WO2011055814A1 - ボイラ - Google Patents

ボイラ Download PDF

Info

Publication number
WO2011055814A1
WO2011055814A1 PCT/JP2010/069792 JP2010069792W WO2011055814A1 WO 2011055814 A1 WO2011055814 A1 WO 2011055814A1 JP 2010069792 W JP2010069792 W JP 2010069792W WO 2011055814 A1 WO2011055814 A1 WO 2011055814A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass
boiler
predetermined value
bypass duct
furnace
Prior art date
Application number
PCT/JP2010/069792
Other languages
English (en)
French (fr)
Inventor
琢磨 金子
政治 高田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201080023143.4A priority Critical patent/CN102449400B/zh
Publication of WO2011055814A1 publication Critical patent/WO2011055814A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L11/00Arrangements of valves or dampers after the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/11001Conducting systems with a gas flow bypass from main flue to an auxiliary flue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/04Air or combustion gas valves or dampers in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a boiler provided with a denitration device for removing NOx in boiler exhaust gas generated in a furnace.
  • Patent Document 1 As a boiler provided with a denitration device that removes NOx in boiler exhaust gas generated in a furnace, for example, one disclosed in Patent Document 1 is known.
  • Patent Document 1 what is disclosed in Patent Document 1 is installed in, for example, an ironworks, and a boiler furnace using by-product gas (blast furnace gas, converter gas, etc.) generated in the production process of the ironworks as a fuel for mixed combustion
  • by-product gas blast furnace gas, converter gas, etc.
  • the boiler exhaust gas generated in the furnace increases as the mixed firing rate increases. Therefore, the rotational speed (output) of the induction fan that attracts (suctions) the boiler exhaust gas and sends (discharges) it to the chimney must be increased along with the increase of the mixed combustion rate.
  • the draft pressure at the inlet of the induction fan May fall below the lower limit of operation of the electrostatic precipitator, making it impossible to operate (operate).
  • the present invention has been made in view of the above circumstances, and uses a by-product gas generated in the production process of an ironworks as a fuel for co-firing, and even if the co-firing rate increases, it is disposed downstream of the denitration device.
  • a first aspect of the present invention includes a furnace, a economizer, a denitration device, and an air preheater, and by-product gas generated in the production process of the steel works is input to the furnace as a fuel for co-firing.
  • a bypass duct that bypasses the denitration device, a bypass damper that is provided in the middle of the bypass duct and opens and closes a flow path in the bypass duct, and a mixed firing rate
  • a controller that fully closes the bypass damper when the value is lower than a predetermined value, and fully opens the bypass damper when the co-firing ratio is equal to or higher than a predetermined value.
  • the boiler exhaust gas when the mixed combustion rate is lower than a predetermined value, that is, when the NOx concentration is high, the boiler exhaust gas is denitrated through the denitration device without passing through the bypass duct,
  • the mixed combustion rate is equal to or higher than a predetermined value, that is, when the NOx concentration is low, the boiler exhaust gas is guided to the downstream side through a bypass duct having a small pipe line (flow path) resistance.
  • a predetermined value that is, when the NOx concentration is low
  • the boiler exhaust gas is guided to the downstream side through a bypass duct having a small pipe line (flow path) resistance.
  • the draft pressure at the inlet of the induction fan located downstream of the air preheater is predetermined. It is possible to maintain an electric dust collector arranged on the downstream side of the air preheater, and to adopt an air preheater, a duct, etc. having a pressure strength comparable to the conventional one. And an increase in manufacturing cost can be suppressed.
  • a thermal power plant includes the boiler, an electric dust collector, an induction fan, a steam turbine, a generator, and a chimney.
  • the thermal power plant when the mixed combustion rate is lower than a predetermined value, that is, when the NOx concentration is high, the boiler exhaust gas passes through the denitration device without passing through the bypass duct.
  • the mixed combustion rate is equal to or higher than the predetermined value, that is, when the NOx concentration is low, the boiler exhaust gas is led to the downstream side through the bypass duct having a small pipe line (flow path) resistance.
  • the draft pressure at the inlet of the induction fan located downstream of the air preheater is predetermined. It is possible to maintain an electric dust collector installed on the downstream side of the air preheater, and to use an air preheater, electric precipitator, duct, etc. with the same pressure resistance as before. It is possible to suppress the increase in manufacturing cost.
  • a third aspect of the present invention includes a furnace, a economizer, a denitration device, an air preheater, a bypass duct that bypasses the denitration device, and is provided in the middle of the bypass duct.
  • a by-pass damper that opens and closes the flow path of the boiler, and the operation method of the boiler configured to allow the by-product gas generated in the production process of the steel mill to be input to the furnace as a fuel for mixed combustion.
  • the bypass damper is fully closed when the mixed firing rate is lower than a predetermined value, and the bypass damper is fully opened when the mixed firing rate is equal to or higher than the predetermined value.
  • the boiler exhaust gas when the mixed combustion rate is lower than a predetermined value, that is, when the NOx concentration is high, the boiler exhaust gas does not pass through the bypass duct but passes through the denitration device.
  • the mixed combustion rate is equal to or higher than a predetermined value, that is, when the NOx concentration is low
  • the boiler exhaust gas is led to the downstream side through a bypass duct having a small pipe line (flow path) resistance.
  • the draft pressure at the inlet of the induction fan located downstream of the air preheater is predetermined. It is possible to maintain an electric dust collector arranged on the downstream side of the air preheater, and to adopt an air preheater, a duct, etc. having a pressure strength comparable to the conventional one. And an increase in manufacturing cost can be suppressed.
  • a furnace, a economizer, a denitration device, an air preheater, a bypass duct that bypasses the denitration device, and a passage in the bypass duct are provided in the middle of the bypass duct.
  • a boiler that is provided with a bypass damper that opens and closes, and that is configured so that by-product gas generated in the production process of the steel works can be input to the furnace as a fuel for mixed combustion, an electric dust collector, and an induction fan
