的点数值小于与第一开关频率阈值对应的最大周期计数值、且大于与第二开关频率阈值对应的最小周期计数值,则控制第一开关管工作于变频定占空比模式,具体地:控制第一开关管的开关频率随控制输出值的变化而变化,并控制第一开关管的驱动信号的占空比维持50%。
或者,步骤4082,在充电状态下,若点数值大于与第三开关频率阈值对应的最小周期计数值、且小于与第四开关频率阈值对应的最大周期计数值,控制第一开关管的开关频率随控制输出值的变化而变化,并控制第一开关管的驱动信号的占空比维持50%。
其中,在充电状态下,若根据控制输出值转换后的点数值大于与第三开关频率阈值对应的最小周期计数值、且小于与第四开关频率阈值对应的最大周期计数值,则控制第一开关管工作于变频定占空比模式,具体地:控制第一开关管的开关频率随控制输出值的变化而变化,并控制第一开关管的驱动信号的占空比维持50%。
在本实施例中,控制输出值满足第三预设条件是指,在放电状态下根据控制输出值转换后的点数值小于与第一开关频率阈值对应的最大周期计数值、且大于与所述第二开关频率阈值对应的最小周期计数值,或者在充电状态下根据控制输出值转换后的点数值大于与所述第三开关频率阈值对应的最小周期计数值、且小于与第四开关频率阈值对应的最大周期计数值。也就是说,当根据双向功率变换装置的输出参数确定的控制输出值在开关频率阈值范围内,则采用变频定占空比模式对开关管进行控制,此时占空比恒定为50%,开关频率随着控制输出值的变化而变化。由此,在本实施例中,可以减小双向功率变换装置的开关损耗,提高双向功率变换装置的效率和功率密度。
上述根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比的具体过程中,将控制输出值转换为点数值后,根据点数值与第一开关频率阈值、第二开关频率阈值、第三开关频率阈值和第一开关频率阈值对应的周期计数值的大小关系,结合双向功率变换装置处于充电或放电的不同状态,调整第一开关管的开关频率和驱动信号的占空比,切换过程平滑,控制效果好,开关管的开关损耗低,可以显著提高双向功率变换装置的效率和功率密度。可以理解,双向功率变换装置中包括的开关管均可以认为是第一开关管,根据本申请的双向功率变换装置的控制方法可以对双向功率变换装置中各个开关管进行控制。
在一个实施例中,步骤403包括步骤503:
步骤503,根据控制输出值、频率控制和占空比控制之间的系数比和中断周期对应的计数点,确定点数值。
可以理解,将控制输出值转换为点数值的方式并不是唯一的,在本实施例中,是根据控制输出值、频率控制和占空比控制之间的系数比和中断周期对应的计数点,确定点数值。进一步地,在双向功率变换装置处于充电状态或放电状态时,根据控制输出值、频率控制和占空比控制之间的系数比和中断周期对应的计数点确定点数值的方式也不一样。当双向功率变换装置处于放电状态时,根据式(1)确定点数值,当双向功率变换装置处于充电状态时,根据式(2)确定点数值:
Cnt=(1-2*k1*D_Out)*PRDs      (1)
Cnt=(0-2*k2*D_Out)*PRDs      (2)
其中,Cnt为点数值,k1、k2分别表示放电模式和充电模式下频率控制和占空比控制之间的系数比,D_Out为控制输出值,PRDs为中断周期对应的计数点。根据上述公式,可以计算出在双向功率变换装置处于充电或放电状态下时,与控制输出值对应的点数值,从而便于根据点数值进行后续的预设条件判断。
为了更好地理解上述实施例,以下结合一个具体的实施例进行详细的解释说明。在一个实施例中,双向功率变换装置的控制方法用于对双向功率变换装置进行控制。如图6所示,双向功率变换装置包括低压蓄电池侧的推挽单元110、变压器、谐振电路和高压侧的全桥单元130,谐振电路为LLC电路,谐振电路包括谐振电感Lr和谐振电容Cr。推挽单元110包括开关管Q1,Q2,双向功率变换装置的输入 端LV+,LV-分别接入蓄电池的正、负极,用作双向功率变换装置与蓄电池的充电和放电接口,通过控制Q1,Q2的导通和关断,进行同步整流或者斩波。变压器的原边组成包括绕组1(即Ls1)和绕组2(即Ls2),变压器的副边组成包括副边电感Lm(即绕组Lm)。
高压侧的全桥单元130采用全桥结构,并且为了优化转换效率,高压侧叠加了LLC电路结构,整流桥中的功率器件Q3,Q4,Q5,Q6形成全桥四个开关桥臂,并和高压侧电压HV+,HV-连接,通过控制Q3,Q4,Q5,Q6的导通和关断,进行同步整流或者斩波。谐振信号源经过谐振电感Lr,谐振电容Cr可以实现转换电路功率器件的零电压开通和零电流关断,将功率器件在开通和关断时刻的电压应力和电流应力降至最小。
