WO2013136912A1 - 火力発電プラント - Google Patents

火力発電プラント Download PDF

Info

Publication number
WO2013136912A1
WO2013136912A1 PCT/JP2013/053821 JP2013053821W WO2013136912A1 WO 2013136912 A1 WO2013136912 A1 WO 2013136912A1 JP 2013053821 W JP2013053821 W JP 2013053821W WO 2013136912 A1 WO2013136912 A1 WO 2013136912A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
boiler
combustion
flue
power plant
Prior art date
Application number
PCT/JP2013/053821
Other languages
English (en)
French (fr)
Inventor
雅人 半田
林 喜治
強 柴田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013136912A1 publication Critical patent/WO2013136912A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/103Pulverizing with hot gas supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a thermal power plant.
  • Patent Document 2 discloses means for improving the thermal efficiency of the entire plant by improving the performance of the air heat exchanger.
  • the air heater is divided into two units, and a cooler is installed in the duct through which the intermediate combustion air passes, so that the heat transfer area of the air heat exchanger is not increased unnecessarily. The heat exchange rate is improved.
  • the combustion exhaust gas temperature on the inlet side of the air heater is generally set to about 350 ° C. This is because the standard exhaust gas temperature at the boiler outlet is designed to be about 350 ° C. in a supercritical pressure boiler which is currently the mainstream of new thermal power plants worldwide.
  • the supply amount of combustion air is fixed at a certain ratio with respect to the amount of fuel to be injected into the boiler. If this ratio is exceeded, the combustion characteristics of the fuel will deteriorate and the operation will be hindered. It is not possible. Therefore, the freedom degree of boiler design was restrict
  • an object of the present invention is to maintain plant thermal efficiency even at higher temperature flue gas.
  • a recirculation gas intake, a primary combustion air duct, a secondary combustion air duct, and a recirculation gas intake that are arranged in the middle of a flue and recirculate part of the combustion exhaust gas to the boiler
  • a recirculation gas supply duct for recirculating combustion exhaust gas from the boiler to the boiler, and an air heater for exchanging heat of each fluid in the flue are provided.
  • Example 1 of this invention It is a figure which shows the apparatus structure of Example 1 of this invention. It is a figure which shows the apparatus structure of Example 2 of this invention. It is a figure which shows the apparatus structure of Example 3 of this invention. It is a figure which shows the apparatus structure of Example 4 of this invention.
  • the present invention relates to a thermal power plant that burns fuel and generates steam with a boiler to drive a steam turbine power generation facility.
  • a thermal power plant that burns fuel and generates steam with a boiler to drive a steam turbine power generation facility.
  • an embodiment in which the present invention is applied to a thermal power plant using a coal-fired boiler will be described with reference to the drawings.
  • the present invention is not limited to the examples.
  • FIG. 1 shows the equipment configuration of a coal-fired power plant in this embodiment.
  • Coal as fuel is supplied to the coal pulverizer 10 and pulverized so as to have a particle diameter suitable for combustion in the boiler 1.
  • a part of the air heated through the air heater 2 is supplied to the coal pulverizer 10 through the primary combustion air duct 8, and the coal pulverized by the heated air is dried and conveyed outside the pulverizer. Further, it is supplied to the boiler 1 through the coal supply pipe 12.
  • a secondary combustion air of another system is supplied to the boiler 1 via the air heater 2 to the boiler 1 via the secondary combustion air duct 9, and the pulverized coal is burned using these combustion air. , Generating hot combustion gases in the boiler.
  • the heat of the combustion gas is transferred to water through a heat transfer tube (not shown) installed in the boiler, and high-temperature and high-pressure steam is generated. Energy is converted into electricity.
  • the combustion exhaust gas discharged from the boiler 1 is finally discharged from the chimney 5 through the flue 3 into the atmosphere.
  • an exhaust gas treatment facility 4 and a recirculation gas intake 6 are installed in the middle of the flue 3.
  • the combustion exhaust gas guided from the recirculation gas inlet 6 is supplied to the air heater 2 through the recirculation gas supply duct 7 and heated, and then supplied to the boiler 1 and mixed with the combustion gas in the boiler. .
  • the air heater 2 of the power plant includes the recirculation gas for recirculating the combustion exhaust gas from the primary combustion air duct 8, the secondary combustion air duct 9, and the recirculation gas intake 6 to the boiler 1.
  • a supply duct 7 and a flue 3 are connected.
  • the air heater 2 can heat the fluid flowing through the primary combustion air duct 8, the secondary combustion air duct 9, and the recirculation gas supply duct 7 using the combustion exhaust gas flowing through the flue 3 as a heat source.
  • the flow rate of the gas to be heated can be increased as compared with the air heater in the prior art, even if the temperature of the combustion exhaust gas at the outlet of the boiler 1 is increased to about 500 ° C., the combustion at the outlet of the air heater 2 is performed.