  • An operation method of a thermal power plant comprising a steam turbine, a generator, and a chimney, and when the mixed combustion rate is lower than a predetermined value, the bypass damper is fully closed, and the mixed combustion rate is a predetermined value. In the above case, the bypass damper is fully opened.
  • the boiler exhaust gas when the mixed combustion rate is lower than a predetermined value, that is, when the NOx concentration is high, the boiler exhaust gas does not pass through the bypass duct and the denitration device is used.
  • the NOx concentration is higher than a predetermined value, that is, when the NOx concentration is low, the boiler exhaust gas is led to the downstream side through a bypass duct having a small pipe line (flow path) resistance.
  • the draft pressure at the inlet of the induction fan located downstream of the air preheater is predetermined. It is possible to maintain an electric dust collector installed on the downstream side of the air preheater, and to use an air preheater, electric precipitator, duct, etc. with the same pressure resistance as before. It is possible to suppress the increase in manufacturing cost.
  • the by-product gas generated in the production process of the steel works is used as a fuel for mixed combustion, and even when the mixed combustion rate increases, the electrostatic precipitator disposed on the downstream side of the denitration device Therefore, it is not necessary to increase the pressure strength of an air preheater, a duct, or the like disposed on the downstream side of the denitration apparatus, and an increase in manufacturing cost can be suppressed.
  • FIG. 1 is a schematic system diagram of a thermal power plant including a boiler according to an embodiment of the present invention. It is a graph which shows the relationship between the opening-and-closing state of the bypass damper shown in FIG. 1, the draft pressure in the entrance of an induction fan, and a mixed-burning rate. 3 is a chart showing the relationship between the open / closed state of the bypass damper shown in FIG. 1, the NOx concentration, and the mixed combustion rate.
  • FIG. 1 is a schematic system diagram of a thermal power plant equipped with a boiler according to the present embodiment.
  • the boiler 1 according to the present embodiment includes a furnace 2, an economizer 3, a denitration device 4, and an air preheater (air pre-heater) 5.
  • the thermal power plant 20 according to the present embodiment includes a boiler 1, an electrostatic precipitator 6, an induction draft fan 7, a steam turbine (not shown), and a generator. (Not shown) and a chimney 8 are provided.
  • the denitration apparatus 4 is an apparatus that decomposes NOx into harmless nitrogen and water by mixing ammonia into the boiler exhaust gas containing NOx, which is generated in the furnace 2 and sent from the economizer 3, and passes through the catalyst layer. is there.
  • symbols 9 and 10 in FIG. 1 are NOx meters which each measure the NOx density
  • the furnace 2, the economizer 3, the air preheater 5, the electrostatic precipitator 6, the induction ventilator 7, the steam turbine, the generator, and the chimney 8 are all the same as those conventionally employed. The description is omitted here.
  • a bypass duct 11 that bypasses (detours) the denitration device 4 is provided, and a bypass damper 12 that opens and closes a flow path in the bypass duct 11 is provided in the middle of the bypass duct 11.
  • the bypass damper 12 is operated by a controller 13, and the controller 13 is operated based on a BFG (Blast Furnace Gas) mixed firing rate (see FIGS. 2 and 3).
  • BFG Blast Furnace Gas
  • downstream of the NOx meter 9 and upstream of the branch point 15 to which the upstream end of the bypass duct 11 is connected downstream of the NOx meter 9 and upstream of the branch point 15 to which the upstream end of the bypass duct 11 is connected.
  • GMF Gas Mixing Fan
  • the controller 13 switches the furnace 2 from heavy oil mono-combustion (BFG mixed combustion rate 0%) to mixed combustion of heavy oil and BFG (fuel gas generated in a blast furnace at a steelworks (blast furnace gas)).
  • BFG mixed combustion rate is increased, and the draft pressure at the inlet of the induction fan 7 becomes, for example, the operation lower limit value of the electric dust collector 6 +0.5 kPa (until the BFG mixed firing rate is 32% in the present embodiment).
  • the bypass damper 12 is fully closed, and when the operation lower limit value of the electrostatic precipitator 6 reaches +0.5 kPa, the bypass damper 12 is fully opened.
  • the controller 13 reduces the BFG mixed combustion rate, and the draft pressure at the inlet of the induction fan 7 causes the bypass damper 12 to be fully closed, for example.
  • the bypass damper 12 is fully opened until the operation lower limit value +0.8 kPa of the electric dust collector 6 can be secured (until the BFG mixed firing rate becomes 29% in this embodiment), and the bypass damper 12 is When the operation lower limit value +0.8 kPa of the electric dust collector 6 can be secured when fully closed, the bypass damper 12 is fully opened.
  • the denitration apparatus 4 is operated (operated). That is, ammonia is sprayed into the denitration device 4.
  • the BFG co-firing rate is high and the NOx concentration is not so high (the NOx concentration is about 35 ppm lower than the regulation value (for example, 130 ppm)).
  • the operation of the denitration apparatus 4 is stopped. That is, spraying of ammonia into the denitration device 4 is stopped.
  • the BFG co-firing rate is the ratio of BFG to the fuel (heavy oil and BFG) charged into the furnace 2, and is calculated on a calorie basis.
  • the calorie per 1 Nm 3 of BFG is about 800 kcal.
  • the mixed combustion rate is a predetermined value (for example, 32% in the case where the BFG mixed combustion rate is increased by switching from the heavy oil exclusive combustion to the mixed combustion of heavy oil and BFG, and the heavy oil and BFG.
  • the BFG co-firing rate is reduced to 29%), that is, when the NOx concentration is high, the boiler exhaust gas does not pass through the bypass duct 11 when switching from co-firing to heavy oil mono-combustion.
  • the mixed combustion rate is equal to or higher than the predetermined value, that is, when the NOx concentration is low, the boiler exhaust gas is guided downstream through the bypass duct 11 having a low duct (flow path) resistance. .
  • the draft pressure at the inlet of the induction fan 7 located downstream of the air preheater 5 is set to a predetermined value.
  • Value for example, the lower limit of operation of the electrostatic precipitator 6 +0.5 kPa
  • the air preheater 5, the duct 14, etc. which have comparable pressure-resistant intensity
  • the mixed combustion rate is changed to a predetermined value (for example, 32 when the BFG mixed combustion rate is increased by switching from heavy oil exclusive combustion to mixed combustion of heavy oil and BFG). %, When switching from mixed combustion of heavy oil and BFG to heavy oil exclusive combustion, the BFG mixed combustion rate is lower than 29%), that is, when the NOx concentration is high, the boiler exhaust gas passes through the bypass duct 11. If the NOx concentration is not less than the predetermined value, that is, if the NOx concentration is low, the boiler exhaust gas passes downstream of the bypass duct 11 having a low pipe line (channel) resistance. Will be guided.