在电池放电时,低压侧电源经过推挽单元110斩波,将直流电转变成矩形波,并经过变压器进行升压转换,转变成谐振电路的信号输入源。矩形波信号经过谐振电路后,再进入高压侧的全桥单元130。全桥单元130的Q3,Q6与Q1保持相同的开关逻辑,同时开通或关断,整流器的Q4,Q5与Q2保持相同的开关逻辑,同时开通或关断。同时,Q3,Q6开关状态与Q4,Q5的开关状态互补,相序相差180°,实现同步整流,可将低压电池侧的能量通过电路转换至高压侧电容C2。
在电池放电工作模式中,各功率器件的工作时序说明:推挽Q1,Q2开关时序如图7所示,整流Q3,Q4开关时序如图8所示。如图9所示,通过控制开关管的开关时间,可以将低压侧Q1,Q2的开通时刻控制在2,形成零电压开通,降低了低压侧开关器件的开通损耗,同时由于谐振电路的存在,在关断时刻,流经开关管的电流在下降至很低的水平时关断开关器件,可有效降低开关器件的关断损耗。
如图10所示,高压侧的整流桥臂会在Q1,Q2开关的同时进行同步整流,功率器件在关断时,漏源极电流会减小到0A,以此实现0电流关断,降低高压侧开关器件的关断损耗。同时由于谐振电路的影响,功率器件在开通时的损耗也会得到极大的优化,使得电池放电的效率得到极大的优化。
在电池充电时,整流桥电路作为逆变电路,高压HV经过逆变电路后产生一个矩形波信号,此信号作为谐振电路的输入信号。矩形波信号经过谐振电路后谐振,谐振信号进入变压器转换并进入推挽单元110。推挽单元110对交流信号进行整流并输出至电容C1,并对电池进行充电。其中,Q2与Q3,Q6保持相同的开关逻辑,同时开通或关断。Q1与Q4,Q5保持相同的开关逻辑,同时开通或关断。Q1开关状态与Q2的开关状态互补,相序相差180°,实现同步整流。这样可将高压侧的能量通过电路转换至低压侧电容C1,并对电池充电。
以上充电工作模式中,各功率器件的工作时序说明:
开关管Q3/Q6、Q4/Q5的开关时序如图11所示,Q1,Q2开关时序如图12所示。如图13所示,通过控制开关管的开关时间,可以将高压侧Q3,Q4,Q5,Q6的开通时刻控制在漏源极电压为0V(Vds=0V)的时刻,形成零电压开通,降低了高压侧开关器件的开通损耗,同时由于谐振电路的存在,在关断时刻,流经开关管的电流在下降至很低的水平时关断开关器件,可有效降低开关器件的关断损耗。
如图14所示,低压侧的推挽单元110中的整流桥臂会在逆变电路的桥臂开关的同时进行同步整流,功率器件Q1,Q2在关断时,漏源极电流会减小到0A,以此实现0电流关断,降低高压侧开关器件的关断损耗。同时由于谐振电路的影响,功率器件在开通时的损耗也会得到极大的优化,使得电池充电的效率得到极大的优化。
双向功率变换装置的控制方法在调频的基础上增加占空比调节,极限频率下,即增益最小的情况下,首先进行占空比调节,在忽略死区的情况下,当占空比达到50%时,再进行调频。且充放电模式切换不再由事件管理部分通过逻辑判断,而是通过控制输出值(D_Out)进行控制。控制单元得到控制输出值的控制流程图请参见图15,控制单元获取双向功率变换装置的输出参数,包括参考电压、实时电压、参考电流和实时电流等,控制单元中的电压控制器根据参考电压和实时电压输出参考电流,控制单元中的电流控制器根据参考电流和实时电流输出控制输出值。当控制输出值小于零时,认为是充电模式,大于零时,认为是放电模式,且充放电切换过程中均由占空比为0开始逐步调节,切换过程较为平滑。
双向功率变换装置的控制方法从采样到发波的过程主要分为四部分:第一步,控制单元通过对电压、电流的控制获取关于驱动的输出变量;第二步,该变量作为调制的输入,通过双向功率变换装置 的控制方法,输出每个开关管对应的频率和占空比;第三步,对新的调制方法引入的电压振荡问题,提出对应的解决方案;第四步,通过新的调制方法所获取的驱动信号送入谐振电路中,使其正常工作。
图16为双向功率变换装置的控制方法的流程图,图中,PRDdischgmax为放电模式下频率下限值所对应的EPWM模块相关寄存器TBPRD值,PRDdischgmin为放电模式下频率上限值所对应的EPWM模块相关寄存器的TBPRD值,PRDchgmax为充电模式下频率下限值所对应的EPWM模块相关寄存器的TBPRD值,PRDchgmin为充电模式下频率上限值所对应的EPWM模块相关寄存器的TBPRD值,PRD和CMPA分别为送入EPWM模块寄存器的周期值和比较值,Cnt为点数值,k1、k2表示频率控制和占空比控制之间的系数比,D_Out为控制输出值,PRDs为中断周期对应的计数点。双向功率变换装置的控制方法的具体步骤用文字描述如下:
步骤1:根据控制单元的控制输出值的正负判断谐振电路工作于充电模式还是放电模式,如果工作在放电模式,进入步骤2,否则,进入步骤8;
步骤2:将控制输出值转换为对应的点数后,进入步骤3;
步骤3:如果通过步骤2计算的点数值大于所限制的最大周期计数值时,转入步骤4,否则转入步骤5;
步骤4:此时,放电模式工作在定频变占空比的情况下,频率即为放电模式下最低频率,而占空比随控制器输出值而发生变化;