  • the exhaust gas temperature can be maintained at the same level as before, and the thermal efficiency of the plant can be maintained.
  • a plurality of devices may be installed in the exhaust gas treatment facility 4 according to the exhaust gas properties and the regulated values of harmful substances. Further, the positional relationship of the plurality of exhaust gas treatment devices, the air heater 2 and the recirculation gas intake 6 on the flue 3 may be different from the order shown in FIG. 1 according to the requirements of the designer. I do not care. However, the recirculation gas inlet 6 must be installed on the flue on the downstream side when viewed from the air heater 2.
  • FIG. 2 shows the equipment configuration of the coal-fired power plant in this embodiment. Since this embodiment has a lot of parts composed of devices having the same operation as that of the first embodiment, only differences from the first embodiment will be described below. The apparatus not described below has the same operation and effect as in the first embodiment.
  • This embodiment is different from the first embodiment in that the air heater is composed of two units, a low temperature air heater 2a and a high temperature air heater 2b.
  • the air heater is composed of two units, a low temperature air heater 2a and a high temperature air heater 2b.
  • the recirculation gas supply duct 7, the primary combustion air duct 8, and the secondary combustion air duct 9 pass through both the low-temperature air heater 2a and the high-temperature air heater 2b to be heated by the respective heated media. Heat.
  • a denitration facility 15 that is a part of the exhaust gas treatment facility 4 is installed on the flue 3 of the combustion exhaust gas that communicates the low temperature air heater 2a and the high temperature air heater 2b.
  • the denitration facility 15 is installed for the purpose of removing nitrogen oxides contained in the exhaust gas, but the ammonia spray type catalyst denitration facility with high removal efficiency has an optimum operating temperature of about 350 ° C. Installed upstream of the air heater.
  • the installation position of this embodiment is suitable. That is, by adopting the configuration of this embodiment, it is possible to maintain high nitrogen oxide removal performance even when the present invention is applied.
  • FIG. 3 shows the equipment configuration of the coal-fired power plant in this embodiment. Since this embodiment has a lot of parts composed of devices having the same operation as that of the second embodiment, only differences from the second embodiment will be described below. With respect to an apparatus not described below, the same effects as those in the first and second embodiments are assumed.
  • the two air heaters 2a and 2b and the denitration equipment 15 installed between them are the same as in the second embodiment, but the primary combustion air duct 8 is only the low temperature air heater 2a.
  • the point which is connected to the coal grinder 10 via is different.
  • the temperature of the primary combustion air supplied to the coal pulverizer 10 is about 200 ° C. Further, since the flow rate ratio between the primary combustion air and the secondary combustion air is approximately 1: 5, the primary combustion air can often be sufficiently heated by passing it through one air heater. As in the present embodiment, the configuration of the piping around the air heater can be simplified by using only the low-temperature air heater 2a as the routing route of the primary combustion air duct 8, which is preferable.
  • FIG. 4 shows the equipment configuration of the coal-fired power plant in this embodiment. Since this embodiment has a lot of parts composed of devices having the same operation as that of the first embodiment, only differences from the first embodiment will be described below. With respect to an apparatus not described below, it is assumed that it has the same function and effect as in the first embodiment.
  • the configuration of this embodiment is different in that an exhaust gas cooling device 16 is installed in the flue 3 on the downstream side of the exhaust gas processing device 4 and a recirculation gas intake 6 is installed on the downstream side thereof.
  • a wet desulfurization device is often installed to remove sulfur oxides in the exhaust gas.
  • the temperature of the combustion exhaust gas at the outlet of the desulfurization apparatus is lowered to 50 to 80 ° C. Therefore, if the recirculation gas intake 6 is installed on the downstream side, sufficient heat exchange performance in the air heater 2 is ensured. it can.
  • the exhaust gas temperature at the outlet of the boiler 1 fluctuates due to a sudden change in coal properties or combustion state, and the air heater 2 In some cases, sufficient heat exchange performance cannot be obtained.
  • the exhaust gas cooling device 16 is installed on the flue 3 and the temperature of the recirculated exhaust gas can be maintained in a necessary temperature range at all times, the effect of the present invention can be achieved with any exhaust gas treatment device 4. This is preferable because it can be obtained stably in the equipment configuration and under any change in operating conditions.