  • a predetermined value for example, 32 when the BFG mixed combustion rate is increased by switching from heavy oil exclusive combustion to mixed combustion of heavy oil and BFG.
  • the BFG mixed combustion rate is lower than 29%), that is, when the NOx concentration is high, the boiler exhaust gas passes through the bypass duct 11. If the NOx concentration is not less than the predetermined value, that is, if the NOx concentration is low, the boiler exhaust gas passes
  • by-product gas for example, BFG
  • BFG by-product gas
  • the draft pressure at the inlet of the electric dust collector can be maintained at a predetermined value (for example, the lower limit of operation of the electrostatic precipitator 6 +0.5 kPa) or more, and the electrostatic precipitator 6 disposed downstream of the air preheater 5 is operated.
  • the air preheater 5, the electrostatic precipitator 6, the duct 14, and the like having the same pressure resistance as the conventional one can be employed, and an increase in manufacturing cost can be suppressed.
  • the thermal power plant 20 when the furnace 2 is switched from the mixed combustion of heavy oil and BFG to the dedicated combustion of heavy oil, the BFG mixed combustion rate is reduced, and the draft pressure at the inlet of the induction fan 7 is
  • the bypass damper 12 when the bypass damper 12 is fully closed, the operation lower limit value +0.8 kPa of the electrostatic precipitator 6 can be secured, that is, switching from heavy oil exclusive combustion to mixed combustion of heavy oil and BFG, Is set to be higher than a predetermined value (the operation lower limit value of the electrostatic precipitator 6 +0.5 kPa) when the bypass damper 12 is operated from fully closed to fully open.
  • a predetermined value the operation lower limit value of the electrostatic precipitator 6 +0.5 kPa
  • the thermal power plant 20 when the bypass duct 11 is opened, the boiler exhaust gas is guided to the downstream side through the bypass duct 11 having a small pipe line (channel) resistance. Become. Thereby, the induction fan 7 which has the output comparable as the past can be employ
  • the mixed combustion rate is a predetermined value (for example, 32% in the case where the BFG mixed combustion rate is increased by switching from the heavy oil exclusive combustion to the mixed combustion of heavy oil and BFG, When switching from the mixed combustion of heavy oil and BFG to the dedicated combustion of heavy oil, if the BFG mixed combustion rate is lower than 29%), that is, if the NOx concentration is high, the boiler exhaust gas does not pass through the bypass duct 11
  • the NOx concentration is higher than a predetermined value, that is, when the NOx concentration is low, the boiler exhaust gas is led to the downstream side through the bypass duct 11 having a small pipe line (channel) resistance. It will be.
  • the draft pressure at the inlet of the induction fan 7 located downstream of the air preheater 5 is set to a predetermined value.
  • Value for example, the operation lower limit value of the electrostatic precipitator 6 +0.5 kPa
  • the air preheater 5, the duct 14, etc. which have comparable pressure-resistant intensity
  • the mixed combustion rate is changed to a predetermined value (for example, 32 when the BFG mixed combustion rate is increased by switching from heavy oil exclusive combustion to mixed combustion of heavy oil and BFG). %, When switching from mixed combustion of heavy oil and BFG to heavy oil exclusive combustion, the BFG mixed combustion rate is lower than 29%), that is, when the NOx concentration is high, the boiler exhaust gas passes through the bypass duct 11. If the NOx concentration is not less than the predetermined value, that is, if the NOx concentration is low, the boiler exhaust gas passes downstream of the bypass duct 11 having a low pipe line (channel) resistance. Will be guided.
  • by-product gas for example, BFG
  • BFG by-product gas
  • the draft pressure at the inlet of the electric dust collector can be maintained at a predetermined value (for example, the operation lower limit value of the electric dust collector 6 +0.5 kPa) or more, and the electric dust collector 6 disposed on the downstream side of the air preheater 5 is operated.
  • the air preheater 5, the electrostatic precipitator 6, the duct 14, and the like having the same pressure resistance as the conventional one can be employed, and an increase in manufacturing cost can be suppressed.
  • the operating method of the thermal power plant 20 when the furnace 2 is switched from the mixed combustion of heavy oil and BFG to the dedicated combustion of heavy oil, the BFG mixed combustion rate is lowered and the draft at the inlet of the induction fan 7 is reduced.
  • the pressure is, for example, when the bypass damper 12 is fully closed, the operation lower limit value +0.8 kPa of the electrostatic precipitator 6 can be secured, that is, the heavy oil exclusive firing is switched to the mixed combustion of heavy oil and BFG,
  • the BFG mixed firing rate is increased, and is set to be higher than a predetermined value (the operation lower limit value of the electrostatic precipitator 6 +0.5 kPa) when the bypass damper 12 is operated from fully closed to fully opened.
  • a predetermined value the operation lower limit value of the electrostatic precipitator 6 +0.5 kPa
  • the induction fan 7 which has the output comparable as the past can be employ
  • adopted the enlargement of the induction fan 7 can be avoided, and the increase in manufacturing cost can be suppressed.
  • the present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the gist of the present invention.
  • the mixed combustion of heavy oil and BFG has been described as a specific example, but the present invention is not limited to this, and gaseous fuel obtained by gasifying coal instead of heavy oil or Natural gas or coal gas (COG, coke oven gas) may be used, and LDG (converter gas (fuel gas) generated in a steelworks converter) may be used instead of BFG.
  • COG Natural gas or coal gas
  • LDG converter gas (fuel gas) generated in a steelworks converter)
  • the calorie per 1 Nm 3 of LDG is about 2000 kcal.
  • bypass damper 12 when the bypass damper 12 is fully opened in the middle of the duct 14 located on the upstream side of the denitration device 4 and downstream of the branch point 15, the flow path in the duct 14 is closed, and the bypass damper 12 is fully closed. At this time, it is more preferable that a damper (not shown) that opens the flow path in the duct 14 is provided. Thereby, when the operation of the denitration device 4 is stopped, the inflow of boiler exhaust gas to the denitration device 4 is surely prevented, and clogging of the catalyst layer due to ash contained in the boiler exhaust gas can be prevented. it can.
  • damper provided in the middle of the bypass damper 12 and the duct 14 is not used only in the fully open or fully closed state, but is used in an intermediate position between the fully open and fully closed as appropriate. You can also