步骤5:如果通过步骤2计算的点数值小于所限制的最小周期计数值时,进入步骤6,否则转入步骤7;
步骤6:此时,放电模式开关管恒频恒占空比进行发波;
步骤7:此时,放电模式工作在变频定占空比的情况下,频率随控制器输出值变化,而占空比恒定为50%;
步骤8:将控制器输出值转换为中断周期所对应的点数后,进入步骤9;
步骤9:如果通过步骤8计算的点数值小于所限制的最小周期计数值时,转入步骤10,否则转入步骤11;
步骤10:此时,充电模式工作在定频变占空比的情况下,频率即为充电模式下最高频率,而占空比随控制器输出值而发生变化;
步骤11:如果通过步骤2计算的点数值大于所限制的最大周期计数值时,进入步骤12,否则进入步骤13;
步骤12:此时,充电模式开关管恒频恒占空比进行发波;
步骤13:此时,充电模式工作在变频定占空比的情况下,频率随控制输出值变化,而占空比恒定为50%。
此外,在空载甚至轻载模式下,所需增益较小,打出的占空比非常小,时间很短,尚未达到开启电压就关断,故开关管一直无法打出驱动,当驱动能够打出时,占空比较大,导致电压发生振荡。因此,在空载甚至轻载模式下,引入小脉冲发波调制方式。即当控制器发波产生的占空比较小时,将连续几个无法发波的小占空比进行叠加,达到正常打出驱动的临界值,通过小占空比能够正常发波避免被控电压剧烈震荡的情况。
在本实施例中,为避免出现电压或电流振荡的情况,放电模式和充电模式分别在步骤4和步骤10后增加小脉冲调制,步骤4后包括步骤4-1至步骤4-3,步骤10后包括步骤10-1至步骤10-3。在充电模式下的小脉冲调制的流程图和放电模式下的小脉冲调制的流程图均如图17所示,图中,PRD和CMPA分别为送入EPWM模块寄存器的周期值和比较值,Cntminlim为开关管能够打出驱动的临界值对应的计数值,CMPATemp为累加值。小脉冲调制的流程用文字描述具体操作如下:
步骤4-1:当所获取的占空比小于开关管能够打出驱动的临界值时,转入步骤4-2,否则转入步骤4-3;
步骤4-2:对小占空比进行累加,并将其赋值给EPWM模块的比较寄存器,如果累加值大于开关管能够打出驱动的临界值,那么,累加值清零,否则,累加值保持不变;
步骤4-3:累加值清零。
步骤10-1:当控制所获取的占空比小于开关管能够打出驱动的临界值时,转入步骤10-2,否则转入步骤10-3;
步骤10-2:对小占空比进行累加,并将其赋值给EPWM模块的比较寄存器,如果累加值大于开关管能够打出驱动的临界值,那么,累加值清零,否则,累加值保持不变;
步骤10-3:累加值清零。
请参阅图18,其示出了生成图6所示的双向功率变换装置的实施例中的开关管的驱动信号的仿真示意图。其中,Output表示控制器输出值,Cnt为点数值。hchg(Output,Cnt)表示充电模式下将控制器输出值转换为以中断周期为基准的点数值的传递函数,f1(Output,Cnt,f_charge)、f2(Output,Cnt,f_charge)和f3(Output,Cnt,f_charge)分别表示充电模式下在Cnt值处于不同限制值区间范围时求取频率的传递函数,g1(Output,Cnt,D_charge)、g2(Output,Cnt,D_charge)和g3(Output,Cnt,D_charge)分别表示充电模式下在Cnt值处于不同限制值区间范围时求取占空比的传递函数;hdischg(Output,Cnt)表示放电模式下将控制器输出值转换为以中断周期为基准的点数的传递函数,f4(Output,Cnt,f_charge)、f5(Output,Cnt,f_charge)和f6(Output,Cnt,f_charge)分别表示放电模式下在Cnt值处于不同限制值区间范围时求取频率的传递函数,g4(Output,Cnt,D_charge)、g5(Output,Cnt,D_charge)和g6(Output,Cnt,D_charge)分别表示放电模式下在Cnt值不同限制值区间范围时求取占空比的传递函数;p1(D1)和p2(D1)分别表示充电模式或放电模式下当Cnt值小于或者大于等于Cntminlim时关于占空比的传递函数,Cntminlim为开关管能够打出驱动的临界值对应的计数值。
下式中,PRDchgmax为充电模式下频率下限值所对应的EPWM模块相关寄存器的TBPRD值,PRDchgmin为充电模式下频率上限值所对应的EPWM模块相关寄存器的TBPRD值;PRDdischgmax为放电模式下频率下限值所对应的EPWM模块相关寄存器TBPRD值,PRDdischgmin为放电模式下频率上限值所对应的EPWM模块相关寄存器的TBPRD值,TBPRD为时基周期寄存器的值。下式中,fCharge表示充电模式下的开关频率值,DCharge表示充电模式下的占空比,DChgNarrow表示小脉冲调制下的占空比。fDisCharge表示放电模式下的开关频率值,DDisCharge表示放电模式下的占空比,DDisChgNarrow表示小脉冲调制下的占空比。