Abstract

本発明は、火力発電プラントにおいて、より高い温度の燃焼排ガスでも、プラント熱効率を維持することにある。 火力発電プラントにおいて、煙道3の中途に配置され燃焼排ガスの一部をボイラ1に再循環させるための再循環ガス取入口6を備え、1次燃焼空気ダクト8及び2次燃焼空気ダクト9を流れる燃焼空気の流体と、再循環ガス取入口6からボイラ1に燃焼排ガスを再循環させる再循環ガス供給ダクト7を流れる流体と、煙道3を流下した燃焼排ガスの流体を熱源として熱交換させる空気加熱器2を備えて構成している。

Description

火力発電プラント
 本発明は、火力発電プラントに関する。
 燃料を燃焼させてボイラで蒸気を生成する発電プラントにおいては、熱効率を向上させるためにボイラから排出される燃焼排ガスからの熱回収手段が講じられるのが一般的である。特許文献1に示されているように、石炭を燃料とする火力発電プラントでは、ボイラ出口の煙道上に空気加熱器が設置され、燃焼排ガスの熱を用いて燃焼空気を加熱し、加熱された燃焼空気をボイラに供給して燃料を燃焼させることで熱効率を向上させる手法が広く用いられている。
 また特許文献2には、空気熱交換器の性能向上を図ることでプラント全体の熱効率を改善する手段について開示されている。ここでは、空気加熱器を2台に分割した上で、その中間の燃焼空気が通風するダクト内に冷却器を設置することにより、空気熱交換器の伝熱面積をいたずらに増大させること無く見かけの熱交換率を向上させている。
特開2003-214621号公報 特公平6-3285号公報
 従来の石炭火力発電プラントで用いられているシステムでは、空気加熱器の入口側の燃焼排ガス温度が、350℃程度に設定されるのが一般的である。これは、現在世界的に新設火力発電プラントの主流となっている超臨界圧ボイラにおいて、標準的なボイラ出口の燃焼排ガス温度が350℃程度で設計されるためである。
 しかしながら、近年ではさらに発電システムの熱効率を向上させるために、ボイラで生成する蒸気をより高温高圧にするべく開発が進められている。このような超高効率ボイラを設計するにあたっては、ボイラ出口の燃焼排ガス温度をより高く設定できれば構造やコストの面で有利な設計ができる場合がある。ところが、従来の空気加熱器システムでは、受け入れ可能な燃焼排ガス温度が350℃以上になると、空気加熱器出口の燃焼排ガス温度も同時に上昇してしまい、熱効率の低下を招くことが知られている。これは、空気加熱器における被加熱媒体である燃焼空気の流量に上限値があるためである。燃焼空気の供給量は、ボイラに投入する燃料量に対して一定の比率が定められており、これを上回ると燃料の燃焼特性が悪化して運転に支障を来たすため、この上限値を変更することはできない。したがって、ボイラ設計の自由度が大きく制限されてしまい、経済性の高い高効率ボイラを実現する際の制約となっていた。
 そこで本発明の目的は、より高い温度の燃焼排ガスでも、プラント熱効率を維持することにある。
 火力発電プラントにおいて、煙道の中途に配置され、燃焼排ガスの一部をボイラに再循環させるための再循環ガス取入口と、1次燃焼空気ダクト、2次燃焼空気ダクト、再循環ガス取入口からボイラに燃焼排ガスを再循環させる再循環ガス供給ダクト、及び煙道の各流体を熱交換させる空気加熱器を備えることを特徴とする。
 本発明によれば、より高い温度の燃焼排ガスでも、プラント熱効率を維持することが可能である。
本発明の実施例1の機器構成を示す図である。 本発明の実施例2の機器構成を示す図である。 本発明の実施例3の機器構成を示す図である。 本発明の実施例4の機器構成を示す図である。