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Air Supply (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

 製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、脱硝装置の下流側に配置される電気集塵装置を運用することができ、脱硝装置の下流側に配置される空気予熱器、ダクト等の耐圧強度を高める必要がなく、製造コストの増加を抑制することができるようにする。火炉(2)と、節炭器(3)と、脱硝装置(4)と、空気予熱器(5)とを備え、火炉(2)に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラ(1)であって、脱硝装置(4)をバイパスするバイパスダクト(11)と、これの途中に設けられて、バイパスダクト(11)内の流路を開閉するバイパスダンパ(12)と、混焼率が所定値よりも低い場合に、バイパスダンパ(12)を全閉とし、混焼率が所定値以上の場合に、バイパスダンパ(12)を全開とする制御器(13)とを備えている。

Description

ボイラ
 本発明は、火炉内で発生したボイラ排ガス中のNOxを除去する脱硝装置を備えたボイラに関する。
 火炉内で発生したボイラ排ガス中のNOxを除去する脱硝装置を備えたボイラとしては、例えば、特許文献1に開示されたものが知られている。
特開2009-166013号公報
 しかしながら、特許文献1に開示されたものを、例えば、製鉄所に設置して、製鉄所の生産過程において発生する副生ガス(高炉ガスや転炉ガス等)を混焼用の燃料としてボイラの火炉に投入した場合、火炉内で発生するボイラ排ガスは、混焼率が増加するにしたがって増加する。そのため、ボイラ排ガスを誘引(吸引)して煙突に送出(吐出)する誘引通風機の回転数(出力)を混焼率の増加とともに高めなければならず、その結果、誘引通風機の入口におけるドラフト圧が低下して、電気集塵装置の運用下限値を下回り、電気集塵装置が運用(運転)できなくなってしまうおそれがある。
 また、誘引通風機の入口におけるドラフト圧の低下に耐え得るよう、脱硝装置の下流側に配置される空気予熱器、電気集塵装置、ダクト等の耐圧強度を高めなければならず、製造コストが嵩んでしまうといった問題点もあった。
 本発明は、上記の事情に鑑みてなされたもので、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、脱硝装置の下流側に配置される電気集塵装置を運用することができ、脱硝装置の下流側に配置される空気予熱器、ダクト等の耐圧強度を高める必要がなく、製造コストの増加を抑制することができるボイラを提供する。
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明の第1の態様は、火炉と、節炭器と、脱硝装置と、空気予熱器とを備え、前記火炉に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラであって、前記脱硝装置をバイパスするバイパスダクトと、前記バイパスダクトの途中に設けられて、前記バイパスダクト内の流路を開閉するバイパスダンパと、混焼率が所定値よりも低い場合に、前記バイパスダンパを全閉とし、混焼率が所定値以上の場合に、前記バイパスダンパを全開とする制御器とを備えている。
 上記本発明の第1の態様に係るボイラによれば、混焼率が所定値よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクトを通らずに脱硝装置を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクトを通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器の下流側に位置する誘引通風機の入口におけるドラフト圧を所定値以上に保つことができ、空気予熱器の下流側に配置される電気集塵装置を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器、ダクト等を採用することができ、製造コストの増加を抑制することができる。
 本発明の第2の態様に係る火力発電プラントは、上記ボイラと、電気集塵装置と、誘引通風機と、蒸気タービンと、発電機と、煙突とを備えている。
 上記本発明の第2の態様に係る火力発電プラントによれば、混焼率が所定値よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクトを通らずに脱硝装置を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクトを通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器の下流側に位置する誘引通風機の入口におけるドラフト圧を所定値以上に保つことができ、空気予熱器の下流側に配置される電気集塵装置を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器、電気集塵機、ダクト等を採用することができ、製造コストの増加を抑制することができる。
 本発明の第3の態様は、火炉と、節炭器と、脱硝装置と、空気予熱器と、前記脱硝装置をバイパスするバイパスダクトと、このバイパスダクトの途中に設けられて、前記バイパスダクト内の流路を開閉するバイパスダンパとを備え、前記火炉に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラの運転方法であって、混焼率が所定値よりも低い場合に、前記バイパスダンパを全閉とし、混焼率が所定値以上の場合に、前記バイパスダンパを全開とするようにした。
 上記本発明の第3の態様に係るボイラの運転方法によれば、混焼率が所定値よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクトを通らずに脱硝装置を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクトを通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器の下流側に位置する誘引通風機の入口におけるドラフト圧を所定値以上に保つことができ、空気予熱器の下流側に配置される電気集塵装置を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器、ダクト等を採用することができ、製造コストの増加を抑制することができる。
 本発明の第4の態様は、火炉、節炭器、脱硝装置、空気予熱器、前記脱硝装置をバイパスするバイパスダクト、および前記バイパスダクトの途中に設けられて、前記バイパスダクト内の流路を開閉するバイパスダンパを備え、前記火炉に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラと、電気集塵装置と、誘引通風機と、蒸気タービンと、発電機と、煙突とを備えてなる火力発電プラントの運転方法であって、混焼率が所定値よりも低い場合に、前記バイパスダンパを全閉とし、混焼率が所定値以上の場合に、前記バイパスダンパを全開とするようにした。