如图18所示,在充电模式下,充电模式的调频依据为:
充电模式调占空比依据为:
充电模式小脉冲发波调制依据为:
在放电模式下,放电模式调频依据为:
放电模式调占空比依据为:
放电模式小脉冲发波调制依据为:
上述双向功率变换装置的控制方法,在调频的基础上增加占空比调节,极限频率下,即增益最小的情况下,首先进行占空比调节,在忽略死区的情况下,当占空比达到50%时,再进行调频。且充放电模式切换不再由事件管理部分通过逻辑判断,而是通过控制输出值进行控制。当该控制输出值小于零时,认为是充电模式,大于零时,认为是放电模式,且充放电切换过程中均由占空比为0开始逐步调节,切换过程较为平滑。在空载甚至轻载模式下,引入小脉冲发波调制方式。即当控制单元发波产生的占空比较小时,将连续几个无法发波的小占空比进行叠加,达到正常打出驱动的临界值,通过小占空比能够正常发波避免被控电压剧烈震荡的情况。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的双向功率变换装置的控制方法的双向功率变换装置的控制装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个双向功率变换装置的控制装置实施例中的具体限定可以参见上文中对于双向功率变换装置的控制方法的限定,在此不再赘述。
在一个实施例中,提供了一种双向功率变换装置的控制装置,双向功率变换装置包括至少一个第一开关管。双向功率变换装置的控制装置包括控制输出值获取模块和开关管控制模块,其中:
控制输出值获取模块,用于根据控制装置的输出参数确定控制输出值。
开关管控制模块,用于根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比。
其中,开关管控制模块包括第一调节单元、第二调节单元、第三调节单元和第四调节单元,第一调节单元用于响应于控制输出值满足第一预设条件,控制第一开关管工作于定频变占空比模式。第二调节单元用于响应于控制输出值满足第二预设条件,控制第一开关管工作于定频定占空比模式。第三调节单元用于响应于控制输出值满足第三预设条件,控制第一开关管工作于变频定占空比模式。第四调节单元用于响应于控制输出值满足第四预设条件,控制第一开关管工作于定频累加占空比发波模式。
在一个实施例中,双向功率变换装置的控制装置还包括工作状态获取模块,工作状态获取模块用于在开关管控制模块根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比之前,根据控制输出值,判断双向功率变换装置的工作状态,工作状态包括放电状态和充电状态。
上述双向功率变换装置的控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供一种双向功率变换装置,包括控制单元和至少一个第一开关管,控制单元用于执行上述各方法实施例中的步骤。
上述双向功率变换装置的控制方法及双向功率变换装置,双向功率变换装置包括至少一个第一开关管,根据双向功率变换装置的输出参数确定控制输出值,根据控制输出值调整第一开关管的开关频率和第一开关管的驱动信号的占空比,其中,响应于控制输出值满足第一预设条件,控制第一开关管工作于定频变占空比模式;或者,响应于控制输出值满足第二预设条件,控制第一开关管工作于定频定占空比模式;或者,响应于控制输出值满足第三预设条件,控制第一开关管工作于变频定占空比模式。或者,响应于控制输出值满足第四预设条件,控制第一开关管工作于定频累加占空比发波模式。在对双向功率变换装置调频的基础上增加占空比调节,可以减小双向功率变换装置的开关损耗,提高 双向功率变换装置输出电压的稳定性、效率和功率密度,使用可靠。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是电力电子设备或者用电设备等)执行本申请每个实施例的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种双向功率变换装置的控制方法,其特征在于,所述双向功率变换装置包括至少一个第一开关管,控制方法包括:
    根据所述双向功率变换装置的输出参数确定控制输出值;
    根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比;其中,
    响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式;或者,
    响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式;或者,