 本発明は、燃料を燃焼させてボイラで蒸気を生成して蒸気タービン発電設備を駆動する火力発電プラントに関する。以下、本発明を石炭焚きボイラを用いた火力発電プラントに適用した実施例について図を参照しながら説明する。ただし、本発明は実施例に限定され
るものではない。
 図1は、本実施例における石炭火力発電プラントの機器構成を示す。燃料である石炭は、石炭粉砕機10に供給され、ボイラ1での燃焼に適した粒子径となるように粉砕される。石炭粉砕機10には、空気加熱器2を介して加熱された空気の一部が1次燃焼空気ダクト8を通じて供給され、この加熱空気によって粉砕された石炭を乾燥させるとともに粉砕機外へ搬送し、さらに石炭供給配管12を通じてボイラ1に供給する。ボイラ1には空気加熱器2を介して、別系統の2次燃焼空気が2次燃焼空気ダクト9を介してボイラ1に供給されており、これら燃焼空気を用いて粉砕石炭を燃焼させることにより、ボイラ内で高温の燃焼ガスを生成する。
 燃焼ガスが有する熱は、ボイラに設置された図示しない伝熱管を介して水に伝達され高温高圧の蒸気が生成された後に、蒸気配管13によって蒸気タービン発電設備11に供給されて、蒸気の有するエネルギーが電気に変換される。
 ボイラ1から排出される燃焼排ガスは、煙道3を通じて最終的には煙突5から大気中に放出される。煙道3の中途には、空気加熱器2の他に排ガス処理設備4と再循環ガス取入口6が設置される。再循環ガス取入口6から導引された燃焼排ガスは、再循環ガス供給ダクト7を通じて空気加熱器2に供給されて加熱され、その後にボイラ1に供給されてボイラ内で燃焼ガスと混合される。
 このように、本実施例の発電プラントの空気加熱器2は、1次燃焼空気ダクト8、2次燃焼空気ダクト9、再循環ガス取入口6からボイラ1に燃焼排ガスを再循環させる再循環ガス供給ダクト7、及び煙道3が接続されている。そして、空気加熱器2は、煙道3を流れる燃焼排ガスを熱源として、1次燃焼空気ダクト8、2次燃焼空気ダクト9、及び再循環ガス供給ダクト7を流れる流体を加熱することができる。従って、従来技術における空気加熱器よりも被加熱媒体となるガスの流量を増加させられるので、ボイラ1出口の燃焼排ガスの温度を約500℃程度に上昇させても、空気加熱器2出口の燃焼排ガス温度を従来と同等に維持することができ、プラントの熱効率を維持することができる。
 なお、排ガス処理設備4には、排ガス性状と有害物質の規制値に応じて、複数の機器が設置されても良い。また、これら複数の排ガス処理機器と空気加熱器2および再循環ガス取入口6の煙道3上での位置関係は、設計者の要求に応じて図1に示す順序と異なることがあっても構わない。ただし、再循環ガス取入口6については空気加熱器2から見て下流側の煙道上に設置されなければならない。
 図2は、本実施例における石炭火力発電プラントの機器構成を示す。本実施例は実施例1と同様の作用を有する装置で構成される部分が多いため、以下では実施例1との相違点のみを述べる。以下に記述されない装置に関しては、実施例1におけるのと同様の作用効果を有するものとする。
 本実施例が実施例1と異なる点は、空気加熱器が低温空気加熱器2aと高温空気加熱器2bの2台で構成されていることにある。このような構成を採ることで、2台の空気加熱器2a、2bの中間に排ガス処理設備4の一部の機器を設置したり、あるいは被加熱媒体の通過経路を片方の空気加熱器2a又は2bのみに限定したりすることが可能となり、より有利な効果を得ることができる。