 上記本発明の第4の態様に係る火力発電プラントの運転方法によれば、混焼率が所定値よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクトを通らずに脱硝装置を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクトを通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器の下流側に位置する誘引通風機の入口におけるドラフト圧を所定値以上に保つことができ、空気予熱器の下流側に配置される電気集塵装置を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器、電気集塵機、ダクト等を採用することができ、製造コストの増加を抑制することができる。
 本発明に係るボイラによれば、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として使用し、混焼率が増加した場合でも、脱硝装置の下流側に配置される電気集塵装置を運用することができ、脱硝装置の下流側に配置される空気予熱器、ダクト等の耐圧強度を高める必要がなく、製造コストの増加を抑制することができる。
本発明の一実施形態に係るボイラを具備した火力発電プラントの概略系統図である。 図1に示すバイパスダンパの開閉状態と、誘引通風機の入口におけるドラフト圧と、混焼率との関係を示す図表である。 図1に示すバイパスダンパの開閉状態と、NOx濃度と、混焼率との関係を示す図表である。
 以下、本発明の一実施形態に係るボイラについて、図1を参照しながら説明する。図1は本実施形態に係るボイラを具備した火力発電プラントの概略系統図である。
 図1に示すように、本実施形態に係るボイラ1は、火炉2と、節炭器(Economizer)3と、脱硝装置4と、空気予熱器(Air Pre-Heater)5とを備えている。また、本実施形態に係る火力発電プラント20は、ボイラ1と、電気集塵装置(Electrostatic Precipitator)6と、誘引通風機(Induced Draft Fan)7と、蒸気タービン(図示せず)と、発電機(図示せず)と、煙突8とを備えている。
 脱硝装置4は、火炉2内で発生して節炭器3から送出された、NOxを含むボイラ排ガスにアンモニアを混合し、触媒層を通過させ、NOxを無害な窒素と水に分解する装置である。
 なお、図1中の符号9,10はそれぞれ、排ガス中のNOx濃度を測定するNOx計である。
 また、火炉2、節炭器3、空気予熱器5、電気集塵装置6、誘引通風機7、蒸気タービン、発電機、煙突8は、いずれも従来採用されているものと同じであるので、ここではその説明を省略する。
 本実施形態に係るボイラ1においては、脱硝装置4をバイパスする(迂回する)バイパスダクト11が設けられており、バイパスダクト11の途中には、バイパスダクト11内の流路を開閉するバイパスダンパ12が設けられている。バイパスダンパ12は、制御器13により作動し、制御器13は、BFG(Blast Furnace Gas)混焼率(図2および図3参照)に基づいて作動する。
 また、節炭器3から送出されたボイラ排ガスを脱硝装置4に導くダクト14の途中で、NOx計9よりも下流側、バイパスダクト11の上流端が接続された分岐点15よりも上流側には、節炭器3から送出されたボイラ排ガスの一部を火炉2に導くダクト16が設けられている。ダクト16の途中には、図示しないGMF(Gas Mixing Fan:ガス混合通風機)が設けられており、GMFから送出されたボイラ排ガスは、燃焼用空気とともに火炉2内に再投入される。
 図2に示すように、制御器13は、火炉2が重油専焼(BFG混焼率0%)から重油とBFG(製鉄所の高炉において発生した燃料ガス(高炉ガス))との混焼に切り替えられて、BFG混焼率が高められ、誘引通風機7の入口におけるドラフト圧が、例えば、電気集塵装置6の運用下限値+0.5kPaになるまで(本実施形態ではBFG混焼率が32%になるまで)バイパスダンパ12を全閉とし、電気集塵装置6の運用下限値+0.5kPaになったらバイパスダンパ12を全開とする。
 一方、制御器13は、火炉2が重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められ、誘引通風機7の入口におけるドラフト圧が、例えば、バイパスダンパ12を全閉としたときに、電気集塵装置6の運用下限値+0.8kPaを確保することができるまで(本実施形態ではBFG混焼率が29%になるまで)バイパスダンパ12を全開とし、バイパスダンパ12を全閉としたときに、電気集塵装置6の運用下限値+0.8kPaを確保することができるようになったらバイパスダンパ12を全開とする。
 また、バイパスダンパ12が全閉とされている場合には、節炭器3から送出されて分岐点15に達したボイラ排ガスの全量が脱硝装置4を通ることになるため、図3に示すように、脱硝装置4を運用(運転)する。すなわち、脱硝装置4内にアンモニアを噴霧する。
 一方、バイパスダンパ12が全開とされている場合には、BFG混焼率が高く、NOx濃度もさほど高くない(NOx濃度が規制値(例えば、130ppm)よりも約35ppm程度低くなる)ため、図3に示すように、脱硝装置4の運転を停止する。すなわち、脱硝装置4内へのアンモニアの噴霧を停止する。
 ここで、BFG混焼率とは、火炉2に投入される燃料(重油およびBFG)のうち、BFGが占める割合のことであり、カロリベースに算出されたものである。また、BFGの1Nm当たりのカロリは約800kcalである。
 本実施形態に係るボイラ1によれば、混焼率が所定値(例えば、重油専焼から重油とBFGとの混焼に切り替えられて、BFG混焼率が高められる場合にあっては32%、重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められる場合にあっては29%)よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクト11を通らずに脱硝装置4を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクト11を通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生するBFGを混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器5の下流側に位置する誘引通風機7の入口におけるドラフト圧を所定値(例えば、電気集塵装置6の運用下限値+0.5kPa)以上に保つことができ、空気予熱器5の下流側に配置される電気集塵装置6を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器5、ダクト14等を採用することができ、製造コストの増加を抑制することができる。