    响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式;或者,
    响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
  2. 根据权利要求1所述的控制方法,其特征在于,所述根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比之前,还包括:
    根据所述控制输出值,判断所述双向功率变换装置的工作状态;所述工作状态包括放电状态和充电状态。
  3. 根据权利要求2所述的控制方法,其特征在于,
    在放电状态下,所述开关频率大于或等于第一开关频率阈值,所述第一开关管的驱动信号的占空比小于或等于50%;或者,
    在充电状态下,所述开关频率小于或等于第三开关频率阈值,所述第一开关管的驱动信号的占空比小于或等于50%。
  4. 根据权利要求3所述的控制方法,其特征在于,所述根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比之前,还包括:
    将所述控制输出值转换为点数值;
    所述响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式,包括:
    在放电状态下,若所述点数值大于或等于与所述第一开关频率阈值对应的最大周期计数值,控制所述第一开关管的开关频率维持所述第一开关频率阈值,并控制所述第一开关管的驱动信号的占空比随所述控制输出值的变化而变化;其中,所述第一开关频率阈值为放电状态下预设的最小开关频率值;
    或者,
    在充电状态下,若所述点数值小于或等于与所述第三开关频率阈值对应的最小周期计数值,控制所述第一开关管的开关频率维持所述第三开关频率阈值,并控制所述第一开关管的驱动信号的占空比随所述控制输出值的变化而变化;其中,所述第三开关频率阈值为充电状态下预设的最大开关频率值。
  5. 根据权利要求4所述的控制方法,其特征在于,所述响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式,包括:
    在放电状态下,若所述点数值小于或等于与第二开关频率阈值对应的最小周期计数值,控制所述第一开关管的开关频率维持所述第二开关频率阈值,并控制所述第一开关管的驱动信号的占空比维持50%;其中,所述第二开关频率阈值为放电状态下预设的最大开关频率值;
    或者,
    在充电状态下,若所述点数值大于或等于与第四开关频率阈值对应的最大周期计数值,控制所述第一开关管的开关频率维持所述第四开关频率阈值,并控制所述第一开关管的驱动信号的占空比维持50%;其中,所述第四开关频率阈值为充电状态下预设的最小开关频率值。
  6. 根据权利要求4所述的控制方法,其特征在于,所述响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式,包括:
    在放电状态下,若所述点数值小于与第一开关频率阈值对应的最大周期计数值、且大于与所述第二开关频率阈值对应的最小周期计数值,控制所述第一开关管的开关频率随所述控制输出值的变化而变化,并控制所述第一开关管的驱动信号的占空比维持50%;
    或者,
    在充电状态下,若所述点数值大于与所述第三开关频率阈值对应的最小周期计数值、且小于与第四开关频率阈值对应的最大周期计数值,控制所述第一开关管的开关频率随所述控制输出值的变化而变化,并控制所述第一开关管的驱动信号的占空比维持50%。
  7. 根据权利要求1所述的控制方法,其特征在于,所述响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式,包括:
    根据所述控制输出值得到所述第一开关管的驱动信号的占空比;
    若所述第一开关管的驱动信号的占空比小于占空比临界值,控制所述第一开关管工作于定频累加占空比发波模式,其中,所述占空比临界值为使所述第一开关管能够打出驱动的最小占空比值。
  8. 根据权利要求7所述的控制方法,其特征在于,所述控制所述第一开关管工作于定频累加占空比发波模式,包括:
    将连续发出的所述驱动信号的占空比进行累加,得到累加值;
    响应于所述累加值大于或等于所述占空比临界值,控制所述第一开关管的驱动信号的占空比为所述累加值。
  9. 根据权利要求8所述的控制方法,其特征在于,所述响应于所述累加值大于或等于所述占空比临界值,控制所述第一开关管的驱动信号的占空比为所述累加值之后,还包括:
    将所述累加值清零。
  10. 根据权利要求8所述的控制方法,其特征在于,还包括:
    响应于所述累加值小于所述占空比临界值,返回所述将连续发出的所述驱动信号的占空比进行累加的步骤。