 本実施例の構成では、再循環ガス供給ダクト7と1次燃焼空気ダクト8、2次燃焼空気ダクト9は低温空気加熱器2aと高温空気加熱器2bの両方を通過してそれぞれの被加熱媒体を加熱する。また、低温空気加熱器2aと高温空気加熱器2bを連通する燃焼排ガスの煙道3上に排ガス処理設備4の一部である脱硝設備15を設置している。脱硝設備15は、排ガス中に含まれる窒素酸化物を除去する目的で設置されるが、除去効率が高いアンモニア噴霧式の触媒脱硝設備は、最適な動作温度が約350℃であり、従来技術では空気加熱器の上流側に設置される。本実施例が想定するようにボイラ出口温度が400℃以上となるような場合には、本実施例の設置位置が好適である。すなわち本実施例の構成を採用することで、本発明を適用した際でも高い窒素酸化物除去性能を維持することが可能となる。
 図3は、本実施例における石炭火力発電プラントの機器構成を示す。本実施例は実施例2と同様の作用を有する装置で構成される部分が多いため、以下では実施例2との相違点のみを述べる。以下に記述されない装置に関しては、実施例1および実施例2におけるのと同様の作用効果を有するものとする。
 本実施例の構成では、2台の空気加熱器2a、2bとその中間に設置された脱硝設備15については実施例2と同様であるが、1次燃焼空気ダクト8が低温空気加熱器2aのみを介して石炭粉砕機10に接続している点が異なる。
 通常、石炭粉砕機10に供給する1次燃焼空気の温度は約200℃である。また、1次燃焼空気と2次燃焼空気の流量比はおおよそ1:5であるため、1次燃焼空気は1台分の空気加熱器を通過させれば十分な加熱ができる場合が多い。本実施例のごとく、1次燃焼空気ダクト8の引き回し経路を低温空気加熱器2aのみとすることにより、空気加熱器周りの配管の構成をより簡潔にすることができ、好適である。
 図4は、本実施例における石炭火力発電プラントの機器構成を示す。本実施例は実施例1と同様の作用を有する装置で構成される部分が多いため、以下では実施例1との相違点のみを述べる。以下に記述されない装置に関しては、実施例1におけるのと同様の作用効果を有するものとする。
 本実施例の構成では、排ガス処理装置4の下流側の煙道3に排ガス冷却装置16が設置されており、さらにその下流側に再循環ガス取入口6が設置される点が異なる。
 一般に、排ガス処理装置4の1つとして排ガス中の硫黄酸化物を除去するために湿式の脱硫装置が設置されることが多い。この場合、脱硫装置の出口における燃焼排ガスの温度は50~80℃にまで低下するため、この下流側に再循環ガス取入口6を設置すれば、空気加熱器2における熱交換性能を十分に確保できる。しかしながら、排ガス処理装置4の構成によってはこのような排ガス温度低下が達成されない場合があり、さらには石炭性状や燃焼状態の突発的な変化によりボイラ1出口の排ガス温度が変動し、空気加熱器2で十分な熱交換性能が得られない場合も想定される。本実施例のように、排ガス冷却装置16を煙道3上に設置して再循環排ガスの温度を常時必要な温度域に維持することができれば、本発明における効果を、いかなる排ガス処理装置4の機器構成においても、またいかなる運転状況の変動下においても、安定して得ることができるため好適である。
1:ボイラ、2:空気加熱器、2a:低温空気加熱器、2b:高温空気加熱器、3:煙道、4:排ガス処理設備、5:煙突、6:再循環ガス取入口、7:再循環ガス供給ダクト、8:1次燃焼空気ダクト、9:2次燃焼空気ダクト、10:石炭粉砕機、11:蒸気タービン発電設備、12:石炭供給配管、13:蒸気配管、15:脱硝設備、16:排ガス冷却装置。