 本実施形態に係る発明に係る火力発電プラント20によれば、混焼率が所定値(例えば、重油専焼から重油とBFGとの混焼に切り替えられて、BFG混焼率が高められる場合にあっては32%、重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められる場合にあっては29%)よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクト11を通らずに脱硝装置4を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクト11を通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生する副生ガス(例えば、BFG)を混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器5の下流側に位置する誘引通風機7の入口におけるドラフト圧を所定値(例えば、電気集塵装置6の運用下限値+0.5kPa)以上に保つことができ、空気予熱器5の下流側に配置される電気集塵装置6を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器5、電気集塵装置6、ダクト14等を採用することができ、製造コストの増加を抑制することができる。
 また、本実施形態に係る火力発電プラント20によれば、火炉2が重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められ、誘引通風機7の入口におけるドラフト圧が、例えば、バイパスダンパ12を全閉としたときに、電気集塵装置6の運用下限値+0.8kPaを確保できるように、すなわち、重油専焼から重油とBFGとの混焼に切り替えられて、BFG混焼率が高められ、バイパスダンパ12が全閉から全開に操作されるときの所定値(電気集塵装置6の運用下限値+0.5kPa)よりも高くなるように設定されている。
 これにより、誘引通風機7の入口におけるドラフト圧が電気集塵装置6の運用下限値を下回ることを確実に防止することができ、プラント全体の安全性を向上させることができる。
 さらに、本実施形態に係る火力発電プラント20によれば、バイパスダクト11が開放されることにより、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクト11を通って下流側に導かれることになる。
 これにより、従来と同程度の出力を有する誘引通風機7を採用することができ、誘引通風機7の大型化を回避することができ、製造コストの増加を抑制することができる。
 本実施形態に係るボイラ1の運転方法によれば、混焼率が所定値(例えば、重油専焼から重油とBFGとの混焼に切り替えられて、BFG混焼率が高められる場合にあっては32%、重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められる場合にあっては29%)よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクト11を通らずに脱硝装置4を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクト11を通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生するBFGを混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器5の下流側に位置する誘引通風機7の入口におけるドラフト圧を所定値(例えば、電気集塵装置6の運用下限値+0.5kPa)以上に保つことができ、空気予熱器5の下流側に配置される電気集塵装置6を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器5、ダクト14等を採用することができ、製造コストの増加を抑制することができる。
 本実施形態に係る火力発電プラント20の運転方法によれば、混焼率が所定値(例えば、重油専焼から重油とBFGとの混焼に切り替えられて、BFG混焼率が高められる場合にあっては32%、重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められる場合にあっては29%)よりも低い場合、すなわち、NOx濃度が高い場合、ボイラ排ガスはバイパスダクト11を通らずに脱硝装置4を通って脱硝され、混焼率が所定値以上の場合、すなわち、NOx濃度が低い場合、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクト11を通って下流側に導かれることになる。
 これにより、製鉄所の生産過程において発生する副生ガス(例えば、BFG)を混焼用の燃料として使用し、混焼率が増加した場合でも、空気予熱器5の下流側に位置する誘引通風機7の入口におけるドラフト圧を所定値(例えば、電気集塵装置6の運用下限値+0.5kPa)以上に保つことができ、空気予熱器5の下流側に配置される電気集塵装置6を運用することができるとともに、従来と同程度の耐圧強度を有する空気予熱器5、電気集塵装置6、ダクト14等を採用することができ、製造コストの増加を抑制することができる。
 また、本実施形態に係る火力発電プラント20の運転方法によれば、火炉2が重油とBFGとの混焼から重油専焼に切り替えられる際、BFG混焼率が低められ、誘引通風機7の入口におけるドラフト圧が、例えば、バイパスダンパ12を全閉としたときに、電気集塵装置6の運用下限値+0.8kPaを確保できるように、すなわち、重油専焼から重油とBFGとの混焼に切り替えられて、BFG混焼率が高められ、バイパスダンパ12が全閉から全開に操作されるときの所定値(電気集塵装置6の運用下限値+0.5kPa)よりも高くなるように設定されている。
 これにより、誘引通風機7の入口におけるドラフト圧が電気集塵装置6の運用下限値を下回ることを確実に防止することができ、プラント全体の安全性を向上させることができる。
 さらに、本実施形態に係る火力発電プラント20の運転方法によれば、バイパスダクト11が開放されることにより、ボイラ排ガスは管路(流路)抵抗の少ないバイパスダクト11を通って下流側に導かれることになる。
 これにより、従来と同程度の出力を有する誘引通風機7を採用することができ、誘引通風機7の大型化を回避することができ、製造コストの増加を抑制することができる。
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で各種変更・変形が可能である。
 例えば、上述した実施形態では、重油とBFGとの混焼を一具体例として挙げて説明したが、本発明はこれに限定されるものではなく、重油の代わりに石炭をガス化させた気体燃料や天然ガスあるいは石炭ガス(COG、コーク・オーブン・ガス)を用い、BFGの代わりにLDG(製鉄所の転炉において発生した転炉ガス(燃料ガス))を用いるようにすることもできる。なお、LDGの1Nm当たりのカロリは約2000kcalである。
 また、脱硝装置4の上流側で、分岐点15の下流側に位置するダクト14の途中に、バイパスダンパ12が全開のとき、ダクト14内の流路を閉塞し、バイパスダンパ12が全閉のとき、ダクト14内の流路を開放するダンパ(図示せず)が設けられているとさらに好適である。
 これにより、脱硝装置4の運転が停止されている場合には、ボイラ排ガスの脱硝装置4への流入が確実に防止され、ボイラ排ガス中に含まれる灰による触媒層の目詰まりを防止することができる。
 さらに、バイパスダンパ12およびダクト14の途中に設けられたダンパは、全開または全閉のみで使用されるものではなく、適宜必要に応じて、全開と全閉との間に位置する中間位置で使用することもできる。
 1 ボイラ
 2 火炉
 3 節炭器
 4 脱硝装置
 5 空気予熱器
 6 電気集塵装置
 7 誘引通風機
 8 煙突
11 バイパスダクト
12 バイパスダンパ
13 制御器
20 火力発電プラント