  11. 根据权利要求4-6任意一项所述的控制方法,其特征在于,所述将所述控制输出值转换为点数值,包括:
    根据所述控制输出值、频率控制和占空比控制之间的系数比和中断周期对应的计数点,确定所述点数值。
  12. 一种双向功率变换装置,其特征在于,包括控制单元和至少一个第一开关管,所述控制单元用于执行根据权利要求1-11任意一项所述的控制方法。
  13. 一种双向功率变换装置的控制装置,其特征在于,所述装置包括:
    控制输出值确定模块,用于根据所述双向功率变换装置的输出参数确定控制输出值;
    调节模块,用于根据所述控制输出值调整所述第一开关管的开关频率和所述第一开关管的驱动信号的占空比;
    其中,所述调节模块包括第一调节单元、第二调节单元、第三调节单元和第四调节单元;
    所述第一调节单元,用于响应于所述控制输出值满足第一预设条件,控制所述第一开关管工作于定频变占空比模式;或者,
    所述第二调节单元,用于响应于所述控制输出值满足第二预设条件,控制所述第一开关管工作于定频定占空比模式;或者,
    所述第三调节单元,用于响应于所述控制输出值满足第三预设条件,控制所述第一开关管工作于变频定占空比模式;或者,
    所述第四调节单元,用于响应于所述控制输出值满足第四预设条件,控制所述第一开关管工作于定频累加占空比发波模式。
  14. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至11中任一项所述的方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
PCT/CN2023/101268 2022-09-19 2023-06-20 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质 WO2024060728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211134253.9A CN115224952B (zh) 2022-09-19 2022-09-19 双向功率变换装置的控制方法及双向功率变换装置
CN202211134253.9 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024060728A1 true WO2024060728A1 (zh) 2024-03-28

Family

ID=83617611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101268 WO2024060728A1 (zh) 2022-09-19 2023-06-20 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115224952B (zh)
WO (1) WO2024060728A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224952B (zh) * 2022-09-19 2023-01-17 如果新能源科技(江苏)股份有限公司 双向功率变换装置的控制方法及双向功率变换装置
CN116155117B (zh) * 2023-04-20 2023-06-23 西安图为电气技术有限公司 双向llc谐振电路、设计方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026645A (zh) * 2016-07-20 2016-10-12 南京航空航天大学 一种双向谐振变换器及其控制方法
WO2022001966A1 (zh) * 2020-06-29 2022-01-06 中兴通讯股份有限公司 双向dc变换器及其控制方法、控制模块、存储介质
CN114301301A (zh) * 2021-11-30 2022-04-08 刘三英 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN114679043A (zh) * 2022-05-26 2022-06-28 深圳市首航新能源股份有限公司 一种电压尖峰抑制方法、控制单元和谐振变换器
CN114944751A (zh) * 2022-06-22 2022-08-26 南京航空航天大学 一种混合控制的半桥llc谐振变换器软启动方法
CN115224952A (zh) * 2022-09-19 2022-10-21 如果新能源科技(江苏)股份有限公司 双向功率变换装置的控制方法及双向功率变换装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634289A (zh) * 2016-01-27 2016-06-01 南京能瑞电力科技有限公司 全桥llc谐振dc/dc变换器的输出电压控制装置以及方法