Claims (4)

  1.  燃焼ガスから熱を回収するための伝熱管を有するボイラと、前記ボイラに燃焼空気を供給する1次燃焼空気ダクト及び2次燃焼空気ダクトと、前記ボイラから排出された燃焼排ガスを煙突に導く煙道と、前記煙道の中途に設置され燃焼排ガス中の有害物質や粒子状物質を除去する排ガス処理装置と、前記ボイラで発生した蒸気により蒸気タービンを駆動して電気に変換する発電設備を有する火力発電プラントにおいて、
     前記煙道の中途に配置され、燃焼排ガスの一部をボイラに再循環させるための再循環ガス取入口と、
     前記1次燃焼空気ダクト、前記2次燃焼空気ダクト、前記再循環ガス取入口から前記ボイラに燃焼排ガスを再循環させる再循環ガス供給ダクト、及び前記煙道の各流体を熱交換させる空気加熱器を備えることを特徴とする火力発電プラント。
  2.  請求項1において、2台の前記空気加熱器が燃焼排ガス流れ方向に対して直列に設置され、2台の空気加熱器の中間には排ガス中の窒素酸化物を除去する脱硝設備が設置され、前記再循環ガス供給ダクトは前記2台の空気加熱器を経由することを特徴とする火力発電プラント。
  3.  請求項2において、前記1次燃焼空気ダクトは、2台の空気加熱器のうち1台のみを通過した後に、ボイラに供給されることを特徴とする火力発電プラント。
  4.  請求項1において、燃焼排ガスの煙道上の全ての排ガス処理設備よりも下流側に排ガス冷却装置が設置され、さらに前記排ガス冷却装置の下流側に前記再循環ガス取入口が設置されていることを特徴とする火力発電プラント。
PCT/JP2013/053821 2012-03-13 2013-02-18 火力発電プラント WO2013136912A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012055231A JP2013189883A (ja) 2012-03-13 2012-03-13 火力発電プラント
JP2012-055231 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013136912A1 true WO2013136912A1 (ja) 2013-09-19

Family

ID=49160831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053821 WO2013136912A1 (ja) 2012-03-13 2013-02-18 火力発電プラント

Country Status (2)