Claims (4)

  1.  火炉と、節炭器と、脱硝装置と、空気予熱器とを備え、前記火炉に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラであって、
     前記脱硝装置をバイパスするバイパスダクトと、
     前記バイパスダクトの途中に設けられて、前記バイパスダクト内の流路を開閉するバイパスダンパと、
     混焼率が所定値よりも低い場合に、前記バイパスダンパを全閉とし、混焼率が所定値以上の場合に、前記バイパスダンパを全開とする制御器とを備えていることを特徴とするボイラ。
  2.  請求項1に記載のボイラと、電気集塵装置と、誘引通風機と、蒸気タービンと、発電機と、煙突とを備えていることを特徴とする火力発電プラント。
  3.  火炉と、節炭器と、脱硝装置と、空気予熱器と、前記脱硝装置をバイパスするバイパスダクトと、このバイパスダクトの途中に設けられて、前記バイパスダクト内の流路を開閉するバイパスダンパとを備え、前記火炉に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラの運転方法であって、
     混焼率が所定値よりも低い場合に、前記バイパスダンパを全閉とし、混焼率が所定値以上の場合に、前記バイパスダンパを全開とするようにしたことを特徴とするボイラの運転方法。
  4.  火炉、節炭器、脱硝装置、空気予熱器、前記脱硝装置をバイパスするバイパスダクト、および前記バイパスダクトの途中に設けられて、前記バイパスダクト内の流路を開閉するバイパスダンパを備え、前記火炉に、製鉄所の生産過程において発生する副生ガスを混焼用の燃料として投入することができるように構成されたボイラと、電気集塵装置と、誘引通風機と、蒸気タービンと、発電機と、煙突とを備えてなる火力発電プラントの運転方法であって、
     混焼率が所定値よりも低い場合に、前記バイパスダンパを全閉とし、混焼率が所定値以上の場合に、前記バイパスダンパを全開とするようにしたことを特徴とする火力発電プラントの運転方法。
     