CN205377671U (zh) * 2016-01-27 2016-07-06 南京能瑞电力科技有限公司 全桥llc谐振dc/dc变换器的输出电压控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026645A (zh) * 2016-07-20 2016-10-12 南京航空航天大学 一种双向谐振变换器及其控制方法
WO2022001966A1 (zh) * 2020-06-29 2022-01-06 中兴通讯股份有限公司 双向dc变换器及其控制方法、控制模块、存储介质
CN114301301A (zh) * 2021-11-30 2022-04-08 刘三英 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN114679043A (zh) * 2022-05-26 2022-06-28 深圳市首航新能源股份有限公司 一种电压尖峰抑制方法、控制单元和谐振变换器
CN114944751A (zh) * 2022-06-22 2022-08-26 南京航空航天大学 一种混合控制的半桥llc谐振变换器软启动方法
CN115224952A (zh) * 2022-09-19 2022-10-21 如果新能源科技(江苏)股份有限公司 双向功率变换装置的控制方法及双向功率变换装置

Also Published As

Publication number Publication date
CN115224952A (zh) 2022-10-21
CN115224952B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024060728A1 (zh) 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质
WO2020248472A1 (zh) 不对称半桥变换器及控制方法
US20180248489A1 (en) Converters with hold-up operation
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN114301301A (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN110707931A (zh) 一种llc谐振变换器及控制方法
CN110034683B (zh) 一种能实现自然双向功率流的llc变换器调制方法
CN111669055B (zh) 电压转换电路及其控制方法
KR20180004675A (ko) 보조 lc 공진 회로를 갖는 양방향 컨버터 및 그 구동 방법
EP4047805B1 (en) Controller and control system for dc/dc converter
CN114301300A (zh) 一种宽范围双向谐振式软开关直流变换器及其控制方法
CN111682769B (zh) 有源钳位正激变换器的自适应同步整流数字控制方法
TW202247587A (zh) 適用於寬範圍輸出電壓的變換器及其控制方法
WO2022000217A1 (zh) 一种谐振变换器及电压转换方法
CN114583972B (zh) 谐振变换器及其控制方法、装置、电源设备
CN217087777U (zh) 一种宽范围谐振式软开关双向直流变换器
CN110445387B (zh) 一种化成分容用电源的拓扑结构和控制方法
CN114640255A (zh) 一种串联谐振变换器及其控制方法
CN117060735A (zh) 一种动态变拓扑及变调制策略的集成控制方法
CN216819713U (zh) 一种宽范围双向谐振式软开关直流变换器
CN209982343U (zh) 一种实现宽增益fb-hb llc谐振变换器电路结构
CN116418238B (zh) 一种三开关半桥宽范围llc谐振变换器及使用方法
KR101721321B1 (ko) 하이브리드 방식 led 전원장치
CN113746342B (zh) 一种过流自动保护的llc全桥变换器主电路及控制方法
CN114337344B (zh) 一种基于自适应混合整流多开关谐振llc变换器的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867023

Country of ref document: EP

Kind code of ref document: A1