Country Link
JP (1) JP2013189883A (ja)
WO (1) WO2013136912A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791835A (zh) * 2015-04-17 2015-07-22 杭州兴环科技开发有限公司 一种提高锅炉进风温度的方法及系统
CN105423332A (zh) * 2015-12-31 2016-03-23 华润电力焦作有限公司 锅炉设备及锅炉空气预热方法
CN105588135A (zh) * 2016-02-22 2016-05-18 大震锅炉工业(昆山)有限公司 一种用于锅炉上的烟气再循环装置
CN108613173A (zh) * 2018-06-05 2018-10-02 郑州大学 燃气锅炉烟气再循环加湿低氮系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107002A (ja) * 1984-10-30 1986-05-24 株式会社日立製作所 ボイラの風煙道系における回転再生式空気予熱器
JPS63297910A (ja) * 1987-05-28 1988-12-05 Takuma Co Ltd 階段式焼却炉に於けるNOx抑制方法
JPH08320103A (ja) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd 石炭焚ボイラの一次空気温度制御方法及び該方法に用いる装置
WO2010132485A1 (en) * 2009-05-14 2010-11-18 Alstom Technology Ltd Gas leakage reduction system
WO2011037680A2 (en) * 2009-09-25 2011-03-31 Babcock Power Environmental Inc. Integrated boiler and air pollution control systems
JP2011141075A (ja) * 2010-01-07 2011-07-21 Babcock Hitachi Kk 酸素燃焼発電プラントとその運転方法
JP2011247553A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 酸素燃焼ボイラ
WO2011158521A1 (ja) * 2010-06-16 2011-12-22 三菱重工業株式会社 燃焼システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107002A (ja) * 1984-10-30 1986-05-24 株式会社日立製作所 ボイラの風煙道系における回転再生式空気予熱器
JPS63297910A (ja) * 1987-05-28 1988-12-05 Takuma Co Ltd 階段式焼却炉に於けるNOx抑制方法
JPH08320103A (ja) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd 石炭焚ボイラの一次空気温度制御方法及び該方法に用いる装置
WO2010132485A1 (en) * 2009-05-14 2010-11-18 Alstom Technology Ltd Gas leakage reduction system
WO2011037680A2 (en) * 2009-09-25 2011-03-31 Babcock Power Environmental Inc. Integrated boiler and air pollution control systems
JP2011141075A (ja) * 2010-01-07 2011-07-21 Babcock Hitachi Kk 酸素燃焼発電プラントとその運転方法
JP2011247553A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 酸素燃焼ボイラ
WO2011158521A1 (ja) * 2010-06-16 2011-12-22 三菱重工業株式会社 燃焼システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791835A (zh) * 2015-04-17 2015-07-22 杭州兴环科技开发有限公司 一种提高锅炉进风温度的方法及系统
CN105423332A (zh) * 2015-12-31 2016-03-23 华润电力焦作有限公司 锅炉设备及锅炉空气预热方法
CN105588135A (zh) * 2016-02-22 2016-05-18 大震锅炉工业(昆山)有限公司 一种用于锅炉上的烟气再循环装置
CN108613173A (zh) * 2018-06-05 2018-10-02 郑州大学 燃气锅炉烟气再循环加湿低氮系统

Also Published As

Publication number Publication date
JP2013189883A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4644725B2 (ja) 酸素燃焼ボイラシステム,微粉炭燃焼ボイラの改造方法,酸素燃焼ボイラシステムの制御装置及びその制御方法
JP5174618B2 (ja) 酸素燃焼ボイラシステム及び酸素燃焼ボイラシステムの制御方法
RU2543096C1 (ru) СПОСОБ И УСТРОЙСТВО ДЛЯ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ NOx В ЭНЕРГЕТИЧЕСКОМ КОТЛЕ
JP5581035B2 (ja) 排気ガス再循環システムにより燃料を加熱するシステム及び方法
JP2013506110A (ja) 統合ボイラおよび大気汚染制御システム
US10730014B2 (en) Boiler
CN105318313B (zh) 一种基于scr脱硝装置的烟气余热利用系统
WO2013136912A1 (ja) 火力発電プラント
CN103486566A (zh) 一种保证褐煤锅炉干燥出力和scr安全烟温的余热利用系统
KR101495087B1 (ko) 연소 시스템
CN103191640A (zh) 一种scr脱硝还原剂尿素热解热源供给方法和装置
CN203731456U (zh) 一种火力发电机组用锅炉烟气温升装置
JP2013245905A (ja) ボイラ
JP7420941B2 (ja) 蒸気ボイラシステムを作動させるための配置構成及び方法
US9631809B2 (en) Booster air heater for high moisture fuels
JP5812740B2 (ja) 酸素燃焼システム及びその運転方法
JP5791429B2 (ja) 排ガス処理システムおよび排ガス処理方法
JP2011125766A (ja) 排ガス処理装置
KR101312726B1 (ko) 발전플랜트의 통풍장치
JP2020121267A (ja) 排ガス処理装置
CN104511234B (zh) 一种用于流化床锅炉的洁净排放系统及方法
KR101817018B1 (ko) 탈황 설비용 가스가스히터
KR101858894B1 (ko) 탈황 설비용 가스가스히터
RU2056588C1 (ru) Котельная установка
CN105889895A (zh) 一种改变面积和流动方式来提高scr入口烟温的省煤器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760392

Country of ref document: EP

Kind code of ref document: A1