PCT/JP2010/069792 2009-11-09 2010-11-08 ボイラ WO2011055814A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080023143.4A CN102449400B (zh) 2009-11-09 2010-11-08 锅炉

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009256076A JP5386308B2 (ja) 2009-11-09 2009-11-09 ボイラ
JP2009-256076 2009-11-09

Publications (1)

Publication Number Publication Date
WO2011055814A1 true WO2011055814A1 (ja) 2011-05-12

Family

ID=43970047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069792 WO2011055814A1 (ja) 2009-11-09 2010-11-08 ボイラ

Country Status (3)

Country Link
JP (1) JP5386308B2 (ja)
CN (1) CN102449400B (ja)
WO (1) WO2011055814A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418774B2 (ja) * 2009-12-15 2014-02-19 株式会社Ihi 排煙脱硝装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517019A (en) * 1978-07-19 1980-02-06 Kobe Steel Ltd Dry denitration method
JPS5955234U (ja) * 1983-08-01 1984-04-11 バブコツク日立株式会社 燃焼装置
JPH08258980A (ja) * 1995-03-27 1996-10-08 Nippon Steel Corp ホッパ内粉粒体の搬送状況判定方法および装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240007A (ja) * 1985-04-17 1986-10-25 Mitsubishi Heavy Ind Ltd 混焼ボイラ
CN2221155Y (zh) * 1994-12-23 1996-02-28 姜桂荣 涡流式烟气净化器
JP3856589B2 (ja) * 1999-04-20 2006-12-13 株式会社タクマ 燃焼設備
JP2003236334A (ja) * 2002-02-19 2003-08-26 Mitsubishi Heavy Ind Ltd 排煙処理液浄化システム
CN101078358A (zh) * 2007-06-28 2007-11-28 韩培洲 具有脱硝流程的中冷等压吸热空气轮机
JP4719228B2 (ja) * 2008-01-21 2011-07-06 三菱重工業株式会社 石炭焚ボイラの排ガス処理システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517019A (en) * 1978-07-19 1980-02-06 Kobe Steel Ltd Dry denitration method
JPS5955234U (ja) * 1983-08-01 1984-04-11 バブコツク日立株式会社 燃焼装置
JPH08258980A (ja) * 1995-03-27 1996-10-08 Nippon Steel Corp ホッパ内粉粒体の搬送状況判定方法および装置

Also Published As

Publication number Publication date
CN102449400A (zh) 2012-05-09
CN102449400B (zh) 2015-04-01
JP2011099655A (ja) 2011-05-19
JP5386308B2 (ja) 2014-01-15

Similar Documents

Publication Publication Date Title
JP7207810B2 (ja) ボイラの効率を向上させるための方法及びシステム
US5423272A (en) Method for optimizing the operating efficiency of a fossil fuel-fired power generation system
JP6535555B2 (ja) ボイラ
CN104566389B (zh) 一种低氮燃烧的垃圾焚烧炉及燃烧方法
AU2010212357B2 (en) System and method for protection of SCR catalyst
US20120222591A1 (en) Method of and Apparatus for Selective Catalytic NOx Reduction in a Power Boiler
US10954854B2 (en) Power plant methods and apparatus
CN105080315B (zh) 用于干法水泥窑的烟气脱硝系统
CN207065552U (zh) 一种降低循环流化床锅炉NOx排放的低温烟气再循环系统
CN105987379B (zh) 锅炉机组
AU2009262148B2 (en) A furnace system with internal flue gas recirculation
CN103604116A (zh) 降低循环流化床锅炉烟气产物中氮氧化物的装置及其方法
CN106969351A (zh) 一种降低循环流化床锅炉NOx排放的烟气再循环方法与系统
JP5386308B2 (ja) ボイラ
WO2019069519A1 (ja) ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム
WO2013136912A1 (ja) 火力発電プラント
JP5791429B2 (ja) 排ガス処理システムおよび排ガス処理方法
JP2010264400A (ja) 脱硝装置
JP6616945B2 (ja) 焼却プラント
CN208366101U (zh) 一种管式炉烟气脱硫脱硝系统
JP2011125766A (ja) 排ガス処理装置
CN211040972U (zh) 一种垃圾焚烧设备
EP2679898B1 (en) Denitration apparatus used for a coal-fired boiler
JP2021121777A (ja) ボイラおよび脱硫方法
CN117190171A (zh) 控制燃煤耦合污泥发电过程二噁英生成量的系统及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023143.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9336/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828372

Country of ref document: EP

Kind code of ref document: A1